24 ÊÂÀÍT 2002/¹3 íåêîòîðóþ âåëè÷èíó, íî íà ýòó æå âåëè÷èíó îíà äîëæíà óâåëè÷èòüñÿ ïðè íàãðåâàíèè äî ïåðâîíà÷àëüíîé òåìïåðàòóðû (âîçâðàùåíèå íà èçîòåðìó). Ýòîé æå âåëè÷èíå ðàâíî êîëè÷åñòâî òåïëîòû, ïîëó÷åííîå ãàçîì ïðè èçîõîðè÷åñêîì íàãðåâàíèè. Èòàê (ïîñêîëüêó ãàç äâóõàòîìíûé), ∆U = 2,5νR∆T = 2,5 p∆V = 2,5 ⋅ 700 Äæ = 1750 Äæ . Òîãäà ïîëíîå êîëè÷åñòâî òåïëîòû ñîñòàâëÿåò Q = 1000 Äæ + 1750 Äæ = 2750 Äæ, è òåðìîäèíàìè÷åñêèé ÊÏÄ ðàâåí η= A 300 Äæ = = 0,11 = 11% . Q 2750 Äæ Ç.Öèêëîâ Ô1814. Îäíà èç êâàäðàòíûõ ïëàñòèí ïëîñêîãî êîíäåíñàòîðà çàêðåïëåíà ãîðèçîíòàëüíî, è íà íåå ïîìåùåíà áîëüøàÿ òîíêàÿ ïëàñòèíà èç äèýëåêòðèêà ñ äèýëåêòðè÷åñêîé ïðîíèöàåìîñòüþ ε = 1. Ïî ãëàäêîé âåðõíåé ïîâåðõíîñòè ëèñòà äèýëåêòðèêà ìîæåò ñâîáîäíî ñêîëüçèòü ìàññèâíàÿ âòîðàÿ ïëàñòèíà êîíäåíñàòîðà, èìåþùàÿ òàêèå æå ðàçìåðû, êàê è ïåðâàÿ. Íà îáêëàäêè êîíäåíñàòîðà ïîìåùåíû çàðÿäû Q è Q, è ñèñòåìà ïðèâåäåíà â ðàâíîâåñèå. Ñäâèíåì âåðõíþþ ïëàñòèíó ïî ãîðèçîíòàëè íà ìàëîå ðàññòîÿíèå õ ïàðàëëåëüíî îäíîé èç ñòîðîí êâàäðàòà è îòïóñòèì. Íàéäèòå ïåðèîä êîëåáàíèé ýòîé ïëàñòèíû. Ïëîùàäü êàæäîé èç îáêëàäîê S, òîëùèíà äèýëåêòðèêà d ñóùåñòâåííî ìåíüøå ðàçìåðîâ ïëàñòèí. Ìàññà ïîäâèæíîé îáêëàäêè Ì. Ðàñ÷åò ñèë (ãîðèçîíòàëüíûõ!) â äàííîì ñëó÷àå ñîâñåì íå ïðîñò îíè îáóñëîâëåíû òàê íàçûâàåìûìè «êðàåâûìè ýôôåêòàìè». Íî ìîæíî ïîñ÷èòàòü íå «â ëîá». Çàïèøåì ýíåðãèþ êîíäåíñàòîðà â ðàâíîâåñíîì ïîëîæåíèè ïëàñòèí è ïðè ñìåùåíèè âåðõíåé ïëàñòèíû íà õ: W0 = 2 Q 2C0 2 = 2 Q d 2ε 0 a 2 2 , > 0,25T = 2x b . Îòñþäà íàõîäèì ïåðèîä êîëåáàíèé: T=8 ε 0 xMa 2 Qd 3 =8 ε 0 xMS 2 Q d 32 . À.Çèëüáåðìàí Ô1815. Äëÿ èçìåðåíèÿ ñîïðîòèâëåíèÿ ðåçèñòîðà ñîáðàíà ñõåìà èç áàòàðåéêè, àìïåðìåòðà è âîëüòìåòðà, ïðè÷åì âîëüòìåòð ïîäêëþ÷åí ïàðàëëåëüíî ðåçèñòîðó è ïîêàçûâàåò 1 Â, à àìïåðìåòð ïîäêëþ÷åí ê íèì ïîñëåäîâàòåëüíî è ïîêàçûâàåò 1 À. Ïîñëå òîãî êàê ïðèáîðû â ñõåìå ïîìåíÿëè ìåñòàìè, âîëüòìåòð ñòàë ïîêàçûâàòü 2 Â, à àìïåðìåòð ïîêàçàë 0,5 À. Ñ÷èòàÿ áàòàðåéêó èäåàëüíîé, îïðåäåëèòå ïî ýòèì äàííûì ñîïðîòèâëåíèå ðåçèñòîðà. Õîðîøè ëè èñïîëüçóåìûå ïðèáîðû? Íàïðÿæåíèå áàòàðåéêè â îáîèõ ñëó÷àÿõ îäíî è òî æå, ïîýòîìó, îáîçíà÷èâ ñîïðîòèâëåíèå àìïåðìåòðà r, ïîëó÷èì 1 B + r ⋅ 1 A = 2 B + r ⋅ 0,5 A , îòêóäà r = 2 Îì. Òîãäà