Глава 3

реклама
Глава 3
Оптические системы в
когерентной оптике
3.1. Линзы как элементы, выполняющие преобразование Фурье
Наиболее важными компонентами систем, формирующих дифракционные картины и
изображения, являются линзы.
Рис. 1. Определение модуляционной характеристики тонкой линзы
Рассмотрим идеальную оптическую систему, т.е. систему не имеющую аберраций (см. рис.1.). В
идеальной оптической системе в каждой точке x входной плоскости соответствует одна и
только одна точка  . В соответствии с принципом Ферма длина оптического пути от точки x до
точки  для всех направлений распространения света одинакова. Так как геометрические пути
различны, выравнивание оптических путей происходит в линзе. Разность геометрического пути
для двух направлений: через центр линзы и через задний фокус равна
r  (r1  r2 )  ( R0  r3 )  R02  x12  y12  R12   2   2  R0  R12  ( x1   )2  ( y1   )2
(3.1)
Если на линзу "падает" плоская монохроматическая волна, то линза превращает ее в
сходящуюся сферическую волну, и наоборот.
В случае расположения источника света вблизи оптической оси можно значительно упростить
выражение для r .
x12  y12  2   2 ( x1   ) 2  ( y1   ) 2
r 


2 R0
2 R1
2 R1
(3.2)
Значение r , кроме уравнения 3.2 определяется так же уравнением геометрической оптики.
1 1
1
(3.3)


f R0 R1
где f - фокусное расстояние линзы. Подставляя 3.3 в 3.2, получаем
( x12  y12 )
r  
(3.4)
2f
Тогда для собирающей (положительной) линзы функция пропускания имеет вид
 k ( x12  y12 ) 
T ( x, y )  exp  i

(3.5)
2f


где f - фокусное расстояние линзы, k  2  -волновое число,  -длина волны света.
Пусть плоская волна единичной амплитуды "освещает" плоский объект с функцией
пропускания t ( x, y ) . Линза осуществляет фазовое преобразование вида exp  ik x 2  y 2  2 f
.
Тогда, если объект находится непосредственно перед линзой, то за линзой распределение
поля описывается выражением
t x, y exp  ik x 2  y 2  2 f
Используя приближение Френеля для нахождения комплексной амплитуды поля P x, y, f  в
фокальной плоскости линзы, получаем:




  i 2 xx  yy
exp ik x 2  y 2  2 f   




Px, y, f  
t
x
,
y
exp
dxdy.




if
f
 


(3.6)
Распределение поля в фокальной плоскости тонкой линзы пропорционально двумерному
фурье-образу от коэффициента пропускания объекта на частотах u1  2 x  f , u 2  2 y  f .
Интенсивность света в фокальной
1
I  x, y , f   2 2
 f
  i 2  xx  yy 




t
x
,
y
exp
 

 dxdy 
f
 


 
2
(3.7)
Пусть теперь объект помещен на расстояние a перед линзой. В приближении Френеля спектр
F0 u1 , u 2  поля, пропущенного объектом, и спектр Fa u1 , u 2  поля, падающего на линзу,
связаны выражением:
Fa u1 , u2   F0 u1 , u2 expika exp iau12  u22  2k 
(3.8)
Перепишем выражение (3.6) в виде
exp ik x 2  y 2  2 f   x
y
P  x, y , f  
Fa 
,
i f
 f  f



(3.9)
Подставим (2.2) в выражение (2.3), учитывая, что u1  2 x  f , u 2  2 y  f , получим:
exp ik 2 f 1  a f  x 2  y 2 
P x, y, f   exp ika 

if


  i 2  xx  yy 
(3.10)
dxdy 

f
 


Если a  f , то распределение комплексных амплитуд света в фокальной плоскости линзы
точно совпадает с преобразованием Фурье от коэффициента пропускания объекта.
Принципиальная схема анализатора с параллельным пучком света изображена на рис. 3.2.
Объектив Л1 формирует параллельный пучок лучей, идущих от источника света, направляет
их на транспарант с изображением, а объектив Л2 собирает лучи в выходной (фокальной)
плоскости, где наблюдается поле P x, y, f  .

