ÓÄÊ 519.2 ÌÎÄÅËÈÐÎÂÀÍÈÅ ÓÑÒÎÉ×ÈÂÛÕ ÑËÓ×ÀÉÍÛÕ ÂÅËÈ×ÈÍ Â ÑËÓ×ÀÅ ÀËÜÔÀ ÐÀÂÍÎÌ ÅÄÈÍÈÖÅ Áàãðîâà È.À. Êàôåäðà ìàòåìàòè÷åñêîé ñòàòèñòèêè è ñèñòåìíîãî àíàëèçà Ïîñòóïèëà â ðåäàêöèþ 08.09.2011, ïîñëå ïåðåðàáîòêè 28.12.2011.  ñòàòüå ðàçðàáîòàí äàò÷èê, ãåíåðèðóþùèé óñòîé÷èâûå ñëó÷àéíûå ÷èñëà ïðè α = 1 è ðàçëè÷íûõ σ , β .  îñíîâó ìîäåëèðîâàíèÿ ïîëîæåíà îáîáùåííàÿ ÖÏÒ. Generator for stable random variables with α = 1 and various values of σ , β is developed in this article. Modelling is based on GCLT. Êëþ÷åâûå ñëîâà: ìîäåëèðîâàíèå ñëó÷àéíîé âåëè÷èíû, óñòîé÷èâûå ðàñïðåäåëåíèÿ, ðàñïðåäåëåíèå Ïàðåòî. Keywords: modelling random variable, stable distributions, Pareto distribution. Ââåäåíèå  ðàáîòàõ [1], [2], [6] áûëî ðàññìîòðåíî ìîäåëèðîâàíèå óñòîé÷èâûõ ñëó÷àéíûõ ÷èñåë ïðè α ∈ (0, 1). Íàñòîÿùàÿ ñòàòüÿ ïîñâÿùåíà îñîáîìó ñëó÷àþ óñòîé÷èâûõ ðàñïðåäåëåíèé ñ õàðàêòåðèñòè÷åñêèì ïîêàçàòåëåì óñòîé÷èâîñòè α = 1. Äëÿ ìîäåëèðîâàíèÿ â ýòîé ñèòóàöèè òàêæå áûëà èñïîëüçîâàíà îáîáù¼ííàÿ ïðåäåëüíàÿ òåîðåìà, ñîãëàñíî êîòîðîé óñòîé÷èâûå ðàñïðåäåëåíèÿ ÿâëÿþòñÿ ïðåäåëüíûìè ðàñïðåäåëåíèÿìè äëÿ íîðìèðîâàííîé è öåíòðèðîâàííîé (ïðè α > 1) ñóììû íåçàâèñèìûõ îäèíàêîâî ðàñïðåäåëåííûõ ñëó÷àéíûõ âåëè÷èí, âõîäÿùèõ â îáëàñòü ïðèòÿæåíèÿ óñòîé÷èâûõ çàêîíîâ: Sn = X1 + ... + Xn − an d =⇒ Y ïðè n → ∞. b · n1/α (1) Òàêèì îáðàçîì, íåîáõîäèìî ïîäîáðàòü òàêèå çíà÷åíèÿ ïàðàìåòðîâ an è b, ÷òîáû õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ ñóììû íåçàâèñèìûõ îäèíàêîâî ðàñïðåäåëåííûõ ñëó÷àéíûõ âåëè÷èí ñõîäèëàñü ê õàðàêòåðèñòè÷åñêîé ôóíêöèè óñòîé÷èâîãî ðàñïðåäåëåíèÿ â ôîðìå (À) ïðè α = 1 (ñì. [4], [5], [7], [9]): ½ ¾ 2 fY (t) = exp −σ|t|(1 + iβ · ln |t|sign(t)) . (2) π Ðàíåå [1], [2] äëÿ ìîäåëèðîâàíèÿ óñòîé÷èâûõ ñëó÷àéíûõ âåëè÷èí â êà÷åñòâå Xj , j = 1, n èñïîëüçîâàëèñü ñëó÷àéíûå ÷èñëà ñ ðàñïðåäåëåíèåì Ïàðåòî, íîñèòåëåì êîòîðîãî ÿâëÿëîñü ìíîæåñòâî [r; ∞) â îäíîñòîðîííåì ñëó÷àå è ìíîæåñòâî 51 52 ÁÀÃÐÎÂÀ È.À. (−∞; −l] ∪ [r; ∞) â äâóõñòîðîííåì ñëó÷àå.  ïðåäñòàâëåííîé ñòàòüå, êðîìå òîãî, ðàññìîòðåíà âòîðàÿ ñèòóàöèÿ, êîãäà ñ öåëüþ èçó÷åíèÿ âëèÿíèÿ íà ñõîäèìîñòü ê Y ñëó÷àéíàÿ âåëè÷èíà Xj â ðàéîíå íóëÿ èìååò ðàâíîìåðíîå ðàñïðåäåëåíèå. 1. Ìîäåëèðîâàíèå îäíîñòîðîííèõ óñòîé÷èâûõ âåëè÷èí ñ ïîìîùüþ ðàñïðåäåëåíèÿ Ïàðåòî Ðàññìîòðèì ìîäåëèðîâàíèå îäíîñòîðîííåãî óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè α = 1 è β = 1, ãäå â êà÷åñòâå Xj âîçüìåì ñëó÷àéíûå âåëè÷èíû, ðàñïðåäåëåííûå ïî Ïàðåòî. Ôóíêöèÿ ðàñïðåäåëåíèÿ Ïàðåòî ïðè α = 1 èìååò âèä: ½ 1 − xε , x > ε, F (x) = 0, x < ε, åé ñîîòâåòñòâóåò ôóíêöèÿ ïëîòíîñòè: ½ f (x) = ε x2 , 0, x > ε, x < ε.  [3] áûëî ïîëó÷åíî ñëåäóþùåå àñèìïòîòè÷åñêîå ñîîòíîøåíèå äëÿ õàðàêòåðèñòè÷åñêîé ôóíêöèè ðàñïðåäåëåíèÿ Ïàðåòî ïðè α = 1 è |t| → 0: Z∞ eitx fXj (t) = ² ε π dx = 1 + itε − |t|ε − itεγ − itε ln(|t|ε) + O(|t|2 ), x2 2 (3) ãäå γ ïîñòîÿííàÿ Ýéëåðà. Ïðè n → ∞ ïðåäåëüíîå âûðàæåíèå äëÿ õàðàêòåðèñòè÷åñêîé ôóíêöèè ñóììû (1) ïàðåòîâñêèõ ñëó÷àéíûõ âåëè÷èí ìîæíî ïðåäñòàâèòü êàê µ ¶ µ ¶ n itε π |t|ε itεγ itε |t|ε o 1 fSn (t) = exp − − − ln +O . (4) b 2 b b b bn n Ñðàâíåíèå (4) è (2) ïîêàçûâàåò, ÷òî íåîáõîäèìî öåíòðèðîâàíèå ñóììû Sn . Ïîýòîìó áûë ââåäåí ñäâèã an = a · n, â ðåçóëüòàòå ÷åãî õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ ñóììû ïàðåòîâñêèõ ñëó÷àéíûõ âåëè÷èí èìååò âèä: n o ¡ ¢ itεγ π |t|ε itε itε ita fSn (t) = exp itε − − − ln(|t|ε) + ln(bn) − + O n1 = b 2 b b b b b o n ¡ ¢ = exp itε (1 − γ) + itε ln(bn) − ita − π2 |t|ε − itε ln |t| − itε ln(ε) + O n1 = b b b b b b n ³ ´ ³ ´o ¡ ¢ 2 = exp itb ε(1 − γ) + ε ln(bn) − ε ln(ε) − a − π2 |t|ε 1 + i ln |t|sign(t) + O n1 . b π Òàêèì îáðàçîì, åñëè ïîëîæèòü ε = σ, a = ε(1 − γ + ln(bn)) − ε ln(ε), b = π2 , òî ïðè n → ∞ ïîëó÷èì õàðàêòåðèñòè÷åñêóþ ôóíêöèþ óñòîé÷èâîãî çàêîíà (2). (5) 53 ÌÎÄÅËÈÐÎÂÀÍÈÅ ÓÑÒÎÉ×ÈÂÛÕ ÑËÓ×ÀÉÍÛÕ ÂÅËÈ×ÈÍ Â ÑËÓ×ÀÅ... Äëÿ ìîäåëèðîâàíèÿ óñòîé÷èâûõ ñëó÷àéíûõ ÷èñåë â ýòîì ñëó÷àå áóäåì çàäàâàòü ïàðàìåòðû: β = 1, σ > 0. Ïðîäåìîíñòðèðóåì ðàáîòó äàò÷èêà äëÿ σ = {1, 2, 0.5, 4} íà ðèñóíêå 1, ãäå K êîëè÷åñòâî ñãåíåðèðîâàííûõ óñòîé÷èâûõ ÷èñåë. Äëÿ ñðàâíåíèÿ òàêæå ïîñòðîåíà òåîðåòè÷åñêàÿ ôóíêöèÿ ïëîòíîñòè, ïîëó÷åííàÿ ñ ïîìîùüþ ïðîãðàììû Stable.exe, ðàçðàáîòàííîé J.P. Nolan'îì (ñì. [8]). Density function Density function 0.16 0.3 Random generator Theoretical Random generator Theoretical 0.14 0.25 0.12 0.2 0.1 0.08 0.15 0.06 0.1 0.04 0.05 0.02 0 −3 −2 −1 0 1 2 3 4 5 6 7 8 0 −2 0 2 4 (à) 6 8 10 12 14 (b) Density function Density function 0.6 Random generator Theoretical 0.07 0.5 Random generator Theoretical 0.06 0.4 0.05 0.04 0.3 0.03 0.2 0.02 0.1 0 0.01 −1 0 1 2 3 4 5 0 −5 0 5 10 15 20 25 (c) (d) Ðèñ. 1: Ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîé ñëó÷àéíîé âåëè÷èíû â ôîðìå (A) ïðè n = 103 , K = 105 , a) σ = 1, b) σ = 2, c) σ = 0.5, d) σ = 4 2. Ìîäåëèðîâàíèå äâóõñòîðîííèõ óñòîé÷èâûõ âåëè÷èí ñ ïîìîùüþ ñìåñè ðàñïðåäåëåíèé Ïàðåòî Äëÿ ìîäåëèðîâàíèÿ äâóõñòîðîííåãî óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè α = 1 áóäåì èñïîëüçîâàòü ñìåñü ðàñïðåäåëåíèé Ïàðåòî ñ íîñèòåëÿìè íà ïîëîæèòåëüíîé è îòðèöàòåëüíîé ïîëóîñÿõ: Xj = p · Xj+ + q · Xj− , p + q = 1. Ïðè ýòîì Xj+ è Xj− èìåþò ñëåäóþùèå ôóíêöèè ðàñïðåäåëåíèÿ ïðè r, l > 0: FX + (x) = 1 − xr , j l FX − (x) = − |x| , j x ≥ r, x ≤ −l. 54 ÁÀÃÐÎÂÀ È.À. Õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ äëÿ Xj+ èìååò âèä (3), à Xj− èìååò êîìïëåêñíî-ñîïðÿæåííóþ åé õàðàêòåðèñòè÷åñêóþ ôóíêöèþ. Òîãäà õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ íîðìèðîâàííîé è öåíòðèðîâàííîé ñóììû ³P ´ n Sn = j=1 (Xj − a)/(b · n) áóäåò âûãëÿäåòü ñëåäóþùèì îáðàçîì: ( µ ¶´ ³ |t|r itrγ π |t|r itr fSn (t) = exp p · itr − − − ln + b 2 b b b bn ) (6) µ ¶´ ³ |t|l −itlγ π |t|l −itl 1 −itl ita +q · b − 2 b − b − b ln bn − b + O( n ). Åñëè ñãðóïïèðîâàòü ñëàãàåìûå â (6), òî ïîëó÷èì: ( ¡ ¡ ¢ ¢ fSn (t) = exp itb (pr − ql) 1 − γ + ln(bn) − pr ln(r) + ql ln(l) − a − µ µ ¶ ¶) − π2 |t| b (pr + ql) 1 + i pr−ql pr+ql 2 π (7) + O( n1 ). ln |t|sign(t) Äëÿ òîãî, ÷òîáû õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ ñóììû Sn èìåëà â ïðåäåëå âèä õàðàêòåðèñòè÷åñêîé ôóíêöèè óñòîé÷èâîãî ðàñïðåäåëåíèÿ, íåîáõîäèìî îïðåäåëèòü ïàðàìåòðû a è b ñëåäóþùèìè âûðàæåíèÿìè: ¡ ¢ a = (pr − ql) 1 − γ + ln(bn) − pr ln(r) + ql ln(l), (8) b = π2 . Èç (7) è (8) ïîëó÷àåì ñîîòíîøåíèÿ ìåæäó ïàðàìåòðàìè ñëàãàåìûõ äâóõ ñìåñåé ðàñïðåäåëåíèé Ïàðåòî è ïàðàìåòðàìè ïðåäåëüíîãî óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè α = 1 â ôîðìå (À): p + q = 1, pr + ql = σ, (9) pr−ql = β. pr+ql Äëÿ ìîäåëèðîâàíèÿ óñòîé÷èâûõ ñëó÷àéíûõ âåëè÷èí â ýòîì ñëó÷àå áóäåì çàäàâàòü ñëåäóþùèå ïàðàìåòðû: β ∈ (−1; 1), σ > 0, p < 1. Ðàáîòà äàò÷èêà ïðè σ = 1 è β = {0.5; −0.5} ïðåäñòàâëåíà íà ðèñ. 2, äëÿ β = 0.2 è σ = {0.5; 2} íà ðèñ. 3. Density function Density function 0.3 Random generator Theoretical 0.3 Random generator Theoretical 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 −6 −4 −2 0 2 4 6 0 −6 −4 −2 0 2 4 6 (à) (b) Ðèñ. 2: Ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîé ñëó÷àéíîé âåëè÷èíû â ôîðìå (A) ïðè n = 103 , K = 105 , σ = 1, a) β = 0.5, b) β = −0.5 55 ÌÎÄÅËÈÐÎÂÀÍÈÅ ÓÑÒÎÉ×ÈÂÛÕ ÑËÓ×ÀÉÍÛÕ ÂÅËÈ×ÈÍ Â ÑËÓ×ÀÅ... Density function Density function 0.16 0.6 Random generator Theoretical 0.5 Random generator Theoretical 0.14 0.12 0.4 0.1 0.08 0.3 0.06 0.2 0.04 0.1 0.02 0 −4 −3 −2 −1 0 1 2 3 4 0 −10 −8 −6 −4 −2 0 2 4 6 8 10 (à) (b) Ðèñ. 3: Ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîé ñëó÷àéíîé âåëè÷èíû â ôîðìå (A) ïðè n = 103 , K = 105 , β = 0.2, a) σ = 0.5, b) σ = 2 Ïðè β = 0 èìååì äåëî ñ ðàñïðåäåëåíèåì Êîøè, äëÿ êîòîðîãî ñóùåñòâóåò ÿâíîå âûðàæåíèå ïëîòíîñòè ôóíêöèè ðàñïðåäåëåíèÿ [5]: σ g(x, 1, 0, µ, σ) = . (10) 2 π(σ + (x − µ)2 ) Îãðàíè÷èìñÿ ñëó÷àåì, êîãäà ïàðàìåòð ïîëîæåíèÿ µ = 0. Ðàáîòà äàò÷èêà äëÿ σ = {1; 0.8; 0.5; 2} ïðîäåìîíñòðèðîâàíà íà ðèñ. 4: Density function Density function 0.4 0.3 Random generator Cauchy Random generator Cauchy 0.35 0.3 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 −6 −4 −2 0 2 4 6 0 −6 −4 −2 0 (à) 2 4 6 (b) Density function Density function 0.16 Random generator Cauchy 0.6 Random generator Cauchy 0.14 0.5 0.12 0.1 0.4 0.08 0.3 0.06 0.2 0.04 0.1 0 −4 0.02 −3 −2 −1 0 1 2 3 4 0 −10 −8 −6 −4 −2 0 2 4 6 8 10 (c) (d) Ðèñ. 4: Ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è ðàñïðåäåëåíèÿ Êîøè ïðè n = 103 , K = 105 , a) σ = 1, b) σ = 0.8, c) σ = 0.5, d) σ = 2 56 ÁÀÃÐÎÂÀ È.À. 3. Ìîäåëèðîâàíèå îäíîñòîðîííèõ óñòîé÷èâûõ âåëè÷èí ïðè ïîìîùè ñìåñè ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî Ñ öåëüþ ïðîâåðêè âëèÿíèÿ ðàñïðåäåëåíèÿ â ðàéîíå íóëÿ íà èíòåðâàëå (0; r), ãäå îòñóòñòâóåò íîñèòåëü ðàñïðåäåëåíèÿ Ïàðåòî, äëÿ ìîäåëèðîâàíèÿ îäíîñòîðîííåãî óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè α = 1 áûëà èñïîëüçîâàíà ñìåñü ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî íà ïîëîæèòåëüíîé ïîëóîñè Xj = p1 · g1 (x) + p2 · g2 (x), ãäå p1 +p2 = 1, g1 (x) ïëîòíîñòü ðàñïðåäåëåíèÿ ðàâíîìåðíîãî çàêîíà íà èíòåðâàëå (0; r), g2 (x) ïëîòíîñòü ðàñïðåäåëåíèÿ Ïàðåòî íà ëó÷å [r; ∞), r > 0. Ôóíêöèÿ ïëîòíîñòè ðàñïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû Xj : ( g(x) = p1 åñëè 0 < x < r, r , p2 xr2 , åñëè x ≥ r. Ïðåîáðàçóåì õàðàêòåðèñòè÷åñêóþ ôóíêöèþ âåëè÷èíû Xj : fXj (t) = = p1 Rr 0 R∞ eitx g(x)dx = p1 −∞ eitx 1r dx + p2 R∞ r Rr eitx g1 (x)dx + p2 R∞ eitx g2 (x)dx = r 0 eitx xr2 dx. Õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ ðàâíîìåðíî ðàñïðåäåëåííîé ñîñòàâëÿþùåé ðàâíà (eitr − 1)/itr, õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ Ïàðåòî ðàñïðåäåëåííîé ñîñòàâëÿþùåé èìååò âèä (3). Òîãäà õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ íîðìèðîâàííîé ñóììû ´ ³P n Sn = j=1 Xj /(b · n) áóäåò èìåòü âèä: " ³ itr exp bn −1 itr/(bn) ´ ³ itε + p2 · e bn − π |t|ε 2 bn itε bn γ itε bn ´ ln( |t|ε bn ) #n O( n12 ) fSn (t) = p1 · − − + = " #n ³ itr itr 2 1 ´ ³ ´ 1+ bn +( bn ) 2! −1 |t|ε |t|ε π itε itε 1 = p1 · + p2 · 1 + itε = itr/(bn) bn − 2 bn − bn γ − bn ln( bn ) + O( n2 ) " #n ³ ´ ³ ´ |t|ε 1 itε π |t|ε itε itε = p1 · 1 + itr + p · 1 + − − γ − ln( ) + O( n12 ) = 2 bn 2 bn 2 bn bn bn bn #n " ³ ´ |t|ε itr π |t|ε itε itε 1 = = p1 + p1 2bn + p2 + p2 · itε bn − 2 bn − bn γ − bn ln( bn ) + O( n2 ) " #n ³ ´ |t|ε itr π |t|ε itε itε 1 = 1 + p1 2bn + p2 · itε . bn − 2 bn − bn γ − bn ln( bn ) + O( n2 ) (11) Ïðè n → ∞ ïîëó÷àåì ïðåäñòàâëåíèå õàðàêòåðèñòè÷åñêîé ôóíêöèè íîðìèðîâàííîé ñóììû Sn â âèäå ýêñïîíåíòû, èç êîòîðîãî âèäíà íåîáõîäèìîñòü ââåäåíèÿ 57 ÌÎÄÅËÈÐÎÂÀÍÈÅ ÓÑÒÎÉ×ÈÂÛÕ ÑËÓ×ÀÉÍÛÕ ÂÅËÈ×ÈÍ Â ÑËÓ×ÀÅ... ñäâèãà an = a · n. Ïîñëå îñóùåñòâëåíèÿ ñîîòâåòñòâóþùèõ èçìåíåíèé õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ íîðìèðîâàííîé è öåíòðèðîâàííîé ñóììû ïðèîáðåòåò âèä: n ³ ´ o |t|ε |t|ε2 itε π |t|ε tε tε ita fSn (t) = exp p1 itr + p · − − i γ − i ln( ) + O( − + O( n1 ) = 2 2b b 2 b b b bn bn ¶ b µ n ¡ ¢ = exp itb p2 r 1 − γ + ln(bn) − p2 r ln(r) + p1 2r − a − ¶o µ 2 −p2 π2 |t|r ln |t| · sign(t) + O( n1 ). 1 + i b π (12) Åñëè ïîëîæèòü r = σ/p¡2 , ¢ a = p2 r 1 − γ + ln(bn) − p2 r ln(r) + p1 2r , b = π2 , (13) òî ïîëó÷èì ïðè n → ∞ õàðàêòåðèñòè÷åñêóþ ôóíêöèþ óñòîé÷èâîãî çàêîíà (2). Äëÿ ìîäåëèðîâàíèÿ óñòîé÷èâûõ ñëó÷àéíûõ ÷èñåë â ýòîì ñëó÷àå áóäåì çàäàâàòü ïàðàìåòðû σ > 0 è p2 < 1. Ðàáîòà äàò÷èêà ïðîäåìîíñòðèðîâàíà íà ðèñóíêàõ 5 è 6, èç êîòîðûõ âèäíî, ÷òî ìîæíî ïîäîáðàòü òàêèå çíà÷åíèÿ a è b, ÷òî ïðè ïðîèçâîëüíî çàäàííûõ çíà÷åíèÿõ ïàðàìåòðîâ σ, p2 ìîæíî ïîëó÷èòü ñëó÷àéíûå âåëè÷èíû, èìåþùèå òðåáóåìîå îäíîñòîðîííåå óñòîé÷èâîå ðàñïðåäåëåíèå. Íà ðèñóíêàõ ïðåäñòàâëåíû ãðàôèêè äëÿ ðàçëè÷íûõ ñî÷åòàíèé ïàðàìåòðîâ p1 è p2 ñìåñè ðàñïðåäåëåíèé ðàâíîìåðíîãî è Ïàðåòî: Density function X j g1+ (x) = 0.25 Density function 0.3 p1 r Random generator Theoretical 0.25 0.2 ← g2+ (x) = p 2 0.15 0.2 r x2 0.15 0.1 0.1 0.05 0 0.05 r 0 2 4 (a) 6 8 10 12 0 −2 0 2 4 6 8 10 (à) (b) Ðèñ. 5: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè n = 104 , K = 105 , β = 1, σ = 1, p2 = 0.5, r = 2 58 ÁÀÃÐÎÂÀ È.