ɂɋɋɅȿȾɈȼȺɇɂȿ ȾɂɇȺɆɂɄɂ ɆȺɄɊɈɗɄɈɇɈɆɂɑȿɋɄɈȽɈ ɄɊɍȽɈɈȻɈɊɈɌȺ ɎɂɇȺɇɋɈȼɕɏ ɉɈɌɈɄɈȼ ɋ ɍɑȿɌɈɆ ȼɁȺɂɆɈɋȼəɁȺɇɇɈȽɈ ɎɍɇɄɐɂɈɇɂɊɈȼȺɇɂə ɊɕɇɄɈȼ ȻɅȺȽ, ɌɊɍȾȺ ɂ ȾȿɇȿȽ Ȼ.Ƚ. ɂɥɶɹɫɨɜ, ɂ.ȼ. Ⱦɟɝɬɹɪɟɜɚ, ȿ.Ⱥ. Ɇɚɤɚɪɨɜɚ, Ⱥ.ɇ. ɉɚɜɥɨɜɚ, Ɍ.Ⱥ. Ʉɚɪɬɚɲɟɜɚ 6! 450000, 6!, . . 2, 12, % ea-makarova@mail.ru, palova.ugatu@gmail.com : +7 (347) 273-78-35, !: +7 (347) 273-78-35 Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ: ɦɚɤɪɨɷɤɨɧɨɦɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ, ɪɵɧɨɱɧɵɣ ɦɟɯɚɧɢɡɦ, ɤɪɭɝɨɨɛɨɪɨɬ ɮɢɧɚɧɫɨɜɵɯ ɩɨɬɨɤɨɜ, ɤɨɝɧɢɬɢɜɧɚɹ ɦɨɞɟɥɶ, ɞɢɧɚɦɢɱɟɫɤɚɹ ɦɨɞɟɥɶ Abstract The cognitive model of the macroeconomic system functioning regarding goods, labor and money markets is presented. This article shows the characteristics of the dynamics of interaction of macroeconomic goods, labor and money markets. The dynamic model of money market functioning shows the dynamics of the interest rate formation. The results of experimental research of the controlled and uncontrolled scenarios considering behaviour of the macroeconomic system are discussed. ȼɜɟɞɟɧɢɟ % ! - . ! [1-3]. 7 ! , . %# ! (2<() , ! ! " , . % !- ! 2<( . 1 Ʉɨɝɧɢɬɢɜɧɚɹ ɦɨɞɟɥɶ ɦɚɤɪɨɷɤɨɧɨɦɢɱɟɫɤɨɝɨ ɤɪɭɝɨɨɛɨɪɨɬɚ ɮɢɧɚɧɫɨɜɵɯ ɩɨɬɨɤɨɜ Ɇɗɋ ɫ ɭɱɟɬɨɦ ɪɵɧɤɨɜ ɛɥɚɝ, ɬɪɭɞɚ ɢ ɞɟɧɟɝ ! 2<( : (2<&), : (! ), (), ! , , (. 1). ( ! (# ); ! (# ); (# ). 131 % - , - , , " ! , " «»; - , , " «»; -, , ! " «-» [4]. + ! , ! !, " . % , " , ! ! , " 2<( " . % , " , ! ! " !, " . Ib , I, S , Ms , Yinc Yinc , R e v E x , Tp , A sun 1 Md , Tr , , T , Nd , w, Em 2 2 P A s , , e Ad Tr , Im, R l , P g 12 , , A d ( Yexp , Md , P g 11 , P, Ns , 0 W , U, G , C , % 1 – ! 2<( $ ! , " 2<(, " . - , , . - 132 , . ( ) . - , " , " , . , " ! . -, " , . + «#» [5]. ( , ; . A d A s , A d ɮɢɧɚɧɫɨɜɵɦ ɩɨɬɨɤɨɦ - , " , A s ɦɚɬɟɪɢɚɥɶɧɵɦ ɩɨɬɨɤɨɦ, , ! # . % Nd Ns , ! . 9 Md Ms " , Nd Ns ! , , # . , , « » , ! ! " . 2 Ɏɭɧɤɰɢɨɧɚɥɶɧɵɟ ɫɯɟɦɵ ɞɢɧɚɦɢɱɟɫɤɢɯ ɦɨɞɟɥɟɣ ɦɚɤɪɨɷɤɨɧɨɦɢɱɟɫɤɨɝɨ ɤɪɭɝɨɨɛɨɪɨɬɚ ɮɢɧɚɧɫɨɜɵɯ ɩɨɬɨɤɨɜ Ɇɗɋ ɫ ɭɱɟɬɨɦ ɪɵɧɤɨɜ ɛɥɚɝ, ɬɪɭɞɚ ɢ ɞɟɧɟɝ ' ! 