 
  t x, yexp 
Л1
Л2
Источник
a
Транспарант
b=f
Выходная
плоскость
Рис. 3.2. Схема спектроанализатора с освещением транспаранта параллельным пучком.
Пусть транспарант освещается сходящимся пучком лучей, который создает на его
поверхности поле почти однородное по амплитуде, но неоднородное по фазе. Пусть пучок
таков, что он сходится, как показано на рис.3.3.
Л
о
Источник
Транспарант
Выходная
плоскость
Рис. 3.3. Схема спектроанализатора с освещением транспаранта сходящимся пучком
Если толщиной пленки можно пренебречь, то поле за транспарантом имеет вид
t x, y exp  ik x 2  y 2  2b , где t  x, y  - поле за транспарантом, освещенным параллельным пучком
лучей. В фокальной плоскости линзы распределение комплексных амплитуд света будет иметь
вид (по аналогии со случаем расположения предмета перед линзой):


exp ik x 2  y 2  2b   
  i 2  xx  yy   




P  x, y , f  
t
x
,
y
exp
 

 dx dy
ib

b
 
(3.11)
а распределение интенсивности света в этом случае имеет вид
1  
  i 2 xx  yy  
I x, y, f   2 2   t x, yexp 
 dx dy
(3.12)
 b  
b

Очевидно, что освещение транспаранта сходящимся пучком лучей изменяет фазу поля за
транспарантом таким же образом, как и применение в элементарной оптической системе
объектива с фокусным расстоянием f  b .
Следовательно, при освещении транспаранта сходящимся пучком спектр изображения
наблюдается в той же плоскости, где этот пучок сходится при отсутствии транспаранта.
Рассматривая эту схему, легко видеть, что транспарант можно поместить и в расходящийся
пучок лучей, т.е. перед линзой Л. Спектр изображения, записанного на транспаранте, в
этом случае также наблюдается в выходной плоскости, оптически сопряженной с источником
света. Но в каждом из отмеченных случаев наблюдаемый спектр есть спектр поля за
транспарантом с точностью до произвольного фазового множителя, зависящего от
положения транспаранта в сходящемся или расходящимся пучке. Масштаб в плоскости
наблюдения в том случае, когда транспарант помещается в сходящемся пучке на расстоянии b
от этой плоскости, определяется по формуле u  2 x  f заменой величины f на b . Если
транспарант помещается в расходящемся пучке, выражение для масштаба имеет более
сложный вид.
2
Сформулируем условия, при которых оптическая система производит спектральный анализ
изображений. Во-первых, объектив должен осуществлять умножение комплексной амплитуды
падающей волны на произведение M x, y  exp ik ( x 2  y 2 ) 2 f , где f - фокусное расстояние
объектива, M x  - апертурный множитель:
1 , x  Lx , y  L y
M  x, y   
(3.13)
0 , x  Lx , y  L y
где Lx- размер транспаранта вдоль оси x, L y -размер транспаранта по оси y.
Во-вторых, спектр должен наблюдаться либо в фокальной плоскости объектива (при
освещении транспаранта параллельным пучком света), либо в плоскости, сопряженной с
изображением источника когерентного света (при освещении транспаранта сходящимся
или расходящимся пучком).
3.2 Техническая реализация оптического когерентного спектрального
анализатора
Рассмотрим техническую реализацию оптического когерентного анализатора,
предназначенного для получения спектров мощности (дифракционных картин Фраунгофера
- ДКФ) от исследуемых изображений на фотоносителе.
Л2
Л1
Лазер
Микроскоп
РЭ
Фильтр
Выходная
плоскость
Рис. 3.4. Схема рабочей установки спектроанализатора РЭ - регистрирующий элемент.
На рис.3.4. приведена схема рабочей установки спектроанализатора. В качестве источника
когерентного излучения в установке используется гелий-неоновый лазер с длиной волны
излучения =0.6328мкм. Интенсивность светового потока регулируется световым клином с
непрерывно меняющейся плотностью почернения. Далее световой луч направляется на блок