À. Density function Xj 0.35 Density function 0.15 Random generator Theoretical 0.3 0.25 ← g2+ (x) = p 2 r x2 0.1 0.2 0.15 0.05 0.1 g1+ (x) = p1 r 0.05 0 0 2 r 0 4 6 (a) 8 10 12 14 16 −2 0 2 4 6 8 10 12 14 (à) (b) Ðèñ. 6: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè n = 104 , K = 105 , β = 1, σ = 2, p2 = 0.8, r = 2.5 Density function X j Density function 0.6 0.35 g1+ (x) p1 = r Random generator Theoretical 0.3 0.5 0.25 0.4 0.2 0.3 0.15 0.2 0.1 ← g2+ (x) = p 2 0.05 0 0 1 2 r 3 4 (a) r x2 5 0.1 6 7 8 0 −1 0 1 2 3 4 5 6 (à) (b) Ðèñ. 7: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè n = 104 , K = 105 , β = 1, σ = 0.5, p2 = 0.2, r = 2.5 4. Ìîäåëèðîâàíèå äâóõñòîðîííèõ óñòîé÷èâûõ âåëè÷èí ïðè ïîìîùè ñìåñè ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî Äëÿ ìîäåëèðîâàíèÿ äâóõñòîðîííåãî óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè α = 1 ìîæíî òàêæå èñïîëüçîâàòü ñìåñè ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî íà ïîëîæèòåëüíîé è îòðèöàòåëüíîé ïîëóîñÿõ: − − + + Xj = q1 · Xj1 (x) + q2 · Xj2 + p1 · Xj1 + p2 · Xj2 , ãäå p1 + p2 = p, q1 + q2 = q , p + q = 1, g1− (x), g1+ (x) ïëîòíîñòè ðàñïðåäåëåíèÿ ðàâíîìåðíîãî çàêîíà ñîîòâåòñòâåííî íà èíòåðâàëàõ (−l; 0) è (0; r), g2− (x), g2+ (x) ïëîòíîñòè ðàñïðåäåëåíèÿ Ïàðåòî ñîîòâåòñòâåííî íà ëó÷àõ (−∞; −l] è [r; ∞), r, l > 0. ÌÎÄÅËÈÐÎÂÀÍÈÅ ÓÑÒÎÉ×ÈÂÛÕ ÑËÓ×ÀÉÍÛÕ ÂÅËÈ×ÈÍ Â ÑËÓ×ÀÅ... 59 Ôóíêöèÿ ïëîòíîñòè ðàñïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû Xj èìååò âèä: q l , åñëè x ≤ −l, q21 x2 åñëè −l ≥ x < 0, l , g(x) = p1 , r r åñëè 0 < x < r, p2 x2 , åñëè x ≥ r. Õàðàêòåðèñòè÷åñêàÿ ôóíêöèÿ áóäåò ïðåäñòàâëåíà ñëåäóþùèì îáðàçîì: fXj (t) = q2 −l R −∞ eitx g2− (x)dx + q1 R0 −l eitx g1− (x)dx + p1 Rr 0 eitx g1+ (x)dx + p2 R∞ r eitx g2+ (x)dx. Òîãäà ³ P õàðàêòåðèñòè÷åñêàÿ ´ ôóíêöèÿ íîðìèðîâàííîé è öåíòðèðîâàííîé ñóììû n Sn = j=1 (Xj − a)/(b · n) áóäåò èìåòü âèä ïðè n → ∞: ¶ n µ ¡ ¢ r l it fSn (t)= exp b (p2 r − q2 l) 1 − γ + ln(bn) − p2 r ln(r) + q2 l ln(l) + p1 2 − q1 2 − a − µ ¶o ³ ´ p2 r−q2 l 2 π |t| − 2 b (p2 r + q2 l) 1 + i p2 r+q2 l π ln |t| · sign(t) + O( n1 ). (14) Âèäíî, ÷òî â ýòîì ñëó÷àå, ÷òîáû ïîëó÷èòü ïðè n → ∞ óñòîé÷èâóþ ñëó÷àéíóþ âåëè÷èíó, íåîáõîäèìî ïîëîæèòü: ¡ ¢ a = (p2 r − q2 l) 1 − γ + ln(bn) − p2 r ln(r) + q2 l ln(l) + p1 2r − q1 2l , b = π2 . Òîãäà ïàðàìåòðû ñìåñè ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî è ïàðàìåòðû óñòîé÷èâîãî ðàñïðåäåëåíèÿ ñâÿçàíû ñîîòíîøåíèÿìè: p + q = 1, p1 + p2 = p, q1 + q2 = q, p2 r + q2 l = σ, p2 r−q2 l p2 r+q2 l = β. Îòêóäà ïîëó÷àåì, ÷òî r = σ(1+β) 2p2 , l= r, l > 0 σ(1−β) 2q2 , p1 = p − p2 , q1 = q − q2 , q = 1 − p. Äëÿ ìîäåëèðîâàíèÿ óñòîé÷èâîãî ðàñïðåäåëåíèÿ ñ òðåáóåìûìè ïàðàìåòðàìè β, σ ñ ïîìîùüþ ñìåñè ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî áóäåì çàäàâàòü ñëåäóþùèå ïàðàìåòðû: β ∈ (−1; 1), σ > 0, p ∈ (0; 1), q2 ≤ 1 − p. Ðàáîòà äàò÷èêà ïðè ðàçëè÷íûõ ñî÷åòàíèÿõ âõîäíûõ ïàðàìåòðîâ ïðîäåìîíñòðèðîâàíà íà ðèñóíêàõ: 60 ÁÀÃÐÎÂÀ È.