íàïðÿæåíèå áàòàðåéêè ñîñòàâëÿåò 3 Â, íàïðÿæåíèå ðåçèñòîðà â îáîèõ ñëó÷àÿõ ðàâíî 1 Â, à òîêè ÷åðåç íåãî îäèíàêîâû è ñîñòàâëÿþò 0,5 À. Ïðè ýòîì ïîëó÷àåòñÿ, ÷òî ðåçèñòîð è âîëüòìåòð èìåþò îäèíàêîâûå ñîïðîòèâëåíèÿ ïî 2 Îì, êàê è àìïåðìåòð. Çàìåòèì, ÷òî àìïåðìåòð äîâîëüíî ïëîõîé ïðè òàêèõ èçìåðÿåìûõ òîêàõ ñîïðîòèâëåíèå åãî ñëèøêîì âåëèêî. Âîëüòìåòð Î×ÅÍÜ ïëîõîé (åùå îäèí òàêîé æå àìïåðìåòð, íî ñ çàìåíåííîé øêàëîé?). È òîëüêî ðåçèñòîð è áàòàðåéêà (îñîáåííî áàòàðåéêà) â ýòîé çàäà÷å íà ÷òî-òî ãîäíû! Ð.Àëåêñàíäðîâ Q Qd , = 2C1 2ε 0 a a − x ãäå a = S ñòîðîíà êâàäðàòíîé ïëàñòèíû. Íàéäåì ðàçíîñòü ýòèõ ýíåðãèé ñ ó÷åòîì ìàëîñòè õ ïî ñðàâíåíèþ ñ ðàçìåðîì à: 2 Q dx W1 − W0 = 3 . 2ε 0 a Âèäíî, ÷òî ýòà âåëè÷èíà ïðîïîðöèîíàëüíà ñìåùåíèþ õ ïîëó÷àåòñÿ ÏÎÑÒÎßÍÍÀß âîçâðàùàþùàÿ ñèëà, êîëåáàíèÿ âîâñå íå ãàðìîíè÷åñêèå! Ýòî îçíà÷àåò, â ÷àñòíîñòè, ÷òî ïåðèîä ýòèõ êîëåáàíèé çàâèñèò îò íà÷àëüíîãî ñìåùåíèÿ (àìïëèòóäû) õ. Èòàê, ñèëà ðàâíà Q2 d F= , 2ε 0 a 3 W1 = à ÷åòâåðòü ïåðèîäà êîëåáàíèé ðàâíà âðåìåíè âîçâðàùåíèÿ ïëàñòèíû â ïîëîæåíèå ðàâíîâåñèÿ: C òîãäà óñêîðåíèå (îáîçíà÷èì åãî b, ïîñêîëüêó áóêâà à çàíÿòà) ðàâíî Q2 d b= , 2Mε 0 a 3 Ô1816. Íà òîðîèäàëüíûé ñåðäå÷íèê, ñäåëàííûé èç ìàòåðèàëà ñ î÷åíü áîëüøîé ìàãíèòíîé ïðîíèöàåìîñòüþ, íàìîòàíû î÷åíü òîíêèì ïðîâîäîì äâå êàòóøêè ñ ÷èñëîì âèòêîâ 500 è 510. Ïðè èçìåðåíèè èíäóêòèâíîñòè ïåðâîé èç êàòóøåê íà ïîñòîÿííîì òîêå ïî çíà÷åíèþ ìàãíèòíîãî ïîòîêà êàòóøêè ïðè çàäàííîì òîêå ÷åðåç íåå ïîëó÷èëè âåëè÷èíó 20 Ãí. Êàêîâà èíäóêòèâíîñòü âòîðîé êàòóøêè? Êàêàÿ èíäóêòèâíîñòü ïîëó÷èòñÿ ïðè ïîñëåäîâàòåëüíîì ñîåäèíåíèè êàòóøåê? Ïðè ïàðàëëåëüíîì ñîåäèíåíèè? Âûâîäû êàòóøåê ñäåëàíû ïðîâîäîì áîëüøîãî ñå÷åíèÿ. Ðàññåÿíèå ìàãíèòíîãî ïîòîêà ñ÷èòàòü ìàëûì. Èçìåðÿòü èíäóêòèâíîñòü íà ïîñòîÿííîì òîêå ìîæíî íåñêîëüêèìè ñïîñîáàìè. Ñàìûé ðàñïðîñòðàíåííûé ñïîñîá çàäàòü òîê ÷åðåç êàòóøêó, à ïîòîì èçìåðèòü åå ìàãíèòíûé ïîòîê ïî îòáðîñó ñòðåëêè ïîäêëþ÷åííîãî ê íåé áàëëèñòè÷åñêîãî ãàëüâàíîìåòðà ïðè îòêëþ÷åíèè êàòóøêè îò âíåøíåé öåïè. (Äëÿ êàòóøêè ñ áîëüøîé èíäóêòèâíîñòüþ ãàëüâàíîìåòð íå ïîäõîäèò, íóæíî ïðèìåíÿòü êóäà áîëåå ãðóáûé ïðèáîð, íî èìåííî â áàëëèñòè÷åñêîì ðåæèìå êîãäà òîê ÷åðåç ïðèáîð ïðàêòè÷åñêè ïåðåñòàåò òå÷ü, à ñòðåëêà òîëüêî íà÷èíàåò