See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320776882 Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems Book · January 2018 DOI: 10.1201/9781315117638 CITATIONS READS 117 142,975 2 authors: Andrei D. Polyanin Valentin Zaitsev Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences Herzen State Pedagogical University of Russia 452 PUBLICATIONS 9,799 CITATIONS 38 PUBLICATIONS 3,862 CITATIONS SEE PROFILE All content following this page was uploaded by Andrei D. Polyanin on 01 November 2017. The user has requested enhancement of the downloaded file. SEE PROFILE HANDBOOK OF ORDINARY DIFFERENTIAL EQUATIONS: EXACT SOLUTIONS, METHODS, AND PROBLEMS Andrei D. Polyanin Valentin F. Zaitsev PREFACE The Handbook of Ordinary Differential Equations for Scientists and Engineers, is a unique reference for scientists and engineers, which contains over 7,000 ordinary differential equations with solutions, as well as exact, asymptotic, approximate analytical, numerical, symbolic, and qualitative methods for solving and analyzing linear and nonlinear equations. First-, second-, third-, fourth- and higher-order ordinary differential equations and systems of equations are considered. A number of new nonlinear equations, exact solutions, transformations, and methods are described. Equations arising in various applications (in the theory of heat and mass transfer, nonlinear mechanics, elasticity, hydrodynamics, theory of nonlinear oscillations, combustion theory, chemical engineering science, etc.) are considered. Analytical formulas for the effective construction of solutions are given. Special attention is paid to equations of general form that depend on arbitrary functions. Almost all other equations contain one or more arbitrary parameters (i.e., in fact, this book deals with whole families of ordinary differential equations), which can be fixed by the reader at will. A number of specific examples where the methods described in the book are used are considered. Statements of existence and uniqueness theorems as well as theorems of stability and instability of solutions are given as well. Boundary-value problems and eigenvalue problems are described. Significant attention is given to Cauchy problems with blow-up solutions as well as the important questions of nonexistence and nonuniqueness of solutions to nonlinear boundary-value problems. Elements of bifurcation theory, Lie group and discrete-group methods for ODEs, and the factorization principle are discussed. Symbolic and numerical methods for solving ODEs problems with Maple, Mathematica, and MATLAB are considered. All in all, the handbook contains much more ordinary differential equations, problems, methods, solutions, and transformations than any other book currently available. It essential that symbolic computation systems, even the most powerful ones such as Maple or Mathematica, can provide no more than 40–50% of the exact analytical solutions to ODEs given in this book (Chapters 13 through 18). The main material is followed by a number of supplements, which present tables of integrals, finite and infinite series, and integral transforms as well as a brief description of the basic properties of elementary and special functions (Bessel, modified Bessel, hypergeometric, Legendre, etc.). New material compared to Handbook of Exact Solutions for Ordinary Differential Equations, 2003: • The total volume of the new handbook has almost doubled (increased by nearly 700 pages). • Some first-, second-, and third-order nonlinear ODEs with solutions. • Some analytical methods (including new methods) and standard numerical methods. • Special numerical methods (including new methods) for solving problems with qualitative features or singularities. • Symbolic and numerical methods with Maple, Mathematica, and MATLAB. xxxiii xxxiv P REFACE • Many new problems, illustrative examples, and figures. • Elementary theory of using invariants for solving equations. • Methods for the construction of particular solutions (including the method of differential constraints). • Systems of coupled ordinary differential equations with solutions. • Equations defined parametrically or implicitly (exact and numerical methods and exact solutions) as well as overdetermined systems of ODEs and underdetermined ODEs. For the convenience of a wide audience with varying mathematical backgrounds, the authors tried to do their best to avoid special terminology whenever possible. Therefore, some of the methods are outlined in a schematic and somewhat simplified manner, with necessary references made to books where these methods are considered in more detail. Many sections were written so that they could be read independently (moreover, many topics do not require special mathematical background for their understanding and successful practical application). This allows the reader to get to the heart of the matter quickly. The handbook consists of parts, chapters, sections, subsections, and paragraphs. The material within sections is arranged in increasing order of complexity. An extensive table of contents and detailed index provides rapid access to the desired equations. Isolated sections of the book can be used by university and college lecturers in practical courses and lectures on ordinary differential equations for graduate and postgraduate students. Furthermore, the second part of the book (Chapters 13–18) can be used as a database of test problems for numerical, approximate analytical, and symbolic methods for solving ordinary differential equations. We would like to express our keen gratitude to Alexei Zhurov for fruitful discussions and valuable remarks. We are very thankful to Inna Shingareva and Carlos LizárragaCelaya, who wrote three chapters (19–21) of the book at our request. Also, we would like to express our deep gratitude to Vladimir Nazaikinskii for translating several chapters of this handbook. The authors hope that the handbook will prove helpful for a wide audience of researchers, university and college teachers, engineers, and students in various fields of mathematics, physics, mechanics, control, chemistry, economics, and engineering sciences. Andrei D. Polyanin Valentin F. Zaitsev CONTENTS Preface xxiii Authors xxv Basic Notation and Remarks Part I. Methods for Ordinary Differential Equations 1 Methods for First-Order Differential Equations 1.1 General Concepts. Cauchy Problem. Uniqueness and Existence Theorems . . . . 1.1.1 Equations Solved for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Equations Not Solved for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Equations Solved for the Derivative. Simplest Techniques of Integration . . . . . . 1.2.1 Equations with Separable Variables and Related Equations . . . . . . . . . . . . 1.2.2 Homogeneous and Generalized Homogeneous Equations . . . . . . . . . . . . . 1.2.3 Linear Equation and Bernoulli Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Darboux Equation and Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Exact Differential Equations. Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Exact Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 General Riccati Equation. Simplest Integrable Cases. Polynomial Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Use of Particular Solutions to Construct the General Solution . . . . . . . . . 1.4.3 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.4 Special Riccati Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Abel Equations of the First Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 General Form of Abel Equations of the First Kind. Simplest Integrable Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Abel Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 General Form of Abel Equations of the Second Kind. Simplest Integrable Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.2 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.3 Use of Particular Solutions to Construct Self-Transformations and the General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Classification and Specific Features of Some Classes of Solutions . . . . . . . . . . . . 1.7.1 Stable and Unstable Solutions. Equilibrium Points . . . . . . . . . . . . . . . . . . . 1.7.2 Blow-Up Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.3 Space Localization of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7.4 Cauchy Problems Admitting Non-Unique Solutions . . . . . . . . . . . . . . . . . . 1.8 Equations Not Solved for the Derivative and Equations Defined Parametrically 1.8.1 Method of “Integration by Differentiation” for Equations Not Solved for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.2 Equations Not Solved for the Derivative. Specific Equations . . . . . . . . . . 1.8.3 Equations Defined Parametrically and Differential-Algebraic Equations xxvii 1 3 3 3 7 8 8 9 10 11 12 12 13 13 13 15 16 17 18 18 19 20 20 21 22 25 25 28 33 36 37 37 38 40 1.9 Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9.1 General Form of Contact Transformations. Method for the Construction of Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9.2 Examples of Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 Pfaffian Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.2 Completely Integrable Pfaffian Equations . . . . . . . . . . . . . . . . . . . . . . . . . 1.10.3 Pfaffian Equations Not Satisfying the Integrability Condition . . . . . . . . 1.11 Approximate Analytic Methods for Solution of ODEs . . . . . . . . . . . . . . . . . . . . . 1.11.1 Method of Successive Approximations (Picard Method) . . . . . . . . . . . . 1.11.2 Newton–Kantorovich Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11.3 Method of Series Expansion in the Independent Variable . . . . . . . . . . . 1.11.4 Method of Regular Expansion in the Small Parameter . . . . . . . . . . . . . . 1.12 Differential Inequalities and Solution Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12.1 Two Theorems on Solution Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12.2 Chaplygin’s Theorem and Its Applications (Bilateral Estimates of the Cauchy Problem Solution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 Standard Numerical Methods for Solving Ordinary Differential Equations . . . 1.13.1 Single-Step Methods. Runge–Kutta Methods . . . . . . . . . . . . . . . . . . . . . 1.13.2 Multistep Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13.3 Predictor–Corrector Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13.4 Modified Multistep Methods (Butcher’s Methods) . . . . . . . . . . . . . . . . . 1.13.5 Stability and Convergence of Numerical Methods . . . . . . . . . . . . . . . . . . 1.13.6 Well- and Ill-Conditioned Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 Special Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14.1 Special Methods Based on Auxiliary Equations . . . . . . . . . . . . . . . . . . . 1.14.2 Numerical Integration of Equations That Contain Fixed Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14.3 Numerical Integration of Equations Defined Parametrically or Implicitly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14.4 Numerical Solution of Blow-Up Problems . . . . . . . . . . . . . . . . . . . . . . . . 1.14.5 Numerical Solution of Problems with Root Singularity . . . . . . . . . . . . . 42 42 43 44 44 45 48 49 49 50 53 56 57 57 58 61 61 68 70 72 72 73 74 74 76 79 81 89 2 Methods for Second-Order Linear Differential Equations 93 2.1 Homogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.1.1 Formulas for the General Solution. Wronskian Determinant . . . . . . . . . . . 93 2.1.2 Factorization and Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2.2 Nonhomogeneous Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.2.1 Existence Theorem. Kummer–Liouville Transformation . . . . . . . . . . . . . . 96 2.2.2 Formulas for the General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.3 Representation of Solutions as a Series in the Independent Variable . . . . . . . . . . 97 2.3.1 Equation Coefficients are Representable in the Ordinary Power Series Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 2.3.2 Equation Coefficients Have Poles at Some Point . . . . . . . . . . . . . . . . . . . . . 98 2.4 Asymptotic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.4.1 Equations Not Containing yx′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.4.2 Equations Containing yx′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.5 Boundary Value Problems. Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 First, Second, Third, and Some Other Boundary Value Problems . . . . . . . 2.5.2 Simplification of Boundary Conditions. Self-Adjoint Form of Equations 2.5.3 Green’s and Modified Green’s Functions. Representation Solutions via Green’s or Modified Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.1 Sturm–Liouville Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.2 General Properties of the Sturm–Liouville Problem (2.6.1.1), (2.6.1.2) . 2.6.3 Problems with Boundary Conditions of the First Kind . . . . . . . . . . . . . . . . 2.6.4 Problems with Boundary Conditions of the Second Kind . . . . . . . . . . . . . 2.6.5 Problems with Boundary Conditions of the Third Kind . . . . . . . . . . . . . . . 2.6.6 Problems with Mixed Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Theorems on Estimates and Zeros of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Theorem on Estimates of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.2 Sturm Comparison Theorem on Zeros of Solutions . . . . . . . . . . . . . . . . . . 2.7.3 Qualitative Behavior of Solutions as x → ∞ . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 Numerov’s Method (Cauchy Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.2 Modified Shooting Method (Boundary Value Problems) . . . . . . . . . . . . . . 2.8.3 Sweep Method (Boundary Value Problems) . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.4 Method of Accelerated Convergence in Eigenvalue Problems . . . . . . . . . 2.8.5 Well-Conditioned and Ill-Conditioned Problems . . . . . . . . . . . . . . . . . . . . . 3 Methods for Second-Order Nonlinear Differential Equations 3.1 General Concepts. Cauchy Problem. Uniqueness and Existence Theorems . . . . 3.1.1 Equations Solved for the Derivative. General Solution . . . . . . . . . . . . . . . . 