56 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 721, 2006 ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 1 /29/ À.Í. Âîäèí, Ë.Ï. Êîðäà, À.Î. Ðàñòðåïèíà ... Èññëåäîâàíèå ñòðóêòóðû àíàëîãîâîãî ... ɍȾɄ 539.163 ɂɋɋɅȿȾɈȼȺɇɂȿ ɋɌɊɍɄɌɍɊɕ ȺɇȺɅɈȽɈȼɈȽɈ ɋɈɋɌɈəɇɂə C JS =5/2+ ȼ əȾɊȿ 31P 1 Ⱥ.ɇ. ȼɨɞɢɧ1, Ʌ.ɉ. Ʉɨɪɞɚ1, Ⱥ.Ɉ. Ɋɚɫɬɪɟɩɢɧɚ2, ɂ.ȼ. ɍɲɚɤɨɜ1, ȼ.Ɍ. Ȼɵɤɨɜ1, Ƚ.ɗ. Ɍɭɥɥɟɪ2, Ɇ.ȼ. ȼɚɳɟɧɤɨ2 ɇɚɰɢɨɧɚɥɶɧɵɣ ɧɚɭɱɧɵɣ ɰɟɧɬɪ “ɏɚɪɶɤɨɜɫɤɢɣ ɮɢɡɢɤɨ-ɬɟɯɧɢɱɟɫɤɢɣ ɢɧɫɬɢɬɭɬ”, 61108, ɏɚɪɶɤɨɜ, ɭɥ. Ⱥɤɚɞɟɦɢɱɟɫɤɚɹ, 1 2 ɏɚɪɶɤɨɜɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ ɢɦ ȼ.ɇ. Ʉɚɪɚɡɢɧɚ, 61077, ɏɚɪɶɤɨɜ, ɩɥ. ɋɜɨɛɨɞɵ, 4 ɉɨɫɬɭɩɢɥɚ ɜ ɪɟɞɚɤɰɢɸ 15 ɦɚɪɬɚ 2006 ɝ. ɂɫɫɥɟɞɨɜɚɧɚ ɪɟɚɤɰɢɹ 30Si(p,Ȗ)31P ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɩɪɨɬɨɧɨɜ ɨɬ 1750 ɞɨ 1905ɤɷȼ. ɂɡɦɟɪɟɧɵ ɫɩɟɤɬɪɵ Ȗ-ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɩɪɢ Ep = 1770, 1830, 1880, 1894 ɢ 1896 ɤɷȼ. Ɉɩɪɟɞɟɥɟɧɵ ɫɢɥɵ ɭɤɚɡɚɧɧɵɯ ɪɟɡɨɧɚɧɫɨɜ, ɢɯ ɪɚɞɢɚɰɢɨɧɧɵɟ ɲɢɪɢɧɵ ɢ ɩɨɫɬɪɨɟɧɵ ɫɯɟɦɵ ɢɯ Ȗ-ɪɚɫɩɚɞɚ. ɂɡɦɟɪɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ Ȗ-ɥɭɱɟɣ, ɧɚ ɨɫɧɨɜɚɧɢɢ ɤɨɬɨɪɵɯ ɨɩɪɟɞɟɥɟɧɵ ɫɩɢɧɵ ɢ ɱɟɬɧɨɫɬɢ ɪɟɡɨɧɚɧɫɧɵɯ ɫɨɫɬɨɹɧɢɣ ɹɞɪɚ 31P ɢ ɤɨɷɮɮɢɰɢɟɧɬɵ ɫɦɟɫɢ į ɜ ɩɪɹɦɵɯ ɩɟɪɟɯɨɞɚɯ. ɉɪɨɜɟɞɟɧɨ ɫɪɚɜɧɟɧɢɟ ɢɧɬɟɧɫɢɜɧɨɫɬɟɣ Ɇ1-ɩɟɪɟɯɨɞɨɜ ɫ ɪɚɫɱɟɬɚɦɢ ɩɨ ɦɧɨɝɨɱɚɫɬɢɱɧɨɣ ɦɨɞɟɥɢ ɫ ɩɨɜɟɪɯɧɨɫɬɧɵɦ G-ɜɡɚɢɦɨɞɟɣɫɬɜɢɟɦ. ɉɨɤɚɡɚɧɨ, ɱɬɨ ɩɪɢ ɪɚɫɩɚɞɟ ɚɧɚɥɨɝɨɜɨɝɨ ɪɟɡɨɧɚɧɫɚ ɫɭɳɟɫɬɜɟɧɧɭɸ ɪɨɥɶ ɢɝɪɚɟɬ ɢɡɨɛɚɪɢɱɟɫɤɨɟ ɤɨɥɥɟɤɬɢɜɧɨɟ ɫɨɫɬɨɹɧɢɟ ɬɢɩɚ ɩɨɥɹɪɢɡɚɰɢɢ ɨɫɬɨɜɚ. ɉɪɨɜɟɞɟɧ ɚɧɚɥɢɡ ɤɨɪɪɟɥɹɰɢɣ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ. ɄɅɘɑȿȼɕȿ ɋɅɈȼȺ: ɹɞɟɪɧɚɹ ɪɟɚɤɰɢɹ 30Si(p,J)31P, ɢɡɨɫɩɢɧ, ɢɡɨɛɚɪ-ɚɧɚɥɨɝɨɜɨɟ ɫɨɫɬɨɹɧɢɟ, Ȗ-ɪɚɫɩɚɞ, ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ, ɜɟɪɨɹɬɧɨɫɬɶ Ɇ1-ɩɟɪɟɯɨɞɚ. ɂɫɫɥɟɞɨɜɚɧɢɹ ɢɡɨɛɚɪ-ɚɧɚɥɨɝɨɜɵɯ ɪɟɡɨɧɚɧɫɨɜ (ȺɊ) ɩɪɟɞɫɬɚɜɥɹɸɬ ɡɧɚɱɢɬɟɥɶɧɵɣ ɢɧɬɟɪɟɫ, ɨɛɭɫɥɨɜɥɟɧɧɵɣ ɜɵɹɫɧɟɧɢɟɦ ɪɨɥɢ ɡɚɪɹɞɨɜɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɹɞɟɪɧɵɯ ɫɢɥ ɜ ɦɟɯɚɧɢɡɦɟ ɫɦɟɲɢɜɚɧɢɹ ɭɪɨɜɧɟɣ ɩɨ ɢɡɨɫɩɢɧɭ ɜ ɹɞɪɚɯ, ɚ ɬɚɤɠɟ ɞɥɹ ɪɚɡɜɢɬɢɹ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɚɬɨɦɧɨɝɨ ɹɞɪɚ. Ɋɟɡɭɥɶɬɚɬɵ, ɩɨɥɭɱɟɧɧɵɟ ɜ [1], ɩɨɡɜɨɥɹɸɬ ɩɪɟɞɩɨɥɨɠɢɬɶ, ɱɬɨ ȺɊ ɫ JS = 5/2+ ɡɧɚɱɢɬɟɥɶɧɨ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɵ ɜ ɹɞɪɚɯ 1d2s-ɨɛɨɥɨɱɤɢ. ɇɚɫɬɨɹɳɚɹ ɪɚɛɨɬɚ ɹɜɥɹɟɬɫɹ ɞɚɥɶɧɟɣɲɢɦ ɪɚɡɜɢɬɢɟɦ ɷɬɨɣ ɢɞɟɢ ɧɚ ɩɪɢɦɟɪɟ ɹɞɪɚ 31Ɋ, ɜ ɤɨɬɨɪɨɦ ɢɡɭɱɟɧ J-ɪɚɫɩɚɞ ɮɪɚɝɦɟɧɬɨɜ ɨɞɧɨɱɚɫɬɢɱɧɨɝɨ d5/2-ɫɨɫɬɨɹɧɢɹ ɫ Ŋ* | 9,09 Ɇɷȼ, ɹɜɥɹɸɳɟɝɨɫɹ ɢɡɨɛɚɪɢɱɟɫɤɢɦ ɚɧɚɥɨɝɨɦ ɦɚɬɟɪɢɧɫɤɨɝɨ ɭɪɨɜɧɹ ɹɞɪɚ 31Si ɫ ȿ* = 2,789 Ɇɷȼ ɫ JS = 5/2+ ɢ Ɍ = 3/2. ɋɨɝɥɚɫɧɨ ɞɚɧɧɵɦ ɩɨ (3He,d)-ɪɟɚɤɰɢɢ [2] ɢ ɭɩɪɭɝɨɦɭ ɪɚɫɫɟɹɧɢɸ ɩɪɨɬɨɧɨɜ [3] ɫɨɫɬɨɹɧɢɹ ɫ ȿ* = 9,009; 9,067; 9,116; 9,129 ɢ 9,131 Ɇɷȼ ɹɜɥɹɸɬɫɹ ɤɨɦɩɨɧɟɧɬɚɦɢ ɬɨɧɤɨɣ ɫɬɪɭɤɬɭɪɵ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɪɟɡɨɧɚɧɫɚ ɜ 31P. Ɋɚɞɢɚɰɢɨɧɧɵɣ ɤɚɧɚɥ ɪɚɫɩɚɞɚ ɷɬɢɯ ɫɨɫɬɨɹɧɢɣ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɢɫɫɥɟɞɨɜɚɧ, ɢ ɷɬɚ ɩɪɢɱɢɧɚ ɫɬɢɦɭɥɢɪɨɜɚɥɚ ɧɚɫɬɨɹɳɢɟ ɨɩɵɬɵ. Ʉɨɦɩɨɧɟɧɬɵ ɞɚɧɧɨɝɨ ȺɊ ɧɚɛɥɸɞɚɥɢɫɶ ɤɚɤ ɢɡɨɥɢɪɨɜɚɧɧɵɟ ɪɟɡɨɧɚɧɫɵ ɜ ɪɟɚɤɰɢɢ 30Si(p,J)31P ɩɪɢ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ ȿɪ = 1770, 1830, 1880, 1894 ɢ 1896 ɤɷȼ. ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɛɵɥɚ ɢɡɭɱɟɧɚ ɮɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ ɜ ɨɤɪɟɫɬɧɨɫɬɢ ȺɊ, ɩɨɫɬɪɨɟɧɵ ɫɯɟɦɵ J-ɪɚɫɩɚɞɚ ɭɤɚɡɚɧɧɵɯ ɪɟɡɨɧɚɧɫɨɜ ɢ ɢɡɦɟɪɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ, ɜɨɡɧɢɤɚɸɳɢɯ ɩɪɢ ɢɯ ɪɚɫɩɚɞɟ. ȼ ɢɬɨɝɟ ɛɵɥɨ ɩɨɥɭɱɟɧɨ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɚɪɰɢɚɥɶɧɵɯ ɪɚɞɢɚɰɢɨɧɧɵɯ ɲɢɪɢɧ ȽJ ɪɚɫɩɚɞɚ ȺɊ, ɤɨɬɨɪɨɟ ɜɩɨɫɥɟɞɫɬɜɢɢ ɫɪɚɜɧɢɜɚɥɨɫɶ ɫ ɜɵɜɨɞɚɦɢ ɦɧɨɝɨɱɚɫɬɢɱɧɨɣ ɦɨɞɟɥɢ ɨɛɨɥɨɱɟɤ ɫ ɩɨɜɟɪɯɧɨɫɬɧɵɦɢ G-ɫɢɥɚɦɢ [4]. Ɋɚɫɫɦɨɬɪɟɧɵ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɫɨɫɬɨɹɧɢɹ ɫ ɰɟɥɶɸ ɜɵɹɫɧɟɧɢɹ, ɞɥɹ ɤɚɤɢɯ ɤɚɧɚɥɨɜ J-ɪɚɫɩɚɞɚ ȺɊ ɹɜɥɹɟɬɫɹ ɨɛɳɢɦ ɜɯɨɞɧɵɦ ɫɨɫɬɨɹɧɢɟɦ. ɆȿɌɈȾɂɄȺ ɗɄɋɉȿɊɂɆȿɇɌȺ ɂɫɫɥɟɞɨɜɚɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ ɧɚ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦ ɭɫɤɨɪɢɬɟɥɟ ɩɪɨɬɨɧɨɜ ɗɋɍ-5 Ʌɚɛɨɪɚɬɨɪɢɢ ɹɞɟɪɧɨɣ ɫɩɟɤɬɪɨɫɤɨɩɢɢ ɇɇɐ ɏɎɌɂ. ɍɫɤɨɪɟɧɧɵɟ ɩɪɨɬɨɧɵ ɫ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɛɪɨɫɨɦ 400 ɷȼ ɨɬɤɥɨɧɹɥɢɫɶ ɧɚ 900 ɱɟɪɟɡ ɚɧɚɥɢɡɢɪɭɸɳɢɣ ɦɚɝɧɢɬ ɢ ɩɨɫɥɟ ɩɪɨɯɨɠɞɟɧɢɹ ɫɢɫɬɟɦɵ ɸɫɬɢɪɨɜɨɱɧɵɯ ɞɢɚɮɪɚɝɦ ɛɨɦɛɚɪɞɢɪɨɜɚɥɢ ɦɢɲɟɧɶ, ɭɫɬɚɧɨɜɥɟɧɧɭɸ ɩɨɞ ɭɝɥɨɦ 450 ɜ ɤɚɦɟɪɟ ɪɚɫɫɟɹɧɢɹ, ɤɨɬɨɪɚɹ ɹɜɥɹɥɚɫɶ ɨɞɧɨɜɪɟɦɟɧɧɨ ɢ ɰɢɥɢɧɞɪɨɦ Ɏɚɪɚɞɟɹ. Ɍɨɤ ɩɪɨɬɨɧɨɜ ɧɚ ɦɢɲɟɧɢ ɫɨɫɬɚɜɥɹɥ 10 ɦɤȺ, ɢ ɢɡ-ɡɚ ɛɨɥɶɲɨɣ ɩɥɨɬɧɨɫɬɢ ɷɧɟɪɝɨɜɵɞɟɥɟɧɢɹ ɨɧɚ ɨɯɥɚɠɞɚɥɚɫɶ ɩɨɬɨɤɨɦ ɜɨɞɵ ɫ ɜɵɫɨɤɨɣ ɬɭɪɛɭɥɟɧɬɧɨɫɬɶɸ. ȼ ɷɤɫɩɟɪɢɦɟɧɬɚɯ ɢɫɩɨɥɶɡɨɜɚɥɚɫɶ ɢɡɨɬɨɩɧɚɹ ɦɢɲɟɧɶ 30Si, ɩɪɢɝɨɬɨɜɥɟɧɧɚɹ ɦɟɬɨɞɨɦ "ɜɛɢɜɚɧɢɹ" ɢɨɧɨɜ 30Si ɜ ɬɚɧɬɚɥɨɜɭɸ ɩɨɞɥɨɠɤɭ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɜ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɦ ɫɟɩɚɪɚɬɨɪɟ [5]. Ɍɨɥɳɢɧɚ ɦɢɲɟɧɢ ɫɨɫɬɚɜɥɹɥɚ 4 ɤɷȼ ɩɪɢ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ ȿɪ a 2 Ɇɷȼ. ɉɪɢɫɭɬɫɬɜɢɟ ɜ ɩɨɞɥɨɠɤɟ 19F ɧɟ ɫɤɚɡɚɥɨɫɶ ɡɧɚɱɢɬɟɥɶɧɵɦ ɨɛɪɚɡɨɦ ɧɚ ɪɟɡɭɥɶɬɚɬɚɯ ɷɤɫɩɟɪɢɦɟɧɬɚ. J-ɋɩɟɤɬɪɵ ɪɟɝɢɫɬɪɢɪɨɜɚɥɢɫɶ Ge(Li)-ɞɟɬɟɤɬɨɪɨɦ ɨɛɴɟɦɨɦ 63 ɫɦ3 ɫ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɪɟɲɟɧɢɟɦ 3,0 ɤɷȼ ɞɥɹ J-ɥɢɧɢɣ 60Co. Ⱥɛɫɨɥɸɬɧɚɹ ɤɚɥɢɛɪɨɜɤɚ ɫɩɟɤɬɪɨɦɟɬɪɚ ɩɨ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɩɪɨɜɨɞɢɥɚɫɶ ɫ ɩɨɦɨɳɶɸ ɫɬɚɧɞɚɪɬɧɨɝɨ ɧɚɛɨɪɚ ɦɨɧɨɯɪɨɦɚɬɢɱɟɫɤɢɯ ɢɫɬɨɱɧɢɤɨɜ ɈɋȽɂ-II ɢ ɩɨ ɜɵɯɨɞɚɦ J-ɥɢɧɢɣ ɢɡ ɪɟɚɤɰɢɢ 27Al(p,J)28Si ɩɪɢ Ep = 991,86(3) ɤɷȼ. Ⱦɥɹ ɬɨɝɨ ɱɬɨɛɵ ɨɫɥɚɛɢɬɶ ɧɢɡɤɨɷɧɟɪɝɟɬɢɱɟɫɤɢɣ ɮɨɧ J-ɢɡɥɭɱɟɧɢɹ ɢɡ ɩɨɞɥɨɠɤɢ Ge(Li)-ɞɟɬɟɤɬɨɪ ɩɨɦɟɳɚɥɫɹ ɜ ɫɩɟɰɢɚɥɶɧɭɸ ɡɚɳɢɬɭ, ɜɵɩɨɥɧɟɧɧɭɸ ɢɡ Pb ɢ Cu. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ, ɜɨɡɧɢɤɚɸɳɢɯ ɩɪɢ ɪɚɫɩɚɞɟ ɪɟɡɨɧɚɧɫɧɵɯ ɫɨɫɬɨɹɧɢɣ ɹɞɪɚ 31P, ɢɡɦɟɪɹɥɢɫɶ ɩɨɞ ɭɝɥɚɦɢ Tɥɚɛ = 0, 30, 45, 60 ɢ 90o ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɚɩɪɚɜɥɟɧɢɹ ɩɭɱɤɚ ɧɚɥɟɬɚɸɳɢɯ ɩɪɨɬɨɧɨɜ. ȼ ɤɚɱɟɫɬɜɟ ɦɨɧɢɬɨɪɚ Jɢɡɥɭɱɟɧɢɹ ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɫɩɟɤɬɪɨɦɟɬɪ ɧɚ ɛɚɡɟ ɤɪɢɫɬɚɥɥɚ NaI(Tl) ɫ ɪɚɡɦɟɪɚɦɢ 150u100 ɦɦ2. ɗɬɨɬ ɠɟ ɞɟɬɟɤɬɨɪ 57 Èññëåäîâàíèå ñòðóêòóðû àíàëîãîâîãî ... ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 1 /29/ ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 30Si(p,J)31P. ɗɤɫɩɟɪɢɦɟɧɬɵ ɩɪɨɜɨɞɢɥɢɫɶ ɧɚ ɫɩɟɤɬɪɨɦɟɬɪɢɱɟɫɤɨɦ ɨɛɨɪɭɞɨɜɚɧɢɢ, ɜɵɩɨɥɧɟɧɧɨɦ ɜ ɫɬɚɧɞɚɪɬɟ “ɄȺɆȺɄ” ɢ ɪɚɛɨɬɚɸɳɟɦ ɜ "ɥɢɧɢɸ" ɫ ɉɗȼɆ. ɊȿɁɍɅɖɌȺɌɕ ɂɁɆȿɊȿɇɂɃ ɂɡɦɟɪɟɧɚ ɮɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 30Si(pJ)31P ɜ ɨɛɥɚɫɬɢ Ep = 1750y1905 ɤɷȼ ɫ ɪɚɡɥɢɱɧɵɦɢ ɩɨɪɨɝɚɦɢ ɞɢɫɤɪɢɦɢɧɚɰɢɢ ɷɧɟɪɝɢɢ J-ɥɭɱɟɣ (ȿJ > 2,61 ɢ ȿJ > 6,13 Ɇɷȼ). J-Ʉɜɚɧɬɵ ɪɟɝɢɫɬɪɢɪɨɜɚɥɢɫɶ NaI(Tl)-ɞɟɬɟɤɬɨɪɨɦ ɩɨɞ ɭɝɥɨɦ Tɥɚɛ = 55o ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɚɩɪɚɜɥɟɧɢɹ ɩɭɱɤɚ ɩɪɨɬɨɧɨɜ ɫ ɲɚɝɨɦ 'Ep = 1,8 ɤɷȼ. ȼ ɤɚɱɟɫɬɜɟ ɩɪɢɦɟɪɚ ɧɚ ɪɢɫ.1 ɩɪɟɞɫɬɚɜɥɟɧɵ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɹ ɨɬɧɨɫɢɬɟɥɶɧɨɝɨ ɜɵɯɨɞɚ J- ɥɭɱɟɣ ɫ EJ > 6,13 Ɇɷȼ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɩɪɨɬɨɧɨɜ. ȼ ɢɫɫɥɟɞɭɟɦɨɣ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɢ ɭɫɬɚɧɨɜɥɟɧɨ ɩɨɥɨɠɟɧɢɟ 8 ɪɟɡɨɧɚɧɫɨɜ, ɢɞɟɧɬɢɮɢɰɢɪɨɜɚɧɧɵɯ ɤɚɤ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ ɹɞɪɚ 31P. ɉɪɢ ɷɬɨɦ Q ɪɟɚɤɰɢɢ ɩɪɢɧɢɦɚɥɨɫɶ ɪɚɜɧɵɦ 7296,61(20) ɤɷȼ, ɫɨɝɥɚɫɧɨ [6]. ɉɨɥɭɱɟɧɧɵɟ ɧɚɦɢ ɪɟɡɭɥɶɬɚɬɵ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɞɚɧɧɵɦɢ, ɩɪɢɜɟɞɟɧɧɵɦɢ ɜ ɨɛɡɨɪɟ ɗɧɞɬɚ [6]. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɚɹ ɲɢɪɢɧɚ Ƚɷɤɫɩ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 1808 ɤɷȼ ɪɚɜɧɚ 9(1) ɤɷȼ. Ⱦɥɹ ɨɫɬɚɥɶɧɵɯ ɪɟɡɨɧɚɧɫɧɵɯ ɩɢɤɨɜ ɨɧɚ ɫɨɫɬɚɜɥɹɟɬ ɜɟɥɢɱɢɧɭ | 4,0 ɤɷȼ, ɱɬɨ ɨɛɭɫɥɨɜɥɟɧɨ ɤɨɧɟɱɧɨɣ ɬɨɥɳɢɧɨɣ ɦɢɲɟɧɢ ɢ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɛɪɨɫɨɦ ɜ ɩɭɱɤɟ ɩɪɨɬɨɧɨɜ. Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɚɛɫɨɥɸɬɧɨɝɨ ɜɵɯɨɞɚ J-ɤɜɚɧɬɨɜ ɢɡ ɪɟɚɤɰɢɢ 30Si(p,J)31P ɛɵɥɨ ɩɪɨɜɟɞɟɧɨ ɫɪɚɜɧɟɧɢɟ ɜɵɯɨɞɨɜ ɢɫɫɥɟɞɭɟɦɵɯ ɪɟɡɨɧɚɧɫɨɜ ɫ ɜɵɯɨɞɨɦ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 2187 ɤɷȼ. ɋɢɥɚ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 2187 ɤɷȼ ɯɨɪɨɲɨ ɢɡɜɟɫɬɧɚ [7]. Ɉɧɚ ɪɚɜɧɚ: Ƚp ȽȖ S = (2 J +1) Ƚ = 9,5 ± 0,9 ɷȼ, (1) ɝɞɟ J - ɫɩɢɧ ɪɟɡɨɧɚɧɫɧɨɝɨ ɫɨɫɬɨɹɧɢɹ, Ƚp ɢ ȽJ - ɩɪɨɬɨɧɧɚɹ ɢ ɪɚɞɢɚɰɢɨɧɧɚɹ ɩɚɪɰɢɚɥɶɧɵɟ ɲɢɪɢɧɵ ɪɟɡɨɧɚɧɫɚ, Ƚ ɩɨɥɧɚɹ ɲɢɪɢɧɚ ɪɟɡɨɧɚɧɫɚ. ɉɨɥɭɱɟɧɧɵɟ ɬɚɤɢɦ ɨɛɪɚɡɨɦ ɫɢɥɵ ɪɟɡɨɧɚɧɫɨɜ S ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥ. 