Варианты задач

реклама
Метод сеток для решения уравнений параболического и
гиперболического типа. Варианты задач
Свободные члены в уравнении, начальных и граничных условиях следует получать, подставляя точное решение, на котором тестируется задача.
Вариант 1
∂u ∂ 2 u
+ f (x, t),
=
∂t
∂x2
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
u(0, t) = α(t), u(1, t) = β(t), 0 ≤ t ≤ 0.1.
Вариант 2
!
∂u
(x + 1)
+ f (x, t),
∂x
∂u
= ψ(x), 0 ≤ x ≤ 1,
u(x, 0) = ϕ(x),
∂t t=0
∂u
= α(t), u(1, t) = β(t), 0 ≤ t ≤ 1.
∂x
∂
∂2u
=
2
∂t
∂x
x=0
Вариант 3
∂u ∂ 2 u ∂u
=
+ f (x, t),
+
∂t
∂x2 ∂x
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
∂u
u(0, t) = α(t),
= β(t), 0 ≤ t ≤ 0.1.
∂x
x=1
Вариант 4
!
∂u
∂u
(x + 2)
+
+ f (x, t),
∂x
∂x
∂u
u(x, 0) = ϕ(x),
= ψ(x), 0 ≤ x ≤ 1,
∂t ∂2u
∂
=
2
∂t
∂x
t=0
∂u
u(0, t) −
∂x
= α(t),
u(1, t) = β(t), 0 ≤ t ≤ 1.
x=0
Вариант 5
∂u
∂u ∂ 2 u
=
+ (x2 + 1)
+ f (x, t),
∂t
∂x2
∂x
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
∂u
∂u
= α(t),
= β(t), 0 ≤ t ≤ 0.1.
∂x
∂x
x=0
x=1
1
Вариант 6
∂2u
∂u
∂2u
=
cos
x
+x
+ f (x, t),
2
2
∂t
∂x
∂x
∂u
= ψ(x), 0 ≤ x ≤ 1,
u(x, 0) = ϕ(x),
∂t t=0
∂u
∂u
= α(t), u(1, t) +
= β(t), 0 ≤ t ≤ 1.
∂x
∂x
x=0
x=1
Вариант 7
!
∂u
(x + 3)
+ xu + f (x, t),
∂x
∂u
∂
=
∂t
∂x
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
∂u
= α(t), u(1, t) = β(t), 0 ≤ t ≤ 0.1.
∂x
x=0
Вариант 8
!
∂u ∂u
(x + 1)
+ u + f (x, t),
+
∂x ∂x
∂u
u(x, 0) = ϕ(x),
= ψ(x), 0 ≤ x ≤ 1,
∂t ∂2u
∂
=
2
∂t
∂x
t=0
u(0, t) = α(t),
∂u
u(1, t) +
∂x
= β(t), 0 ≤ t ≤ 1.
x=1
Вариант 9
∂u ∂ 2 u
=
+ sin x u + f (x, t),
∂t
∂x2
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
∂u
∂u
u(0, t) −
= α(t), u(0, t) +
∂x
∂x
x=0
= β(t), 0 ≤ t ≤ 0.1.
x=1
Вариант 10
∂2u ∂2u
∂u
=
+ sin x
+ f (x, t),
∂t2
∂x2
∂x
∂u
u(x, 0) = ϕ(x),
= ψ(x), 0 ≤ x ≤ 1,
∂t t=0
∂u
u(0, t) −
∂x
u(1, t) = β(t), 0 ≤ t ≤ 1.
= α(t),
x=0
2
Вариант 11
∂2u
∂u
= cos(x) 2 + f (x, t),
∂t
∂x
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
∂u
= β(t), 0 ≤ t ≤ 0.1.
u(0, t) = α(t),
∂x
x=1
Вариант 12
!
∂u
(x + 2)
+ f (x, t),
∂x
∂u
= ψ(x), 0 ≤ x ≤ 1,
u(x, 0) = ϕ(x),
∂t t=0
∂u
u(0, t) = α(t), u(1, t) +
= β(t), 0 ≤ t ≤ 1.
∂x
∂2u
∂
=
2
∂t
∂x
x=1
Вариант 13
∂u ∂ 2 u
+ f (x, t),
=
∂t
∂x2
u(x, 0) = ϕ(x), 0 ≤ x ≤ 1,
∂u
∂u
u(0, t) −
= α(t),
∂x
∂x
x=0
= β(t), 0 ≤ t ≤ 0.1.
x=1
Вариант 14
∂2u
∂2u
=
cos
x
+ f (x, t),
∂t2
∂x2
∂u
= ψ(x), 0 ≤ x ≤ 1,
u(x, 0) = ϕ(x),
∂t t=0
∂u
∂x
= α(t),
u(1, t) = β(t), 0 ≤ t ≤ 1.
x=0
3
Скачать