3.1.2 Cauchy Problem. Existence and Uniqueness Theorem . . . . . . . . . . . . . . . . 3.2 Some Transformations. Equations Admitting Reduction of Order . . . . . . . . . . . . 3.2.1 Equations Not Containing y or x Explicitly. Related Equations . . . . . . . . 3.2.2 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 Generalized Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 Equations Invariant under Scaling–Translation Transformations . . . . . . . 3.2.5 Exact Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 Nonlinear Equations Involving Linear Homogeneous Differential Forms 3.2.7 Reduction of Quasilinear Equations to the Normal Form . . . . . . . . . . . . . . 3.2.8 Equations Defined Parametrically and Differential-Algebraic Equations 3.3 Boundary Value Problems. Uniqueness and Existence Theorems. Nonexistence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Uniqueness and Existence Theorems for Boundary Value Problems . . . . 3.3.2 Reduction of Boundary Value Problems to Integral Equations. Integral Identity. Jentzch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.3 Theorem on Nonexistence of Solutions to the First Boundary Value Problem. Theorems on Existence of Two Solutions . . . . . . . . . . . . . . . . . . 3.3.4 Examples of Existence, Nonuniqueness, and Nonexistence of Solutions to First Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.5 Theorems on Nonexistence of Solutions for the Mixed Problem. Theorems on Existence of Two Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.6 Examples of Existence, Nonuniqueness, and Nonexistence of Solutions to Mixed Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.7 Theorems on Existence of Two Solutions for the Third Boundary Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 103 106 107 110 110 111 112 113 114 114 115 115 115 116 116 116 117 118 119 120 123 123 123 123 124 124 125 126 126 127 128 129 129 133 134 137 139 142 145 148 151 3.4 3.5 3.6 3.7 3.8 3.3.8 Boundary Value Problems for Linear Equations with Nonlinear Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Method of Regular Series Expansions with Respect to the Independent Variable 3.4.1 Method of Expansion in Powers of the Independent Variable . . . . . . . . . . 3.4.2 Padé Approximants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Movable Singularities of Solutions of Ordinary Differential Equations. Painlevé Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 Preliminary Remarks. Singular Points of Solutions . . . . . . . . . . . . . . . . . . 3.5.2 First Painlevé Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.3 Second Painlevé Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.4 Third Painlevé Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.5 Fourth Painlevé Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.6 Fifth Painlevé Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.7 Sixth Painlevé Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perturbation Methods of Mechanics and Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 Preliminary Remarks. Summary Table of Basic Methods . . . . . . . . . . . . . 3.6.2 Method of Regular (Direct) Expansion in Powers of the Small Parameter 3.6.3 Method of Scaled Parameters (Lindstedt–Poincaré Method) . . . . . . . . . . . 3.6.4 Averaging Method (Van der Pol–Krylov–Bogolyubov Scheme) . . . . . . . . 3.6.5 Method of Two-Scale Expansions (Cole–Kevorkian Scheme) . . . . . . . . . 3.6.6 Method of Matched Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . Galerkin Method and Its Modifications (Projection Methods) . . . . . . . . . . . . . . . . 3.7.1 Approximate Solution for a Boundary Value Problem . . . . . . . . . . . . . . . . 3.7.2 Galerkin Method. General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.3 Bubnov–Galerkin, Moment, and Least Squares Methods . . . . . . . . . . . . . . 3.7.4 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.5 Method of Partitioning the Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.6 Least Squared Error Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iteration and Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.1 Method of Successive Approximations (Cauchy Problem) . . . . . . . . . . . . 3.8.2 Runge–Kutta Method (Cauchy Problem) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.3 Reduction to a System of Equations (Cauchy Problem) . . . . . . . . . . . . . . . 3.8.4 Predictor–Corrector Methods (Cauchy Problem) . . . . . . . . . . . . . . . . . . . . . 3.8.5 Shooting Method (Boundary Value Problems) . . . . . . . . . . . . . . . . . . . . . . . 3.8.6 Numerical Methods for Problems with Equations Defined Implicitly or Parametrically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.7 Numerical Solution Blow-Up Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Methods for Linear ODEs of Arbitrary Order 4.1 Linear Equations with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Homogeneous Linear Equations. General Solution . . . . . . . . . . . . . . . . . . . 4.1.2 Nonhomogeneous Linear Equations. General and Particular Solutions . . 4.2 Linear Equations with Variable Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Homogeneous Linear Equations. General Solution. Order Reduction. Liouville Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 Nonhomogeneous Linear Equations. General Solution. Superposition Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 Nonhomogeneous Linear Equations. Cauchy Problem. Reduction to Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 154 154 156 157 157 158 160 162 165 167 169 171 171 173 174 175 177 178 181 181 182 182 183 184 185 185 185 186 186 186 187 190 192 197 197 197 198 200 200 201 202 4.3 Laplace Transform and the Laplace Integral. Applications to Linear ODEs . . . . 4.3.1 Laplace Transform and the Inverse Laplace Transform . . . . . . . . . . . . . . . 4.3.2 Main Properties of the Laplace Transform. Inversion Formulas for Some Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.3 Limit Theorems. Representation of Inverse Transforms as Convergent Series and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Solution of the Cauchy Problem for Constant-Coefficient Linear ODEs. Applications to Integro-Differential Equations . . . . . . . . . . . . . . . . . . . . . . 4.3.5 Solution of Linear Equations with Polynomial Coefficients Using the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.6 Solution of Linear Equations with Polynomial Coefficients Using the Laplace Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Asymptotic Solutions of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Fourth-Order Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Higher-Order Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5.1 Statement of the Problem. Approximate Solution . . . . . . . . . . . . . . . . . . . . 4.5.2 Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 204 205 207 209 211 212 213 213 214 215 215 215 5 Methods for Nonlinear ODEs of Arbitrary Order 5.1 General Concepts. Cauchy Problem. Uniqueness and Existence Theorems . . . . 5.1.1 Equations Solved for the Derivative. General Solution . . . . . . . . . . . . . . . . 5.1.2 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Equations Admitting Reduction of Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Equations Not Containing y or x Explicitly . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Generalized Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Equations Invariant under Scaling-Translation Transformations . . . . . . . . 5.2.5 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Method for Construction of Solvable Equations of General Form . . . . . . . . . . . . 5.3.1 Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Numerical Integration of n-order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Numerical Solution of the Cauchy Problem for n-order ODEs . . . . . . . . . 5.4.2 Numerical Solution of Equations Defined Implicitly or Parametrically . . 217 217 217 218 218 218 219 220 220 220 222 222 223 224 224 224 6 Methods for Linear Systems of ODEs 6.1 Systems of Linear Constant-Coefficient Equations . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Systems of First-Order Linear Homogeneous Equations. General Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Systems of First-Order Linear Homogeneous Equations. Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.3 Nonhomogeneous Systems of Linear First-Order Equations . . . . . . . . . . . 6.1.4 Homogeneous Linear Systems of Higher-Order Differential Equations . 6.1.5 Normal Coordinates and Natural Oscillations . . . . . . . . . . . . . . . . . . . . . . . 6.1.6 Nonhomogeneous Higher-Order Linear Systems. D’Alembert’s Method 6.1.7 Usage of the Laplace Transform for Solving Linear Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.8 Classification of Equilibrium Points of Two-Dimensional Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 227 227 228 230 231 232 233 234 235 6.2 Systems of Linear Variable-Coefficient Equations . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Homogeneous Systems of Linear First-Order Equations . . . . . . . . . . . . . . 6.2.2 Nonhomogeneous Systems of Linear First-Order Equations . . . . . . . . . . . 6.2.3 Euler System of Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . 240 240 242 243 7 Methods for Nonlinear Systems of ODEs 7.1 Solutions and First Integrals. Uniqueness and Existence Theorems . . . . . . . . . . . 7.1.1 Systems Solved for the Derivative. A Solution and the General Solution 7.1.2 Existence and Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.3 Reduction of Systems of Equations to a Single Equation or to an Autonomous System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.4 First Integrals. Using Them to Reduce System Dimension . . . . . . . . . . . . 7.2 Integrable Combinations. Autonomous Systems of Equations . . . . . . . . . . . . . . . 7.2.1 Integrable Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 Autonomous Systems and Their Reduction to Systems of Lower Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Elements of Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.1 Lyapunov Stability. Asymptotic Stability. Unstable Solutions . . . . . . . . . 7.3.2 Theorems of Stability and Instability by First Approximation . . . . . . . . . 7.3.3 Lyapunov Function. Theorems of Stability and Instability . . . . . . . . . . . . 7.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 Systems Involving Three or More Equations . . . . . . . . . . . . . . . . . . . . . . . . 245 245 245 245 8 Elements of Bifurcation Theory 8.1 Dynamical Systems. Rough and Nonrough Systems . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Bifurcation. Dynamical Systems. Phase Portrait . . . . . . . . . . . . . . . . . . . . . 8.1.2 Topologically Equivalent Systems. Rough and Nonrough Systems . . . . . 8.2 Bifurcations of Second-Order Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 Second-Order Dynamical Systems. Rough and Nonrough Systems . . . . . 8.2.2 Bifurcations in Systems of the First Degree of Nonroughness . . . . . . . . . 8.3 Bifurcations of Solutions to Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . 8.3.1 Bifurcations of Solutions to Linear Boundary Value Problems . . . . . . . . . 8.3.2 Bifurcations in Solutions to Nonlinear Boundary Value Problems . . . . . . 8.3.3 Bifurcation Analysis of Boundary Value Problems without Linearizing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Elementary Theory of Using Invariants for Solving Equations 9.1 Introduction. Symmetries. General Scheme of Using Invariants for Solving Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Symmetries. Transformations Preserving the Form of Equations. Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.2 General Scheme of Using Invariants for Solving Mathematical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Algebraic Equations and Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Algebraic Equations with Even Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Reciprocal Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Systems of Algebraic Equations Symmetric with Respect to Permutation of Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 247 248 248 249 250 250 251 253 255 255 259 263 263 263 264 265 265 266 270 270 270 273 277 277 277 279 279 279 280 282 9.3 Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Transformations Preserving the Form of Equations. Invariants . . . . . . . . . 9.3.2 Order Reduction Procedure for Equations with n ≥ 2 (Reduction to Solvable Form with n = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3 Simple Transformations. Invariant Determination Procedure . . . . . . . . . . 9.3.4 Analysis of Some Ordinary Differential Equations. Useful Remarks . . . . 10 Methods for the Construction of Particular Solutions 10.1 Two Problems on Searching for Particular Solutions to ODEs with Parameters 10.1.1 Preliminary Remarks. Traveling Wave Solutions . . . . . . . . . . . . . . . . . . 10.1.2 Two Problems for ODEs with Parameters. Conditional Capacity of Exact Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Method of Undetermined Coefficients and Its Special Cases . . . . . . . . . . . . . . . . 10.2.1 General Description of the Method of Undetermined Coefficients . . . . 10.2.2 Power-Law, Tanh-Coth, and Sine-Cosine Methods . . . . . . . . . . . . . . . . . 10.2.3 Exp-Function, Q-Expansion and Related Methods . . . . . . . . . . . . . . . . . 10.3 Method of Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.1 Preliminary Remarks. First-Order Differential Constraints and Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Differential Constraints of Arbitrary Order. General Consistency Method for Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 Using Point Transformations in Combination with the Method of Differential Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.4 Using Several Differential Constraints. G′/G-Expansion Method and Simplest Equation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Group Methods for ODEs 11.1 Lie Group Method. Point Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.1 Local One-Parameter Lie Group of Transformations. Invariance Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Group Analysis of Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . 11.1.3 Utilization of Local Groups for Reducing the Order of Equations and Their Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.4 Seeking Particular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Contact and Bäcklund Transformations. Formal Operators. Factorization Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.1 Contact Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2.2 Bäcklund Transformations. Formal Operators and Nonlocal Variables 11.2.3 Factorization Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 First Integrals (Conservation Laws) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.1 Algorithm of Finding First Integrals of ODEs . . . . . . . . . . . . . . . . . . . . . 11.3.2 Applications to Second-Order ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.3 Lie–Bäcklund Symmetries Generated by First Integrals . . . . . . . . . . . . . 11.4 Underdetermined Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.2 Factorization Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.3 Some Technical Elements. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4.4 On Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 283 284 284 285 289 289 289 290 292 292 293 297 302 302 306 307 311 313 313 313 316 319 321 322 322 323 326 334 334 336 337 345 345 346 348 350 12 Discrete-Group Methods 12.1 Discrete Group Method for Point Transformations . . . . . . . . . . . . . . . . . . . . . . . . 12.1.1 Classes of ODEs with Parameters. Discrete Group of Point Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 Discrete Group Method Based on RF-Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.1 General Description of the Method. First and Second RF-Pairs . . . . . . 12.2.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 Discrete Group Method Based on the Inclusion Method . . . . . . . . . . . . . . . . . . . 355 355 355 355 358 358 359 364 Part II. Exact Solutions of Ordinary Differential Equations 365 13 First-Order Ordinary Differential Equations 13.1 Simplest Equations with Arbitrary Functions Integrable in Closed Form . . . . . 13.1.1 Equations of the Form yx′ = f (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.2 Equations of the Form yx′ = f (y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.3 Separable Equations yx′ = f (x)g(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1.4 Linear Equation g(x)yx′ = f1 (x)y + f0 (x) . . . . . . . . . . . . . . . . . . . . . . . . 13.1.5 Bernoulli Equation g(x)yx′ = f1 (x)y + fn (x)y n . . . . . . . . . . . . . . . . . . . 13.1.6 Homogeneous Equation yx′ = f (y/x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2 Riccati Equation g(x)yx′ = f2 (x)y 2 + f1 (x)y + f0 (x) . . . . . . . . . . . . . . . . . . . . . . 13.2.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.3 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 13.2.4 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 13.2.5 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 13.2.6 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 13.2.7 Equations Containing Inverse Trigonometric Functions . . . . . . . . . . . . . 13.2.8 Equations with Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.2.9 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Abel Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.1 Equations of the Form yyx′ − y = f (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.2 Equations of the Form yyx′ = f (x)y + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3.3 Equations of the Form yyx′ = f1 (x)y + f0 (x) . . . . . . . . . . . . . . . . . . . . . . 13.3.4 Equations of the Form [g1 (x)y + g0 (x)]yx′ = f2 (x)y 2 + f1 (x)y + f0 (x) 13.3.5 Some Types of First- and Second-Order Equations Reducible to Abel Equations of the Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4 Equations Containing Polynomial Functions of y . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.1 Abel Equations of the First Kind yx′ = f3 (x)y 3 + f2 (x)y 2 + f1 (x)y + f0 (x) . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.2 Equations of the Form (A22 y 2 + A12 xy + A11 x2 + A0 )yx′ = B22 y 2 + B12 xy + B11 x2 + B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.3 Equations of the Form (A22 y 2 + A12 xy + A11 x2 + A2 y + A1 x)yx′ = B22 y 2 + B12 xy + B11 x2 + B2 y + B1 x . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.4.4 Equations of the Form (A22 y 2 +A12 xy+A11 x2 +A2 y+A1 x+A0 )yx′ = B22 y 2 + B12 xy + B11 x2 + B2 y + B1 x + B0 . . . . . . . . . . . . . . . . . . . . . . . 13.4.5 Equations of the Form (A3 y 3 +A2 xy 2 +A1 x2 y+A0 x3 +a1 y+a0 x)yx′ = B3 y 3 + B2 xy 2 + B1 x2 y + B0 x3 + b1 y + b0 x . . . . . . . . . . . . . . . . . . . . . . 367 367 367 367 367 368 368 368 368 368 369 375 378 380 382 387 389 392 394 394 409 410 422 429 431 431 436 438 447 452 13.5 Equations of the Form f (x, y)yx′ = g(x, y) Containing Arbitrary Parameters . 13.5.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.5.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 13.5.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 13.5.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 13.5.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 13.5.6 Equations Containing Combinations of Exponential, Hyperbolic, Logarithmic, and Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 13.6 Equations of the Form F (x, y, yx′ ) = 0 Containing Arbitrary Parameters . . . . . 13.6.1 Equations of the Second Degree in yx′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6.2 Equations of the Third Degree in yx′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.6.3 Equations of the Form (yx′ )k = f (y) + g(x) . . . . . . . . . . . . . . . . . . . . . . . 13.6.4 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.7 Equations of the Form f (x, y)yx′ = g(x, y) Containing Arbitrary Functions . . 13.7.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.7.2 Equations Containing Exponential and Hyperbolic Functions . . . . . . . 13.7.3 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 13.7.4 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 13.7.5 Equations Containing Combinations of Exponential, Logarithmic, and Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.8 Equations Not Solved for the Derivative and Equations Defined Parametrically 13.8.1 Equations Not Solved for the Derivative Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.8.2 Some Transformations of Equations Not Solved for the Derivative . . . 13.8.3 Equations Defined Parametrically Containing Arbitrary Functions . . . 14 Second-Order Ordinary Differential Equations 14.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.1 Representation of the General Solution through a Particular Solution . 14.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.3 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 14.1.4 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 14.1.5 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 14.1.6 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 14.1.7 Equations Containing Inverse Trigonometric Functions . . . . . . . . . . . . . 14.1.8 Equations Containing Combinations of Exponential, Logarithmic, Trigonometric, and Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.9 Equations with Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.1.10 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′ = F (y, y ′ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 Autonomous Equations yxx x ′′ − y ′ = f (y) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2.1 Equations of the Form yxx x ′′ + f (y)y ′ + y = 0 . . . . . . . . . . . . . . . . . . . . . . 14.2.2 Equations of the Form yxx x ′′ + f (y)y ′ + g(y) = 0 . . . . . . . . . . . . . . . . . . . . . . . 14.2.3 Lienard Equations yxx x ′′ + f (y ′ ) + g(y) = 0 . . . . . . . . . . . . . . . . . . . . . . . 14.2.4 Rayleigh Equations yxx x ′′ 14.3 Emden–Fowler Equation yxx = Axn y m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.1 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.2 First Integrals (Conservation Laws) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.3 Some Formulas and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 456 460 464 466 467 469 471 471 478 481 490 495 495 498 500 501 502 504 504 514 515 519 519 519 519 553 560 565 568 580 586 595 603 605 606 610 613 616 619 619 625 628 ′′ = A xn1 y m1 + A xn2 y m2 . . . . . . . . . . . . . . . . . . . . . 14.4 Equations of the Form yxx 1 2 14.4.1 Classification Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.4.2 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′ = Axn y m (y ′ )l . . . . . . . . . . . . . . . . . . 14.5 Generalized Emden–Fowler Equation yxx x 14.5.1 Classification Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.2 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.3 Some Formulas and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′ = A xn1 y m1 (y ′ )l1 + A xn2 y m2 (y ′ )l2 . . . . . . . . . . . 14.6 Equations of the Form yxx 1 2 x x ′′ = A x−1 y ′ + A xn y m . . . . . . 14.6.1 Modified Emden–Fowler Equation yxx 1 2 x ′′ = (A xn1 y m1 + A xn2 y m2 )(y ′ )l . . . . . . . . 14.6.2 Equations of the Form yxx 1 2 x ′′ = σAxn y m (y ′ )l + Axn−1 y m+1 (y ′ )l−1 . . . 14.6.3 Equations of the Form yxx x x 14.6.4 Other Equations (l1 ̸= l2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′ = f (x)g(y)h(y ′ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.7 Equations of the Form yxx x ′′ = f (x)g(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.7.1 Equations of the Form yxx 14.7.2 Equations Containing Power Functions (h ̸≡ const) . . . . . . . . . . . . . . . . 14.7.3 Equations Containing Exponential Functions (h ̸≡ const) . . . . . . . . . . . 14.7.4 Equations Containing Hyperbolic Functions (h ̸≡ const) . . . . . . . . . . . . 14.7.5 Equations Containing Trigonometric Functions (h ̸≡ const) . . . . . . . . . 14.7.6 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8 Some Nonlinear Equations with Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . 14.8.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 14.8.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 14.8.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 14.8.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 14.8.6 Equations Containing the Combinations of Exponential, Hyperbolic, Logarithmic, and Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 14.9 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′ + G(x, y) = 0 . . . . . . . . . . . . . . . . . . 14.9.1 Equations of the Form F (x, y)yxx ′′ + G(x, y)y ′ + H(x, y) = 0 . . . . . . . 14.9.2 Equations of the Form F (x, y)yxx x ∑M ′′ + ′ m 14.9.3 Equations of the Form F (x, y)yxx G m=0 m (x, y)(yx ) = 0 (M = 2, 3, 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′ + G(x, y, y ′ ) = 0 . . . . . . . . . . . . 14.9.4 Equations of the Form F (x, y, yx′ )yxx x 14.9.5 Equations Not Solved for Second Derivative . . . . . . . . . . . . . . . . . . . . . . 14.9.6 Equations of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.9.7 Equations Defined Parametrically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.9.8 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Third-Order Ordinary Differential Equations 15.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.3 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 15.1.4 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 15.1.5 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 15.1.6 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 15.1.7 Equations Containing Inverse Trigonometric Functions . . . . . . . . . . . . . 15.1.8 Equations Containing Combinations of Exponential, Logarithmic, Trigonometric, and Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.1.9 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 628 628 632 652 652 657 676 678 678 688 718 733 739 739 742 746 750 751 752 753 753 761 769 775 777 783 786 786 793 798 802 813 815 822 825 829 829 829 830 848 853 863 866 879 884 892 ′′′ = Axα y β (y ′ )γ (y ′′ )δ . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Equations of the Form yxxx xx x 15.2.1 Classification Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′′ = Ay β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.2 Equations of the Form yxxx ′′′ = Axα y β . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.3 Equations of the Form yxxx 15.2.4 Equations with |γ| + |δ| ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.5 Some Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ′′′ = f (y)g(y ′ )h(y ′′ ) . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 Equations of the Form yxxx x xx 15.3.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 15.3.3 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 Nonlinear Equations with Arbitrary Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 15.4.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 15.4.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 15.4.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 15.5 Nonlinear Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . ′′′ + G(x, y) = 0 . . . . . . . . . . . . . . . . . 15.5.1 Equations of the Form F (x, y)yxxx ′′′ + G(x, y, y ′ ) = 0 . . . . . . . . . . . 15.5.2 Equations of the Form F (x, y, yx′ )yxxx x ′ ′′′ ′′ +H(x, y, y ′ )= 15.5.3 Equations of the Form F (x, y, yx )yxxx +G(x, y, yx′ )yxx x 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∑ ......................... ′′′ + ′ ′′ α 15.5.4 Equations of the Form F (x, y, yx′ )yxxx α Gα (x, y, yx )(yxx ) = 0 15.5.5 Other Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 901 909 911 912 944 945 945 948 952 955 955 963 967 971 974 978 978 980 987 992 994 16 Fourth-Order Ordinary Differential Equations 16.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1.3 Equations Containing Exponential and Hyperbolic Functions . . . . . . . 16.1.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 16.1.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 16.1.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 16.2.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 16.2.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 16.2.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 16.2.