ИССЛЕДОВАНИЕ СТРУКТУРЫ АНАЛОГОВОГО СОСТОЯНИЯ CJ

реклама
56
«Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 721, 2006
ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 1 /29/
À.Í. Âîäèí, Ë.Ï. Êîðäà, À.Î. Ðàñòðåïèíà ...
Èññëåäîâàíèå ñòðóêòóðû àíàëîãîâîãî ...
ɍȾɄ 539.163
ɂɋɋɅȿȾɈȼȺɇɂȿ ɋɌɊɍɄɌɍɊɕ ȺɇȺɅɈȽɈȼɈȽɈ
ɋɈɋɌɈəɇɂə C JS =5/2+ ȼ əȾɊȿ 31P
1
Ⱥ.ɇ. ȼɨɞɢɧ1, Ʌ.ɉ. Ʉɨɪɞɚ1, Ⱥ.Ɉ. Ɋɚɫɬɪɟɩɢɧɚ2, ɂ.ȼ. ɍɲɚɤɨɜ1,
ȼ.Ɍ. Ȼɵɤɨɜ1, Ƚ.ɗ. Ɍɭɥɥɟɪ2, Ɇ.ȼ. ȼɚɳɟɧɤɨ2
ɇɚɰɢɨɧɚɥɶɧɵɣ ɧɚɭɱɧɵɣ ɰɟɧɬɪ “ɏɚɪɶɤɨɜɫɤɢɣ ɮɢɡɢɤɨ-ɬɟɯɧɢɱɟɫɤɢɣ ɢɧɫɬɢɬɭɬ”, 61108, ɏɚɪɶɤɨɜ, ɭɥ. Ⱥɤɚɞɟɦɢɱɟɫɤɚɹ, 1
2
ɏɚɪɶɤɨɜɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ ɢɦ ȼ.ɇ. Ʉɚɪɚɡɢɧɚ, 61077, ɏɚɪɶɤɨɜ, ɩɥ. ɋɜɨɛɨɞɵ, 4
ɉɨɫɬɭɩɢɥɚ ɜ ɪɟɞɚɤɰɢɸ 15 ɦɚɪɬɚ 2006 ɝ.
ɂɫɫɥɟɞɨɜɚɧɚ ɪɟɚɤɰɢɹ 30Si(p,Ȗ)31P ɜ ɢɧɬɟɪɜɚɥɟ ɷɧɟɪɝɢɣ ɩɪɨɬɨɧɨɜ ɨɬ 1750 ɞɨ 1905ɤɷȼ. ɂɡɦɟɪɟɧɵ ɫɩɟɤɬɪɵ Ȗ-ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɩɪɢ Ep = 1770, 1830, 1880, 1894 ɢ 1896 ɤɷȼ. Ɉɩɪɟɞɟɥɟɧɵ ɫɢɥɵ ɭɤɚɡɚɧɧɵɯ ɪɟɡɨɧɚɧɫɨɜ, ɢɯ ɪɚɞɢɚɰɢɨɧɧɵɟ ɲɢɪɢɧɵ ɢ ɩɨɫɬɪɨɟɧɵ ɫɯɟɦɵ ɢɯ Ȗ-ɪɚɫɩɚɞɚ. ɂɡɦɟɪɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ Ȗ-ɥɭɱɟɣ, ɧɚ ɨɫɧɨɜɚɧɢɢ ɤɨɬɨɪɵɯ ɨɩɪɟɞɟɥɟɧɵ ɫɩɢɧɵ ɢ ɱɟɬɧɨɫɬɢ ɪɟɡɨɧɚɧɫɧɵɯ ɫɨɫɬɨɹɧɢɣ ɹɞɪɚ 31P ɢ ɤɨɷɮɮɢɰɢɟɧɬɵ ɫɦɟɫɢ į ɜ ɩɪɹɦɵɯ ɩɟɪɟɯɨɞɚɯ. ɉɪɨɜɟɞɟɧɨ ɫɪɚɜɧɟɧɢɟ ɢɧɬɟɧɫɢɜɧɨɫɬɟɣ
Ɇ1-ɩɟɪɟɯɨɞɨɜ ɫ ɪɚɫɱɟɬɚɦɢ ɩɨ ɦɧɨɝɨɱɚɫɬɢɱɧɨɣ ɦɨɞɟɥɢ ɫ ɩɨɜɟɪɯɧɨɫɬɧɵɦ G-ɜɡɚɢɦɨɞɟɣɫɬɜɢɟɦ. ɉɨɤɚɡɚɧɨ, ɱɬɨ ɩɪɢ ɪɚɫɩɚɞɟ ɚɧɚɥɨɝɨɜɨɝɨ ɪɟɡɨɧɚɧɫɚ ɫɭɳɟɫɬɜɟɧɧɭɸ ɪɨɥɶ ɢɝɪɚɟɬ ɢɡɨɛɚɪɢɱɟɫɤɨɟ ɤɨɥɥɟɤɬɢɜɧɨɟ ɫɨɫɬɨɹɧɢɟ ɬɢɩɚ ɩɨɥɹɪɢɡɚɰɢɢ ɨɫɬɨɜɚ. ɉɪɨɜɟɞɟɧ
ɚɧɚɥɢɡ ɤɨɪɪɟɥɹɰɢɣ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ.
ɄɅɘɑȿȼɕȿ ɋɅɈȼȺ: ɹɞɟɪɧɚɹ ɪɟɚɤɰɢɹ 30Si(p,J)31P, ɢɡɨɫɩɢɧ, ɢɡɨɛɚɪ-ɚɧɚɥɨɝɨɜɨɟ ɫɨɫɬɨɹɧɢɟ, Ȗ-ɪɚɫɩɚɞ, ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ, ɜɟɪɨɹɬɧɨɫɬɶ Ɇ1-ɩɟɪɟɯɨɞɚ.
ɂɫɫɥɟɞɨɜɚɧɢɹ ɢɡɨɛɚɪ-ɚɧɚɥɨɝɨɜɵɯ ɪɟɡɨɧɚɧɫɨɜ (ȺɊ) ɩɪɟɞɫɬɚɜɥɹɸɬ ɡɧɚɱɢɬɟɥɶɧɵɣ ɢɧɬɟɪɟɫ, ɨɛɭɫɥɨɜɥɟɧɧɵɣ
ɜɵɹɫɧɟɧɢɟɦ ɪɨɥɢ ɡɚɪɹɞɨɜɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɹɞɟɪɧɵɯ ɫɢɥ ɜ ɦɟɯɚɧɢɡɦɟ ɫɦɟɲɢɜɚɧɢɹ ɭɪɨɜɧɟɣ ɩɨ ɢɡɨɫɩɢɧɭ ɜ ɹɞɪɚɯ, ɚ
ɬɚɤɠɟ ɞɥɹ ɪɚɡɜɢɬɢɹ ɦɢɤɪɨɫɤɨɩɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɚɬɨɦɧɨɝɨ ɹɞɪɚ. Ɋɟɡɭɥɶɬɚɬɵ, ɩɨɥɭɱɟɧɧɵɟ ɜ [1], ɩɨɡɜɨɥɹɸɬ ɩɪɟɞɩɨɥɨɠɢɬɶ, ɱɬɨ ȺɊ ɫ JS = 5/2+ ɡɧɚɱɢɬɟɥɶɧɨ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɵ ɜ ɹɞɪɚɯ 1d2s-ɨɛɨɥɨɱɤɢ. ɇɚɫɬɨɹɳɚɹ ɪɚɛɨɬɚ ɹɜɥɹɟɬɫɹ
ɞɚɥɶɧɟɣɲɢɦ ɪɚɡɜɢɬɢɟɦ ɷɬɨɣ ɢɞɟɢ ɧɚ ɩɪɢɦɟɪɟ ɹɞɪɚ 31Ɋ, ɜ ɤɨɬɨɪɨɦ ɢɡɭɱɟɧ J-ɪɚɫɩɚɞ ɮɪɚɝɦɟɧɬɨɜ ɨɞɧɨɱɚɫɬɢɱɧɨɝɨ
d5/2-ɫɨɫɬɨɹɧɢɹ ɫ Ŋ* | 9,09 Ɇɷȼ, ɹɜɥɹɸɳɟɝɨɫɹ ɢɡɨɛɚɪɢɱɟɫɤɢɦ ɚɧɚɥɨɝɨɦ ɦɚɬɟɪɢɧɫɤɨɝɨ ɭɪɨɜɧɹ ɹɞɪɚ 31Si ɫ
ȿ* = 2,789 Ɇɷȼ ɫ JS = 5/2+ ɢ Ɍ = 3/2.
ɋɨɝɥɚɫɧɨ ɞɚɧɧɵɦ ɩɨ (3He,d)-ɪɟɚɤɰɢɢ [2] ɢ ɭɩɪɭɝɨɦɭ ɪɚɫɫɟɹɧɢɸ ɩɪɨɬɨɧɨɜ [3] ɫɨɫɬɨɹɧɢɹ ɫ ȿ* = 9,009; 9,067;
9,116; 9,129 ɢ 9,131 Ɇɷȼ ɹɜɥɹɸɬɫɹ ɤɨɦɩɨɧɟɧɬɚɦɢ ɬɨɧɤɨɣ ɫɬɪɭɤɬɭɪɵ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɪɟɡɨɧɚɧɫɚ ɜ 31P. Ɋɚɞɢɚɰɢɨɧɧɵɣ ɤɚɧɚɥ ɪɚɫɩɚɞɚ ɷɬɢɯ ɫɨɫɬɨɹɧɢɣ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟ ɢɫɫɥɟɞɨɜɚɧ, ɢ ɷɬɚ ɩɪɢɱɢɧɚ ɫɬɢɦɭɥɢɪɨɜɚɥɚ ɧɚɫɬɨɹɳɢɟ ɨɩɵɬɵ.
Ʉɨɦɩɨɧɟɧɬɵ ɞɚɧɧɨɝɨ ȺɊ ɧɚɛɥɸɞɚɥɢɫɶ ɤɚɤ ɢɡɨɥɢɪɨɜɚɧɧɵɟ ɪɟɡɨɧɚɧɫɵ ɜ ɪɟɚɤɰɢɢ 30Si(p,J)31P ɩɪɢ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ
ȿɪ = 1770, 1830, 1880, 1894 ɢ 1896 ɤɷȼ. ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɛɵɥɚ ɢɡɭɱɟɧɚ ɮɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ ɜ ɨɤɪɟɫɬɧɨɫɬɢ
ȺɊ, ɩɨɫɬɪɨɟɧɵ ɫɯɟɦɵ J-ɪɚɫɩɚɞɚ ɭɤɚɡɚɧɧɵɯ ɪɟɡɨɧɚɧɫɨɜ ɢ ɢɡɦɟɪɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ, ɜɨɡɧɢɤɚɸɳɢɯ
ɩɪɢ ɢɯ ɪɚɫɩɚɞɟ. ȼ ɢɬɨɝɟ ɛɵɥɨ ɩɨɥɭɱɟɧɨ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɚɪɰɢɚɥɶɧɵɯ ɪɚɞɢɚɰɢɨɧɧɵɯ ɲɢɪɢɧ ȽJ
ɪɚɫɩɚɞɚ ȺɊ, ɤɨɬɨɪɨɟ ɜɩɨɫɥɟɞɫɬɜɢɢ ɫɪɚɜɧɢɜɚɥɨɫɶ ɫ ɜɵɜɨɞɚɦɢ ɦɧɨɝɨɱɚɫɬɢɱɧɨɣ ɦɨɞɟɥɢ ɨɛɨɥɨɱɟɤ ɫ ɩɨɜɟɪɯɧɨɫɬɧɵɦɢ
G-ɫɢɥɚɦɢ [4]. Ɋɚɫɫɦɨɬɪɟɧɵ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ
d5/2-ɫɨɫɬɨɹɧɢɹ ɫ ɰɟɥɶɸ ɜɵɹɫɧɟɧɢɹ, ɞɥɹ ɤɚɤɢɯ ɤɚɧɚɥɨɜ J-ɪɚɫɩɚɞɚ ȺɊ ɹɜɥɹɟɬɫɹ ɨɛɳɢɦ ɜɯɨɞɧɵɦ ɫɨɫɬɨɹɧɢɟɦ.
ɆȿɌɈȾɂɄȺ ɗɄɋɉȿɊɂɆȿɇɌȺ
ɂɫɫɥɟɞɨɜɚɧɢɹ ɩɪɨɜɨɞɢɥɢɫɶ ɧɚ ɷɥɟɤɬɪɨɫɬɚɬɢɱɟɫɤɨɦ ɭɫɤɨɪɢɬɟɥɟ ɩɪɨɬɨɧɨɜ ɗɋɍ-5 Ʌɚɛɨɪɚɬɨɪɢɢ ɹɞɟɪɧɨɣ
ɫɩɟɤɬɪɨɫɤɨɩɢɢ ɇɇɐ ɏɎɌɂ. ɍɫɤɨɪɟɧɧɵɟ ɩɪɨɬɨɧɵ ɫ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɛɪɨɫɨɦ 400 ɷȼ ɨɬɤɥɨɧɹɥɢɫɶ ɧɚ 900 ɱɟɪɟɡ
ɚɧɚɥɢɡɢɪɭɸɳɢɣ ɦɚɝɧɢɬ ɢ ɩɨɫɥɟ ɩɪɨɯɨɠɞɟɧɢɹ ɫɢɫɬɟɦɵ ɸɫɬɢɪɨɜɨɱɧɵɯ ɞɢɚɮɪɚɝɦ ɛɨɦɛɚɪɞɢɪɨɜɚɥɢ ɦɢɲɟɧɶ, ɭɫɬɚɧɨɜɥɟɧɧɭɸ ɩɨɞ ɭɝɥɨɦ 450 ɜ ɤɚɦɟɪɟ ɪɚɫɫɟɹɧɢɹ, ɤɨɬɨɪɚɹ ɹɜɥɹɥɚɫɶ ɨɞɧɨɜɪɟɦɟɧɧɨ ɢ ɰɢɥɢɧɞɪɨɦ Ɏɚɪɚɞɟɹ. Ɍɨɤ
ɩɪɨɬɨɧɨɜ ɧɚ ɦɢɲɟɧɢ ɫɨɫɬɚɜɥɹɥ 10 ɦɤȺ, ɢ ɢɡ-ɡɚ ɛɨɥɶɲɨɣ ɩɥɨɬɧɨɫɬɢ ɷɧɟɪɝɨɜɵɞɟɥɟɧɢɹ ɨɧɚ ɨɯɥɚɠɞɚɥɚɫɶ ɩɨɬɨɤɨɦ
ɜɨɞɵ ɫ ɜɵɫɨɤɨɣ ɬɭɪɛɭɥɟɧɬɧɨɫɬɶɸ. ȼ ɷɤɫɩɟɪɢɦɟɧɬɚɯ ɢɫɩɨɥɶɡɨɜɚɥɚɫɶ ɢɡɨɬɨɩɧɚɹ ɦɢɲɟɧɶ 30Si, ɩɪɢɝɨɬɨɜɥɟɧɧɚɹ
ɦɟɬɨɞɨɦ "ɜɛɢɜɚɧɢɹ" ɢɨɧɨɜ 30Si ɜ ɬɚɧɬɚɥɨɜɭɸ ɩɨɞɥɨɠɤɭ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɜ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɦ ɫɟɩɚɪɚɬɨɪɟ [5].