2<( (. 2). ' : Ⱥ1-Ⱥ4 ! Ⱥ5-Ⱥ7 ! , . ( ! , ! . 2 Ⱥ1 ! , " ! : + Y Y 0 ; + (+ Yinc ) ! R l ! Tp ! P g , 12 ! ; ! A s ,28 Y 0 inv ; ! " Ib 0 I11 I ; 133 R e v - A sun . * " Ⱥ1 ! , . , " Pdyn dW . +, " !! krlc. A s Ib C X n P0 G Y 0 Ib10 Yinv0 R e v A sun Pdyn kad Nd dW R e v A sun Pdyn kad A d P A d e k rlc I Tr1 A s Ib St1 R l P g12 Y Y k rlc Un W0 Un0 NΣ R l P g12 St2 Tr2 T2 S Pdyn Tp Tp Nd dW C Sa inc T2 P A d e C a G 0 k ad Tr1 Tr2 St4 G S k ad Y inc Yinc Md P MS 0 r0 St3 I r r % 2 – 9 ! 2<( , 2 Ⱥ2 ! , R l P g12 ! ɋ , S T . + !2 : ɋ a , S a . * Ⱥ2 : - , ! ɋ a0 ! " Pdyn; - , ! " !! kad, !. 2 Ⱥ3 ! ! , S ! I 0 ! I , a 134 . * Ⱥ3 " Yinc " r ! I . 2 Ⱥ4 ! , ! Tp T2 G ! Tr Tr . 1 2 2 Ⱥ5 ! , - , ! " P P0 " Pdyn; , - , " !! kad, ! kas, . * Ⱥ5 !! A d e 2<( , Nd. 2 Ⱥ6 ! " N, Un, " !! krlc dW. ! : Ns, " ; " P, " " Nd; !! A d e , " ! . ' 2<( ! W0 Un0. * " ( ) . 2 Ⱥ7 ! ! " Ms, " P " Yinc , " Md. 9 " r ! r0(t) " rdyn. ( r ! . + ! . 3 Ɉɫɨɛɟɧɧɨɫɬɢ ɩɨɫɬɪɨɟɧɢɹ ɞɢɧɚɦɢɱɟɫɤɨɣ ɦɨɞɟɥɢ ɮɭɧɤɰɢɨɧɢɪɨɜɚɧɢɹ ɪɵɧɤɚ ɞɟɧɟɝ 2 ! [6]. ! "" ! 2<( [7]. + , r, , () ". ( " !, " # . " rdyn " () r 0 # , . %" 2<&, !" , , . + 135 ! , " , " rdyn . (! " ! , 2<(. - , " !, 2<( " . * ! 7 # - . - , ! ! r Md MS . -, " !, 2<( ! . % ! ! Md , 1 , !, # . , ! Md: , [8]. ( 1 # . < , Yinc ( +). +1 , " . , 1 , " Yinc . + ( Yinc ), 1 − . ( # 1 ! ! ! . 3 , , , - ! , " . + r . 5 # r, # , , # Md. ( " , , r. ' # , ! !: (1) Md = k ⋅ Y − k ∗ r , my inc md kmy kmd – !! , " Md . + (1) 136 ", ! 2<&. % ! ! !! , " Md, Ms r. ' " , !, 7 . ( ! . ( , . ( , ! ! , , , !. ( , " 7 !, , # . & , !, – . $ , " r0 # . " rdyn . + 2<( ( &) r0 Ms0, : Md=Ms=Ms0 (. 3). k md % 3 – 8 Md(r) Ms(r) % ( B), r ′ ΔMd ! ΔMd r , ! ΔMd nr (" Md Md ′ ) ' ( [5] # !! , " ( Ⱥ′ ): (2) (3) d ( r 0 + rdyn ) = k r [ Md ( rdyn , t ) − Ms(t )] . dt ," ! " : Md (t ) = Md 0 − k md ⋅ rdyn (t ) + ΔMd nr (t ) . 137 " ( −k md ⋅ rdyn ) ! (1); " ( kmy ⋅ Y ) ! ΔMd nr (t ) . ! ! ". +, ! 