«ɋɨɥɧɟɱɧɚɹ ɢ ɫɨɥɧɟɱɧɨ-ɡɟɦɧɚɹ ɮɢɡɢɤɚ – 2015», ɋɚɧɤɬ-ɉɟɬɟɪɛɭɪɝ, ɉɭɥɤɨɜɨ, 5 – 9 ɨɤɬɹɛɪɹ ɋȼɈɃɋɌȼȺ ɋȿȼȿɊɈ-ɘɀɇɈɃ ȺɋɂɆɆȿɌɊɂɂ ɋɈɅɇȿɑɇɈɃ ȺɄɌɂȼɇɈɋɌɂ ɄȺɄ ɋɍɉȿɊɉɈɁɂɐɂɂ Ⱦȼɍɏ ɊȿȺɅɂɁȺɐɂɃ – ȿȿ ɁɇȺɄȺ ɂ ȺȻɋɈɅɘɌɇɈɃ ȼȿɅɂɑɂɇɕ Ȼɚɞɚɥɹɧ Ɉ.Ƚ., Ɉɛɪɢɞɤɨ ȼ.ɇ. ɂɧɫɬɢɬɭɬ ɡɟɦɧɨɝɨ ɦɚɝɧɟɬɢɡɦɚ, ɢɨɧɨɫɮɟɪɵ ɢ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɪɚɞɢɨɜɨɥɧ ɊȺɇ ɢɦ. ɇ.ȼ. ɉɭɲɤɨɜɚ, Ɍɪɨɢɰɤ, Ɇɨɫɤɜɚ, Ɋɨɫɫɢɹ NORTH-SOUTH ASYMMETRY AS A SUPERPOSITION OF TWO REALIZATIONS: THE SIGN AND ABSOLUTE VALUE Badalyan O.G., Obridko V.N. Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow, Russia This work is devoted to further development of our concept of the north-south asymmetry of solar activity proposed earlier in [1]. The asymmetry defined as A = (N-S)/(N+S) (where N and S are, respectively, the indices of activity of the Northern and Southern hemispheres) is treated as a superposition of two functions: the sign of asymmetry and its absolute value. We study the asymmetry of sunspot areas for the period 1874–2013. As shown in [1], the sign of the asymmetry provides the main information on its time behavior. Like the asymmetry on the whole, its