Ɍɨɥɳɢɧɚ ɦɢɲɟɧɢ ɫɨɫɬɚɜɥɹɥɚ 4 ɤɷȼ ɩɪɢ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ ȿɪ a 2 Ɇɷȼ. ɉɪɢɫɭɬɫɬɜɢɟ ɜ ɩɨɞɥɨɠɤɟ 19F ɧɟ ɫɤɚɡɚɥɨɫɶ
ɡɧɚɱɢɬɟɥɶɧɵɦ ɨɛɪɚɡɨɦ ɧɚ ɪɟɡɭɥɶɬɚɬɚɯ ɷɤɫɩɟɪɢɦɟɧɬɚ. J-ɋɩɟɤɬɪɵ ɪɟɝɢɫɬɪɢɪɨɜɚɥɢɫɶ Ge(Li)-ɞɟɬɟɤɬɨɪɨɦ ɨɛɴɟɦɨɦ
63 ɫɦ3 ɫ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɪɟɲɟɧɢɟɦ 3,0 ɤɷȼ ɞɥɹ J-ɥɢɧɢɣ 60Co. Ⱥɛɫɨɥɸɬɧɚɹ ɤɚɥɢɛɪɨɜɤɚ ɫɩɟɤɬɪɨɦɟɬɪɚ ɩɨ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɩɪɨɜɨɞɢɥɚɫɶ ɫ ɩɨɦɨɳɶɸ ɫɬɚɧɞɚɪɬɧɨɝɨ ɧɚɛɨɪɚ ɦɨɧɨɯɪɨɦɚɬɢɱɟɫɤɢɯ ɢɫɬɨɱɧɢɤɨɜ ɈɋȽɂ-II ɢ ɩɨ ɜɵɯɨɞɚɦ J-ɥɢɧɢɣ ɢɡ ɪɟɚɤɰɢɢ 27Al(p,J)28Si ɩɪɢ Ep = 991,86(3) ɤɷȼ. Ⱦɥɹ ɬɨɝɨ ɱɬɨɛɵ ɨɫɥɚɛɢɬɶ ɧɢɡɤɨɷɧɟɪɝɟɬɢɱɟɫɤɢɣ
ɮɨɧ J-ɢɡɥɭɱɟɧɢɹ ɢɡ ɩɨɞɥɨɠɤɢ Ge(Li)-ɞɟɬɟɤɬɨɪ ɩɨɦɟɳɚɥɫɹ ɜ ɫɩɟɰɢɚɥɶɧɭɸ ɡɚɳɢɬɭ, ɜɵɩɨɥɧɟɧɧɭɸ ɢɡ Pb ɢ Cu. ɍɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ, ɜɨɡɧɢɤɚɸɳɢɯ ɩɪɢ ɪɚɫɩɚɞɟ ɪɟɡɨɧɚɧɫɧɵɯ ɫɨɫɬɨɹɧɢɣ ɹɞɪɚ 31P, ɢɡɦɟɪɹɥɢɫɶ ɩɨɞ ɭɝɥɚɦɢ Tɥɚɛ = 0, 30, 45, 60 ɢ 90o ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɚɩɪɚɜɥɟɧɢɹ ɩɭɱɤɚ ɧɚɥɟɬɚɸɳɢɯ ɩɪɨɬɨɧɨɜ. ȼ ɤɚɱɟɫɬɜɟ ɦɨɧɢɬɨɪɚ Jɢɡɥɭɱɟɧɢɹ ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɫɩɟɤɬɪɨɦɟɬɪ ɧɚ ɛɚɡɟ ɤɪɢɫɬɚɥɥɚ NaI(Tl) ɫ ɪɚɡɦɟɪɚɦɢ ‡150u100 ɦɦ2. ɗɬɨɬ ɠɟ ɞɟɬɟɤɬɨɪ
57
Èññëåäîâàíèå ñòðóêòóðû àíàëîãîâîãî ...
ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 1 /29/
ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɮɭɧɤɰɢɢ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 30Si(p,J)31P. ɗɤɫɩɟɪɢɦɟɧɬɵ ɩɪɨɜɨɞɢɥɢɫɶ ɧɚ ɫɩɟɤɬɪɨɦɟɬɪɢɱɟɫɤɨɦ ɨɛɨɪɭɞɨɜɚɧɢɢ, ɜɵɩɨɥɧɟɧɧɨɦ ɜ ɫɬɚɧɞɚɪɬɟ “ɄȺɆȺɄ” ɢ ɪɚɛɨɬɚɸɳɟɦ ɜ "ɥɢɧɢɸ" ɫ ɉɗȼɆ.
ɊȿɁɍɅɖɌȺɌɕ ɂɁɆȿɊȿɇɂɃ
ɂɡɦɟɪɟɧɚ ɮɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 30Si(pJ)31P ɜ ɨɛɥɚɫɬɢ Ep = 1750y1905 ɤɷȼ ɫ ɪɚɡɥɢɱɧɵɦɢ ɩɨɪɨɝɚɦɢ
ɞɢɫɤɪɢɦɢɧɚɰɢɢ ɷɧɟɪɝɢɢ J-ɥɭɱɟɣ (ȿJ > 2,61 ɢ ȿJ > 6,13 Ɇɷȼ). J-Ʉɜɚɧɬɵ ɪɟɝɢɫɬɪɢɪɨɜɚɥɢɫɶ NaI(Tl)-ɞɟɬɟɤɬɨɪɨɦ
ɩɨɞ ɭɝɥɨɦ Tɥɚɛ = 55o ɨɬɧɨɫɢɬɟɥɶɧɨ ɧɚɩɪɚɜɥɟɧɢɹ ɩɭɱɤɚ ɩɪɨɬɨɧɨɜ ɫ ɲɚɝɨɦ 'Ep = 1,8 ɤɷȼ. ȼ ɤɚɱɟɫɬɜɟ ɩɪɢɦɟɪɚ ɧɚ
ɪɢɫ.1 ɩɪɟɞɫɬɚɜɥɟɧɵ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɹ ɨɬɧɨɫɢɬɟɥɶɧɨɝɨ ɜɵɯɨɞɚ J- ɥɭɱɟɣ ɫ EJ > 6,13 Ɇɷȼ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ
ɷɧɟɪɝɢɢ ɧɚɥɟɬɚɸɳɢɯ ɩɪɨɬɨɧɨɜ. ȼ ɢɫɫɥɟɞɭɟɦɨɣ ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɢ ɭɫɬɚɧɨɜɥɟɧɨ ɩɨɥɨɠɟɧɢɟ 8 ɪɟɡɨɧɚɧɫɨɜ, ɢɞɟɧɬɢɮɢɰɢɪɨɜɚɧɧɵɯ ɤɚɤ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ ɹɞɪɚ 31P. ɉɪɢ ɷɬɨɦ Q ɪɟɚɤɰɢɢ ɩɪɢɧɢɦɚɥɨɫɶ ɪɚɜɧɵɦ 7296,61(20)
ɤɷȼ, ɫɨɝɥɚɫɧɨ [6]. ɉɨɥɭɱɟɧɧɵɟ ɧɚɦɢ ɪɟɡɭɥɶɬɚɬɵ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɞɚɧɧɵɦɢ, ɩɪɢɜɟɞɟɧɧɵɦɢ ɜ ɨɛɡɨɪɟ ɗɧɞɬɚ
[6]. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɚɹ ɲɢɪɢɧɚ Ƚɷɤɫɩ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 1808 ɤɷȼ ɪɚɜɧɚ 9(1) ɤɷȼ. Ⱦɥɹ ɨɫɬɚɥɶɧɵɯ ɪɟɡɨɧɚɧɫɧɵɯ
ɩɢɤɨɜ ɨɧɚ ɫɨɫɬɚɜɥɹɟɬ ɜɟɥɢɱɢɧɭ | 4,0 ɤɷȼ, ɱɬɨ ɨɛɭɫɥɨɜɥɟɧɨ ɤɨɧɟɱɧɨɣ ɬɨɥɳɢɧɨɣ ɦɢɲɟɧɢ ɢ ɷɧɟɪɝɟɬɢɱɟɫɤɢɦ ɪɚɡɛɪɨɫɨɦ ɜ ɩɭɱɤɟ ɩɪɨɬɨɧɨɜ.
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɚɛɫɨɥɸɬɧɨɝɨ ɜɵɯɨɞɚ J-ɤɜɚɧɬɨɜ ɢɡ ɪɟɚɤɰɢɢ 30Si(p,J)31P ɛɵɥɨ ɩɪɨɜɟɞɟɧɨ ɫɪɚɜɧɟɧɢɟ ɜɵɯɨɞɨɜ ɢɫɫɥɟɞɭɟɦɵɯ ɪɟɡɨɧɚɧɫɨɜ ɫ ɜɵɯɨɞɨɦ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 2187 ɤɷȼ. ɋɢɥɚ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 2187 ɤɷȼ ɯɨɪɨɲɨ ɢɡɜɟɫɬɧɚ [7]. Ɉɧɚ ɪɚɜɧɚ:
Ƚp ȽȖ
S = (2 J +1)
Ƚ
= 9,5 ± 0,9 ɷȼ,
(1)
ɝɞɟ J - ɫɩɢɧ ɪɟɡɨɧɚɧɫɧɨɝɨ ɫɨɫɬɨɹɧɢɹ, Ƚp ɢ ȽJ - ɩɪɨɬɨɧɧɚɹ ɢ ɪɚɞɢɚɰɢɨɧɧɚɹ ɩɚɪɰɢɚɥɶɧɵɟ ɲɢɪɢɧɵ ɪɟɡɨɧɚɧɫɚ, Ƚ ɩɨɥɧɚɹ ɲɢɪɢɧɚ ɪɟɡɨɧɚɧɫɚ. ɉɨɥɭɱɟɧɧɵɟ ɬɚɤɢɦ ɨɛɪɚɡɨɦ ɫɢɥɵ ɪɟɡɨɧɚɧɫɨɜ S ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥ. 1, ɜ ɤɨɬɨɪɨɣ
ɩɪɢɜɟɞɟɧɵ ɬɚɤɠɟ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɡɧɚɱɟɧɢɹ ȽJ, ɜɵɱɢɫɥɟɧɧɵɟ ɫ ɭɱɟɬɨɦ ɞɚɧɧɵɯ ɩɨ ɭɩɪɭɝɨɦɭ ɪɚɫɫɟɹɧɢɸ ɩɪɨɬɨɧɨɜ ɹɞɪɚɦɢ 30Si [3]. ȼ ɬɨɦ ɫɥɭɱɚɟ, ɟɫɥɢ ɧɟɢɡɜɟɫɬɧɚ ɩɪɨɬɨɧɧɚɹ ɲɢɪɢɧɚ Ƚɪ ɪɟɡɨɧɚɧɫɧɨɝɨ ɭɪɨɜɧɹ, ɩɪɟɞɩɨɥɚɝɚɥɨɫɶ,
ɱɬɨ Ƚɪ >> ȽJ, ɢ ɜ ɬɚɛɥ. 1 ɭɤɚɡɚɧ ɥɢɲɶ ɧɢɠɧɢɣ ɩɪɟɞɟɥ ɡɧɚɱɟɧɢɹ ɜɟɥɢɱɢɧɵ ȽJ.
-1880
Ɍɚɛɥɢɰɚ 1. Ɋɚɞɢɚɰɢɨɧɧɵɟ ɲɢɪɢɧɵ ɪɟɡɨɧɚɧɫɨɜ
ɜ ɪɟɚɤɰɢɢ 30Si(pJ)31P
3
-1896
-1894
-
+
1815 9,053 (3 ,5)
1500
1760
ȿp1) , E*,
2JS
ɤɷȼ Mɷȼ
1770 9,005 5+
1808 9,046
-1770
-1815
3000
-1830
-1808
-1878
NJ
1840
Ep , ɤɷȼ
Ɋɢɫ. 1. Ɏɭɧɤɰɢɹ ɜɨɡɛɭɠɞɟɧɢɹ ɪɟɚɤɰɢɢ 30Si(pJ)31P ɜ
ɨɛɥɚɫɬɢ ɷɧɟɪɝɢɢ ɩɪɨɬɨɧɨɜ Ep = 1750y1905 ɤɷȼ.
S, ɷȼ
Ƚp2), ɷȼ
ȽJ, ɷȼ
2,8(8)
65(20)
0,47(14)
4,4(13) 9400(900) 1,10(11)
1,0
1830 9,067 5
+
3,4(10)
16(5)
0,57(18)
1878 9,113
-
0,88
1(1)
0,12(12)
1880 9,116 5
+
4,8(14)
22(7)
0,83(26)
1894 9,129 5
+
0,59(17)
3(2)
0,10(7)
1896 9,131 5
+
1,4(4)
4(2)
0,23(12)
7
ɉɪɢɦɟɱɚɧɢɟ: -ɡɧɚɱɟɧɢɟ ȿɪ ɭɤɚɡɚɧɨ ɫ ɨɲɢɛɤɨɣ r1 ɤɷȼ.
Ɂɧɚɱɟɧɢɹ Ƚɪ ɜɡɹɬɵ ɢɡ [3].
1)
ɂɡɦɟɪɟɧɵ J-ɫɩɟɤɬɪɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɩɪɢ ȿɪ = 1770, 1830, 1880, 1894, 1896 ɤɷȼ. ɋɯɟɦɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɫɬɪɨɢɥɢɫɶ ɧɚ ɨɫɧɨɜɚɧɢɢ ɛɚɥɚɧɫɚ ɷɧɟɪɝɢɣ ɢ ɢɧɬɟɧɫɢɜɧɨɫɬɟɣ ɞɥɹ ɧɚɛɥɸɞɚɟɦɵɯ J-ɩɟɪɟɯɨɞɨɜ ɫ ɭɱɟɬɨɦ ɜɫɟɯ
ɢɡɜɟɫɬɧɵɯ ɞɚɧɧɵɯ ɨɛ ɭɪɨɜɧɹɯ 31P. Ɋɚɡɧɵɟ ɜɚɪɢɚɧɬɵ ɫɯɟɦ J-ɪɚɫɩɚɞɚ ɷɬɢɯ ɪɟɡɨɧɚɧɫɨɜ ɛɵɥɢ ɩɪɟɞɥɨɠɟɧɵ ɜ [8, 9],
ɧɨ ɧɚɢɛɨɥɟɟ ɩɨɞɪɨɛɧɵɟ ɫɜɟɞɟɧɢɹ ɨ ɤɨɷɮɮɢɰɢɟɧɬɚɯ ɜɟɬɜɥɟɧɢɹ bJ ɩɨɥɭɱɟɧɵ ɜ [10]. ɇɚɲɢ ɞɚɧɧɵɟ ɩɨɞɬɜɟɪɠɞɚɸɬ
ɪɟɡɭɥɶɬɚɬɵ ɚɜɬɨɪɨɜ [10] ɢ ɩɨɡɜɨɥɹɸɬ ɞɨɩɨɥɧɢɬɟɥɶɧɨ ɜɵɹɜɢɬɶ ɫɥɚɛɵɟ J-ɩɟɪɟɯɨɞɵ ɧɚ ɭɪɨɜɧɢ ɫ ȿ* = 3,134 ɢ, ɜɨɡɦɨɠɧɨ, 5,988 Ɇɷȼ (ɜ ɤɚɫɤɚɞɟ r o 5,988 o 2,234 Ɇɷȼ ɧɢɠɧɢɣ J-ɩɟɪɟɯɨɞ ɨɞɧɨɡɧɚɱɧɨ ɧɟ ɭɫɬɚɧɨɜɥɟɧ) ɞɥɹ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 1770 ɤɷȼ. ȼɟɪɯɧɢɣ ɩɪɟɞɟɥ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɞɥɹ ɷɬɢɯ ɩɟɪɟɯɨɞɨɜ IJ < 1%. ȼ ɬɚɛɥ. 2 ɩɪɢɜɟɞɟɧɵ ɩɪɟɞɥɚɝɚɟɦɵɟ ɫɯɟɦɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɧɵɯ ɭɪɨɜɧɟɣ ɜ ɜɢɞɟ ɡɧɚɱɟɧɢɣ ɤɨɷɮɮɢɰɢɟɧɬɨɜ bJ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɟ ɢɦ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ ɩɚɪɰɢɚɥɶɧɵɯ ɪɚɞɢɚɰɢɨɧɧɵɯ ɲɢɪɢɧ ȽJ ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2ɪɟɡɨɧɚɧɫɚ.