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 999 999 999 1000 1007 1011 1012 1015 1019 1019 1027 1029 1034 1035 1040 17 Higher-Order Ordinary Differential Equations 17.1 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.2 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.1.3 Equations Containing Exponential and Hyperbolic Functions . . . . . . . 17.1.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 17.1.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 17.1.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 1051 1051 1051 1051 1058 1061 1061 1064 17.2 Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.1 Equations Containing Power Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.2.2 Equations Containing Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 17.2.3 Equations Containing Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 17.2.4 Equations Containing Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . 17.2.5 Equations Containing Trigonometric Functions . . . . . . . . . . . . . . . . . . . . 17.2.6 Equations Containing Arbitrary Functions . . . . . . . . . . . . . . . . . . . . . . . . 1068 1068 1075 1077 1081 1083 1087 18 Some Systems of Ordinary Differential Equations 18.1 Linear Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.1.1 Systems of First-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.1.2 Systems of Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.2 Linear Systems of Three and More Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3 Nonlinear Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.1 Systems of First-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.3.2 Systems of Second-Order Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4 Nonlinear Systems of Three or More Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.1 Systems of Three Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.4.2 Dynamics of a Rigid Body with a Fixed Point . . . . . . . . . . . . . . . . . . . . . 1099 1099 1099 1102 1107 1108 1108 1110 1113 1113 1115 Part III. Symbolic and Numerical Solutions of Nonlinear PDEs with Maple, Mathematica, and MATLAB 1119 19 Symbolic and Numerical Solutions of ODEs with Maple 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.2 Brief Introduction to Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.1.3 Maple Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.1 Exact Analytical Solutions in Terms of Predefined Functions . . . . . . . . 19.2.2 Exact Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . 19.2.3 Different Types of Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.4 Analytical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.5 Integral Transform Methods for ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.2.6 Constructing Solutions via Transformations . . . . . . . . . . . . . . . . . . . . . . . 19.3 Group Analysis of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.1 Solution Strategies and Predefined Functions . . . . . . . . . . . . . . . . . . . . . . 19.3.2 Constructing Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.3 Constructing Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.3.4 Order Reduction of ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4 Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4.1 Numerical Solutions in Terms of Predefined Functions . . . . . . . . . . . . . 19.4.2 Numerical Methods Embedded in Maple . . . . . . . . . . . . . . . . . . . . . . . . . 19.4.3 Initial Value Problems: Examples of Numerical Solutions . . . . . . . . . . 19.4.4 Initial Value Problems: Constructing Numerical Methods and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19.4.5 Boundary Value Problems: Examples of Numerical Solutions . . . . . . . 19.4.6 Eigenvalue Problems: Examples of Numerical Solutions . . . . . . . . . . . . 19.4.7 First-Order Systems of ODEs. Higher-Order ODEs. Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 1121 1121 1122 1124 1127 1127 1137 1142 1144 1147 1149 1153 1153 1155 1156 1158 1160 1160 1162 1168 1171 1176 1181 1183 20 Symbolic and Numerical Solutions of ODEs with Mathematica 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.1.1 Brief Introduction to Mathematica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.1.2 Mathematica Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.1 Exact Analytical Solutions in Terms of Predefined Functions . . . . . . . . 20.2.2 Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . . . . . . 20.2.3 Analytical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.4 Integral Transform Methods for ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.2.5 Constructing Solutions via Transformations . . . . . . . . . . . . . . . . . . . . . . . 20.3 Numerical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.1 Numerical Solutions in Terms of Predefined Functions . . . . . . . . . . . . . 20.3.2 Numerical Methods Embedded in Mathematica . . . . . . . . . . . . . . . . . . . 20.3.3 Initial Value Problems: Examples of Numerical Solutions . . . . . . . . . . 20.3.4 Initial Value Problems: Constructing Numerical Methods and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.5 Boundary Value Problems: Examples of Numerical Solutions . . . . . . . 20.3.6 Eigenvalue Problems: Examples of Numerical Solutions . . . . . . . . . . . . 20.3.7 First-Order Systems of ODEs. Higher-Order ODEs. Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.3.8 Phase Plane Analysis for First-Order Autonomous Systems . . . . . . . . . 20.3.9 Numerical-Analytical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187 1187 1187 1189 1193 1193 1203 1207 1209 1212 1215 1215 1217 1221 21 Symbolic and Numerical Solutions of ODEs with MATLAB 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Brief Introduction to MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.3 MATLAB Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Analytical Solutions and Their Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.1 Analytical Solutions in Terms of Predefined Functions . . . . . . . . . . . . . 21.2.2 Analytical Solutions of Mathematical Problems . . . . . . . . . . . . . . . . . . . 21.2.3 Analytical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Numerical Solutions of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3.1 Numerical Solutions via Predefined Functions . . . . . . . . . . . . . . . . . . . . . 21.3.2 Initial Value Problems: Examples of Numerical Solutions . . . . . . . . . . 21.3.3 Boundary Value Problems: Examples of Numerical Solutions . . . . . . . 21.3.4 Eigenvalue Problems: Examples of Numerical Solutions . . . . . . . . . . . . 21.4 Numerical Solutions of Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.1 First-Order Systems of Two Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.2 First-Order Systems of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245 1245 1245 1246 1249 1253 1253 1259 1261 1263 1263 1268 1272 1276 1279 1279 1282 Part IV. Supplements 1285 S1 Elementary Functions and Their Properties S1.1 Power, Exponential, and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . S1.1.1 Properties of the Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.1.2 Properties of the Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.1.3 Properties of the Logarithmic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 1287 1287 1287 1288 1223 1229 1235 1236 1239 1241 S1.2 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.1 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.2 Reduction Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.3 Relations between Trigonometric Functions of Single Argument . . . . . S1.2.4 Addition and Subtraction of Trigonometric Functions . . . . . . . . . . . . . . S1.2.5 Products of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.6 Powers of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.7 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.8 Trigonometric Functions of Multiple Arguments . . . . . . . . . . . . . . . . . . S1.2.9 Trigonometric Functions of Half Argument . . . . . . . . . . . . . . . . . . . . . . . S1.2.10 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.11 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.12 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.2.13 Representation in the Form of Infinite Products . . . . . . . . . . . . . . . . . . . S1.2.14 Euler and de Moivre Formulas. Relationship with Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.3 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.3.1 Definitions of Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . S1.3.2 Simplest Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.3.3 Some Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.3.4 Relations between Inverse Trigonometric Functions . . . . . . . . . . . . . . . . S1.3.5 Addition and Subtraction of Inverse Trigonometric Functions . . . . . . . S1.3.6 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.3.7 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.3.8 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.1 Definitions of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.2 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.3 Relations between Hyperbolic Functions of Single Argument (x ≥ 0) . S1.4.4 Addition and Subtraction of Hyperbolic Functions . . . . . . . . . . . . . . . . . S1.4.5 Products of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.6 Powers of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.7 Addition Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.8 Hyperbolic Functions of Multiple Argument . . . . . . . . . . . . . . . . . . . . . . S1.4.9 Hyperbolic Functions of Half Argument . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.10 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.11 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.12 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.4.13 Representation in the Form of Infinite Products . . . . . . . . . . . . . . . . . . . S1.4.14 Relationship with Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . S1.5 Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.5.1 Definitions of Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . S1.5.2 Simplest Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.5.3 Relations between Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . S1.5.4 Addition and Subtraction of Inverse Hyperbolic Functions . . . . . . . . . . S1.5.5 Differentiation Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.5.6 Integration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S1.5.7 Expansion in Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289 1289 1290 1290 1290 1291 1291 1291 1292 1292 1292 1292 1293 1293 1293 1293 1293 1294 1294 1295 1295 1296 1296 1296 1296 1296 1297 1297 1297 1297 1298 1298 1298 1299 1299 1299 1299 1299 1300 1300 1300 1300 1300 1300 1301 1301 1301 S2 Indefinite and Definite Integrals S2.1 Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2.1.1 Integrals Involving Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . S2.1.2 Integrals Involving Irrational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . S2.1.3 Integrals Involving Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . S2.1.4 Integrals Involving Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . S2.1.5 Integrals Involving Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . S2.1.6 Integrals Involving Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . S2.1.7 Integrals Involving Inverse Trigonometric Functions . . . . . . . . . . . . . . . S2.2 Tables of Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2.2.1 Integrals Involving Power-Law Functions . . . . . . . . . . . . . . . . . . . . . . . . . S2.2.2 Integrals Involving Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . S2.2.3 Integrals Involving Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . S2.2.4 Integrals Involving Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . S2.2.5 Integrals Involving Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . S2.2.6 Integrals Involving Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3 Tables of Laplace and Inverse Laplace Transforms S3.1 Tables of Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.1.1 General Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.1.2 Expressions with Power-Law Functions . . . . . . . . . . . . . . . . . . . . . . . . . . S3.1.3 Expressions with Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . S3.1.4 Expressions with Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . S3.1.5 Expressions with Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . S3.1.6 Expressions with Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . S3.1.7 Expressions with Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2 Tables of Inverse Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.1 General Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.2 Expressions with Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.3 Expressions with Square Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.4 Expressions with Arbitrary Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.5 Expressions with Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.6 Expressions with Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.7 Expressions with Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . S3.2.8 Expressions with Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . S3.2.9 Expressions with Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4 Special Functions and Their Properties S4.1 Some Coefficients, Symbols, and Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.1.1 Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.1.2 Pochhammer Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.1.3 Bernoulli Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.1.4 Euler Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.2 Error Functions. Exponential and Logarithmic Integrals . . . . . . . . . . . . . . . . . . . S4.2.1 Error Function and Complementary Error Function . . . . . . . . . . . . . . . . S4.2.2 Exponential Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.2.3 Logarithmic Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.3 Sine Integral and Cosine Integral. Fresnel Integrals . . . . . . . . . . . . . . . . . . . . . . . S4.3.1 Sine Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.3.2 Cosine Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.3.3 Fresnel Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 1303 1303 1307 1310 1311 1314 1315 1319 1320 1320 1323 1324 1325 1325 1328 1331 1331 1331 1333 1333 1334 1335 1335 1337 1338 1338 1340 1344 1345 1346 1347 1348 1349 1349 1351 1351 1351 1352 1352 1353 1354 1354 1354 1355 1356 1356 1357 1357 S4.4 Gamma Function, Psi Function, and Beta Function . . . . . . . . . . . . . . . . . . . . . . . S4.4.1 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.4.2 Psi Function (Digamma Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.4.3 Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.5 Incomplete Gamma and Beta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.5.1 Incomplete Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.5.2 Incomplete Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.6 Bessel Functions (Cylindrical Functions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.6.1 Definitions and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.6.2 Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . S4.6.3 Zeros and Orthogonality Properties of Bessel Functions . . . . . . . . . . . . S4.6.4 Hankel Functions (Bessel Functions of the Third Kind) . . . . . . . . . . . . . S4.7 Modified Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.7.1 Definitions. Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.7.2 Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . S4.8 Airy Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.8.1 Definition and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.8.2 Power Series and Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . . . S4.9 Degenerate Hypergeometric Functions (Kummer Functions) . . . . . . . . . . . . . . . S4.9.1 Definitions and Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.9.2 Integral Representations and Asymptotic Expansions . . . . . . . . . . . . . . . S4.9.3 Whittaker Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.10 Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.10.1 Various Representations of the Hypergeometric Function . . . . . . . . S4.10.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.11 Legendre Polynomials, Legendre Functions, and Associated Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.11.1 Legendre Polynomials and Legendre Functions . . . . . . . . . . . . . . . . . S4.11.2 Associated Legendre Functions with Integer Indices and Real Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.11.3 Associated Legendre Functions. General Case . . . . . . . . . . . . . . . . . S4.12 Parabolic Cylinder Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.12.1 Definitions. Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.12.2 Integral Representations, Asymptotic Expansions, and Linear Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.13 Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.13.1 Complete Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.13.2 Incomplete Elliptic Integrals (Elliptic Integrals) . . . . . . . . . . . . . . . . S4.14 Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.14.1 Jacobi Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.14.2 Weierstrass Elliptic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.15 Jacobi Theta Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.15.1 Series Representation of the Jacobi Theta Functions. Simplest Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.15.2 Various Relations and Formulas. Connection with Jacobi Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.16 Mathieu Functions and Modified Mathieu Functions . . . . . . . . . . . . . . . . . . . . S4.16.1 Mathieu Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.16.2 Modified Mathieu Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1358 1358 1359 1360 1360 1360 1361 1362 1362 1364 1366 1367 1367 1367 1369 1370 1370 1370 1371 1371 1374 1375 1375 1375 1377 1377 1377 1380 1380 1383 1383 1384 1385 1385 1386 1388 1388 1392 1394 1394 1395 1396 1396 1398 S4.17 Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.17.1 Laguerre Polynomials and Generalized Laguerre Polynomials . . . . S4.17.2 Chebyshev Polynomials and Functions . . . . . . . . . . . . . . . . . . . . . . . . S4.17.3 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.17.4 Jacobi Polynomials and Gegenbauer Polynomials . . . . . . . . . . . . . . . S4.18 Nonorthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.18.1 Bernoulli Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S4.18.2 Euler Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References Index 1398 1398 1400 1402 1404 1405 1405 1406 1409 1427 REFERENCES Abel, M. L. and Braselton, J. P., Maple by Example, 3rd ed., AP Professional, Boston, MA, 2005. Abramowitz, M. and Stegun, I. A. (Editors), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics, Washington, 1964. Acosta, G., Durán, G., and Rossi, J. D., An adaptive time step procedure for a parabolic problem with blow-up, Computing, Vol. 68, pp. 343–373, 2002. Akô, K., Subfunctions for ordinary differential equations, II, Funkcialaj Ekvacioj (International Series), Vol. 10, No. 2, pp. 145–162, 1967. Akô, K., Subfunctions for ordinary differential equations, III, Funkcialaj Ekvacioj (International Series), Vol. 11, No. 2, pp. 111–129, 1968. Akritas, A. G., Elements of Computer Algebra with Applications, Wiley, New York, 1989. Akulenko, L. D. and Nesterov, S. V., Accelerated convergence method in the Sturm–Liouville problem, Russ. J. Math. Phys., Vol. 3, No. 4, pp. 517–521, 1996. Akulenko, L. D. and Nesterov, S. V., Determination of the frequencies and forms of oscillations of non-uniform distributed systems with boundary conditions of the third kind, Appl. Math. Mech. (PMM), Vol. 61, No. 4, pp. 531–538, 1997. Akulenko, L. D. and Nesterov, S. V., High Precision Methods in Eigenvalue Problems and Their Applications, Chapman & Hall/CRC Press, Boca Raton, 2005. Alexandrov, A. Yu., Platonov, A. V., Starkov, V. N., Stepenko, N. A., Mathematical Modeling and Stability Analysis of Biological Communities, Lan’, St. Petersburg, 2016. Alexeeva, T. A., Zaitsev, V. F., and Shvets, T. B., On discrete symmetries of the Abel equation of the 2nd kind [in Russian]. In: Applied Mechanics and Mathematics, MIPT, Moscow, pp. 4–11, 1992. Alshina, E. A., Kalitkin, N. N., and Koryakin, P. V., Diagnostics of singularities of exact solutions in computations with error control [in Russian], Zh. Vychisl. Mat. Mat. Fiz., Vol. 45, No. 10, pp. 1837–1847, 2005; http://eqworld.ipmnet.ru/ru/solutions/interesting/alshina2005.pdf. Anderson, R. L. and Ibragimov, N. H., Lie–Bäcklund Transformations in Applications, SIAM Studies in Applied Mathematics, Philadelphia, 1979. Andronov, A. A., Vitt, A. A., and Khaikin, S. E., Theory of Oscillators, Dover Publ., New York, 2011. Andronov, A. A., Leontovich, E. A., and Gordon, I. I., Theory of Bifurcations of Dynamic Systems on a Plane, Israel Program for Scientific Translations (IPST), Jerusalem, 1971. Antimirov, M. Ya., Applied Integral Transforms, American Mathematical Society, Providence, Rhode Island, 1993. Arnold, V. I., Additional Chapters of Ordinary Differential Equation Theory [in Russian], Nauka, Moscow, 1978. Arnold, V. I. and Afraimovich, V. S., Bifurcation Theory and Catastrophe Theory, SpringerVerlag, New York, 1999. Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I., Mathematical Aspects of Classical and Celestial Mechanics, Dynamical System III, Springer, Berlin, 1993. Ascher, U., Mattheij, R. and Russell, R., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Ser. SIAM Classics in Applied Mathematics, Vol. 13, 1995. Ascher, U. and Petzold, L., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998. 1409 Ascher, U. and Petzold, L.,. Projected implicit Runge–Kutta methods for differential algebraic equations, SIAM J. Numer. Anal., Vol. 28, pp. 1097–1120, 1991. Bader, G. and Deuflhard, P., A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math, Vol. 41, pp. 373–398, 1983. Bahder, T. B., Mathematica for Scientists and Engineers, Addison-Wesley, Redwood City, CA, 1994. Bailey, P. B., Shampine, L. F., and Waltman, P. E., Nonlinear Two Point Boundary Value Problems, Academic Press, New York, 1968. Baker, G. A. (Jr.) and Graves–Morris, P., Padé Approximants, Addison–Wesley, London, 1981. Bakhvalov, N. S., Numerical Methods: Analysis, Algebra, Ordinary Differential Equations, Mir Publishers, Moscow, 1977. Barton, D., Willer, I. M. and Zahar, R. V. M., Taylor series method for ordinary differential equations. In: Mathematical Software (J. R. Rice, editor), Academic Press, New York, 1972. Barton, D., Willer, I. M., and Zahar, R. V. M., The automatic solution of systems of ordinary differential equations by the method of Taylor series, Comput. J., Vol. 14, pp. 243–248, 1971. Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vols. 1 and 2, McGraw-Hill, New York, 1953. Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York, 1955. Bateman, H. and Erdélyi, A., Tables of Integral Transforms. Vols. 1 and 2, McGraw-Hill, New York, 1954. Bazykin, A. D., Mathematical Biophysics of Interacting Populations [in Russian], Nauka, Moscow, 1985. Bebernes, J. and Gaines, R., Dependence on boundary data and a generalized boundary value problem, J. Differential Equations, Vol. 4, pp. 359–368, 1968. Bekir, A., New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method, Physica Scripta, Vol. 77, No. 4, 2008. Bekir, A., Application of the G′ /G-expansion method for nonlinear evolution equations, Phys. Lett. A, Vol. 372, pp. 3400–3406, 2008. Bellman, R. and Roth, R., The Laplace Transform, World Scientific Publishing Co., Singapore, 1984. Berezin, I. S. and Zhidkov, N. P., Computational Methods, Vol. II [in Russian], Fizmatgiz, Moscow, 1960. Berkovich, L. M., Factorization and Transformations of Ordinary Differential Equations [in Russian], Saratov University Publ., Saratov, 1989. Birkhoff, G. and Rota, G. C., Ordinary Differential Equations, John Wiley & Sons, New York, 1978. Blaquiere, A., Nonlinear System Analysis, Academic Press, New York, 1966. Bluman, G. W. and Anco, S. C., Symmetry and Integration Methods for Differential Equations, Springer, New York, 2002. Bluman, G. W. and Cole, J. D., Similarity Methods for Differential Equations, Springer, New York, 1974. Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer, New York, 1989. Bogacki, P. and Shampine, L. F., An Efficient Runge–Kutta (4, 5) Pair, Report 89–20, Math. Dept. Southern Methodist University, Dallas, Texas, 1989. Bogolyubov, N. N. and Mitropol’skii, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow, 1974. 1410 Boltyanskii, V. G. and Vilenkin, N. Ya., Symmetry in Algebra, 2nd ed. [in Russian], Nauka, Moscow, 2002. Boor, C. and Swartz, B., SIAM J. Numerical Analysis, Vol. 10, No. 4, pp. 582–606, 1993. Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics [in Russian], Regular and Chaotic Dynamics, Izhevsk, 2001. Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations and Boundary Value Problems, 8th Edition, John Wiley & Sons, New York, 2004. Bratus, A. S., Novozhilov, A. S., and Platonov, A. P., Dynamic Models and Models in Biology [in Russian], Fizmatlit, Moscow, 2009. Braun, M., Differential Equations and Their Applications, 4th Edition, Springer, New York, 1993. Brenan, K. E., Campbell, S. L., and Petzold, L. R., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996. Brent, R. P., Algorithms for Minimization without Derivatives, Dover, 2002 (Original edition 1973). Bulirsch, R. and Stoer, J., Fehlerabschätzungen und extrapolation mit rationalen funktionen bei verfahren vom Richardson–typus, Numer. Math., Vol. 6, pp. 413–427, 1964. Butcher, J. C., Modified multistep method for numerical integration of ordinary differential equations, J. Assoc. Comput. Mach., Vol. 12, No. 1, pp. 124–135, 1965. Butcher, J. C., Order, stepsize and stiffness switching, Computing, Vol. 44, No. 3, pp. 209–220, 1990. Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods, Wiley-Interscience, New York, 1987. Candy, J. and Rozmus, R., A symplectic integration algorithm for separable Hamiltonian functions, J. Comput. Phys., Vol. 92, pp. 230–256, 1991. Cash, J. R., The integration of stiff IVP in ODE using modified extended BDF, Computers and Mathematics with Applications, Vol. 9, pp. 645–657, 1983. Cash, J. R. and Considine, S., An MEBDF code for stiff initial value problems, ACM Trans. Math. Software (TOMS), Vo. 18, No. 2, pp. 142–155, 1992. Cash, J. R. and Karp, A. H., A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides, ACM Transactions on Mathematical Software, Vol. 16, No. 3, pp. 201–222, 1990. Chapra, S. C. and Canale, R. P., Numerical Methods for Engineers, 6th Edition, McGraw-Hill, Boston, 2010. Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B., and Watt, S. M., A Tutorial Introduction to Maple V, Springer, Wien, New York, 1992. Cheb-Terrab, E. S., Duarte, L. G. S., and da Mota, L. A. C. P., Computer algebra solving of first order ODEs using symmetry methods, Computer Physics Communications, Vol. 101, pp.254– 268, 1997. Cheb-Terrab, E. S. and von Bulow, K., A computational approach for the analytical solving of partial differential equations, Computer Physics Communications, Vol. 90, pp. 102–116, 1995. Cheb-Terrab, E. S. and Kolokolnikov, T., First-order ordinary differential equations, symmetries and linear transformations, European Journal of Applied Mathematics, Vol. 14, pp. 231–246, 2003. Cheb-Terrab, E. S. and Roche, A. D., Symmetries and first order ODE patterns, Computer Physics Communications, Vol. 113, pp. 239–260, 1998. Cheb-Terrab, E. S., Duarte, L. G. S., and da Mota, L. A. C. P., Computer algebra solving of second order ODEs using symmetry methods, Computer Physics Communications, Vol. 108, pp. 90–114, 1998. 