À. Density function Density function X 0.35 g1− (x) = 0.35 j Random generator Theoretical q1 → l 0.3 0.3 0.25 0.25 0.2 0.2 g2− (x) = q2 0.15 l → x2 0.15 0.1 0.1 g1+ (x) 0.05 0 −10 −8 −6 −4 -l −2 p1 = r 0 (a) r ← g2+ (x) = p 2 2 x r4 2 6 8 10 0.05 0 −6 −4 −2 0 2 4 6 (à) (b) Ðèñ. 8: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè n = 104 , K = 105 , β = 0.3, σ = 1, p = 0.3, p2 = 0.2, q2 = 0.3 Density function X j Density function 0.6 0.3 l = q2 2 → x g2− (x) 0.5 0.25 0.4 0.2 0.3 ← g1− (x) q1 = l 0.15 0.2 g1+ (x) = 0.1 0 −4 Random generator Theoretical −3 −1 -l −2 0 (a) ← g2+ (x) = p 2 p1 r 1 0.1 r x2 0.05 r 2 3 4 5 6 0 −4 −2 0 2 4 6 8 (à) (b) Ðèñ. 9: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè n = 104 , K = 105 , β = 0.8, σ = 1, p = 0.6, p2 = 0.4, q2 = 0.3 Density function X Density function j ← g1+ (x) = 0.3 0.15 p1 r Random generator Theoretical 0.25 0.1 0.2 0.15 ← g2+ (x) = p 2 r x2 0.05 0.1 g2− (x) = q2 0.05 0 −12 l → x2 g1− (x) = −10 −8 −6 -l −4 −2 q1 l (a) 0 r 2 4 6 8 0 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 (à) (b) Ðèñ. 10: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè n = 104 , K = 105 , β = −0.8, σ = 2, p = 0.5, p2 = 0.2, q2 = 0.4 ÌÎÄÅËÈÐÎÂÀÍÈÅ ÓÑÒÎÉ×ÈÂÛÕ ÑËÓ×ÀÉÍÛÕ ÂÅËÈ×ÈÍ Â ÑËÓ×ÀÅ... 61 Îòäåëüíî ðàññìîòðèì ñëó÷àé, ñîîòâåòñòâóþùèé ðàñïðåäåëåíèþ Êîøè, êîãäà 2l α = 1, β = 0, ïðè ýòîì ïàðàìåòð ïîëîæåíèÿ µ = 0.  ýòîì ñëó÷àå β = 0, pp22 r−q r+q2 l = 0, p2 r = q2 l, r = σ/2p2 , l = σ/2q2 , p1 = p − p2 , q1 = q − q2 . Density function X 0.18 Density function j Random generator Cauchy 0.3 0.16 0.14 0.25 g1− (x) = 0.12 q1 → l ← g1+ (x) = p1 r 0.2 0.1 0.15 0.08 g2− (x) = q2 0.06 l → x2 ← g2+ (x) = p 2 r x2 0.1 0.04 0.05 0.02 0 −10 −8 −6 −2 -l −4 0 (a) r2 4 6 8 10 0 −6 −4 −2 0 2 4 6 (à) (b) Ðèñ. 11: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è ðàñïðåäåëåíèÿ Êîøè ïðè n = 104 , K = 105 , β = 0, σ = 1, p = 0.5, p2 = 0.3, q2 = 0.3 Density function X j q1 → g1− (x) = l 0.06 Density function ← g1+ (x) = p1 r 0.16 Random generator Cauchy 0.14 0.05 0.12 0.1 0.04 0.03 g2− (x) = q2 l → x2 ← g2+ (x) r = p2 2 x 0.08 0.06 0.02 0.04 0.01 0 −20 0.02 −15 −10 −5 -l r 0 (a) 5 10 15 20 0 −10 −5 0 5 10 (à) (b) Ðèñ. 12: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è ðàñïðåäåëåíèÿ Êîøè ïðè n = 104 , K = 104 , β = 0, σ = 2, p = 0.5, p2 = 0.25, q2 = 0.25 Density function X j Density function 1 Random generator Cauchy 0.6 0.9 ← g2+ (x) = p 2 0.8 r x2 0.5 0.7 0.4 0.6 0.5 0.3 0.4 0.3 g2− (x) = q2 l → x2 0.2 ← g1+ (x) = 0.2 g1− (x) = 0.1 0 −4 −3 −2 q1 → l −1 -l 0 (a) r 1 p1 r 2 0.1 3 4 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 (à) (b) Ðèñ. 13: a) âèä ïëîòíîñòè ðàñïðåäåëåíèÿ Xj , b) ãðàôèê ôóíêöèé ïëîòíîñòè ñãåíåðèðîâàííûõ ÷èñåë è ðàñïðåäåëåíèÿ Êîøè ïðè n = 104 , K = 104 , β = 0, σ = 0.5, p = 0.6, p2 = 0.5, q2 = 0.3 62 ÁÀÃÐÎÂÀ È.À. Çàêëþ÷åíèå  ñòàòüå áûëè ïîëó÷åíû âûðàæåíèÿ äëÿ ïàðàìåòðîâ a è b èç (1), íåîáõîäèìûå äëÿ ìîäåëèðîâàíèÿ óñòîé÷èâûõ ñëó÷àéíûõ âåëè÷èí ïðè α = 1. Áûëè îïðåäåëåíû ñîîòíîøåíèÿ ìåæäó ïàðàìåòðàìè ñìåñè ðàñïðåäåëåíèé Ïàðåòî è ðàâíîìåðíîãî è ïàðàìåòðàìè óñòîé÷èâîãî çàêîíà. Ìîäåëèðîâàíèå ïîêàçàëî, ÷òî è äëÿ ñëó÷àÿ α = 1 ïîëó÷åíèå óñòîé÷èâûõ ñëó÷àéíûõ ÷èñåë âîçìîæíî ñ ïîìîùüþ äàò÷èêà, îñíîâàííîãî íà îáîáùåííîé öåíòðàëüíîé ïðåäåëüíîé òåîðåìå. Ñïèñîê ëèòåðàòóðû [1] Àðõèïîâ Ñ.Â., Áàãðîâà È.À. Î ìîäåëèðîâàíèè îäíîñòîðîííèõ óñòîé÷èâûõ ñëó÷àéíûõ âåëè÷èí // Âåñòíèê Òâåðñêîãî ãîñóíèâåðñèòåòà. Ñåðèÿ: Ïðèêëàäíàÿ ìàòåìàòèêà, âûïóñê 4(15). Òâåðü: èçä-âî Òâåðñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà, 2009. Ñ. 53-62. [2] Àðõèïîâ Ñ.Â., Áàãðîâà È.À. Î ìîäåëèðîâàíèè óñòîé÷èâûõ ñëó÷àéíûõ âåëè÷è ïðè α áëèçêèõ ê åäèíèöå// Âåñòíèê Òâåðñêîãî ãîñóíèâåðñèòåòà. Ñåðèÿ: Ïðèêëàäíàÿ ìàòåìàòèêà, âûïóñê 3(18). Òâåðü: èçä-âî Òâåðñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà, 2010. Ñ. 5-14. [3] Àðõèïîâ Ñ. Πïðåäñòàâëåíèè õàðàêòåðèñòè÷åñêîé ôóíêöèè óñòîé÷èâîãî ðàñïðåäåëåíèÿ ïðè α = 1 (â ïå÷àòè) [4] Ëåâè Ï. Ñòîõàñòè÷åñêèå ïðîöåññû è áðîóíîâñêîå äâèæåíèå. Ì.: Íàóêà, 1972. 375 ñ. [5] Çîëîòàðåâ Â.Ì. Îäíîìåðíûå óñòîé÷èâûå ðàñïðåäåëåíèÿ. Ì.: Íàóêà, 1983. 304 ñ. [6] Janicki A., Weron A. Simulation and Chaotic Behavior of α-Stable Stochastic Processes. New York: Marcel Dekker, 1994. 355 p. [7] Samorodnitsky G., Taqqu M. Stable Non-Gaussian Random Processes. York: Chapman and Hall, 1994. 632 p. New [8] J. P. Nolan. http://academic2.american.edu/ jpnolan/stable/stable.html [9] Uchaikin V.V., Zolotarev V.M. Chance and Stability. Stable Distributions and their Applications. Utrecht: VSP, 1999. 594 p.