58
«Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 721, 2006
À.Í. Âîäèí, Ë.Ï. Êîðäà, À.Î. Ðàñòðåïèíà ...
Ɍɚɛɥɢɰɚ 2. ɉɚɪɰɢɚɥɶɧɵɟ J-ɲɢɪɢɧɵ ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɧɵɯ 5/2+ -ɫɨɫɬɨɹɧɢɣ ɢ ɜɟɪɨɹɬɧɨɫɬɢ Ɇ1-ɩɟɪɟɯɨɞɨɜ ɜ 31Ɋ
E *f ,
Ɇɷȼ
0
1,266
2,234
3,134
3,295
3,415
3,506
4,190
4,261
4,431
4,594
4,634
4,783
5,529
5,559
5,773
5,892
5,988
6,233
6,381
6,461
6,610
6,842
2 J ʌf
1+
3+
5+
1+
5+
7+
3+
5+
3+
73+
7+
5+
+ +
7 (5 )
3+
(5,7+)
9+
3+ +
(3 -9 )
3 +; 3
5+
3(5,7)-
Ep (ɤɷȼ); Ei* (Ɇɷȼ); 2 J iʌ
1770; 9,009; 5+
1830; 9,067; 5+
1880; 9,116; 5+
1894; 9,129; 5+
bJ ȽJ, ȼ(M1), bJ ȽJ, ȼ(M1), bJ ȽJ, ȼ(M1), bJ ȽJ, ȼ(M1),
-2
-2
-2
-2
% 10 ˜ɷȼ 10-2˜ P 2ɹ % 10 ˜ɷȼ 10-2˜ P 2ɹ % 10 ˜ɷȼ 10-2˜ P 2ɹ % 10 ˜ɷȼ 10-2˜ P 2ɹ
13 6,1
E2
1 0,6
E2
7 0,7
E2
1 0,5
0,1
2 1,1
0,2
6 0,6
0,1
6 2,8
0,8 42 23,9
6,4 49 40,7 10,6 18 1,8
0,5
1 0,5
ȿ2
1 0,6
E2
1 0,1
E2
10 5,7
2,5
5 4,2
1,8
4 0,4
0,2
2 0,9
0,5
7 4,0
1,9
7 0,7
0,3
13 6,1
3,1
1 0,6
0,3
6 5,0
2,4
6 0,6
0,3
32 15,0 11,5 3 1,7
1,3
7 5,8
4,1
2 0,2
0,1
3 0,3
0,2
4 1,9
E1
2 1,1
E1
5 0,5
E1
6 2,8
2,8
2 1,1
1,1
9 7,5
6,9
2 0,2
0,2
5 2,4
2,4 21 12,0 11,7 4 3,3
3,2 28 2,8
2,6
1 0,5
0,5
4 2,3
2,5
4 3,3
3,5
2 0,2
0,2
5 2,4
4,8
3 1,7
3,3
6 5,0
9,2
1 0,1
0,2
7 5,8
11,0
8 3,8
9,5
2 1,7
3,8
6 0,6
E2
(1) 0,5
ȿ1
2 1,1
E1
1 0,8
3,0
3 0,3
1,1
3 1,4
6,6
1 0,8
3,5
3 0,3
1,2
1 0,6
2,7
1896; 9,131; 5+
bJ ȽJ, ȼ(M1),
-2
% 10 ˜ɷȼ 10-2˜ P 2ɹ
29
1
6,7
0,2
1,2
0,1
19
2
4,4
0,5
1,9
0,2
6
16
1,4
3,7
1,0
E1
7
13
2
1,6
3,0
0,5
1,5
3,1
0,8
1
0,2
E1
3
2
0,7
0,5
E1
E1
Ʉɜɚɧɬɨɜɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɪɟɡɨɧɚɧɫɚ ɩɪɢ Ep = 1770 ɤɷȼ ɭɫɬɚɧɨɜɥɟɧɵ ɜ ɭɩɪɭɝɨɦ ɪɚɫɫɟɹɧɢɢ ɩɪɨɬɨɧɨɜ ɹɞɪɚɦɢ 30Si [3], ɝɞɟ ɟɦɭ ɛɵɥɢ ɩɪɢɩɢɫɚɧɵ ɡɧɚɱɟɧɢɹ JS = 5/2+. Ɉɞɧɚɤɨ ɞɥɹ ɪɚɫɱɟɬɚ ɩɪɢɜɟɞɟɧɧɵɯ ɜɟɪɨɹɬɧɨɫɬɟɣ ɩɪɹɦɵɯ
J-ɩɟɪɟɯɨɞɨɜ ɧɟɨɛɯɨɞɢɦɵ ɞɚɧɧɵɟ ɨ ɩɚɪɚɦɟɬɪɚɯ ɫɦɟɲɢɜɚɧɢɹ ɩɨ ɦɭɥɶɬɢɩɨɥɶɧɨɫɬɹɦ G. ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɛɵɥɢ ɢɡɦɟɪɟɧɵ ɭɝɥɨɜɵɟ ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ ɢ ɧɚ ɨɫɧɨɜɚɧɢɢ ɢɯ ɚɧɚɥɢɡɚ ɨɩɪɟɞɟɥɟɧɵ ɡɧɚɱɟɧɢɹ G. Ɏɭɧɤɰɢɹ ɭɝɥɨɜɨɣ ɤɨɪɪɟɥɹɰɢɢ ɢɫɤɚɥɚɫɶ ɜ ɜɢɞɟ ɪɚɡɥɨɠɟɧɢɹ ɩɨ ɱɟɬɧɵɦ ɩɨɥɢɧɨɦɚɦ Ʌɟɠɚɧɞɪɚ:
W (ș )
1 a 2 P2 (cos ș ) a 4 P4 (cos ș ) ,
(2)
ɝɞɟ ɤɨɷɮɮɢɰɢɟɧɬɵ a2 ɢ a4 ɡɚɜɢɫɹɬ ɨɬ ɭɝɥɨɜɵɯ ɦɨɦɟɧɬɨɜ ɧɚɱɚɥɶɧɨɝɨ ɢ ɤɨɧɟɱɧɨɝɨ ɫɨɫɬɨɹɧɢɣ ɢ ɩɚɪɚɦɟɬɪɚ G. ɇɚɣɞɟɧɧɵɟ ɩɨ ɦɟɬɨɞɭ ɧɚɢɦɟɧɶɲɢɯ ɤɜɚɞɪɚɬɨɜ ɤɨɷɮɮɢɰɢɟɧɬɵ a2 ɢ a4 ɫɨɩɨɫɬɚɜɥɹɥɢɫɶ ɫ ɢɯ
Ɍɚɛɥɢɰɚ 3. Ʉɨɷɮɮɢɰɢɟɧɬɵ ɚ2 ɢ ɚ4 ɜ ɮɭɧɤɰɢɢ ɭɝɥɨɜɨɣ ɤɨɪɪɟɥɹɬɟɨɪɟɬɢɱɟɫɤɢɦɢ ɡɧɚɱɟɧɢɹɦɢ ɞɥɹ ɪɚɡɥɢɱɰɢɢ ɢ ɩɚɪɚɦɟɬɪɵ G
ɧɵɯ ɝɢɩɨɬɟɡ ɨ ɫɩɢɧɟ J ɪɟɡɨɧɚɧɫɧɨɝɨ ɭɪɨɜɧɹ
ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɦ ɟɦɭ ɡɧɚɱɟɧɢɟɦ G ɫ
Ei* o E *f , Ɇɷȼ 2 J iʌ o 2 J ʌf ɚ2('ɚ2) ɚ4('ɚ4)
G('G)
ɩɨɦɨɳɶɸ ɤɪɢɬɟɪɢɹ F2.