1411 Chicone, C., Ordinary Differential Equations with Applications, Springer, Berlin, 1999. Chowdhury, A. R., Painlevé Analysis and Its Applications, Chapman & Hall/CRC Press, Boca Raton, 2000. Clarkson, P. A., The third Painlevé equation and associated special polynomials, J. Phys. A, Vol. 36, pp. 9507–9532, 2003. Clarkson, P. A., Painlevé Equations — Nonlinear Special Functions: Computation and Application. In: Orthogonal Polynomials and Special Functions (Eds. Marcell, F. and van Assche, W.), Vol. 1883 of Lecture Notes in Math., pp. 331–411. Springer, Berlin , 2006. Cohen, S. D. and Hindmarsh, A. C., CVODE, a Stiff/Nonstiff ODE Solver in C, Computers in Physics, Vol. 10, No. 2, pp. 138–143, 1996. Cole, G. D., Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company, Waltham, MA, 1968. Collatz, L., Eigenwertaufgaben mit Technischen Anwendungen, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1963. Conte, S. D. and de Boor, C., Elementary Numerical Analysis. An Algorithmic Approach, McGrawHill, 1980. Conte, R., The Painlevé approach to nonlinear ordinary differential equations. In: The Painlevé Property (ed. by R. Conte), pp. 77–180, CRM Series in Mathematical Physics, Springer, New York, 1999. Corless, R. M., Essential Maple, Springer, Berlin, 1995. Crawford, J. D., Introduction to bifurcation theory, Rev. Mod. Phys., Vol. 63, No. 4, 1991. Davenport, J. H., Siret, Y., and Tournier, E., Computer Algebra Systems and Algorithms for Algebraic Computation, Academic Press, London, 1993. Dekker, T. J., Finding a zero by means of successive linear interpolation. In: Constructive Aspects of the Fundamental Theorem of Algebra (Dejon, B. and Henrici, P., eds.), Wiley-Interscience, London, 1969. Del Buono, N. and Lopez, L., Runge–Kutta type methods based on geodesics for systems of ODEs on the Stiefel manifold, BIT, Vol. 41, No. 5, pp. 912–923, 2001. Deuflhard, P., Recent progress in extrapolation methods for ordinary differential equations, SIAM Rev., Vol. 27, pp. 505–535, 1985. Deuflhard, P., Hairer, E. and Zugck, J., One-step and extrapolation methods for differentialalgebraic systems, Numer. Math., Vol. 51, pp. 501–516, 1987. Deuflhard, P., Fiedler, B., and Kunkel, P., Efficient numerical path following beyond critical points, SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, Vol. 24, pp. 912–927, 1987. Dieci, L., Russel, R. D., and van Vleck, E. S., Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Num. Anal., Vol 31, pp. 261–281, 1994. Dieci, L. and van Vleck, E. S., Computation of orthonormal factors for fundamental solution matrices, Numer. Math., Vol. 83, pp. 599–620, 1999. Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus, Pergamon Press, New York, 1965. Dlamini, P.G. and Khumalo, M., On the computation of blow-up solutions for semilinear ODEs and parabolic PDEs, Math. Problems in Eng., Vol. 2012, Article ID 162034, 15 p., 2012. Dobrokhotov, S. Yu., Integration by quadratures of 2n-dimensional linear Hamiltonian systems with n known skew-orthogonal solutions, Russ. Math. Surveys, Vol. 53, No. 2, pp. 380–381, 1998. Doetsch, G., Handbuch der Laplace-Transformation. Theorie der Laplace-Transformation, Birkhäuser, Basel–Stuttgart, 1950. 1412 Doetsch, G., Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation, Birkhäuser, Basel–Stuttgart, 1956. Doetsch, G., Introduction to the Theory and Application of the Laplace Transformation, Springer, Berlin, 1974. Dormand, J. R., Numerical Methods for Differential Equations: A Computational Approach, CRC Press, Boca Raton, 1996. Ebaid, A., Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys. Letters A, Vol. 365, No. 3, pp. 213–219, 2007. Elkin, V. I., Reduction of underdetermined systems of ordinary differential equations: I, Differential Equations, Vol. 45, No. 12, pp. 1721–1731, 2009. Elkin, V. I., Classification of certain types of underdetermined systems of ordinary differential equations, Doklady Mathematics, Vol. 81, No. 3, pp. 362–363, 2010. El’sgol’ts, L. E., Differential Equations, Gordon & Breach Inc., New York, 1961. Enright, W. H., The Relative Efficiency of Alternative Defect Control Schemes for High Order Continuous Runge–Kutta Formulas, Technical Report 252/91, Dept. of Computer Science, University of Toronto, 1991. Enright, W. H., Jackson, K. R., Nørsett, S. P. and Thomsen, P. G., Interpolants for Runge–Kutta formulas, ACM TOMS, Vol. 12, pp. 193–218, 1986. Enright, W. H., Jackson, K. R., Nørsett, S. P. and Thomsen, P. G., Effective solution of discontinuous IVPS using a RKF pair with interpolants, Proceed. ODE Conference held at Sandia National Lab., Albuquerque, New Mexico, 1986. Enright, W. H., A new error-control for initial value solvers, Appl. Math. Comput., Vol. 31, pp. 588– 599, 1989. Erbe, L. H., Hu, S., and Wang, H., Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., Vol. 184, pp. 640–648, 1994. Erbe, L. H. and Wang, H.,, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., Vol. 120, pp. 743–748, 1994. Evans, D. J and Raslan, K. R., The Adomian decomposition method for solving delay differential equations, Int. J. Comput. Math., Vol. 82, pp. 49–54, 2005. Faddeev, S. I. and Kogan, V. V., Nonlinear Boundary Value Problems for Systems of Ordinary Differential Equations on Finite Interval [in Russian], Novosibirsk State University, Novosibirsk, 2008. Fan, E., Extended tanh-function method and its applications to nonlinear equations, Phys. Letters A, Vol. 277, No. 4–5, pp. 212–218, 2000. Fedoryuk, M. V., Asymptotic Analysis. Linear Ordinary Differential Equations, Springer, Berlin, 1993. Fehlberg, E., Klassische Runge–Kutta–Formeln vierter und niedrigerer ordnung mit schrittweitenlontrolle und ihre anwendung auf waermeleitungsprobleme, Computing, Vol. 6, pp 61–71, 1970. Finlayson, B. A., The Method of Weighted Residuals and Variational Principles, Academic Press, New York, 1972. Fokas, A. S. and Ablowitz M. J., On unified approach to transformation and elementary solutions of Painlevé equations, J. Math. Phys., Vol. 23, No. 11, pp. 2033–2042, 1982. Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical Computations, Prentice Hall, New Jersey, 1977. Fox, L. and Mayers, D. F., Numerical Solution of Ordinary Differential Equations for Scientists and Engineers, Chapman & Hall, 1987. Frank-Kamenetskii, D. A., Diffusion and Heat Transfer in Chemical Kinetics, 2nd Edition [in Russian], Nauka, Moscow, 1987 (English edition: Plenum Press, 1969). 1413 Gaisaryan, S. S., Differential equations, ordinary, approximate methods of solution. In: Encyclopedia of Mathematics, Kluwer, 2002. URL: http://www.encyclopediaofmath.org/index.php?title= Differential equations, ordinary, approximate methods of solution of&oldid=11532 Galaktionov, V. A. and Svirshchevskii, S. R., Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman & Hall/CRC Press, Boca Raton, 2006. Gambier, B., Sur les équations differentielles du second ordre et du premier degré dont l‘integrale générale est à points critiques fixes, Acta Math., Vol. 33, pp. 1–55, 1910. Gantmakher, F. R., Lectures on Analytical Mechanics [in Russian], Fizmatlit, Moscow, 2002. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Upper Saddle River, NJ, 1971. Geddes, K. O., Czapor, S. R., and Labahn, G., Algorithms for Computer Algebra, Kluwer Academic Publishers, Boston, 1992. Getz, C. and Helmstedt, J., Graphics with Mathematica: Fractals, Julia Sets, Patterns and Natural Forms, Elsevier Science & Technology Book, Amsterdam, Boston, 2004. Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Springer, New York, 1972. Godunov, S. K. and Ryaben’kii, V. S., Differences Schemes [in Russian], Nauka, Moscow, 1973. Golub, G. H. and van Loan, C. F., Matrix Computations, 3rd ed., Johns Hopkins University Press, 1996. Golubev, V. V., Lectures on Analytic Theory of Differential Equations [in Russian], GITTL, Moscow, 1950. Goriely, A. and Hyde, C., Necessary and sufficient conditions for finite time singularities in ordinary differential equations, J. Differential Equations, Vol. 161, pp. 422–448, 2000. Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals, Series, and Products, Academic Press, New York, 1980. Gragg, W. B., On extrapolation algorithms for ordinary initial value problems, SIAM J. Num. Anal., Vol. 2, pp. 384–403, 1965. Gray, T. and Glynn, J., Exploring Mathematics with Mathematica: Dialogs Concerning Computers and Mathematics, Addison-Wesley, Reading, MA, 1991. Gray, J. W., Mastering Mathematica: Programming Methods and Applications, Academic Press, San Diego, 1994. Green, E., Evans, B. and Johnson, J., Exploring Calculus with Mathematica, Wiley, New York, 1994. Grimshaw, R., Nonlinear Ordinary Differential Equations, CRC Press, Boca Raton, 1991. Gromak, V. I., Painlevé Differential Equations in the Complex Plane, Walter de Gruyter, Berlin, 2002. Gromak, V. I. and Lukashevich, N. A., Analytical Properties of Solutions of Painlevé Equations [in Russian], Universitetskoe, Minsk, 1990. Guckenheimer J. and Holms P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. Gustafsson, K., Control theoretic techniques for stepsize selection in explicit Runge–Kutta methods, ACM Trans. Math. Soft., No. 17, pp. 533–554, 1991. Hairer, E. and Lubich, C., On extrapolation methods for stiff and differential-algebraic equations, Teubner Texte zur Mathematik, Vol. 104, pp. 64–73, 1988. Hairer, E., Symmetric projection methods for differential equations on manifolds, BIT, Vol. 40, No. 4, pp. 726–734, 2000. 1414 Hairer, E., Lubich, C., and Roche, M., The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer, Berlin, 1989. Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002. Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd ed., Springer, Berlin, 1993. Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II. Stiff and DifferentialAlgebraic Problems, 2nd ed., Springer, New York, 1996. Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York, 1964. He, J.-H. and Wu, X.-H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, Vol. 30, No. 3, pp. 700–708, 2006. He, J.-H. and Abdou, M. A., New periodic solutions for nonlinear evolution equations using Expfunction method, Chaos, Solitons & Fractals, Vol. 34, No. 5, pp. 1421–1429, 2007. Heck, A., Introduction to Maple, 3rd ed., Springer, New York, 2003. Higham, N. J., Functions of Matrices. Theory and Computation, SIAM, Philadelphia, 2008. Hill, J. M., Solution of Differential Equations by Means of One-Parameter Groups, Pitman, Marshfield, MA, 1982. Hindmarsh, A. C., Odepack, a systemized collection of ODE solvers. In: Scientific Computing (Stepleman, R. S. et al., eds.), pp. 55–64, North-Holland, Amsterdam, 1983. Hirota, C. and Ozawa, K., Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations: An application to the blow-up problems of partial differential equations, J. Comput. & Applied Math., Vol. 193, No. 2, pp. 614-637, 2006. Hosea, M. E. and Shampine, L. F., Analysis and implementation of TR-BDF2, Appl. Numer. Math., Vol. 20, pp. 21–37, 1996. Hubbard J. H. and West, B. H., Differential Equations: A Dynamical Systems Approach. Part I. One Dimensional Equations, Springer, New York, 1990. Hull, T. E., Enright, W. H., Fellen, B. M., and Sedgwick, A. E., Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal., Vol. 9, pp. 603–637, 1972. Hydon, P. E., Symmetry Methods for Differential Equations: A Beginner’s Guide, Cambridge Univ. Press, Cambridge, 2000. Ibragimov, N. H., A Practical Course in Differential Equations and Mathematical Modelling, Higher Education Press – World Scientific Publ., Beijing – Singapore, 2010. Ibragimov, N. H. (Editor), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, CRC Press, Boca Raton, 1994. Ibragimov, N. H., Elementary Lie Group Analysis and Ordinary Differential Equations, John Wiley, Chichester, 1999. Ibragimov, N. H., Transformation Groups Applied to Mathematical Physics, (English translation published by D. Reidel), Dordrecht, 1985. Ince, E. L., Ordinary Differential Equations, Dover Publications, New York, 1956. Iooss G. and Joseph D. D., Elementary Stability and Bifurcation Theory, Springer-Verlag, New York, 1997. Its, A. R. and Novokshenov, V. Yu., The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Springer, Berlin, 1986. Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, 2007. Jackson, L. K. and Palamides, P. K.,, An existence theorem for a nonlinear two-point boundary value problem, J. Differential Equations, Vol. 53, pp. 48–66, 1984. 1415 Jacobi, C. G. J., Vorlesungen über Dynamik, G. Reimer, Berlin, 1884. Kahaner, D., Moler, C., and Nash, S., Numerical Methods and Software, Prentice-Hall, New Jersey, 1989. Kalitkin, N. N., Numerical Methods [in Russian], Nauka, Moscow, 1978. Kalitkin, N. N., Alshin, A. B., Alshina, E. A., and Rogov, B. V., Computation on Quasiuniform Meshes [in Russian], Fizmatlit, Moscow, 2005. Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen, I, Gewöhnliche Differentialgleichungen, B. G. Teubner, Leipzig, 1977. Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces [in Russian], Fizmatgiz, Moscow, 1959. Kantorovich, L. V. and Krylov, V. I., Approximate Methods of Higher Analysis [in Russian], Fizmatgiz, Moscow, 1962. Karakostas, G. L., Nonexistence of solutions to some boundary-value problems for second-order ordinary differential equations, Electron. J. Differential Equations, No. 20, pp. 1–10, 2012. Keller, H. B., Numerical Solutions of Two Point Boundary Value Problems, SIAM, Philadelphia, 1976. Keller, J. B., The shape of the strongest column, Archive for Rational Mechanics and Analysis, Vol. 5, 275–285, 1960. Keller J. and Antman S. (Eds.), Bifurcation Theory and Nonlinear Eigenvalue Problems, W. A. Benjamin Publ., New York, 1969. Kevorkian, J. and Cole, J. D., Perturbation Methods in Applied Mathematics, Springer, New York, 1981. Kevorkian, J. and Cole, J. D., Multiple Scale and Singular Perturbation Methods, Springer, New York, 1996. Kierzenka, J. and Shampine, L. F., A BVP solver based on residual control and the MATLAB PSE, ACM Trans. Math. Software, Vol. 27, pp. 299–316, 2001. Klein, F. and Sommerfeld, A., Über die Theorie des Kreisels, Johnson Reprint corp., New York, 1965. Klimov, D. M. and Zhuravlev, V. Ph., Group-Theoretic Methods in Mechanics and Applied Mathematics, Taylor & Francis, London, 2002. Korman, P. and Li, Y., Computing the location and the direction of bifurcation for sign changing solutions, Dif. Equations & Applications, Vol. 2, No. 1, pp. 1–13, 2010. Korman, P. and Li, Y., On the exactness of an S-shaped bifurcation curve, Proc. Amer. Math. Soc., Vol. 127, No. 4, pp. 1011–1020, 1999. Korman, P., Li, Y., and Ouyang, T., Computing the location and the direction of bifurcation, Math. Research Letters, Vol. 12, pp. 933–944, 2005. Korman, P., Global solution branches and exact multiplicity of solutions for two point boundary value problems. In: Handbook of Differential Equations, Ordinary Differential Equations, Vol 3 (Canada A., Drabek P., and Fonda, A., eds.), Elsevier Science, North Holland, pp. 547–606, 2006. Korn, G. A. and Korn, T. M., Mathematical Handbook for Scientists and Engineers, 2nd Edition, Dover Publications, New York, 2000. Kostyuchenko, A. G. and Sargsyan, I. S., Distribution of Eigenvalues (Self-Adjoint Ordinary Differential Operators) [in Russian], Nauka, Moscow, 1979. Kowalewsky, S., Sur le proble’me de la rotation d’un corps solide autor d’un point fixe, Acta. Math., Vol. 12, No. 2, pp. 177–232, 1889. 