7 , MS. " P Ms !: MS MS 0 ΔMS nr = + = Ms 0 + ΔMsnr . P P P 6 . ( (3) ! (2), : Ms = (4) drdyn dt drdyn dt ′ ) − Ms] , = k r [( Md 0 − k md ⋅ rdyn + k my ⋅ Yinc + ΔMd nr = k r ⋅ ε r ( rdyn (t )) , kr - !!, " - ; ! Ms = Ms 0 + ΔMs nr . $ ΔMS # . , # . Md # Ms (4) : (5) drdyn 1 1 ⋅ + rdyn = ⋅ ε nr , k r ⋅ k md dt k md ′ + k my Yinc − ΔMs nr − ε nr = ΔMd nr − ΔMs nr = ΔMd nr , !. 6 (5) !! k tr 1 ! wmr = , !! k tr k tr = , τ mr s + 1 k md τ mr τ mr = 1 . k r ⋅ k md !! ρ r , !! k tr , ρ r = kmd . < !! , # . ( A6 ! 4. ' , !" Md " . + MS , . $ 138 ! " Δr 0 , !, . ΔMd r ΔMd nr Yinc Md 0 Md ' ΔMd nr εr MS 0 ∗ ÷ P Ms 0 ΔMsnr rdyn rdyn r0 Δr Ms r 0 ΔMSnr ÷∗ % 4 – ( Ⱥ6 ! 4 ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɢɫɫɥɟɞɨɜɚɧɢɹ ɞɢɧɚɦɢɤɢ ɦɚɤɪɨɷɤɨɧɨɦɢɱɟɫɤɨɝɨ ɤɪɭɝɨɨɛɨɪɨɬɚ ɮɢɧɚɧɫɨɜɵɯ ɩɨɬɨɤɨɜ ɜ ɧɟɪɚɜɧɨɜɟɫɧɵɯ ɭɫɥɨɜɢɹɯ ɪɵɧɤɨɜ ɛɥɚɝ, ɬɪɭɞɚ ɢ ɞɟɧɟɝ + ! 2<( . ' 5 . 1 () " , ! A s 0 (t ) = 10 ; ! C 0 (t ) = 2 ; S (t ) = 1,5 ; a a Ia0 (t ) = 0,5 ; ! G 0 (t ) = 3 . + + " !! !: k rl = 0,4 , k pg = 0,4 ; k t = 0,2 . 8 . + 90 . 2 () " , " . ( 2 " t=25 ! Ia0 (t ) . , # " !, . ( 1 , !! # 1 . . + P(t), # Tsum(t). St1, St2 St4. *, ! St3, , . + # # # - . 139 % 5 – .! ! , , ! , 3 () «# » # " ΔMS (t ) ( ) t=30. 7 ; : , , . % !! . ' #, . , + . 140 6 " r(t), .. # , , . < I(t ) . % , C (t ) S (t ) # . 8 P(t), Tsum(t ) . St1, St2 St3. + , , # , A s(t ) , + Y (t ) !. Ɂɚɤɥɸɱɟɧɢɟ % ! 2<( , , " , " ! . % , " , - , , ! . + ! ! 2<( , , " ! , . % ! " , . % , # - , , " +. ɋɩɢɫɨɤ ɥɢɬɟɪɚɬɭɪɵ [1] + &.&., + $... 2 %. // % . – 2009. – , 79, :6. – (. 492-506. [2] 2 ./., ; &.%., (# (.(. + . — 2.: ' , 2007. – 304 . [3] $ ., 6 2. %: // + . – 2008. – : 3. – (. 12-25. [4] $ ;..., $.., 2 -.&., . <.%. 2 ! ! // ! . – 2009. - :1 (61). - (. 28-38. [5] , /.(., . +.$., / &.$. 2 : . 2.: # , 4-$, 2009. – 654 . [6] 2 .-. . - 2.: ', 2008.– 221 . [7] $ ;..., $.., 2 -.&., + &.'. 2 // + : , XII 2 ! – (: ( %&', 2010. – (. 176-186. [8] (" &.(. 2 – (+.: «$ «+», 2005. – 448. 141