точечного источника, состоящий из объектива микроскопа Л1 и точечной диафрагмы D,
диаметром порядка 0.01-0.05мм. Диафрагма предназначена для выравнивания светового
распределения по сечению освещающего пучка и устранения помех, вызванных рассеянием
света из-за локальных дефектов и загрязнения оптики. Установка диафрагмы в фокальной
плоскости микрообъектива Л1 производится с помощью микрометрической подачи диафрагмы
вдоль оптической оси. Для точной установки диафрагмы в плоскости, перпендикулярной
пучку, также используются две микрометрические подачи. Рассмотренная выше часть
установки собрана на базе оптической скамьи ОСК-2.
Лазер устанавливается в специальные держатели, входящие в комплект скамьи ОСК-2.
"Точечный источник" так же входит в комплект скамьи. Световой клин устанавливается
на столике с микрометрической подачей и закрепляется в рейтере скамьи ОСК-2.
В качестве линзы Л2 в установке применяется линза коллиматора оптической скамьи. Диаметр
линзы 150мм, фокусное расстояние 1600мм.
Обычно изображение на фотопленке записано в виде изменения ее прозрачности. Для
устранения фазовых шумов, связанных с неоднородностью подложки фотоматериала, пленку
(фотопластинку) помещают в иммерсионный канал, который представляет собой кювету с
оптическими входом и выходом. В кювету заливается прозрачная жидкость с показателем
преломления, равным показателю преломления пленки, куда и помещается модулирующий
фототранспарант.
Рассмотренные выше элементы позволяют реализовать схему оптического анализатора как в
сходящемся пучке, так и в параллельном пучке. В качестве регистрирующего элемента (РЭ)
используются фотоаппарат, ФЭУ, ТV-камера.
При работе в параллельном пучке света добавляется анализирующая линза, с помощью
которой выполняется фурье-преобразование, является одним из определяющих элементов
лабораторной установки. Из теории следует, что в качестве анализирующей линзы
целесообразно использовать длиннофокусные объективы (линзы). Это выгодно также из-за
удобства юстировки системы. Естественно, при этом желательно увеличение и апертуры
линз с целью повышения базы сигнала, которая определяет общую производительность
системы оптической обработки информации. В зависимости от поставленной задачи в
установке используются объективы "Телемар", "Юпитер-26Б", "Таир-33" и
длиннофокусные линзы с фокусным расстоянием до 1500мм.
В случае необходимости картина спектра Фурье увеличивается окуляром микроскопа,
установленным на столике, имеющем различные подстроечные микрометрические подачи.
Важно отметить, что глубина резкости картины, полученной с микроснимка при 50-ти кратном
увеличении практически не меняется на расстоянии порядка нескольких метров. Это
избавляет от необходимости устанавливать щель, через которую свет попадает на катод ФЭУ
(телекамеру), в определенную плоскость. Большим преимуществом такого способа
измерений является то, что увеличение системы линейно растет с ростом расстояния от
окуляра до плоскости наблюдения. Например, при перемещении экрана на расстояние от 50см
до 1м, увеличение меняется в три раза. Существенно и то, что чем больше увеличение
картины, тем меньшими могут быть сделаны потери разрешающей способности прибора,
получающиеся из-за конечных размеров щели, стоящей перед катодом ФЭУ, что позволяет, как
правило, выполнить измерения со щелями, размер которых значительно меньше деталей
картины.
Заметим также, что описанные здесь методики весьма удобны не только при измерениях
интенсивности, но и для визуального наблюдения, например, достаточно просто измеряется
расстояние между спектральными линиями, а изображение ДКФ годится для
фотографирования, которое можно выполнить, обходясь без объектива фотокамеры.
Все элементы спектроанализатора крепятся в рейтерах и держателях и устанавливаются
на рельсе оптической скамьи ОСК-2.
Процесс перехода из области изображения в частотную плоскость уменьшает
объем информации, однако спектр остается двумерным, и интерпретация его сложна.
Применение той или иной дискретизации спектра вытекает из необходимости приведения
спектра к виду, удобному для дальнейшей обработки. Осуществление различных геометрий
дискретизации возможно, например, с применением установленной вдоль оптической оси
спектроанализатора (до или после микроскопа) вращающейся вокруг этой оси призмы Дове.
При дискретизации обычно вычисляются дифференциальные частотно-пространственные
характеристики (ДЧХ, ДПХ).
ДЧХ - результат радиального разреза ДКФ в определенном направлении. ДПХ результат считывания ДКФ в каком-то узком диапазоне частот. ДЧХ, ДПХ отражают тонкую
структуру объекта (или ансамбля объектов) на изображении - его форму, ориентацию,
расстояние между отдельными объектами. Энергия, сосредоточенная в различных частях ДКФ,
отражает различные характеристики неоднородностей в изображении. Так как низкие