sign displays quasi-periodic 12-year variation with clearly pronounced quasi-biennial oscillations. To establish the nature of this phenomenon, we have considered the statistics of so-called monochrome intervals (long intervals of positive or negative asymmetry), which is obeys the random distribution law. In the second function – the asymmetry absolute value – one can reliably isolate the 11-year cycle shifted by half a period with respect to the Wolf number cycle. It is shown that this parameter has a significant prognostic value: the higher the maximum magnitude of the asymmetry, the lower the following Wolf number maximum. The proposed concept of N-S asymmetry has a fundamental nature and is related to the general methodology of cognizing the world. ȼɜɟɞɟɧɢɟ Ɋɚɧɟɟ ɜ [1] ɦɵ ɩɪɟɞɥɨɠɢɥɢ ɧɟɫɬɚɧɞɚɪɬɧɵɣ ɩɨɞɯɨɞ ɤ ɢɧɬɟɪɩɪɟɬɚɰɢɢ ɫɟɜɟɪɨ-ɸɠɧɨɣ ɚɫɢɦɦɟɬɪɢɢ ɫɨɥɧɟɱɧɨɣ ɚɤɬɢɜɧɨɫɬɢ. N-S ɚɫɢɦɦɟɬɪɢɹ, ɨɩɪɟɞɟɥɹɟɦɚɹ ɤɚɤ A = (N-S)/(N+S), ɝɞɟ N ɢ S – ɡɧɚɱɟɧɢɹ ɢɧɞɟɤɫɨɜ ɚɤɬɢɜɧɨɫɬɢ ɞɥɹ ɫɟɜɟɪɧɨɝɨ ɢ ɸɠɧɨɝɨ ɩɨɥɭɲɚɪɢɣ, ɪɚɫɫɦɚɬɪɢɜɚɥɚɫɶ ɜ [1] ɤɚɤ ɫɭɩɟɪɩɨɡɢɰɢɹ ɡɧɚɤɚ ɚɫɢɦɦɟɬɪɢɢ ɢ ɟɟ ɚɛɫɨɥɸɬɧɨɣ ɜɟɥɢɱɢɧɵ. ɉɨɤɚɡɚɧɨ, ɱɬɨ ɡɧɚɤ ɫɨɞɟɪɠɢɬ ɨɫɧɨɜɧɵɟ ɫɜɨɣɫɬɜɚ ɚɫɢɦɦɟɬɪɢɢ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ, ɚɛɫɨɥɸɬɧɨɟ ɡɧɚɱɟɧɢɟ ɚɫɢɦɦɟɬɪɢɢ (ɟɟ ɦɨɞɭɥɶ) ɢɦɟɟɬ ɫɬɪɨɝɢɣ 11-ɥɟɬɧɢɣ ɩɟɪɢɨɞ, ɫɞɜɢɧɭɬɵɣ ɧɚ ɩɨɥɰɢɤɥɚ ɨɬɧɨɫɢɬɟɥɶɧɨ ɱɢɫɟɥ ȼɨɥɶɮɚ. ȼ ɞɚɧɧɨɣ ɪɚɛɨɬɟ ɩɪɨɞɨɥɠɟɧɨ ɪɚɫɫɦɨɬɪɟɧɢɟ ɚɫɢɦɦɟɬɪɢɢ ɫɭɦɦɚɪɧɵɯ ɩɥɨɳɚɞɟɣ ɩɹɬɟɧ ɞɥɹ 1874–2013 ɝɝ. 19 «ɋɨɥɧɟɱɧɚɹ ɢ ɫɨɥɧɟɱɧɨ-ɡɟɦɧɚɹ ɮɢɡɢɤɚ – 2015», ɋɚɧɤɬ-ɉɟɬɟɪɛɭɪɝ, ɉɭɥɤɨɜɨ, 5 – 9 ɨɤɬɹɛɪɹ ɋɬɚɬɢɫɬɢɤɚ ɢɧɬɟɪɜɚɥɨɜ "ɩɟɪɟɤɥɸɱɟɧɢɹ'' ɡɧɚɤɚ ɚɫɢɦɦɟɬɪɢɢ Ɉɛɳɢɣ ɜɪɟɦɟɧɧɨɣ ɯɨɞ ɡɧɚɤɚ ɚɫɢɦɦɟɬɪɢɢ ɹɜɥɹɟɬɫɹ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɶɸ ɢɧɬɟɪɜɚɥɨɜ, ɜ ɬɟɱɟɧɢɟ ɤɨɬɨɪɵɯ ɚɫɢɦɦɟɬɪɢɹ ɢɦɟɟɬ ɩɨɥɨɠɢɬɟɥɶɧɵɣ ɢɥɢ ɨɬɪɢɰɚɬɟɥɶɧɵɣ ɡɧɚɤ. Ⱦɥɢɧɵ ɷɬɢɯ ɢɧɬɟɪɜɚɥɨɜ ɢɡɦɟɧɹɸɬɫɹ ɫɨ ɜɪɟɦɟɧɟɦ. ȼ ɤɨɧɰɟ ɤɚɠɞɨɝɨ ɢɧɬɟɪɜɚɥɚ ɚɫɢɦɦɟɬɪɢɹ ɤɚɤ ɛɵ ɩɟɪɟɤɥɸɱɚɟɬɫɹ ɫ ɨɞɧɨɝɨ ɡɧɚɤɚ ɧɚ ɞɪɭɝɨɣ. ȼɚɠɧɨ ɩɨɧɹɬɶ, ɫɭɳɟɫɬɜɭɟɬ ɥɢ ɤɚɤɚɹ-ɬɨ ɡɚɤɨɧɨɦɟɪɧɨɫɬɶ ɜ ɪɚɫɩɪɟɞɟɥɟɧɢɢ ɷɬɢɯ ɢɧɬɟɪɜɚɥɨɜ. ɂɧɬɟɪɜɚɥɵ ɜɪɟɦɟɧɢ, ɤɨɝɞɚ ɚɫɢɦɦɟɬɪɢɹ ɢɦɟɟɬ ɨɞɢɧ ɢ ɬɨɬ ɠɟ ɡɧɚɤ, ɦɨɠɧɨ ɧɚɡɜɚɬɶ “ɦɨɧɨɯɪɨɦɧɵɦɢ” ɢɧɬɟɪɜɚɥɚɦɢ. ɂɯ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɩɨɤɚɡɚɧɨ ɧɢɠɧɟɣ ɩɚɧɟɥɢ ɪɢɫ. 1. ȼɟɪɯɧɹɹ ɩɚɧɟɥɶ ɪɢɫ. 1 ɩɨɤɚɡɵɜɚɟɬ, ɱɬɨ ɫɝɥɚɠɟɧɧɚɹ ɤɪɢɜɚɹ ɦɨɧɨɯɪɨɦɧɵɯ ɢɧɬɟɪɜɚɥɨɜ ɨɱɟɧɶ ɛɥɢɡɤɚ ɤ ɫɝɥɚɠɟɧɧɨɣ ɤɪɢɜɨɣ ɚɫɢɦɦɟɬɪɢɢ. Ɋɢɫ. 1. ȼɜɟɪɯɭ – ɚɫɢɦɦɟɬɪɢɹ (ɫɩɥɨɲɧɚɹ ɤɪɢɜɚɹ, ɭɫɪɟɞɧɟɧɢɹ ɫ ɨɤɧɨɦ 132 ɦɟɫɹɰɚ) ɢ ɭɫɪɟɞɧɟɧɧɵɟ ɬɚɤɢɦ ɠɟ ɨɛɪɚɡɨɦ ɡɧɚɱɟɧɢɹ ɞɥɢɧ ɦɨɧɨɯɪɨɦɧɵɯ ɢɧɬɟɪɜɚɥɨɜ (ɩɭɧɤɬɢɪɧɚɹ ɤɪɢɜɚɹ). ȼɧɢɡɭ – ɜɪɟɦɟɧɧɨɣ ɯɨɞ ɞɥɢɧ ɦɨɧɨɯɪɨɦɧɵɯ ɢɧɬɟɪɜɚɥɨɜ. Ɋɚɫɫɦɨɬɪɢɦ ɱɚɫɬɨɬɭ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɦɨɧɨɯɪɨɦɧɵɯ ɢɧɬɟɪɜɚɥɨɜ. Ƚɢɫɬɨɝɪɚɦɦɵ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɜɫɟɯ ɢɧɬɟɪɜɚɥɨɜ M(L), ɩɨɥɨɠɢɬɟɥɶɧɵɯ M(Lp) ɢ ɨɬɪɢɰɚɬɟɥɶɧɵɯ M(Lm) ɢɡɨɛɪɚɠɟɧɵ ɧɚ ɪɢɫ. 2. Ʉɚɠɞɚɹ ɢɡ ɝɢɫɬɨɝɪɚɦɦ ɧɨɪɦɢɪɨɜɚɧɚ ɧɚ ɩɨɥɧɨɟ ɱɢɫɥɨ ɜɫɟɯ ɢɧɬɟɪɜɚɥɨɜ. ȼɢɞɧɨ, ɱɬɨ ɮɭɧɤɰɢɢ M(Lp) ɢ M(Lm) ɩɪɚɤɬɢɱɟɫɤɢ ɫɨɜɩɚɞɚɸɬ ɞɪɭɝ ɫ ɞɪɭɝɨɦ, ɚ M(L) ɩɪɢɦɟɪɧɨ ɜ ɞɜɚ ɪɚɡɚ ɜɵɲɟ. ɉɨɥɭɱɟɧɧɵɟ ɝɢɫɬɨɝɪɚɦɦɵ ɚɩɩɪɨɤɫɢɦɢɪɭɸɬɫɹ ɷɤɫɩɨɧɟɧɰɢɚɥɶɧɨɣ ɡɚɜɢɫɢɦɨɫɬɶɸ. ɉɚɪɚɦɟɬɪɵ ɷɬɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɩɨɤɚɡɵɜɚɸɬ, ɱɬɨ ɧɚ ɢɧɬɟɪɜɚɥɟ ɞɥɢɬɟɥɶɧɨɫɬɟɣ ɢɧɬɟɪɜɚɥɨɜ ɨɬ 1 ɞɨ 12 ɦɟɫɹɰɟɜ ɝɢɫɬɨɝɪɚɦɦɚ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɭɪɚɜɧɟɧɢɸ ɉɭɚɫɫɨɧɚ n ~ exp(–t /E) ɩɪɢ E = 1.724. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɦɨɧɨɯɪɨɦɧɵɯ ɢɧɬɟɪɜɚɥɨɜ ɩɨɞɱɢɧɹɟɬɫɹ ɡɚɤɨɧɚɦ ɫɥɭɱɚɣɧɨɣ ɫɬɚɬɢɫɬɢɤɢ ɜɩɥɨɬɶ ɞɨ ɢɧɬɟɪɜɚɥɨɜ ɞɥɢɬɟɥɶɧɨɫɬɶɸ ɩɨɪɹɞɤɚ ɝɨɞɚ. 20 «ɋɨɥɧɟɱɧɚɹ ɢ ɫɨɥɧɟɱɧɨ-ɡɟɦɧɚɹ ɮɢɡɢɤɚ – 2015», ɋɚɧɤɬ-ɉɟɬɟɪɛɭɪɝ, ɉɭɥɤɨɜɨ, 5 – 9 ɨɤɬɹɛɪɹ Ɋɢɫ. 2. ɋɥɟɜɚ ɧɚɩɪɚɜɨ – ɝɢɫɬɨɝɪɚɦɦɵ ɱɚɫɬɨɬɵ ɜɫɬɪɟɱɚɟɦɨɫɬɢ ɦɨɧɨɯɪɨɦɧɵɯ ɢɧɬɟɪɜɚɥɨɜ ɧɟɡɚɜɢɫɢɦɨ ɡɧɚɤɚ, ɩɨɥɨɠɢɬɟɥɶɧɵɯ ɢ ɨɬɪɢɰɚɬɟɥɶɧɵɯ. ɉɪɨɝɧɨɫɬɢɱɟɫɤɢɟ ɜɨɡɦɨɠɧɨɫɬɢ ɦɨɞɭɥɹ ɚɫɢɦɦɟɬɪɢɢ Ɋɚɫɫɦɨɬɪɟɧɢɟ ɦɨɞɭɥɹ ɚɫɢɦɦɟɬɪɢɢ ɩɨɡɜɨɥɹɟɬ ɜɵɹɜɢɬɶ ɧɟɤɨɬɨɪɵɟ ɧɨɜɵɟ ɫɜɨɣɫɬɜɚ. ȼɵɹɫɧɢɥɨɫɶ, ɱɬɨ ɦɚɤɫɢɦɭɦɵ ɚɛɫɨɥɸɬɧɨɣ ɚɫɢɦɦɟɬɪɢɢ ɧɚɯɨɞɹɬɫɹ ɜ ɦɢɧɢɦɭɦɚɯ ɰɢɤɥɚ ɚɤɬɢɜɧɨɫɬɢ. ɉɨɤɚɠɟɦ, ɱɬɨ ɷɬɨɬ ɷɮɮɟɤɬ ɧɟ ɫɜɹɡɚɧ ɬɨɥɶɤɨ ɫ ɩɨɹɜɥɟɧɢɟɦ ɜ ɦɢɧɢɦɭɦɟ ɰɢɤɥɚ ɧɟɨɩɪɟɞɟɥɟɧɧɨɫɬɢ ɬɢɩɚ 0 : 0. ɂɫɩɨɥɶɡɭɟɦ ɩɨɧɹɬɢɟ ɮɚɡɵ ɰɢɤɥɚ ) = (W – m) / abs (M – m), ɝɞɟ W – ɬɟɤɭɳɢɣ ɦɨɦɟɧɬ ɜɪɟɦɟɧɢ, m ɢ M – ɦɨɦɟɧɬɵ ɦɢɧɢɦɭɦɚ ɢ ɦɚɤɫɢɦɭɦɚ. ȼ ɦɢɧɢɦɭɦɟ ɮɚɡɚ ɪɚɜɧɚ 0, ɜ ɦɚɤɫɢɦɭɦɟ r1. ɋɜɟɞɟɦ ɜɫɟ ɰɢɤɥɵ ɤ ɨɞɧɨɦɭ ɫɪɟɞɧɟɦɭ ɰɢɤɥɭ ɩɭɬɟɦ ɧɨɪɦɢɪɨɜɚɧɢɹ ɢ ɭɫɪɟɞɧɟɧɢɹ ɩɨ ɮɚɡɟ ɢ ɜɵɱɢɫɥɢɦ ɡɧɚɱɟɧɢɹ N+S ɢ abs (N–S), ɪɢɫ. 3 ɫɥɟɜɚ. ɋɩɪɚɜɚ ɧɚ ɪɢɫ. 3 ɞɚɧɨ ɨɬɧɨɲɟɧɢɟ ɷɬɢɯ ɜɟɥɢɱɢɧ, ɬ.ɟ. ɫɪɟɞɧɢɣ ɰɢɤɥ ɞɥɹ ɚɛɫɨɥɸɬɧɨɣ ɚɫɢɦɦɟɬɪɢɢ. ȼɢɞɧɨ, ɱɬɨ ɡɧɚɱɟɧɢɹ abs (N–S) ɜ ɦɢɧɢɦɭɦɟ ɡɧɚɱɢɬɟɥɶɧɨ ɜɵɲɟ, ɱɟɦ ɜ ɦɚɤɫɢɦɭɦɟ. ɉɨɷɬɨɦɭ ɜɵɱɢɫɥɟɧɧɚɹ ɩɨ ɷɬɢɦ ɡɧɚɱɟɧɢɹɦ ɚɫɢɦɦɟɬɪɢɹ ɢɦɟɟɬ ɦɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɜ ɦɢɧɢɦɭɦɟ. Ɋɢɫ. 