9,009 o
0
5+ o 1+ -0,60(16) -0,84(3) 0,07(± f )
Ɉɩɪɟɞɟɥɟɧɧɵɟ ɬɚɤɢɦ ɨɛɪɚɡɨɦ ɤɨɷɮɮɢɰɢɟɧɬɵ a2 ɢ a4 ɜ ɮɭɧɤɰɢɢ ɭɝɥɨɜɨɝɨ
-0,57(1)
o 2,234
o 5+ -0,24(19) 0,07(18)
ɪɚɫɩɪɟɞɟɥɟɧɢɹ J-ɥɭɱɟɣ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸ-0,12(4)
o 3,415
o 7+ -0,69(16) -0,86(28)
ɳɢɟ ɢɦ ɡɧɚɱɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ G ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ. 3. ȼ ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ
0,28(4) -0,15(5)
-0,41(11)
o 3,506
o 3+
ɜɧɟɫɟɧɵ ɩɨɩɪɚɜɤɢ, ɭɱɢɬɵɜɚɸɳɢɟ ɤɨɧɟɱ+
0,46(7) -0,11(7)
-0,14(10)
o 4,190
o5
ɧɵɣ ɬɟɥɟɫɧɵɣ ɭɝɨɥ ɞɟɬɟɤɬɨɪɚ. ɍɤɚɡɚɧɧɵɟ
ɨɲɢɛɤɢ ɹɜɥɹɸɬɫɹ ɫɬɚɧɞɚɪɬɧɵɦɢ ɨɬɤɥɨ-0,12(6) 0,00(9) -0,48(6) ɢɥɢ
o 4,594
o 3+
ɧɟɧɢɹɦɢ. ɇɚ ɨɫɧɨɜɚɧɢɢ ɜɫɟɣ ɫɨɜɨɤɭɩɧɨ0,72(8)
ɫɬɢ ɩɨɥɭɱɟɧɧɵɯ ɞɚɧɧɵɯ ɛɵɥɢ ɨɩɪɟɞɟɥɟɧɵ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɡɧɚɱɟɧɢɹ ɩɪɢɜɟɞɟɧɧɵɯ ɜɟɪɨɹɬɧɨɫɬɟɣ ȼ(Ɇ1) ɩɪɹɦɵɯ J-ɩɟɪɟɯɨɞɨɜ, ɧɚɛɥɸɞɚɸɳɢɯɫɹ ɩɪɢ
ɪɚɫɩɚɞɟ ɤɨɦɩɨɧɟɧɬɨɜ ɬɨɧɤɨɣ ɫɬɪɭɤɬɭɪɵ ȺɊ (ɫɦ. ɬɚɛɥ. 2).
59
Èññëåäîâàíèå ñòðóêòóðû àíàëîãîâîãî ...
ñåð³ÿ ô³çè÷íà «ßäðà, ÷àñòèíêè, ïîëÿ», âèï. 1 /29/
ɈȻɋɍɀȾȿɇɂȿ ɊȿɁɍɅɖɌȺɌɈȼ
Ⱥɧɚɥɢɡ ɩɨɥɭɱɟɧɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ ɩɨɤɚɡɚɥ, ɱɬɨ ɫɯɟɦɵ J-ɪɚɫɩɚɞɚ ɪɟɡɨɧɚɧɫɨɜ ɩɪɢ Ep = 1770
(ɫɩɟɤɬɪɨɫɤɨɩɢɱɟɫɤɢɣ ɮɚɤɬɨɪ Sp = 0,019[6]); 1830 (38˜10-4); 1880 (45˜10-4); 1894 (7˜10-4) ɢ 1896 (8˜10-4) ɤɷȼ ɩɪɚɤɬɢɱɟɫɤɢ ɫɨɜɩɚɞɚɸɬ ɞɪɭɝ ɫ ɞɪɭɝɨɦ. ɗɬɨ ɞɚɟɬ ɨɫɧɨɜɚɧɢɟ ɡɚɤɥɸɱɢɬɶ, ɱɬɨ ɞɚɧɧɵɟ ɪɟɡɨɧɚɧɫɵ ɹɜɥɹɸɬɫɹ ɮɪɚɝɦɟɧɬɚɦɢ ɬɨɧɤɨɣ ɫɬɪɭɤɬɭɪɵ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɪɟɡɨɧɚɧɫɚ. ȼ ɫɩɟɤɬɪɟ J-ɪɚɫɩɚɞɚ ȺɊ ɧɚɛɥɸɞɚɟɬɫɹ ɢɧɬɟɧɫɢɜɧɵɣ Ɇ1ɩɟɪɟɯɨɞ ɧɚ ɭɪɨɜɟɧɶ 4,190 Ɇɷȼ, ɤɨɬɨɪɵɣ ɦɨɠɧɨ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɚɧɬɢɚɧɚɥɨɝɨɜɨɟ ɫɨɫɬɨɹɧɢɟ (ȺȺɋ). ɗɬɨ ɜɵɜɨɞ
ɩɨɞɬɜɟɪɠɞɚɟɬɫɹ ɬɟɦ, ɱɬɨ ɷɧɟɪɝɟɬɢɱɟɫɤɨɟ ɩɨɥɨɠɟɧɢɟ ɞɚɧɧɨɝɨ ɭɪɨɜɧɹ ɩɪɚɤɬɢɱɟɫɤɢ ɫɨɜɩɚɞɚɟɬ ɫ ɷɧɟɪɝɢɟɣ ȺȺɋ,
ɨɰɟɧɟɧɧɨɣ ɢɡ ɮɨɪɦɭɥɵ [11]:
E Ⱥɋ - E ȺȺɋ
V1
(T0 1/ 2) ,
A
(3)
ɝɞɟ V1 | 100 Ɇɷȼ, Ⱥ – ɦɚɫɫɨɜɨɟ ɱɢɫɥɨ, ɚ T0 – ɢɡɨɫɩɢɧ ɨɫɬɨɜɚ. Ɉɞɧɚɤɨ Ɇ1-ɩɟɪɟɯɨɞ Ⱥɋ o ȺȺɋ (T> = T0 +1/2 o
T< = T0 -1/2) ɡɚɬɨɪɦɨɠɟɧ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɨɞɧɨɱɚɫɬɢɱɧɨɣ ɨɰɟɧɤɨɣ [4] ɛɨɥɟɟ ɱɟɦ ɜ 6 ɪɚɡ. ɇɚɛɥɸɞɚɟɦɨɟ ɪɚɫɯɨɠɞɟɧɢɟ ɫ ɪɚɫɱɟɬɧɵɦ ɡɧɚɱɟɧɢɟɦ ɫɜɹɡɚɧɨ, ɩɨ-ɜɢɞɢɦɨɦɭ, ɫ ɜɨɡɛɭɠɞɟɧɢɟɦ ɫɨɫɬɨɹɧɢɹ ɬɢɩɚ ɩɨɥɹɪɢɡɚɰɢɢ ɨɫɬɨɜɚ (ɋɉɈ) ɫ
ɢɡɨɫɩɢɧɨɦ T<, ɩɪɢɦɟɫɶ ɤɨɬɨɪɨɝɨ ɜ ɤɨɧɮɢɝɭɪɚɰɢɢ ȺɊ ɢ ɨɫɥɚɛɥɹɟɬ Ɇ1-ɩɟɪɟɯɨɞ ɜ ȺȺɋ.
Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɚɧɚɥɨɝɨɜɨɟ d5/2-ɫɨɫɬɨɹɧɢɟ ɢɦɟɟɬ
+
7
ɤɨɧɮɢɝɭɪɚɰɢɸ [( s12 2 ) 01 d 5 2,5 2 ]5 2,3 2 , ɬ. ɟ. ɦɨɠɟɬ
ɪɚɫɫɦɚɬɪɢɜɚɬɶɫɹ ɤɚɤ ɨɞɢɧ 1d5/2 ɧɭɤɥɨɧ, ɫɜɹɡɚɧɧɵɣ ɫ
ɞɜɭɦɹ 2s1/2 ɧɟɣɬɪɨɧɚɦɢ, ɫɩɚɪɟɧɧɵɦɢ ɜ (J0T0) = (01)
ɫɜɟɪɯ ɢɧɟɪɬɧɨɝɨ ɨɫɬɨɜɚ 28Si.Ɍɨɝɞɚ ɩɟɪɟɯɨɞ ɨɫɬɨɜɚ ɢɡ
(s12 2 ) 01 ɧɚ (s12 2 )10 ɜɨɡɦɨɠɟɧ, ɢ ɜ ɷɬɨɦ ɫɥɭɱɚɟ
+
+
5
7
+
B(M1), 10-2 P2ə
5
16
+
(5,7 )
+
+
3
3
+
3 ; T> =3/2
ɜɟɪɨɹɬɧɨɫɬɶ Ɇ1-ɩɟɪɟɯɨɞɚ ɜɟɥɢɤɚ (ɫɨɝɥɚɫɧɨ [4]) ɢɡ-ɡɚ
ɬɨɝɨ, ɱɬɨ ɩɟɪɟɯɨɞ ɜɤɥɸɱɚɟɬ s1/2-ɱɚɫɬɢɰɭ. Ɂɚɦɟɬɢɦ,
+
8
5 3+
ɱɬɨ ɩɪɨɢɫɯɨɞɢɬ Ɇ1-ɩɟɪɟɯɨɞ ɨɫɬɨɜ – ɨɫɬɨɜ ɛɟɡ
ɢɡɦɟɧɟɧɢɹ
ɫɨɫɬɨɹɧɢɹ ɧɟɱɟɬɧɨɣ d5/2-ɱɚɫɬɢɰɵ. ɇɚ
+
+
7
5
ɪɢɫ.
2
ɩɪɢɜɟɞɟɧɨ
ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ
+
AC
+
3
3
ɜɟɥɢɱɢɧ ȼ(Ɇ1) ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɫ Ⱥɋ ɧɚ ɭɪɨɜɧɢ ɹɞɪɚ
31
Ɋ. ɂɡ ɪɢɫ. 2 ɜɢɞɧɨ, ɱɬɨ ɧɚɢɛɨɥɟɟ ɢɧɬɟɧɫɢɜɧɨ
0
0
4
8 E , Ɇɷȼ
ɭɪ
ɡɚɫɟɥɹɸɬɫɹ ɜɵɫɨɤɨɜɨɡɛɭɠɞɟɧɧɵɟ ɭɪɨɜɧɢ ɫ JS = 3/2+,
+
+
Ɋɢɫ. 2. Ɋɚɫɩɪɟɞɟɥɟɧɢɟ ɜɟɥɢɱɢɧ ȼ(Ɇ1) ɞɥɹ ɩɟɪɟɯɨɞɨɜ ɫ ɚɧɚɥɨ- 5/2 ɢ 7/2 , ɰɟɧɬɪ ɬɹɠɟɫɬɢ ɤɨɬɨɪɵɯ ɥɟɠɢɬ ɩɪɢ
*
31
ȿ | 4,41 Ɇɷȼ. ɗɬɨɬ ɦɚɤɫɢɦɭɦ ɜ ɪɚɫɩɪɟɞɟɥɟɧɢɢ
ɝɨɜɨɝɨ d5/2-ɫɨɫɬɨɹɧɢɹ ɧɚ ɭɪɨɜɧɢ Ɋ.
ɡɧɚɱɟɧɢɣ ȼ(Ɇ1) ɨɛɭɫɥɨɜɥɟɧ ɡɚɫɟɥɟɧɢɟɦ ɫɨɫɬɨɹɧɢɣ
ɩɨɥɹɪɢɡɨɜɚɧɧɨɝɨ ɨɫɬɨɜɚ (ɋɉɈ), ɤɨɬɨɪɨɟ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɨ ɩɨ ɫɩɟɤɬɪɭ ɹɞɪɚ 31Ɋ ɢ ɥɟɠɢɬ ɜ ɪɚɣɨɧɟ ɷɧɟɪɝɢɢ ɜɨɡɛɭɠɞɟɧɢɹ, ɨɠɢɞɚɟɦɨɣ ɢɡ ɤɜɚɡɢɤɥɚɫɫɢɱɟɫɤɢɯ ɨɰɟɧɨɤ [12]. ȼ ɬɚɤɨɦ ɫɥɭɱɚɟ ɞɨɥɠɧɚ ɧɚɛɥɸɞɚɬɶɫɹ ɫɬɚɬɢɱɟɫɤɚɹ ɤɨɪɪɟɥɹɰɢɹ ɦɟɠɞɭ ɭɩɪɭɝɢɦɢ ɢ ɞɚɧɧɵɦɢ ɭɫɢɥɟɧɧɵɦɢ J-ɲɢɪɢɧɚɦɢ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ.
+
5
Ɍɚɛɥɢɰɚ 4. Ɂɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɥɢɧɟɣɧɨɣ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ
ɪɚɫɩɚɞɚ ɮɪɚɝɦɟɧɬɢɪɨɜɚɧɧɨɝɨ ɚɧɚɥɨɝɨɜɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ.
Ƚɪ
ȽȖtotal
ȽȖ1266
ȽȖ2234
ȽȖ3295
ȽȖ3415
ȽȖ3506
ȽȖ4190
ȽȖ4431
ȽȖ4594
ȽȖ4634
ȽȖ4783
ȽȖ5529
Ƚɪ
1
ȽȖtotal ȽȖ1266
0,21 -0,36
1
-0,45
1
ȽȖ2234
-0,15
0,43
-0,28
1
ȽȖ3295
-0,49
0,03
0,55
0,64
1
ȽȖ3415
-0,06
0,12
-0,13
0,93
0,68
1
ȽȖ3506
0,99
0,20
-0,41
-0,21
-0,58
-0,13
1
ȽȖ4190
0,99
0,21
-0,36
-0,15
-0,49
-0,06
0,99
1
ȽȖ4431
0,07
-0,45
0,90
-0,28
0,42
-0,05
0,00
0,07
1
ȽȖ4594
0,53
0,86
-0,62
0,04
-0,46
-0,23
0,56
0,53
-0,50
1
ȽȖ4634
-0,16
0,20
-0,19
0,97
0,68
0,99
-0,23
-0,16
-0,16
-0,18
1
ȽȖ4783
-0,49
0,27
0,67
0,29
0,81
0,19
-0,56
-0,49
0,47
-0,15
0,23
1
ȽȖ5529
0,25
0,94
-0,50
0,14
-0,26
-0,20
0,27
0,25
-0,52
0,95
-0,11
0,10
1
60
À.Í. Âîäèí, Ë.Ï. Êîðäà, À.Î. Ðàñòðåïèíà ...
«Â³ñíèê Õàðê³âñüêîãî óí³âåðñèòåòó», ¹ 721, 2006
ɂɡɜɟɫɬɧɨ, ɱɬɨ ɫɬɚɧɞɚɪɬɧɨɣ ɦɟɪɨɣ ɤɨɪɪɟɥɹɰɢɢ ɹɜɥɹɟɬɫɹ ɤɨɷɮɮɢɰɢɟɧɬ ɥɢɧɟɣɧɨɣ ɤɨɪɪɟɥɹɰɢɢ:
r ( x, y )
¦ ( x x)( y y)
>¦ ( x x) @ >¦ ( y y) @
i
i
2
i
i
i
1
2
2
i
1
.