1416 Kowalewsky, S., Me’moires sur un cas particulies du proble’me de la rotation d’un point fixe, cu’ l’integration s’effectue a’ l’aide de fonctions ultraelliptiques du tems, Me’moires pre’sente’s par divers savants a’ l’Acade’mie des seiences de l’Institut national de France, Paris, Vol. 31, pp. 1–62, 1890. Koyalovich, B. M., Studies on the differential equation y dy−y dx = R dx [in Russian], Akademiya Nauk, St. Petersburg, 1894. Krasnosel’skii, M. A., Vainikko, G. M., Zabreiko, P. P., et al., Approximate Solution of Operator Equations [in Russian], Nauka, Moscow, 1969. Kreyszig, E., and Normington, E. J., Maple Computer Manual for Advanced Engineering Mathematics, Wiley, New York, 1994. Kudryashov, N. A., Symmetry of algebraic and differential equations, Soros Educational Journal [in Russian], No. 9, pp. 104–110, 1998. Kudryashov, N. A., Nonlinear differential equations with exact solutions expressed via the Weierstrass function, Zeitschrift fur Naturforschung, Vol. 59, pp. 443–454, 2004. Kudryashov, N. A., Analytical Theory of Nonlinear Differential Equations [in Russian], Institut kompjuternyh issledovanii, Moscow–Izhevsk, 2004. Kudryashov, N. A., Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos, Solitons and Fractals, Vol. 24, No. 5, pp. 1217–1231, 2005. Kudryashov, N. A., A note on the G′ /G-expansion method, Applied Math. & Computation, Vol. 217, No. 4, pp. 1755–1758, 2010. Kudryashov, N. A., One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat., Vol. 17, pp. 2248–2253, 2012. Kudryashov, N. A., Polynomials in logistic function and solitary waves of nonlinear differential equations, Applied Math. & Computation, Vol. 219, pp. 9245–9253, 2013. Kudryashov, N. A., Logistic function as solution of many nonlinear differential equations, Applied Math. & Modelling, Vol. 39, No. 18, pp. 5733–5742, 2015. Kudryashov, N. A. and Loguinova, N. V., Extended simplest equation method for nonlinear differential equations, Applied Math. & Computation, Vol. 205, pp. 396–402, 2008. Kudryashov, N. A. and Sinelshchikov, D. I., Nonlinear differential equations of the second, third and fourth order with exact solutions, Applied Math. & Computation, Vol. 218, pp. 10454– 10467, 2012. Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, 3rd Edition, Springer, New York, 2004. Laetsch, T., The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., Vol. 20, pp. 1–13, 1970. Lagerstrom, P. A., Matched Asymptotic Expansions. Ideas and Techniques, Springer, New York, 1988. Lagrange, J. L., Me’canique analyticque. Oeuvres de Lagrange, Vol. 12, Gauthier–Villars, Paris, 1889. Lambert, J. D., Computational Methods in Ordinary Differential Equations, Wiley, New York, 1973. Lambert, J. D., Numerical Methods for Ordinary Differential Systems, Wiley, New York, 1991. Lapidus, L., Aiken, R. C., and Liu, Y. A., The occurrence and numerical solution of physical and chemical systems having widely varying time constants. In: Stiff Differential Systems (R. A. Willoughby, editor), pp. 187–200, Plenum, New York, 1973. Lee, H. J. and Schiesser, W. E., Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB, Chapman & Hall/CRC Press, Boca Raton, 2004. LePage, W. R., Complex Variables and the Laplace Transform for Engineers, Dover Publications, New York, 1980. 1417 Levitan, B. M. and Sargsjan, I. S., Sturm–Liouville and Dirac Operators, Kluwer Academic, Dordrecht, 1990. Lian, W.-C., Wong, F.-H., and Yen, C.-C., On the existence of positive solutions of nonlinear second order differential equations, Proc. American Math. Society, Vol. 124, No. 4, pp. 1117– 1126, 1996. Lin, C. C. and Segel, L. A., Mathematics Applied to Deterministic Problems in the Natural Sciences, SIAM, Philadelphia, PA, 1998. Linchuk, L. V., On group analysis of functional differential equations [in Russian]. In: Proc. of the Int. Conf MOGRAN-2000 “Modern Group Analysis for the New Millennium,” pp. 111–115, USATU Publishers, Ufa, 2001. Linchuk, L. V. and Zaitsev, V. F., Searching for first integrals and alternative symmetries [in Russian]. In: Some Topical Problems of Modern Mathematics and Mathematical Education, Proc. LXVIII International Conference “Herzen Readings – 2015” (13–17 April 2015, St. Petersburg, Russia), A. I. Herzen Russian State Pedagogical University, 2015, pp. 50–53. Lubich, C., Linearly implicit extrapolation methods for differential-algebraic systems, Numer. Math., Vol. 55, pp. 197–211, 1989. MacCallum, M. A. H., Using computer algebra to solve ordinary differential equations. In: Studies for Computer Algebra in Industry, (Cohen, A.M., van Gastel L. J. and Verduyn Lunel, S. M., eds.) Vol. 2, John Wiley and Sons, Chichester, 1995. MacDonald, N., Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989. Maeder, R. E., Programming in Mathematica, 3rd ed., Addison-Wesley, Reading, MA, 1996. Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. Phys., Vol. 60, No. 7, pp. 650–654, 1992. Malfliet, W. and Hereman, W., The tanh method: exact solutions of nonlinear evolution and wave equations, Phys. Scripta, Vol. 54, pp. 563–568, 1996. Maplesoft, Differential Equations in Maple 15, Maplesoft, Waterloo, 2012. Marchenko, V. A., Sturm–Liouville Operators and Applications, Birkhäuser Verlag, Basel–Boston, 1986. Marchuk, G., Some applications of splitting-up methods to the solution of mathematical physics problems, Aplikace Matematiky, Vol. 13, pp. 103–132, 1968. Markeev, A. P., Theoretical Mechanics [in Russian], Regular and Chaotic Dynamics, Moscow– Izhevsk, 2001. Marsden J. E. and McCracken M., Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976. Matveev, N. M., Methods of Integration of Ordinary Differential Equations [in Russian], Vysshaya Shkola, Moscow, 1967. McGarvey, J. F., Approximating the general solution of a differential equation, SIAM Review, Vol. 24, No. 3, pp. 333–337, 1982. McLachlan, N. W., Theory and Application of Mathieu Functions, Clarendon Press, Oxford, 1947. McLachlan, R. I. and Atela, P., The accuracy of symplectic integrators, Nonlinearity, Vol. 5, pp. 541–562, 1992. Meade, D. B., May, M. S. J., Cheung, C-K., and Keough, G. E., Getting Started with Maple, 3rd ed., Wiley, Hoboken, NJ, 2009. Mickens, R.E., Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994. Mikhlin, S. G., Variational Methods in Mathematical Physics [in Russian], Nauka, Moscow, 1970. 1418 Meyer-Spasche, R., Difference schemes of optimum degree of implicitness for a family of simple ODEs with blow-up solutions, J. Comput. and Appl. Mathematics, Vol. 97, pp. 137–152, 1998. Mikhlin, S. G. and Smolitskii, Kh. L., Approximate Solution Methods for Differential and Integral Equations [in Russian], Nauka, Moscow, 1965. Miles, J. W., Integral Transforms in Applied Mathematics, Cambridge University Press, Cambridge, 1971. Milne, E., Clarkson, P. A., and Bassom, A. P., Bäcklund transformations and solution hierarchies for the third Painlevé equation., Stud. Appl. Math., Vol. 98, No. 2, pp. 139–194, 1997. Moriguti, S., Okuno, C., Suekane, R., Iri, M., and Takeuchi, K., Ikiteiru Suugaku — Suuri Kougaku no Hatten [in Japanese], Baifukan, Tokyo, 1979. Moussiaux, A., CONVODE: Un Programme REDUCE pour la Résolution des Équations Différentielles, Didier Hatier, Bruxelles, 1996. Murdock, J. A., Perturbations. Theory and Methods, John Wiley & Sons, New York, 1991. Murphy, G. M., Ordinary Differential Equations and Their Solutions, D. Van Nostrand, New York, 1960. Nayfeh, A. H., Perturbation Methods, John Wiley & Sons, New York, 1973. Nayfeh, A. H., Introduction to Perturbation Techniques, John Wiley & Sons, New York, 1981. Nikiforov, A. F. and Uvarov, V. B., Special Functions of Mathematical Physics. A Unified Introduction with Applications, Birkhäuser Verlag, Basel–Boston, 1988. Oberhettinger, F. and Badii, L., Tables of Laplace Transforms, Springer, New York, 1973. Ockendon, J. R. and Taylor, A. B., The dynamics of a current collection system for an electric locomotive, Proc. Royal Society of London A, Vol. 322, pp. 447–468, 1971. Olver, F. W. J., Asymptotics and Special Functions, Academic Press, New York, 1974. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (Editors), NIST Handbook of Mathematical Functions, NIST and Cambridge Univ. Press, Cambridge, 2010. Olver, P. J., Application of Lie Groups to Differential Equations, Springer, New York, 1986. Olver, P. J., Equivalence, Invariants, and Symmetry, Cambridge Univ. Press, Cambridge, 1995. Olver, P. J., Nonlinear Ordinary Differential Equations, 2012 http://www-users.math.umn.edu/ ∼olver/am /odz.pdf Ovsiannikov, L. V., Group Analysis of Differential Equations, Academic Press, New York, 1982. Painlevé, P., Mémoire sur les équations differentielles dont l‘integrale générale est uniforme, Bull. Soc. Math. France, Vol. 28, pp. 201–261, 1900. Paris, R. B., Asymptotic of High Order Differential Equations, Pitman, London, 1986. Parkes, E. J., Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations, Appl. Math. Comp., Vol. 217, No. 4, pp. 1749–1754, 2010. Pavlovskii, Yu. N. and Yakovenko, G. N., Groups admitted by dynamical systems [in Russian]. In: Optimization Methods and Applications, Nauka, Novosibirsk, pp. 155–189, 1982. Petrovskii, I. G., Lectures on the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow, 1970. Petzold, L. R., Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput., Vol. 4, pp. 136–148, 1983. Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. Polyanin, A. D., Systems of Ordinary Differential Equations, From Website EqWorld—The World of Mathematical Equations, 2006; http://eqworld.ipmnet.ru/en/solutions/sysode.htm. Polyanin, A. D., Elementary theory of using invariants for solving mathematical equations, Vestnik Samar. Gos. Univ., Estestvennonauchn. Ser. [in Russian], No. 6(65), pp. 152–176, 2008. 1419 Polyanin, A. D., Overdetermined systems of nonlinear ordinary differential equations with parameters and their applications, Bulletin of the National Research Nuclear University MEPhI [in Russian], Vol. 5, No. 2, pp. 122–136, 2016. Polyanin, A. D. and Chernoutsan, A. I. (Eds.) A Concise Handbook of Mathematics, Physics, and Engineering Sciences, CRC Press, Boca Raton, 2011. Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations, 2nd Edition, Chapman & Hall/CRC Press, Boca Raton, 2008. Polyanin, A. D. and Manzhirov, A. V., Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2007. Polyanin, A. D. and Shingareva, I. K., Nonlinear blow-up problems: Numerical integration based on differential and nonlocal transformations, Bulletin of the National Research Nuclear University MEPhI [in Russian], Vol. 6, No. 4, pp. 282–297, 2017a. Polyanin, A. D. and Shingareva, I. K., The use of differential and non-local transformations for numerical integration of non-linear blow-up problems, Int. J. Non-Linear Mechanics, Vol. 95, pp. 178–184, 2017b. Polyanin, A. D. and Shingareva, I. K., Numerical integration of blow-up problems on the basis of non-local transformations and differential constraints, arXiv:1707.03493 [math.NA], 2017c. Polyanin, A. D. and Shingareva, I. K., Nonlinear problems with non-monotonic blow-up solutions: The method of non-local transformations, test problems, and numerical integration, Bulletin of the National Research Nuclear University MEPhI [in Russian], Vol. 6, No. 5, pp. 405–424, 2017d. Polyanin, A. D. and Shingareva, I. K., Non-monotonic blow-up problems: Test problems with solutions in elementary functions, numerical integration based on non-local transformations, Applied Mathematics Letters, Vol. 76, pp. 123–129, 2018. Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, Boca Raton, 1995. Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman & Hall/CRC Press, Boca Raton, 2003. Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Mathematical Physics Equations [in Russian], Fizmatlit, Moscow, 2002. Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, Chapman & Hall/CRC Press, Boca Raton, 2004. Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 2nd Edition, CRC Press, Boca Raton, 2012. Polyanin, A. D., Zaitsev, V. F., and Moussiaux, A., Handbook of First Order Partial Differential Equations, Taylor & Francis, London, 2002. Polyanin, A. D. and Zhurov, A. I., Parametrically defined nonlinear differential equations and their applications in boundary layer theory, Bulletin of the National Research Nuclear University MEPhI [in Russian], Vol. 5, No. 1, pp. 23–31, 2016a. Polyanin, A. D. and Zhurov, A. I., Parametrically defined nonlinear differential equations and their solutions: Application in fluid dynamics, Appl. Math. Lett., Vol. 55, pp. 72–80, 2016b. Polyanin, A. D. and Zhurov, A. I., Functional and generalized separable solutions to unsteady Navier–Stokes equations, Int. J. Non-Linear Mechanics, Vol. 79, pp. 88–98, 2016c. Polyanin, A. D. and Zhurov, A. I., Parametrically defined nonlinear differential equations, differential-algebraic equations, and implicit ODEs: Transformations, general solutions, and integration methods, Appl. Math. Lett., Vol. 64, pp. 59–66, 2017a. Polyanin, A. D. and Zhurov, A. I., Parametrically defined differential equations, Journal of Physics: IOP Conf. Series, Vol. 788, 2017b, 012078; http://iopscience.iop.org/article/10.1088/ 1742-6596/788/1/012028/pdf. 1420 Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 1, Elementary Functions, Gordon & Breach Sci. Publ., New York, 1986. Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 4, Direct Laplace Transform, Gordon & Breach, New York, 1992a. Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 5, Inverse Laplace Transform, Gordon & Breach, New York, 1992b. Puu, T., Attractions, Bifurcations, and Chaos: Nonlinear Phenomena in Economics, SpringerVerlag, New York, 2000. Rabier, P. J. and Rheinboldt, W. C., Theoretical and numerical analysis of differential-algebraic equations, Handbook of Numerical Analysis, Elsevier, Vol. 8, pp. 183–540, North-Holland, Amsterdam, 2002. Ray J. R. and Reid, J. L., More exact invariants for the time dependent harmonic oscillator, Phys. Letters, Vol. 71, pp. 317–319, 1979. Reid, W. T., Riccati Differential Equations, Academic Press, New York, 1972. Reiss, E. L., Bifurcation Theory and Nonlinear Eigenvalue Problems., W. A. Benjamin Publ., New York, 1969. Reiss, E. L., Column buckling: An elementary example of bifurcation. In: Bifurcation Theory and Nonlinear Eigenvalue Problems (J. B. Keller and S. Antman, eds.), pp. 1–16, W. A. Benjamin Publ., New York, 1969. Reiss, E. L. and Matkowsky, B. J., Nonlinear dynamic buckling of a compressed elastic column, Quart. Appl. Math., Vol. 29, 245–260, 1971. Richards, D., Advanced Mathematical Methods with Maple, Cambridge University Press, Cambridge, 2002. Ronveaux, A. (Editor), Heun’s Differential Equations, Oxford University Press, Oxford, 1995. Rosen, G., Alternative integration procedure for scale-invariant ordinary differential equations, Intl. J. Math. & Math. Sci., Vol. 2, pp. 143–145, 1979. Rosenbrock, H. H., Some general implicit processes for the numerical solution of differential equations, Comput. J., 1963, Vol. 5, No. 4, pp. 329–330. Ross, C. C., Differential Equations: An Introduction with Mathematica, Springer, New York, 1995. Russell, R. D. and Shampine, L. F., Numerische Mathematik, Bd. 19, No. 1, S. 1–28, 1972. Sachdev, P. L., Nonlinear Ordinary Differential Equations and Their Applications, Marcel Dekker, New York, 1991. Sagdeev, R. Z., Usikov, D. A., and Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Academic Publ., New York, 1988. Saigo, M. and Kilbas, A. A., Solution of one class of linear differential equations in terms of Mittag-Leffler type functions [in Russian], Dif. Uravneniya, Vol. 38, No. 2, pp. 168–176, 2000. Sanz-Serna, J. M. and Calvo, M. P., Numerical Hamiltonian Problems: Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1994. Schiesser, W. E., Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs, CRC Press, Boca Raton, 1994. Shampine, L. F. and M. K. Gordon, M. K., Computer Solution of Ordinary Differential Equations: the Initial Value Problem, W. H. Freeman, San Francisco, 1975. Shampine, L. F. and Watts, H. A., The art of writing a Runge–Kutta code I. In: Mathematical Software III (J. R. Rice, editor), Academic Press, New York, 1977. Shampine, L. F. and Watts, H. A., The art of writing a Runge–Kutta code II, Appl. Math. Comput., Vol. 5, pp. 93–121, 1979. 1421 Shampine, L. F. and Gear, C. W., A user’s view of solving stiff ordinary differential equations, SIAM Review, Vol. 21, pp.1–17, 1979. Shampine, L. F. and Baca, L. S., Smoothing the extrapolated midpoint rule, Numer. Math., Vol. 41, pp. 165–175, 1983. Shampine, L. F., Control of step size and order in extrapolation codes, J. Comp. Appl. Math., Vol. 18, pp. 3–16, 1987. Shampine, L. F., Numerical Solution of Ordinary Differential Equations, Chapman & Hall/CRC Press, Boca Raton, 1994. Shampine, L. F. and Reichelt, M. W., The MATLAB ODE Suite, SIAM Journal on Scientific Computing, Vol. 18, pp. 1–22, 1997. Shampine, L. F., Reichelt, M. W., and Kierzenka, J., Solving index-1 DAEs in MATLAB and Simulink, SIAM Rev., Vol. 41, No. 3, pp. 538552, 1999. Shampine, L. F. and Corless, R. M., Initial value problems for ODEs in problem solving environments, Journal of Computational and Applied Mathematics, Vol. 125, No. 1–2, pp.31– 40, 2000. Shampine, L. F. and Thompson, S., Solving DDEs in MATLAB, Appl. Numer. Math., Vol. 37, pp. 441–458, 2001. Shampine, L. F., Gladwell, I., and Thompson, S., Solving ODEs with MATLAB, Cambridge University Press, Cambridge, UK, 2003. Shingareva, I. K., Investigation of Standing Surface Waves in a Fluid of Finite Depth by Computer Algebra Methods, PhD thesis, Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 1995. Shingareva, I. K. and Lizárraga-Celaya, C., Maple and Mathematica. A Problem Solving Approach for Mathematics, 2nd ed., Springer, Wien, New York, 2009. Shingareva, I. K. and Lizárraga-Celaya, C., Solving Nonlinear Partial Differential Equations with Maple and Mathematica, Springer, Wien, New York, 2011. Shingareva, I. K. and Lizárraga-Celaya, C., On different symbolic notations for derivatives, The Mathematical Intelligencer, Vol. 37, No. 3, pp. 33–38, 2015. Simmons, G. F., Differential Equations with Applications and Historical Notes, McGraw-Hill, New York, 1972. Sintsov, D. M., Integration of Ordinary Differential Equations [in Russian], Kharkov, 1913. Slavyanov, S. Yu., Lay, W., and Seeger, A., Heun’s Differential Equation, University Press, Oxford, 1955. Sofroniou, M. and Spaletta, G., Construction of explicit Runge–Kutta pairs with stiffness detection, Mathematical and Computer Modelling (Special Issue on the Numerical Analysis of Ordinary Differential Equations), Vol. 40, No. 11–12, pp. 1157–1169, 2004. Sofroniou, M. and Spaletta, G., Derivation of symmetric composition constants for symmetric integrators, Optimization Methods and Software, Vol. 20, No. 4–5, pp. 597–613, 2005. Sofroniou, M. and Spaletta, G., Hybrid solvers for splitting and composition methods, J. Comp. Appl. Math. (Special Issue from the International Workshop on the Technological Aspects of Mathematics), Vol. 185, No. 2, pp. 278–291, 2006. Stepanov, V. V., A Course of Differential Equations, 7th Edition [in Russian], Gostekhizdat, Moscow, 1958. Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer, New York, 1982. Stephani, H., Differential Equations: Their Solution Using Symmetries (edited by M. A. H. MacCallum), Cambridge University Press, New York, 1989. 1422 Strang, G., On the construction of difference schemes, SIAM J. Num. Anal., Vol. 5, pp. 506–517, 1968. Stuart, M. and Floater, M. S., On the computation of blow-up, European J. Applied Math., Vol. 1, No. 1, pp. 47–71, 1990. Stephani, H., Differential Equations: Their Solutions Using Symmetries, Cambridge University Press, Cambridge, 1989. Strang, G., On the construction of difference schemes, SIAM J. Num. Anal., Vol. 5, pp. 506–517, 1968. Svirshchevskii, S. R., Lie–Bäcklund symmetries of linear ODEs and generalized separation of variables in nonlinear equations, Phys. Letters A, Vol. 199, pp. 344–348, 1995. Takayasu, A., Matsue, K., Sasaki, T., Tanaka, K., Mizuguchi, M., and Oishi, S., Numerical validation of blow-up solutions of ordinary differential equations, J. Comput. Applied Mathematics, Vol. 314, pp. 10–29, 2017. Temme, N. M., Special Functions. An Introduction to the Classical Functions of Mathematical Physics, Wiley-Interscience, New York, 1996. Tenenbaum, M. and Pollard, H., Ordinary Differential Equations, Dover Publications, New York, 1985. Teodorescu, P. P., Mechanical Systems, Classical Models: Volume II: Mechanics of Discrete and Continuous Systems, Springer, Berlin, 2009. Tikhonov, A. N., Vasil’eva, A. B., and Sveshnikov, A. G., Differential Equations [in Russian], Nauka, Moscow, 1985. Trotter, H. F., On the product of semi-group operators, Proc. Am. Math. Soc., Vol. 10, pp. 545–551, 1959. Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964. Van Hulzen, J. A. and Calmet, J., Computer algebra systems. In: Computer Algebra, Symbolic and Algebraic Manipulation, (Buchberger, B., Collins, G. E., and Loos, R., eds.), 2nd ed., pp. 221– 243, Springer, Berlin, 1983. Vasil’eva, A. B. and Nefedov, H. H., Nonlinear Boundary Value Problems [in Russian], Lomonosov MSU, Moscow, 2006; http://math.phys.msu.ru/data/57/Nefmaterial.pdf. Verner, J. H., Explicit Runge–Kutta methods with estimates of the local truncation error, SIAM Journal of Numerical Analysis, Vol. 15, No. 4, pp. 772–790, 1978. Vinogradov, I. M. (Editor), Mathematical Encyclopedia [in Russian], Soviet Encyclopedia, Moscow, 1979. Vinokurov, V. A. and Sadovnichii, V. A., Arbitrary-order asymptotic relations for eigenvalues and eigenfunctions in the Sturm–Liouville boundary-value problem on an interval with summable potential [in Russian], Izv. RAN, Ser. Matematicheskaya, Vol. 64, No. 4, pp. 47–108, 2000. Vitanov, N. K. and Dimitrova, Z. I., Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics, Commun. Nonlinear Sci. Numer. Simulat., Vol. 15, No. 10, pp. 2836–2845, 2010. Vvedensky, D. D., Partial Differential Equations with Mathematica, Addison-Wesley, Wokingham, 1993. Wang, D.-S., Ren, Y.-J., and Zhang, H.-Q., Further extended sinh-cosh and sin-cos methods and new non traveling wave solutions of the (2+1)-dimensional dispersive long wave equations, Appl. Math. E-Notes, Vol. 5, pp. 157–163, 2005. Wang, M. L., Li, X., Zhang, J., The G′/G-expansion method and evolution equations in mathematical physics, Phys. Lett. A, Vol. 372, pp. 417–421, 2008. Wang, S.-H., On S-shaped bifurcation curves, Nonlinear Anal., Vol. 22, No. 12, pp. 1475–1485, 1994. 1423 Wang, S.-H., On the evolution and qualitative behaviors of bifurcation curves for a boundary value problem, Nonlinear Analysis, Vol. 67, pp. 1316–1328, 2007. Wasov, W., Asymptotic Expansions for Ordinary Differential Equations, John Wiley & Sons, New York, 1965. Wazwaz, A. M., A sine-cosine method for handling nonlinear wave equations, Math. and Computer Modelling, Vol. 40, No. 5-6, pp. 499–508, 2004. Wazwaz, A. M., The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. Comput., Vol. 188, No. 2, pp. 1467–1475, 2007a. Wazwaz, A. M., Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method, Appl. Math. Comput., Vol. 190, No. 1, pp. 633–640, 2007b. Wazwaz, A. M., Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and Exp-function method, Appl. Math. Comput., Vol. 202, No. 1, pp. 275–286, 2008. Wazzan, L., A modified tanh-coth method for solving the KdV and the KdV–Burgers’ equations, Commun. Nonlinear Sci. and Numer. Simulation, Vol. 14, No. 2, pp. 443–450, 2009. Wester, M. J., Computer Algebra Systems: A Practical Guide, Wiley, Chichester, UK, 1999. Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis, Vols. 1–2, Cambridge University Press, Cambridge, 1952. Wiens, E. G., Bifurcations and Two Dimensional Flows. In: Egwald Mathematics: http://www. egwald.ca/nonlineardynamics/bifurcations.php Wiggins, S., Global bifurcations and Chaos: Analytical Methods, Springer-Verlag, New York, 1988. Wolfram, S., A New Kind of Science, Wolfram Media, Champaign, IL, 2002. Wolfram, S., The Mathematica Book, 5th ed., Wolfram Media, Champaign, IL, 2003. Yanenko, N. N., The compatibility theory and methods of integration of systems of nonlinear partial differential equations. In: Proceedings of All-Union Math. Congress, Vol. 2, pp. 613– 621, Nauka, Leningrad, 1964. Yermakov, V. P., Second-order differential equations. Integrability conditions in closed form [in Russian], Universitetskie Izvestiya, Kiev, No. 9, pp. 1–25, 1880. Zaitsev, O. V. and Khakimova, Z. N., Classification of new solvable cases in the class of polynomial differential equations [in Russian], Topical Issues of Modern Science [Aktual’nye voprosy sovremennoi nauki], No. 3, pp. 3–11, 2014. Zaitsev, V. F., Universal description of symmetries on a basis of the formal operators, Proc. Intl. Conf. MOGRAN-2000 “Modern Group Analysis for the New Millennium,” USATU Publishers, Ufa, pp. 157–160, 2001. Zaitsev, V. F. and Huan, H. N., Analogues of variational symmetry of third order ODE, Izvestia: Herzen University Journal of Humanities & Sciences, No. 154, pp. 33–41, 2013. Zaitsev, V. F. and Huan, H. N., Analogues of variational symmetry of the equation of the type y ′′′ = F (y, y ′ , y ′′ ), Izvestia: Herzen University Journal of Humanities & Sciences, No. 163, pp. 7–17, 2014. Zaitsev, V. F. and Linchuk, L. V., Differential Equations (Structural Theory), Part I [in Russian], A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2015. Zaitsev, V. F. and Linchuk, L. V., Differential Equations (Structural Theory), Part II [in Russian], A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2009. Zaitsev, V. F. and Linchuk, L. V., Differential Equations (Structural Theory), Part III [in Russian], A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2014. 1424 Zaitsev, V. F. and Linchuk, L. V., Six new factorizable classes of 2nd-order ODEs [in Russian], Some Topical Problems of Modern Mathematics and Mathematical Education, Proc. LXVIII International Conference “Herzen Readings – 2016” (11–15 April 2016, St. Petersburg, Russia), A. I. Herzen Russian State Pedagogical University, 2016, pp. 82–89. Zaitsev, V. F., Linchuk, L. V., and Flegontov, A. V., Differential Equations (Structural Theory), Part IV [in Russian], A. I. Herzen Russian State Pedagogical University, St. Petersburg, 2014. Zaitsev, V. F. and Polyanin, A. D., Discrete-Group Methods for Integrating Equations of Nonlinear Mechanics, CRC Press, Boca Raton, 1994. Zaitsev, V. F. and Polyanin, A. D., Handbook of Nonlinear Differential Equations: Exact Solutions and Applications in Mechanics [in Russian], Nauka, Moscow, 1993. Zaitsev, V. F. and Polyanin, A. D., Handbook of Ordinary Differential Equations [in Russian], Fizmatlit, Moscow, 2001. Zaslavsky, G. M., Introduction to Nonlinear Physics [in Russian], Fizmatlit, Moscow, 1988. Zayed, E. M. E., The G′/G-method and its application to some nonlinear evolution equations, J. Appl. Math. Comput., Vol. 30, pp. 89–103, 2009. Zhang, H., New application of the G′ /G-expansion method, Commun. Nonlinear Sci. Numer. Simulat., Vol. 14, pp. 3220–3225, 2009. Zhang, S., Application of Exp-function method to a KdV equation with variable coefficients, Phys. Letters A, Vol. 365, No. 5–6, pp. 448–453, 2007. Zhuravlev, V. Ph., The solid angle theorem in rigid body dynamics, J. Appl. Math. Mech., Vol. 60, No. 2, pp. 319–322, 1996. Zhuravlev, V. Ph., Foundations of Theoretical Mechanics [in Russian], Fizmatlit, Moscow, 2001. Zhuravlev, V. Ph. and Klimov, D. M., Applied Methods in Oscillation Theory [in Russian], Nauka, Moscow, 1988. Zimmerman, R. L. and Olness, F., Mathematica for Physicists, Addison-Wesley, Reading, MA, 1995. Zinchenko, N. S., A Lecture Course on Electron Optics [in Russian], Kharkov State University, Kharkov, 1958. Zwillinger, D., Handbook of Differential Equations, 3rd Edition, Academic Press, New York, 1997. 1425 View publication stats