пространственные частоты соответствуют элементам больших размеров и расстояний между
ними, то область максимума (центральное пятно ДКФ) обычно используют для извлечения
информации "низких частот", связанной прежде всего с формой и размерами основных
элементов структуры. Здесь при получении информации необходимо использовать
апподизирующие апертуры. Высокие частоты ответственны за передачу резких границ
ненородностей (линий), мелких деталей.
Крутизна дифференциальной частотной характеристики может быть использована как
количественная оценка степени упорядочения. Анализ дифференциальных максимумов
(расстояние и ориентация) по отношению к центральному максимуму позволяет получить
информацию о периодичности структуры. ДЧХ неупорядоченной структуры характеризуются
экспоненциальным спадом по радиусу. Для неупорядоченного изотропного объекта ДКФ будет
содержать только "шумовой спектр", радиально распределенный вокруг центрального
максимума. Протяженность спектра определяется размером наименьших неоднородностей.
Если характер спада ДЧХ отличается от экспоненциального (крутизна меньше),то места, где
числовое значение превышает числовое значение при регистрации ДЧХ на низкочастотной
стороне, т.е. в сторону нулевой частоты, означает, что исследуемое изображение содержит
регулярность некоторого вида.
3.3 Оптико-цифровое вычислительное устройство для спектрального
анализа изображений
Основой оптико-цифрового вычислительного устройства (ОЦВУ) является
когерентный оптический спектроанализатор (КОС), описанный выше и претерпевший
минимальные изменения (рис.2.4). Образец (изображение) записан на фотопленке и
погружен в иммерсионную жидкость, которая устраняет паразитную фазовую
модуляцию лазерного
f  x, y пучка, обусловленную поверхностным рельефом самого образца.
Обозначим через
амплитудное пропускание (функцию изображения) образца.
Образец часто представляет собой транспарант, записанный на высококонтрастной 352
мм
Объектив используется для формирования
спектральной
f  x, y
F uфотопленке.
u1 ,u2  интенсивности
1 ,u2 
, т.е. энергетического спектра функции F u1 ,u2.Символами
обозначаем
f  x, y
пространственные частоты в фурье-плоскости, а
- фурье-образ функции
.
Виньетирование сведено к минимуму путем установки образца в непосредственной
близости от объектива. Микрообъектив формирует на матовом стекле увеличенное
изображение фурье-плоскости. Для защиты телекамеры и обеспечения записи полного
динамического диапазона сигнала используется пространственный фильтр, который
удаляет свет нулевого порядка дифракции, дифрагировавший на апертуре образца.
Световая мощность, сосредоточенная в области нулевого порядка дифракции,
пропорциональна квадрату среднего пропускания образца,и поскольку эта величина не
имеет отношения к деталям изображения, то ее устранение не приводит к потере
информации. Телекамера воспринимает увеличенное изображение энергетического
фурье-спектра и формирует видеосигнал, который поступает на видеоконтрольное
устройство (ВКУ), а также в устройство ввода-вывода изображений.
►
►
►
►
►
►
►
►
В состав системы ввода-вывода входят следующие элементы:
аналогово-цифровой преобразователь;
блок синхронизации;
блок регистра данных;
мультиплексор адреса;
буферное запоминающее устройство (БЗУ);
блок цифро-аналогового преобразователя;
блок управления;
модуль параллельного обмена.
Аналоговое изображение квантуется быстродействующим АЦП в режиме TV-развертки и
запоминается в БЗУ. Формат представления кадра изображения в БЗУ 512*512
дискретизированных восьмиразрядных отсчетов. Одновременно специальная система
сканирования с интервалом 1/30 секунды отображает содержимое БЗУ на экране TVмонитора.
2
3 4
1
5
7
8
Рис.3.5. Функциональная схеме оптико-цифрового вычислительного устройства
Когерентный свет от источника 1 коллимируется объективом 2. Образец 3 в
иммерсионной жидкости находится вблизи Фурье-объектива 4. Распределение интенсивности в
спектральной плоскости (u, v) переносится с увеличением с помощью микрообъектива 5 на
плоскость матового стекла 6. Телекамера 7 воспринимает изображение спектра и передает его
в ЭВМ 8.
Для долговременного хранения исходные и преобразованные изображения
записываются в виде цифровых файлов на магнитных дисках ЭВМ или в аналоговой
форме на видеомагнитофон. Конструктивно система ввода изображений выполнена в
виде отдельного блока.
Оцифрованные изображения хранятся в ЭВМ, где они преобразовываются в вектор,
причем каждому образцу соответствует один вектор данных. Векторы, содержащие данные об
энергетических фурье-спектрах, формируются с помощью маски, синтезированной на ЭВМ.
Эта маска всего лишь выполняет разбиение фурье-плоскости на L областей. Интенсивность
интегрируется численно и нормируется относительно величины полного интеграла
интенсивности. Таким образом, если обозначить через S i элемент фурье-плоскости,