2
(4)
i
Ȼɵɥɢ ɪɚɫɫɱɢɬɚɧɵ ɤɨɷɮɮɢɰɢɟɧɬɵ r ɞɥɹ ɜɫɟɯ ɤɚɧɚɥɨɜ ɪɚɫɩɚɞɚ ɨɛɫɭɠɞɚɟɦɵɯ ɪɟɡɨɧɚɧɫɨɜ, ɡɧɚɱɟɧɢɹ ɤɨɬɨɪɵɯ
ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ. 4. Ɋɟɡɭɥɶɬɚɬɵ ɫɪɚɜɧɟɧɢɣ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɧɚɛɥɸɞɚɟɬɫɹ ɫɢɥɶɧɚɹ ɤɨɪɪɟɥɹɰɢɹ ɦɟɠɞɭ Ɇ1ɩɟɪɟɯɨɞɨɦ Ⱥɋ o ȺȺɋ ɢ ɩɪɨɬɨɧɧɨɣ ɲɢɪɢɧɨɣ Ƚɪ: ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɪɪɟɥɹɰɢɢ ɪɚɜɟɧ r = 0,99 r 0,10. ɋɭɳɟɫɬɜɭɟɬ
ɬɚɤɠɟ ɤɨɪɪɟɥɹɰɢɹ ɦɟɠɞɭ Ƚɪ ɢ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɞɢɚɰɢɨɧɧɵɯ ɩɟɪɟɯɨɞɨɜ ɧɚ ɜɨɡɛɭɠɞɟɧɧɵɟ ɫɨɫɬɨɹɧɢɹ ɫ
ȿ* = 3,506 (r = 0,99 r 0,10); 4,594 (r = 0,53 r 0,06) ɢ 5,529 (r = 0,25 r 0,03) Ɇɷȼ, ɤɨɬɨɪɵɟ ɩɪɢɧɚɞɥɟɠɚɬ ɋɉɈ.
ɁȺɄɅɘɑȿɇɂȿ
ɋɭɳɟɫɬɜɨɜɚɧɢɟ ɡɧɚɱɢɬɟɥɶɧɨɣ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ Ƚɪ ɢ ɩɚɪɰɢɚɥɶɧɵɦɢ ɲɢɪɢɧɚɦɢ ɪɚɫɩɚɞɚ ɧɚ ɋɉɈ ɦɨɠɧɨ
ɨɛɴɹɫɧɢɬɶ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ: Ɍ< - ɤɨɦɩɨɧɟɧɬ ȺɊ ɹɜɥɹɟɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɩɪɨɫɬɨɣ ɤɨɧɮɢɝɭɪɚɰɢɟɣ ɢ ɨɧ ɦɨɠɟɬ
ɛɵɬɶ ɜɬɨɪɵɦ (ɩɨɫɥɟ ȺɊ) ɜɯɨɞɧɵɦ ɫɨɫɬɨɹɧɢɟɦ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɦɨɠɧɨ ɡɚɤɥɸɱɢɬɶ, ɱɬɨ ɜ ɩɪɨɰɟɫɫɟ Ȗ-ɪɚɫɩɚɞɚ ɚɧɚɥɨɝɨɜɨɝɨ d5/2-ɪɟɡɨɧɚɧɫɚ ɜ ɹɞɪɟ 31P ɨɫɧɨɜɧɭɸ ɪɨɥɶ ɢɝɪɚɸɬ ɤɨɥɥɟɤɬɢɜɧɵɟ ɢɡɨɛɚɪɢɱɟɫɤɢɟ ɫɨɫɬɨɹɧɢɹ ɫ ɩɨɥɹɪɢɡɨɜɚɧɧɵɦ ɨɫɬɨɜɨɦ.
ɋɉɂɋɈɄ ɅɂɌȿɊȺɌɍɊɕ
1. ȼɨɞɢɧ Ⱥ.ɇ. ɢ ɞɪ. Ɍɨɧɤɚɹ ɫɬɪɭɤɬɭɪɚ ɚɧɚɥɨɝɨɜɨɝɨ d5/2 - ɪɟɡɨɧɚɧɫɚ ɜ 23Na // ɂɡɜɟɫɬɢɹ ɊȺɇ. ɋɟɪ. ɮɢɡ. -2004. -Ɍ. 68. -ʋ 11. ɋ. 1577-1580.
2. Vernotte J. et al. 30Si(3He,d)31P reaction at 25 MeV // Phys. Rev. C. -1990. -V. 41. -P. -1956-1974.
3. Outlaw D. A., Mitchell G. E. and Bilpuch E. G. A high-resolution study of the 30Si(p,p)30Si reaction // Nucl. Phys. A. -1976. -V.
269. -P. 99-111.
4. Maripuu S. Shell-model calculations of M1 transition probabilities from isobaric analogue states // Nucl. Phys. A. -1969. -V.
123. -P. 357-364.
5. Ƚɭɫɟɜɚ Ɇ. ɂ. ɉɪɢɝɨɬɨɜɥɟɧɢɟ ɢɡɨɬɨɩɧɵɯ ɦɢɲɟɧɟɣ ɜ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɦ ɫɟɩɚɪɚɬɨɪɟ // ɉɌɗ. -1957. -Ɍ. 5. -ɋ. 112-116.
6. Endt P. M. Energy levels of A = 21-44 nuclei (VII) // Nucl. Phys. A. -1992. -V. 521. -P. 1-830.
7. Riihonen M., Keinonen J. and Anttila A. Hydrogen burning of 29, 30Si in explosive carbon burning // Nucl. Phys. A. -1979. -V.
313. -P. 251-268.
8. Wolff A. C., Meyer M. A. and Endt P. M. A study of the excited states of 31P with the 30Si(p,J)31P reaction // Nucl. Phys. A. 1968. -V. 107. -P. 332-346.
9. Bornman C. H. et al. Spins and decay schemes of 30Si(p,J)31P resonance levels at Ep = 2 – 3 MeV // Nucl. Phys. A. -1968. -V.
112. -P. 231-240.
10. De Neijs E. O. et al. Levels of 31P from proton capture in 30Si // Nucl. Phys. A. -1975. -V. 254. -P. 45-62.
11. Lane A. M. New term in the nuclear optical potential: implications for (p,n) mirror state reactions // Phys. Rev. Letters, -1962.
-V. 8. ʋ4, –P.171-172.
12. Ƚɚɩɨɧɨɜ ɘ. ȼ., Ʌɸɬɨɫɬɚɧɫɤɢɣ ɘ. ɋ. Ɇɢɤɪɨɫɤɨɩɢɱɟɫɤɨɟ ɨɩɢɫɚɧɢɟ Ƚɚɦɨɜ-Ɍɟɥɥɟɪɨɜɫɤɨɝɨ ɪɟɡɨɧɚɧɫɚ ɢ ɤɨɥɥɟɤɬɢɜɧɵɯ ɢɡɨɛɚɪɢɱɟɫɤɢɯ 1+ - ɫɨɫɬɨɹɧɢɣ ɫɮɟɪɢɱɟɫɤɢɯ ɹɞɟɪ // ɗɑȺə. -1981. -Ɍ. 12. -ȼɵɩ. 6. -ɋ. 1324-1363.
INVESTIGATION OF THE STRUCTURE OF ANALOGUE STATES WITH JS = 5/2+ IN 31P
A.N. Vodin1, L.P. Korda1, G.O. Rastrepina2, I.V. Ushakov1, V.T. Bykov1, G.E. Tuller2, M.V. Vashchenko2
1
National Scientific Centre “Kharkiv Institute of Physics and Technology”, 1, Akademichna st., 61108, Kharkiv, Ukraine
2
Kharkiv National University, 4, Svobody sq, 61077, Kharkiv, Ukraine
The experimental study results of the d5/2 analogue resonance J-decay in reaction 30Si(p,J)31P are presented. The decay scheme of the
given resonance is elaborated. The angular J-radiation distributions are measured and the partial J-widths are determined. The
comparison of intensities of M1 transitions are conducted with calculations on the many-partial model with the superficial Ginteraction. It is shown that the isobaric collective state of the core polarization type takes a substantial part then the analogue
resonance decays.
KEY WORDS: nuclear reaction 30Si(p,J)31P, isobar analog state, Ȗ-decay, angular distribution, probability of Ɇ1 transition.
Скачать