1, ɜ ɤɨɬɨɪɨɣ ɩɪɢɜɟɞɟɧɵ ɬɚɤɠɟ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɡɧɚɱɟɧɢɹ ȽJ, ɜɵɱɢɫɥɟɧɧɵɟ ɫ ɭɱɟɬɨɦ ɞɚɧɧɵɯ ɩɨ ɭɩɪɭɝɨɦɭ ɪɚɫɫɟɹɧɢɸ ɩɪɨɬɨɧɨɜ ɹɞɪɚɦɢ 30Si [3]. ȼ ɬɨɦ ɫɥɭɱɚɟ, ɟɫɥɢ ɧɟɢɡɜɟɫɬɧɚ ɩɪɨɬɨɧɧɚɹ ɲɢɪɢɧɚ Ƚɪ ɪɟɡɨɧɚɧɫɧɨɝɨ ɭɪɨɜɧɹ, ɩɪɟɞɩɨɥɚɝɚɥɨɫɶ, ɱɬɨ Ƚɪ >> ȽJ, ɢ ɜ ɬɚɛɥ. 1 ɭɤɚɡɚɧ ɥɢɲɶ ɧɢɠɧɢɣ ɩɪɟɞɟɥ ɡɧɚɱɟɧɢɹ ɜɟɥɢɱɢɧɵ ȽJ. -1880 Ɍɚɛɥɢɰɚ 1. Ɋɚɞɢɚɰɢɨɧɧɵɟ ɲɢɪɢɧɵ ɪɟɡɨɧɚɧɫɨɜ ɜ ɪɟɚɤɰɢɢ 30Si(pJ)31P 3 -1896 -1894 - + 1815 9,053 (3 ,5) 1500 1760 ȿp1) , E*, 2JS ɤɷȼ Mɷȼ 1770 9,005 5+ 1808 9,046 -1770 -1815 3000 -1830 -1808 -1878 NJ 1840 Ep , ɤɷȼ Ɋɢɫ. 1. Ɏɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 30Si(pJ)31P ɜ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ Ep = 1750y1905 ɤɷȼ. S, ɷȼ Ƚp2), ɷȼ ȽJ, ɷȼ 2,8(8) 65(20) 0,47(14) 4,4(13) 9400(900) 1,10(11) 1,0 1830 9,067 5 + 3,4(10) 16(5) 0,57(18) 1878 9,113 - 0,88 1(1) 0,12(12) 1880 9,116 5 + 4,8(14) 22(7) 0,83(26) 1894 9,129 5 + 0,59(17) 3(2) 0,10(7) 1896 9,131 5 + 1,4(4) 4(2) 0,23(12) 7 ɉɪɢɦɟɱɚɧɢɟ: -ɡɧɚɱɟɧɢɟ ȿɪ ɭɤɚɡɚɧɨ ɫ ɨɲɢɛɤɨɣ r1 ɤɷȼ. Ɂɧɚɱɟɧɢɹ Ƚɪ ɜɡɹɬɵ ɢɡ [3]. 1) ɂɡɦɟɪɟɧɵ J-ɫɩɟɤɬɪɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɩɪɢ ȿɪ = 1770, 1830, 1880, 1894, 1896 ɤɷȼ. ɋɯɟɦɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɫɬɪɨɢɥɢɫɶ ɧɚ ɨɫɧɨɜɚɧɢɢ ɛɚɥɚɧɫɚ ɷɧɟɪɝɢɣ ɢ ɢɧɬɟɧɫɢɜɧɨɫɬɟɣ ɞɥɹ ɧɚɛɥɸɞɚɟɦɵɯ J-ɩɟɪɟɯɨɞɨɜ ɫ ɭɱɟɬɨɦ ɜɫɟɯ ɢɡɜɟɫɬɧɵɯ ɞɚɧɧɵɯ ɨɛ ɭɪɨɜɧɹɯ 31P. Ɋɚɡɧɵɟ ɜɚɪɢɚɧɬɵ ɫɯɟɦ J-ɪɚɫɩɚɞɚ ɷɬɢɯ ɪɟɡɨɧɚɧɫɨɜ ɛɵɥɢ ɩɪɟɞɥɨɠɟɧɵ ɜ [8, 9], ɧɨ ɧɚɢɛɨɥɟɟ ɩɨɞɪɨɛɧɵɟ ɫɜɟɞɟɧɢɹ ɨ ɤɨɷɮɮɢɰɢɟɧɬɚɯ ɜɟɬɜɥɟɧɢɹ bJ ɩɨɥɭɱɟɧɵ ɜ [10]. ɇɚɲɢ ɞɚɧɧɵɟ ɩɨɞɬɜɟɪɠɞɚɸɬ ɪɟɡɭɥɶɬɚɬɵ ɚɜɬɨɪɨɜ [10] ɢ ɩɨɡɜɨɥɹɸɬ ɞɨɩɨɥɧɢɬɟɥɶɧɨ ɜɵɹɜɢɬɶ ɫɥɚɛɵɟ J-ɩɟɪɟɯɨɞɵ ɧɚ ɭɪɨɜɧɢ ɫ ȿ* = 3,134 ɢ, ɜɨɡɦɨɠɧɨ, 5,988 Ɇɷȼ (ɜ ɤɚɫɤɚɞɟ r o 5,988 o 2,234 Ɇɷȼ ɧɢɠɧɢɣ J-ɩɟɪɟɯɨɞ ɨɞɧɨɡɧɚɱɧɨ ɧɟ ɭɫɬɚɧɨɜɥɟɧ) ɞɥɹ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 1770 ɤɷȼ. ȼɟɪɯɧɢɣ ɩɪɟɞɟɥ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɞɥɹ ɷɬɢɯ ɩɟɪɟɯɨɞɨɜ IJ < 1%. ȼ ɬɚɛɥ. 2 ɩɪɢɜɟɞɟɧɵ ɩɪɟɞɥɚɝɚɟɦɵɟ ɫɯɟɦɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɧɵɯ ɭɪɨɜɧɟɣ ɜ ɜɢɞɟ ɡɧɚɱɟɧɢɣ ɤɨɷɮɮɢɰɢɟɧɬɨɜ bJ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɢɦ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ ɩɚɪɰɢɚɥɶɧɵɯ ɪɚɞɢɚɰɢɨɧɧɵɯ ɲɢɪɢɧ ȽJ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2ɪɟɡɨɧɚɧɫɚ. 58 «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 721, 2006 À.Í. Âîäèí, Ë.Ï. Êîðäà, À.Î. Ðàñòðåïèíà ... Ɍɚɛɥɢɰɚ 2. ɉɚɪɰɢɚɥɶɧɵɟ J-ɲɢɪɢɧɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɧɵɯ 5/2+ -ɫɨɫɬɨɹɧɢɣ ɢ ɜɟɪɨɹɬɧɨɫɬɢ Ɇ1-ɩɟɪɟɯɨɞɨɜ ɜ 31Ɋ E *f , Ɇɷȼ 0 1,266 2,234 3,134 3,295 3,415 3,506 4,190 4,261 4,431 4,594 4,634 4,783 5,529 5,559 5,773 5,892 5,988 6,233 6,381 6,461 6,610 6,842 2 J ʌf 1+ 3+ 5+ 1+ 5+ 7+ 3+ 5+ 3+ 73+ 7+ 5+ + + 7 (5 ) 3+ (5,7+) 9+ 3+ + (3 -9 ) 3 +; 3 5+ 3(5,7)- Ep (ɤɷȼ); Ei* (Ɇɷȼ); 2 J iʌ 1770; 9,009; 5+ 1830; 9,067; 5+ 1880; 9,116; 5+ 1894; 9,129; 5+ bJ ȽJ, ȼ(M1), bJ ȽJ, ȼ(M1), bJ ȽJ, ȼ(M1), bJ ȽJ, ȼ(M1), -2 -2 -2 -2 % 10 ɷȼ 10-2 P 2ɹ % 10 ɷȼ 10-2 P 2ɹ % 10 ɷȼ 10-2 P 2ɹ % 10 ɷȼ 10-2 P 2ɹ 13 6,1 E2 1 0,6 E2 7 0,7 E2 1 0,5 0,1 2 1,1 0,2 6 0,6 0,1 6 2,8 0,8 42 23,9 