Единый государственный экзамен МАТЕМАТИКА. Профильный уровень 1/3 Единый государственный экзамен по МАТЕМАТИКЕ Профильный уровень Инструкция по выполнению работы Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом. На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут). Ответы к заданиям 1–12 записываются по приведённому ниже образцу в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1. При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2. Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой, или капиллярной, или перьевой ручек. При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы. Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов. Желаем успеха! Справочные материалы 2 2 sin α + cos α = 1 sin 2α = 2sin α cos α 2 2 cos 2α = cos α – sin α sin (α + β) = sin α cos β + cos α sin β cos (α + β) = cos α cos β – sin α sin β Копирование не допускается © 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации Вариант 21946406 Ответом к заданиям 1–12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно. Часть 1 1 Поезд Москва-Оренбург отправляется в 17:25, а прибывает в 19:25 на следующий день (время московское). Сколько часов поезд находится в пути? Ответ: ___________________________. 2 На рисунке точками показана средняя температура воздуха в Сочи за каждый месяц 1920 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Для наглядности точки соединены линией. Определите по рисунку, сколько месяцев из данного периода средняя температура была больше 18 градусов Цельсия. Ответ: ___________________________. Единый государственный экзамен 3 МАТЕМАТИКА. Профильный уровень 2/3 Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах. Ответ: ___________________________. 4 В чемпионате по гимнастике участвуют 50 спортсменок: 10 из России, 16 из США, остальные из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступавшая первой, окажется из Китая. Ответ: ___________________________. 5 Решите уравнение Ответ: ___________________________. 6 Гипотенуза прямоугольного треугольника равна 86. Найдите радиус описанной окружности этого треугольника. Ответ: ___________________________. 7 На рисунке изображены график функции и касательная к нему в точке с абсциссой Найдите значение производной функции в точке . Ответ: ___________________________. Копирование не допускается © 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации Вариант 21946406 8 Объем одного куба в 125 раз больше объема другого куба. Во сколько раз площадь поверхности первого куба больше площади поверхности второго куба? Ответ: ___________________________. Часть 2 9 Найдите значение выражения при Ответ: ___________________________. 10 Для обогрева помещения, температура в котором поддерживается на уровне , через радиатор отопления пропускают горячую воду. Расход проходящей через трубу воды кг/с. Проходя по трубе расстояние , вода охлаждается от начальной температуры до температуры , причём , где — теплоёмкость воды, — коэффициент теплообмена, а — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м. Ответ: ___________________________. 11 Из одной точки круговой трассы, длина которой равна 14 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч. Ответ: ___________________________. 12 Найдите точку минимума функции Ответ: ___________________________. Не забудьте перенести все ответы в бланк ответов №1 в соответствии с инструкцией по выполнению работы. Единый государственный экзамен МАТЕМАТИКА. Профильный уровень 3/3 Для записи решений и ответов на задания 13–19 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво. 13 14 Решите уравнение Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен 15 Решите неравенство: 16 В прямоугольнике так, что Найдите угол между боковыми гранями этой пирамиды. Точка на прямой выбрана Найдите 17 15‐го января планируется взять кредит в банке на 14 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15 число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 15% больше суммы, взятой в кредит. Найдите r. 18 Найдите все значения a, при которых любое решение уравнения принадлежит отрезку Копирование не допускается © 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации Вариант 21946406 19 Возрастающая конечная арифметическая прогрессия состоит из различных целых неотрицательных чисел. Математик вычислил разность между квадратом суммы всех членов прогрессии и суммой их квадратов. Затем математик добавил к этой прогрессии следующий её член и снова вычислил такую же разность. а) Приведите пример такой прогрессии, если во второй раз разность оказалась на 48 больше, чем в первый раз. б) Во второй раз разность оказалась на 1440 больше, чем в первый раз. Могла ли прогрессия сначала состоять из 12 членов? в) Во второй раз разность оказалась на 1440 больше, чем в первый раз. Какое наибольшее количество членов могло быть в прогрессии сначала?