3. ɋɥɟɜɚ – ɫɪɟɞɧɢɟ ɡɧɚɱɟɧɢɹ abs (N–S) (ɜɟɪɯɧɹɹ ɤɪɢɜɚɹ) ɢ N+S (ɧɢɠɧɹɹ ɤɪɢɜɚɹ) ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɮɚɡɵ ɰɢɤɥɚ. ɋɩɪɚɜɚ – ɨɬɧɨɲɟɧɢɟ ɷɬɢɯ ɤɪɢɜɵɯ (ɚɫɢɦɦɟɬɪɢɹ). ɋɞɜɢɧɟɦ ɜɪɟɦɟɧɧɨɣ ɪɹɞ ɚɛɫɨɥɸɬɧɨɣ ɚɫɢɦɦɟɬɪɢɢ, ɜɵɱɢɫɥɟɧɧɨɣ ɩɨ ɩɥɨɳɚɞɹɦ ɩɹɬɟɧ, ɜɩɟɪɟɞ ɧɚ ɩɨɥɰɢɤɥɚ, ɬ.ɟ. ɧɚ 5.5 ɥɟɬ, ɢ ɧɚɥɨɠɢɦ ɧɚ ɪɹɞ ɱɢɫɟɥ ȼɨɥɶɮɚ (ɪɢɫ. 4). Ɉɛɚ ɪɹɞɚ ɫɝɥɚɠɟɧɵ ɫ ɨɤɧɨɦ 4 ɝɨɞɚ. ȼɢɞɧɵ ɪɚɡɥɢɱɢɹ ɜɵɫɨɬ ɦɢɧɢɦɭɦɨɜ ɢ ɦɚɤɫɢɦɭɦɨɜ – ɱɟɦ ɜɵɲɟ ɡɧɚɱɟɧɢɟ ɚɫɢɦɦɟɬɪɢɢ ɜ ɦɢɧɢɦɭɦɟ, ɬɟɦ ɧɢɠɟ ɜɵɫɨɬɚ ɦɚɤɫɢɦɭɦɚ ɩɨɫɥɟɞɭɸɳɟɝɨ ɰɢɤɥɚ. ɗɬɨɬ ɜɵɜɨɞ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɩɪɨɝɧɨɡɚ. ɇɚ ɪɢɫ. 5 ɩɨɤɚɡɚɧ ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɪɪɟɥɹɰɢɢ ɦɟɠɞɭ ɜɟɥɢɱɢɧɨɣ ɦɨɞɭɥɹ ɚɫɢɦɦɟɬɪɢɢ ɜ ɦɢɧɢɦɭɦɟ ɰɢɤɥɚ ɢ ɜɵɫɨɬɨɣ ɩɨɫɥɟɞɭɸɳɟɝɨ ɦɚɤɫɢɦɭɦɚ ɢ ɫɨ21 «ɋɨɥɧɟɱɧɚɹ ɢ ɫɨɥɧɟɱɧɨ-ɡɟɦɧɚɹ ɮɢɡɢɤɚ – 2015», ɋɚɧɤɬ-ɉɟɬɟɪɛɭɪɝ, ɉɭɥɤɨɜɨ, 5 – 9 ɨɤɬɹɛɪɹ ɫɬɚɜɥɹɟɬ 0.777 (ɥɟɜɚɹ ɩɚɧɟɥɶ). ȼ ɰɟɧɬɪɟ ɧɚ ɪɢɫ. 5 ɩɨɤɚɡɚɧɚ ɫɜɹɡɶ ɦɨɞɭɥɹ ɚɫɢɦɦɟɬɪɢɢ ɜ ɦɢɧɢɦɭɦɟ ɰɢɤɥɚ ɫɨ ɡɧɚɱɟɧɢɟɦ ɱɢɫɥɚ ȼɨɥɶɮɚ ɜ ɦɢɧɢɦɭɦɟ ɬɨɝɨ ɠɟ ɰɢɤɥɚ, ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɪɪɟɥɹɰɢɢ ɫɨɫɬɚɜɥɹɟɬ 0.658. ɗɬɨ ɨɡɧɚɱɚɟɬ, Ɋɢɫ. 4. Ɇɨɞɭɥɶ ɚɫɢɦɦɟɬɪɢɢ ɩɥɨɳɚɞɟɣ ɩɹɬɟɧ ɫɨ ɫɞɜɢɝɨɦ ɧɚ ɩɨɥɰɢɤɥɚ ɜɩɟɪɟɞ (ɫɩɥɨɲɧɚɹ ɤɪɢɜɚɹ) ɢ ɱɢɫɥɚ ȼɨɥɶɮɚ (ɩɭɧɤɬɢɪɧɚɹ). ɒɤɚɥɚ ɜɧɢɡɭ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɱɢɫɥɚɦ ȼɨɥɶɮɚ, ɲɤɚɥɚ ɜɜɟɪɯɭ ɫɞɜɢɧɭɬɚ ɧɚ ɩɨɥɰɢɤɥɚ ɢ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɦɨɞɭɥɸ ɚɫɢɦɦɟɬɪɢɢ. Ɋɢɫ. 5. Ʉɨɪɪɟɥɹɰɢɨɧɧɵɟ ɡɚɜɢɫɢɦɨɫɬɢ ɦɟɠɞɭ ɚɫɢɦɦɟɬɪɢɟɣ ɢ ɱɢɫɥɚɦɢ ȼɨɥɶɮɚ. ɱɬɨ ɭɜɟɥɢɱɟɧɢɟ ɦɨɞɭɥɹ ɚɫɢɦɦɟɬɪɢɢ ɜɛɥɢɡɢ ɦɢɧɢɦɭɦɚ (ɬ.ɟ. ɭɫɢɥɟɧɢɟ ɞɢɫɛɚɥɚɧɫɚ ɦɟɠɞɭ ɩɨɥɭɲɚɪɢɹɦɢ) ɩɪɢɜɨɞɢɬ ɤ ɨɫɥɚɛɥɟɧɢɸ ɜɫɟɝɨ ɩɪɨɰɟɫɫɚ ɩɹɬɧɨɨɛɪɚɡɨɜɚɧɢɹ. Ɍɨɬ ɠɟ ɷɮɮɟɤɬ ɥɟɠɢɬ ɜ ɨɫɧɨɜɟ ɩɪɨɝɧɨɡɚ ɜɵɫɨɬɵ ɰɢɤɥɚ ɩɨ ɜɵɫɨɬɟ ɦɢɧɢɦɭɦɚ ɱɢɫɟɥ ȼɨɥɶɮɚ. ɉɨ ɫɨɜɨɤɭɩɧɨɫɬɢ ɰɢɤɥɨɜ 12–24 ɦɵ ɩɨɥɭɱɢɥɢ ɤɨɷɮɮɢɰɢɟɧɬ ɤɨɪɪɟɥɹɰɢɢ 0.837 (ɩɪɚɜɚɹ ɩɚɧɟɥɶ ɪɢɫ. 5). Ɂɚɤɥɸɱɟɧɢɟ ɉɪɟɞɫɬɚɜɥɟɧɢɟ N-S ɚɫɢɦɦɟɬɪɢɢ ɤɚɤ ɫɭɩɟɪɩɨɡɢɰɢɢ ɞɜɭɯ ɮɭɧɤɰɢɣ (ɡɧɚɤɚ ɢ ɚɛɫɨɥɸɬɧɨɣ ɜɟɥɢɱɢɧɵ) ɢɦɟɟɬ ɮɭɧɞɚɦɟɧɬɚɥɶɧɵɣ ɯɚɪɚɤɬɟɪ ɢ ɯɚɪɚɤɬɟɪɢɡɭɟɬ ɞɭɚɥɢɡɦ ɤɚɪɬɢɧɵ ɦɢɪɚ. ɋɭɳɟɫɬɜɨ ɦɧɨɝɢɯ ɩɪɨɰɟɫɫɨɜ ɜ ɩɪɢɪɨɞɟ ɦɨɠɧɨ ɨɩɢɫɚɬɶ ɜ ɞɜɨɢɱɧɨɦ ɤɨɞɟ “ɞɚ-ɧɟɬ”, ɯɨɬɹ ɞɥɹ ɩɨɥɧɨɝɨ ɨɩɢɫɚɧɢɹ ɬɪɟɛɭɟɬɫɹ ɞɨɩɨɥɧɢɬɟɥɶɧɚɹ ɞɟɬɚɥɢɡɚɰɢɹ. Ɋɚɛɨɬɚ ɩɨɞɞɟɪɠɚɧɚ ɊɎɎɂ, ɩɪɨɟɤɬ 14-02-00308. Ʌɢɬɟɪɚɬɭɪɚ 1. Ȼɚɞɚɥɹɧ Ɉ.Ƚ., Ɉɛɪɢɞɤɨ ȼ.ɇ. // Ɍɪɭɞɵ ɟɠɟɝɨɞɧ. ɤɨɧɮ. ɩɨ ɮɢɡɢɤɟ ɋɨɥɧɰɚ, ɋɉɛ, ȽȺɈ ɊȺɇ, 2009, ɫ. 37. 22