6,4 49 40,7 10,6 18 1,8 0,5 1 0,5 ȿ2 1 0,6 E2 1 0,1 E2 10 5,7 2,5 5 4,2 1,8 4 0,4 0,2 2 0,9 0,5 7 4,0 1,9 7 0,7 0,3 13 6,1 3,1 1 0,6 0,3 6 5,0 2,4 6 0,6 0,3 32 15,0 11,5 3 1,7 1,3 7 5,8 4,1 2 0,2 0,1 3 0,3 0,2 4 1,9 E1 2 1,1 E1 5 0,5 E1 6 2,8 2,8 2 1,1 1,1 9 7,5 6,9 2 0,2 0,2 5 2,4 2,4 21 12,0 11,7 4 3,3 3,2 28 2,8 2,6 1 0,5 0,5 4 2,3 2,5 4 3,3 3,5 2 0,2 0,2 5 2,4 4,8 3 1,7 3,3 6 5,0 9,2 1 0,1 0,2 7 5,8 11,0 8 3,8 9,5 2 1,7 3,8 6 0,6 E2 (1) 0,5 ȿ1 2 1,1 E1 1 0,8 3,0 3 0,3 1,1 3 1,4 6,6 1 0,8 3,5 3 0,3 1,2 1 0,6 2,7 1896; 9,131; 5+ bJ ȽJ, ȼ(M1), -2 % 10 ɷȼ 10-2 P 2ɹ 29 1 6,7 0,2 1,2 0,1 19 2 4,4 0,5 1,9 0,2 6 16 1,4 3,7 1,0 E1 7 13 2 1,6 3,0 0,5 1,5 3,1 0,8 1 0,2 E1 3 2 0,7 0,5 E1 E1 Ʉɜɚɧɬɨɜɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 1770 ɤɷȼ ɭɫɬɚɧɨɜɥɟɧɵ ɜ ɭɩɪɭɝɨɦ ɪɚɫɫɟɹɧɢɢ ɩɪɨɬɨɧɨɜ ɹɞɪɚɦɢ 30Si [3], ɝɞɟ ɟɦɭ ɛɵɥɢ ɩɪɢɩɢɫɚɧɵ ɡɧɚɱɟɧɢɹ JS = 5/2+. Ɉɞɧɚɤɨ ɞɥɹ ɪɚɫɱɟɬɚ ɩɪɢɜɟɞɟɧɧɵɯ ɜɟɪɨɹɬɧɨɫɬɟɣ ɩɪɹɦɵɯ J-ɩɟɪɟɯɨɞɨɜ ɧɟɨɛɯɨɞɢɦɵ ɞɚɧɧɵɟ ɨ ɩɚɪɚɦɟɬɪɚɯ ɫɦɟɲɢɜɚɧɢɹ ɩɨ ɦɭɥɶɬɢɩɨɥɶɧɨɫɬɹɦ G. ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɛɵɥɢ ɢɡɦɟɪɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ ɢ ɧɚ ɨɫɧɨɜɚɧɢɢ ɢɯ ɚɧɚɥɢɡɚ ɨɩɪɟɞɟɥɟɧɵ ɡɧɚɱɟɧɢɹ G. Ɏɭɧɤɰɢɹ ɭɝɥɨɜɨɣ ɤɨɪɪɟɥɹɰɢɢ ɢɫɤɚɥɚɫɶ ɜ ɜɢɞɟ ɪɚɡɥɨɠɟɧɢɹ ɩɨ ɱɟɬɧɵɦ ɩɨɥɢɧɨɦɚɦ Ʌɟɠɚɧɞɪɚ: W (ș ) 1 a 2 P2 (cos ș ) a 4 P4 (cos ș ) , (2) ɝɞɟ ɤɨɷɮɮɢɰɢɟɧɬɵ a2 ɢ a4 ɡɚɜɢɫɹɬ ɨɬ ɭɝɥɨɜɵɯ ɦɨɦɟɧɬɨɜ ɧɚɱɚɥɶɧɨɝɨ ɢ ɤɨɧɟɱɧɨɝɨ ɫɨɫɬɨɹɧɢɣ ɢ ɩɚɪɚɦɟɬɪɚ G. ɇɚɣɞɟɧɧɵɟ ɩɨ ɦɟɬɨɞɭ ɧɚɢɦɟɧɶɲɢɯ ɤɜɚɞɪɚɬɨɜ ɤɨɷɮɮɢɰɢɟɧɬɵ a2 ɢ a4 ɫɨɩɨɫɬɚɜɥɹɥɢɫɶ ɫ ɢɯ Ɍɚɛɥɢɰɚ 3. Ʉɨɷɮɮɢɰɢɟɧɬɵ ɚ2 ɢ ɚ4 ɜ ɮɭɧɤɰɢɢ ɭɝɥɨɜɨɣ ɤɨɪɪɟɥɹɬɟɨɪɟɬɢɱɟɫɤɢɦɢ ɡɧɚɱɟɧɢɹɦɢ ɞɥɹ ɪɚɡɥɢɱɰɢɢ ɢ ɩɚɪɚɦɟɬɪɵ G ɧɵɯ ɝɢɩɨɬɟɡ ɨ ɫɩɢɧɟ J ɪɟɡɨɧɚɧɫɧɨɝɨ ɭɪɨɜɧɹ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦ ɟɦɭ ɡɧɚɱɟɧɢɟɦ G ɫ Ei* o E *f , Ɇɷȼ 2 J iʌ o 2 J ʌf ɚ2('ɚ2) ɚ4('ɚ4) G('G) ɩɨɦɨɳɶɸ ɤɪɢɬɟɪɢɹ F2. 9,009 o 0 5+ o 1+ -0,60(16) -0,84(3) 0,07(± f ) Ɉɩɪɟɞɟɥɟɧɧɵɟ ɬɚɤɢɦ ɨɛɪɚɡɨɦ ɤɨɷɮɮɢɰɢɟɧɬɵ a2 ɢ a4 ɜ ɮɭɧɤɰɢɢ ɭɝɥɨɜɨɝɨ -0,57(1) o 2,234 o 5+ -0,24(19) 0,07(18) ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸ-0,12(4) o 3,415 o 7+ -0,69(16) -0,86(28) ɳɢɟ ɢɦ ɡɧɚɱɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ G ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ. 3. ȼ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ 0,28(4) -0,15(5) -0,41(11) o 3,506 o 3+ ɜɧɟɫɟɧɵ ɩɨɩɪɚɜɤɢ, ɭɱɢɬɵɜɚɸɳɢɟ ɤɨɧɟɱ+ 0,46(7) -0,11(7) -0,14(10) o 4,190 o5 ɧɵɣ ɬɟɥɟɫɧɵɣ ɭɝɨɥ ɞɟɬɟɤɬɨɪɚ. ɍɤɚɡɚɧɧɵɟ ɨɲɢɛɤɢ ɹɜɥɹɸɬɫɹ ɫɬɚɧɞɚɪɬɧɵɦɢ ɨɬɤɥɨ-0,12(6) 0,00(9) -0,48(6) ɢɥɢ o 4,594 o 3+ ɧɟɧɢɹɦɢ. ɇɚ ɨɫɧɨɜɚɧɢɢ ɜɫɟɣ ɫɨɜɨɤɭɩɧɨ0,72(8) ɫɬɢ ɩɨɥɭɱɟɧɧɵɯ ɞɚɧɧɵɯ ɛɵɥɢ ɨɩɪɟɞɟɥɟɧɵ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ ɩɪɢɜɟɞɟɧɧɵɯ ɜɟɪɨɹɬɧɨɫɬɟɣ ȼ(Ɇ1) ɩɪɹɦɵɯ J-ɩɟɪɟɯɨɞɨɜ, ɧɚɛɥɸɞɚɸɳɢɯɫɹ ɩɪɢ ɪɚɫɩɚɞɟ ɤɨɦɩɨɧɟɧɬɨɜ ɬɨɧɤɨɣ ɫɬɪɭɤɬɭɪɵ ȺɊ (ɫɦ. ɬɚɛɥ. 2). 59 Èññëåäîâàíèå ñòðóêòóðû àíàëîãîâîãî ... ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 1 /29/ ɈȻɋɍɀȾȿɇɂȿ ɊȿɁɍɅɖɌȺɌɈȼ Ⱥɧɚɥɢɡ ɩɨɥɭɱɟɧɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ ɩɨɤɚɡɚɥ, ɱɬɨ ɫɯɟɦɵ J-ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɩɪɢ Ep = 1770 (ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɣ ɮɚɤɬɨɪ Sp = 0,019[6]); 1830 (3810-4); 1880 (4510-4); 1894 (710-4) ɢ 1896 (810-4) ɤɷȼ ɩɪɚɤɬɢɱɟɫɤɢ ɫɨɜɩɚɞɚɸɬ ɞɪɭɝ ɫ ɞɪɭɝɨɦ. ɗɬɨ ɞɚɟɬ ɨɫɧɨɜɚɧɢɟ ɡɚɤɥɸɱɢɬɶ, ɱɬɨ ɞɚɧɧɵɟ ɪɟɡɨɧɚɧɫɵ ɹɜɥɹɸɬɫɹ ɮɪɚɝɦɟɧɬɚɦɢ ɬɨɧɤɨɣ ɫɬɪɭɤɬɭɪɵ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɪɟɡɨɧɚɧɫɚ. ȼ ɫɩɟɤɬɪɟ J-ɪɚɫɩɚɞɚ ȺɊ ɧɚɛɥɸɞɚɟɬɫɹ ɢɧɬɟɧɫɢɜɧɵɣ Ɇ1ɩɟɪɟɯɨɞ ɧɚ ɭɪɨɜɟɧɶ 4,190 Ɇɷȼ, ɤɨɬɨɪɵɣ ɦɨɠɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɚɧɬɢɚɧɚɥɨɝɨɜɨɟ ɫɨɫɬɨɹɧɢɟ (ȺȺɋ). ɗɬɨ ɜɵɜɨɞ ɩɨɞɬɜɟɪɠɞɚɟɬɫɹ ɬɟɦ, ɱɬɨ ɷɧɟɪɝɟɬɢɱɟɫɤɨɟ ɩɨɥɨɠɟɧɢɟ ɞɚɧɧɨɝɨ ɭɪɨɜɧɹ ɩɪɚɤɬɢɱɟɫɤɢ ɫɨɜɩɚɞɚɟɬ ɫ ɷɧɟɪɝɢɟɣ ȺȺɋ, ɨɰɟɧɟɧɧɨɣ ɢɡ ɮɨɪɦɭɥɵ [11]: E Ⱥɋ - E ȺȺɋ V1 (T0 1/ 2) , A (3) ɝɞɟ V1 | 100 Ɇɷȼ, Ⱥ – ɦɚɫɫɨɜɨɟ ɱɢɫɥɨ, ɚ T0 – ɢɡɨɫɩɢɧ ɨɫɬɨɜɚ. Ɉɞɧɚɤɨ Ɇ1-ɩɟɪɟɯɨɞ Ⱥɋ o ȺȺɋ (T> = T0 +1/2 o T< = T0 -1/2) ɡɚɬɨɪɦɨɠɟɧ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɨɞɧɨɱɚɫɬɢɱɧɨɣ ɨɰɟɧɤɨɣ [4] ɛɨɥɟɟ ɱɟɦ ɜ 6 ɪɚɡ. ɇɚɛɥɸɞɚɟɦɨɟ ɪɚɫɯɨɠɞɟɧɢɟ ɫ ɪɚɫɱɟɬɧɵɦ ɡɧɚɱɟɧɢɟɦ ɫɜɹɡɚɧɨ, ɩɨ-ɜɢɞɢɦɨɦɭ, ɫ ɜɨɡɛɭɠɞɟɧɢɟɦ ɫɨɫɬɨɹɧɢɹ ɬɢɩɚ ɩɨɥɹɪɢɡɚɰɢɢ ɨɫɬɨɜɚ (ɋɉɈ) ɫ ɢɡɨɫɩɢɧɨɦ T<, ɩɪɢɦɟɫɶ ɤɨɬɨɪɨɝɨ ɜ ɤɨɧɮɢɝɭɪɚɰɢɢ ȺɊ ɢ ɨɫɥɚɛɥɹɟɬ Ɇ1-ɩɟɪɟɯɨɞ ɜ ȺȺɋ. Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɚɧɚɥɨɝɨɜɨɟ d5/2-ɫɨɫɬɨɹɧɢɟ ɢɦɟɟɬ + 7 ɤɨɧɮɢɝɭɪɚɰɢɸ [( s12 2 ) 01 d 5 2,5 2 ]5 2,3 2 , ɬ. ɟ. ɦɨɠɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶɫɹ ɤɚɤ ɨɞɢɧ 1d5/2 ɧɭɤɥɨɧ, ɫɜɹɡɚɧɧɵɣ ɫ ɞɜɭɦɹ 2s1/2 ɧɟɣɬɪɨɧɚɦɢ, ɫɩɚɪɟɧɧɵɦɢ ɜ (J0T0) = (01) ɫɜɟɪɯ ɢɧɟɪɬɧɨɝɨ ɨɫɬɨɜɚ 28Si.Ɍɨɝɞɚ ɩɟɪɟɯɨɞ ɨɫɬɨɜɚ ɢɡ (s12 2 ) 01 ɧɚ (s12 2 )10 ɜɨɡɦɨɠɟɧ, ɢ ɜ ɷɬɨɦ ɫɥɭɱɚɟ + + 5 7 + B(M1), 10-2 P2ə 5 16 + (5,7 ) + + 3 3 + 3 ; T> =3/2 ɜɟɪɨɹɬɧɨɫɬɶ Ɇ1-ɩɟɪɟɯɨɞɚ ɜɟɥɢɤɚ (ɫɨɝɥɚɫɧɨ [4]) ɢɡ-ɡɚ ɬɨɝɨ, ɱɬɨ ɩɟɪɟɯɨɞ ɜɤɥɸɱɚɟɬ s1/2-ɱɚɫɬɢɰɭ. Ɂɚɦɟɬɢɦ, + 8 5 3+ ɱɬɨ ɩɪɨɢɫɯɨɞɢɬ Ɇ1-ɩɟɪɟɯɨɞ ɨɫɬɨɜ – ɨɫɬɨɜ ɛɟɡ ɢɡɦɟɧɟɧɢɹ ɫɨɫɬɨɹɧɢɹ ɧɟɱɟɬɧɨɣ d5/2-ɱɚɫɬɢɰɵ. ɇɚ + + 7 5 ɪɢɫ. 2 ɩɪɢɜɟɞɟɧɨ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ + AC + 3 3 ɜɟɥɢɱɢɧ ȼ(Ɇ1) ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɫ Ⱥɋ ɧɚ ɭɪɨɜɧɢ ɹɞɪɚ 31 Ɋ. ɂɡ ɪɢɫ. 2 ɜɢɞɧɨ, ɱɬɨ ɧɚɢɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɨ 0 0 4 8 E , Ɇɷȼ ɭɪ ɡɚɫɟɥɹɸɬɫɹ ɜɵɫɨɤɨɜɨɡɛɭɠɞɟɧɧɵɟ ɭɪɨɜɧɢ ɫ JS = 3/2+, + + Ɋɢɫ. 2. Ɋɚɫɩɪɟɞɟɥɟɧɢɟ ɜɟɥɢɱɢɧ ȼ(Ɇ1) ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɫ ɚɧɚɥɨ- 5/2 ɢ 7/2 , ɰɟɧɬɪ ɬɹɠɟɫɬɢ ɤɨɬɨɪɵɯ ɥɟɠɢɬ ɩɪɢ * 31 ȿ | 4,41 Ɇɷȼ. ɗɬɨɬ ɦɚɤɫɢɦɭɦ ɜ ɪɚɫɩɪɟɞɟɥɟɧɢɢ ɝɨɜɨɝɨ d5/2-ɫɨɫɬɨɹɧɢɹ ɧɚ ɭɪɨɜɧɢ Ɋ. ɡɧɚɱɟɧɢɣ ȼ(Ɇ1) ɨɛɭɫɥɨɜɥɟɧ ɡɚɫɟɥɟɧɢɟɦ ɫɨɫɬɨɹɧɢɣ ɩɨɥɹɪɢɡɨɜɚɧɧɨɝɨ ɨɫɬɨɜɚ (ɋɉɈ), ɤɨɬɨɪɨɟ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɨ ɩɨ ɫɩɟɤɬɪɭ ɹɞɪɚ 31Ɋ ɢ ɥɟɠɢɬ ɜ ɪɚɣɨɧɟ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ, ɨɠɢɞɚɟɦɨɣ ɢɡ ɤɜɚɡɢɤɥɚɫɫɢɱɟɫɤɢɯ ɨɰɟɧɨɤ [12]. ȼ ɬɚɤɨɦ ɫɥɭɱɚɟ ɞɨɥɠɧɚ ɧɚɛɥɸɞɚɬɶɫɹ ɫɬɚɬɢɱɟɫɤɚɹ ɤɨɪɪɟɥɹɰɢɹ ɦɟɠɞɭ ɭɩɪɭɝɢɦɢ ɢ ɞɚɧɧɵɦɢ ɭɫɢɥɟɧɧɵɦɢ J-ɲɢɪɢɧɚɦɢ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ. + 5 Ɍɚɛɥɢɰɚ 4. Ɂɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɥɢɧɟɣɧɨɣ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ. Ƚɪ ȽȖtotal ȽȖ1266 ȽȖ2234 ȽȖ3295 ȽȖ3415 ȽȖ3506 ȽȖ4190 ȽȖ4431 ȽȖ4594 ȽȖ4634 ȽȖ4783 ȽȖ5529 Ƚɪ 1 ȽȖtotal ȽȖ1266 0,21 -0,36 1 -0,45 1 ȽȖ2234 -0,15 0,43 -0,28 1 ȽȖ3295 -0,49 0,03 0,55 0,64 1 ȽȖ3415 -0,06 0,12 -0,13 0,93 0,68 1 ȽȖ3506 0,99 0,20 -0,41 -0,21 -0,58 -0,13 1 ȽȖ4190 0,99 0,21 -0,36 -0,15 -0,49 -0,06 0,99 1 ȽȖ4431 0,07 -0,45 0,90 -0,28 0,42 -0,05 0,00 0,07 1 ȽȖ4594 0,53 0,86 -0,62 0,04 -0,46 -0,23 0,56 0,53 -0,50 1 ȽȖ4634 -0,16 0,20 -0,19 0,97 0,68 0,99 -0,23 -0,16 -0,16 -0,18 1 ȽȖ4783 -0,49 0,27 0,67 0,29 0,81 0,19 -0,56 -0,49 0,47 -0,15 0,23 1 ȽȖ5529 0,25 0,94 -0,50 0,14 -0,26 -0,20 0,27 0,25 -0,52 0,95 -0,11 0,10 1 60 À.Í. Âîäèí, Ë.Ï. Êîðäà, À.Î. Ðàñòðåïèíà ... «Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 721, 2006 ɂɡɜɟɫɬɧɨ, ɱɬɨ ɫɬɚɧɞɚɪɬɧɨɣ ɦɟɪɨɣ ɤɨɪɪɟɥɹɰɢɢ ɹɜɥɹɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬ ɥɢɧɟɣɧɨɣ ɤɨɪɪɟɥɹɰɢɢ: r ( x, y ) ¦ ( x x)( y y) >¦ ( x x) @ >¦ ( y y) @ i i 2 i i i 1 2 2 i 1 . 2 (4) i Ȼɵɥɢ ɪɚɫɫɱɢɬɚɧɵ ɤɨɷɮɮɢɰɢɟɧɬɵ r ɞɥɹ ɜɫɟɯ ɤɚɧɚɥɨɜ ɪɚɫɩɚɞɚ ɨɛɫɭɠɞɚɟɦɵɯ ɪɟɡɨɧɚɧɫɨɜ, ɡɧɚɱɟɧɢɹ ɤɨɬɨɪɵɯ ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ. 4. Ɋɟɡɭɥɶɬɚɬɵ ɫɪɚɜɧɟɧɢɣ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɧɚɛɥɸɞɚɟɬɫɹ ɫɢɥɶɧɚɹ ɤɨɪɪɟɥɹɰɢɹ ɦɟɠɞɭ Ɇ1ɩɟɪɟɯɨɞɨɦ Ⱥɋ o ȺȺɋ ɢ ɩɪɨɬɨɧɧɨɣ ɲɢɪɢɧɨɣ Ƚɪ: ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɪɪɟɥɹɰɢɢ ɪɚɜɟɧ r = 0,99 r 0,10. ɋɭɳɟɫɬɜɭɟɬ ɬɚɤɠɟ ɤɨɪɪɟɥɹɰɢɹ ɦɟɠɞɭ Ƚɪ ɢ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɞɢɚɰɢɨɧɧɵɯ ɩɟɪɟɯɨɞɨɜ ɧɚ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ ɫ ȿ* = 3,506 (r = 0,99 r 0,10); 4,594 (r = 0,53 r 0,06) ɢ 5,529 (r = 0,25 r 0,03) Ɇɷȼ, ɤɨɬɨɪɵɟ ɩɪɢɧɚɞɥɟɠɚɬ ɋɉɈ. ɁȺɄɅɘɑȿɇɂȿ ɋɭɳɟɫɬɜɨɜɚɧɢɟ ɡɧɚɱɢɬɟɥɶɧɨɣ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ Ƚɪ ɢ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɧɚ ɋɉɈ ɦɨɠɧɨ ɨɛɴɹɫɧɢɬɶ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: Ɍ< - ɤɨɦɩɨɧɟɧɬ ȺɊ ɹɜɥɹɟɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɩɪɨɫɬɨɣ ɤɨɧɮɢɝɭɪɚɰɢɟɣ ɢ ɨɧ ɦɨɠɟɬ ɛɵɬɶ ɜɬɨɪɵɦ (ɩɨɫɥɟ ȺɊ) ɜɯɨɞɧɵɦ ɫɨɫɬɨɹɧɢɟɦ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɦɨɠɧɨ ɡɚɤɥɸɱɢɬɶ, ɱɬɨ ɜ ɩɪɨɰɟɫɫɟ Ȗ-ɪɚɫɩɚɞɚ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɪɟɡɨɧɚɧɫɚ ɜ ɹɞɪɟ 31P ɨɫɧɨɜɧɭɸ ɪɨɥɶ ɢɝɪɚɸɬ ɤɨɥɥɟɤɬɢɜɧɵɟ ɢɡɨɛɚɪɢɱɟɫɤɢɟ ɫɨɫɬɨɹɧɢɹ ɫ ɩɨɥɹɪɢɡɨɜɚɧɧɵɦ ɨɫɬɨɜɨɦ. ɋɉɂɋɈɄ ɅɂɌȿɊȺɌɍɊɕ 1. ȼɨɞɢɧ Ⱥ.