соответствующий i-й области разбиения, то i-я составляющая вектора данных X будет
xi   F u1 , u 2 
где
 
(3.14)
  f x, y  exp j 2 u1 x  u2 y dxdy
(3.15)
Si
F u1 , u2  
 
F (u1 , u 2 ) du1du2 , i  1,...., L
2
2
 
 

Разумеется, на практике выражение (3.14) получается численным интегрированием так,
что интегралы заменяются суммами. В общем случае разбиение охватывает ту часть фурьеплоскости, где наблюдается значительная интенсивность спектра. Чаще всего разбиение
содержит кольцевые области, а также области в виде полуколец, радиальных сегментов или их
комбинации. Изображение спектра захватывается из БЗУ и обрабатывается с помощью
программы спектрального анализа. Нормировка, содержащаяся в выражении (3.14), помогает
устранить такие приводящие к ошибкам факторы, как вариации уровней серого тона от
изображения к изображению и изменение мощности лазерного пучка во время эксперимента.

После того как вектор X получен из энергетического спектра, все последующие
операции выполняются в цифровой форме. Строго говоря, поскольку информация о фазе
потеряна, преобразование исходной функции в энергетический спектр является
необратимым. Однако оно может рассматриваться как обратимое в большинстве задач,
встречающихся на практике при анализе изображений.
Рассматриваемое ОЦВУ является каскадным соединением когерентного
оптического спектроанализатора и ЭВМ, а интерфейсом между ними является телекамера.
Разумеется, КОС формирует фурье-спектр со скоростью распространения света. Более
того, время, требуемое для преобразования, не зависит от размера изображения, и при
наличии линзы достаточного размера и высокого качества разрешающая способность может
быть очень высокой. Две особенности использования ОЦВУ заслуживают внимания. Вопервых, действительное исходное изображение совершенно недоступно для ЭВМ и,
следовательно, никогда в ней не обрабатывается. Во-вторых, подготовка данных
происходит прежде всего в КОС и в самой минимальной степени - в ЭВМ. При
необходимости обрабатывать большое количество информации, по-видимому, имеет смысл
отказаться от больших возможностей и простоты чисто цифровых методов обработки, с тем
чтобы уменьшить требуемый объем памяти и значительно снизить время, необходимое на
вычисления, за счет использования ОЦВУ.
Скачать