ɇ. ɢ ɞɪ. Ɍɨɧɤɚɹ ɫɬɪɭɤɬɭɪɚ ɚɧɚɥɨɝɨɜɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ ɜ 23Na // ɂɡɜɟɫɬɢɹ ɊȺɇ. ɋɟɪ. ɮɢɡ. -2004. -Ɍ. 68. -ʋ 11. ɋ. 1577-1580. 2. Vernotte J. et al. 30Si(3He,d)31P reaction at 25 MeV // Phys. Rev. C. -1990. -V. 41. -P. -1956-1974. 3. Outlaw D. A., Mitchell G. E. and Bilpuch E. G. A high-resolution study of the 30Si(p,p)30Si reaction // Nucl. Phys. A. -1976. -V. 269. -P. 99-111. 4. Maripuu S. Shell-model calculations of M1 transition probabilities from isobaric analogue states // Nucl. Phys. A. -1969. -V. 123. -P. 357-364. 5. Ƚɭɫɟɜɚ Ɇ. ɂ. ɉɪɢɝɨɬɨɜɥɟɧɢɟ ɢɡɨɬɨɩɧɵɯ ɦɢɲɟɧɟɣ ɜ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɦ ɫɟɩɚɪɚɬɨɪɟ // ɉɌɗ. -1957. -Ɍ. 5. -ɋ. 112-116. 6. Endt P. M. Energy levels of A = 21-44 nuclei (VII) // Nucl. Phys. A. -1992. -V. 521. -P. 1-830. 7. Riihonen M., Keinonen J. and Anttila A. Hydrogen burning of 29, 30Si in explosive carbon burning // Nucl. Phys. A. -1979. -V. 313. -P. 251-268. 8. Wolff A. C., Meyer M. A. and Endt P. M. A study of the excited states of 31P with the 30Si(p,J)31P reaction // Nucl. Phys. A. 1968. -V. 107. -P. 332-346. 9. Bornman C. H. et al. Spins and decay schemes of 30Si(p,J)31P resonance levels at Ep = 2 – 3 MeV // Nucl. Phys. A. -1968. -V. 112. -P. 231-240. 10. De Neijs E. O. et al. Levels of 31P from proton capture in 30Si // Nucl. Phys. A. -1975. -V. 254. -P. 45-62. 11. Lane A. M. New term in the nuclear optical potential: implications for (p,n) mirror state reactions // Phys. Rev. Letters, -1962. -V. 8. ʋ4, –P.171-172. 12. Ƚɚɩɨɧɨɜ ɘ. ȼ., Ʌɸɬɨɫɬɚɧɫɤɢɣ ɘ. ɋ. Ɇɢɤɪɨɫɤɨɩɢɱɟɫɤɨɟ ɨɩɢɫɚɧɢɟ Ƚɚɦɨɜ-Ɍɟɥɥɟɪɨɜɫɤɨɝɨ ɪɟɡɨɧɚɧɫɚ ɢ ɤɨɥɥɟɤɬɢɜɧɵɯ ɢɡɨɛɚɪɢɱɟɫɤɢɯ 1+ - ɫɨɫɬɨɹɧɢɣ ɫɮɟɪɢɱɟɫɤɢɯ ɹɞɟɪ // ɗɑȺə. -1981. -Ɍ. 12. -ȼɵɩ. 6. -ɋ. 1324-1363. INVESTIGATION OF THE STRUCTURE OF ANALOGUE STATES WITH JS = 5/2+ IN 31P A.N. Vodin1, L.P. Korda1, G.O. Rastrepina2, I.V. Ushakov1, V.T. Bykov1, G.E. Tuller2, M.V. Vashchenko2 1 National Scientific Centre “Kharkiv Institute of Physics and Technology”, 1, Akademichna st., 61108, Kharkiv, Ukraine 2 Kharkiv National University, 4, Svobody sq, 61077, Kharkiv, Ukraine The experimental study results of the d5/2 analogue resonance J-decay in reaction 30Si(p,J)31P are presented. The decay scheme of the given resonance is elaborated. The angular J-radiation distributions are measured and the partial J-widths are determined. The comparison of intensities of M1 transitions are conducted with calculations on the many-partial model with the superficial Ginteraction. It is shown that the isobaric collective state of the core polarization type takes a substantial part then the analogue resonance decays. KEY WORDS: nuclear reaction 30Si(p,J)31P, isobar analog state, Ȗ-decay, angular distribution, probability of Ɇ1 transition.