Евразийское патентное ведомство (19) (11) 019467 (13) B1 (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ (45) Дата публикации и выдачи патента (51) Int. Cl. G01C 19/5719 (2012.01) 2014.03.31 (21) Номер заявки 201101237 (22) Дата подачи заявки 2011.09.27 (54) ВИБРАЦИОННЫЙ ГИРОСКОП B1 (72) Изобретатель: (74) Представитель: (57) Изобретение относится к измерительной технике, в частности к приборам для измерения величины угловой скорости. Техническим результатом изобретения является повышение точности измерения угловой скорости и чувствительности вибрационного гироскопа. Технический результат изобретения достигается за счет введения опорной рамки и по крайней мере одной инерционной массы, при этом инерционная масса закреплена с помощью упругих элементов на двух противоположных плечах опорной рамки, в которых вблизи мест крепления упругих элементов выполнены сквозные отверстия вытянутой формы и нанесены измерительные электроды, причем инерционная масса и упругие элементы выполнены заодно с опорной рамкой из пьезоэлектрического материала. Маринушкин Павел Сергеевич (RU) Пантелеева Р.Д. (RU) B1 019467 (56) JP-A-10089968 В.Я. Распопов Микро-механические приборы. Москва, Машиностроение, 2007, с. 72 US-A-5126812 JP-A-10239065 US-A-4750364 019467 (31) 2010140273 (32) 2010.10.01 (33) RU (43) 2012.04.30 (71)(73) Заявитель и патентовладелец: ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" (СФУ) (RU) 019467 Изобретение относится к измерительной технике, в частности к приборам для измерения величины угловой скорости. Известен гироскоп [В.Я. Распопов, Микромеханические приборы. Учебное пособие, Машиностроение, Москва, 2007, с. 79, рис. 1.65], резонатор которого выполнен по кварцевой технологии и состоит из четырех стержней прямоугольного сечения, имеющих общее основание, которое через виброизолирующую ножку связано с корпусом. На наружных гранях стержня расположено по восемь пьезоэлектрических преобразователей силы и преобразователей перемещений. Недостатками гироскопа являются сложность и трудоемкость изготовления, а также низкая точность, обусловленная различием механических свойств стержней и пьезоэлектрических преобразователей, и наличием напряжений в местах их соединения. Функциональным аналогом заявляемого объекта является датчик угловой скорости и ускорений [патент США № 4750364], содержащий основание, две инерционные массы, расположенные с зазором относительно подложки с помощью упругих элементов, а также приводные и информационные электроды. Недостатком данного гироскопа является сложность обеспечения резонансной настройки и, как следствие этого, недостаточно высокая точность и чувствительность. Наиболее близким по технической сущности к заявляемому объекту является вибрационный гироскоп [В.Я. Распопов, Микромеханические приборы. Учебное пособие, Машиностроение, Москва, 2007, с. 77, рис. 1.63], содержащий резонатор, изготовленный из монокристалла кремния и состоящий из двух упругих элементов, имеющих общую ножку, связанную с корпусом. На поверхность упругих элементов нанесены электроды возбуждения и измерительные электроды. При колебаниях в противофазе упругих элементов и при наличии переносной угловой скорости основания вибрационного гироскопа возникают силы инерции Кориолиса, вызывающие вторичные колебания упругих элементов в плоскости, перпендикулярной плоскости первичных колебаний. Вторичные колебания упругих элементов несут в себе информацию об угловой скорости вращения основания. Недостатком данного вибрационного гироскопа является сложность обеспечения резонансной настройки (в силу того, что первичные и вторичные колебания осуществляются в разных плоскостях) и, как следствие этого, недостаточно высокая точность и чувствительность вибрационного гироскопа. Задача предлагаемого изобретения состоит в повышении точности измерения угловой скорости и чувствительности вибрационного гироскопа. Для решения поставленной задачи вибрационный гироскоп, содержащий упругие элементы, на поверхность которых нанесены электроды возбуждения, согласно изобретению дополнительно содержит опорную рамку и по крайней мере одну инерционную массу, при этом инерционная масса закреплена с помощью упругих элементов на двух противоположных плечах опорной рамки, в которых вблизи мест крепления упругих элементов выполнены сквозные отверстия вытянутой формы и нанесены измерительные электроды, причем инерционная масса и упругие элементы выполнены заодно с опорной рамкой из пьезоэлектрического материала. На фиг. 1 представлен общий вид вибрационного гироскопа, на фиг. 2 представлена схема, поясняющая принцип действия вибрационного гироскопа, на фиг. 3 представлен вариант исполнения вибрационного гироскопа с двумя инерционными массами. Вибрационный гироскоп (фиг. 1) содержит опорную рамку 1 и по крайней мере одну инерционную массу 2, закрепленную с помощью упругих элементов 31 и 32 на двух противоположных плечах опорной рамки 1. На поверхность упругих элементов 31 и 32 нанесены электроды возбуждения 41 и 42 соответственно. На двух противоположных плечах опорной рамки 1 вблизи мест крепления упругих элементов 31 и 32 выполнены сквозные отверстия вытянутой формы (прорези) 51 и 52 и нанесены измерительные электроды 61 и 62. Упругие элементы 31 и 32 выполнены таким образом, что они имеют большую жесткость в направлении оси Z, чем в направлении осей X и Y. Поэтому инерционная масса 2 имеет возможность свободного перемещения только в плоскости XY. Инерционная масса 2 и упругие элементы 31 и 32 выполнены заодно с опорной рамкой 1 из пьезоэлектрического материала. Выполнение инерционной массы и упругих элементов заодно с опорной рамкой из пьезоэлектрического материала (монокристаллический кварц, танталат лития LiTaO3, ниобат лития LiNbO3, пьезокерамика и др.) позволяет избежать в конструкции соединений из разнородных материалов, что в результате приводит к значительному повышению точности измерения угловой скорости. Электроды возбуждения 41 и 42 и измерительные электроды 61 и 62 могут наноситься путем вакуумного напыления. Следует отметить, что конфигурация, число и конкретное местоположение измерительных электродов на опорной рамке могут быть различными. Выбор того или иного варианта определяется в зависимости от используемого пьезоэлектрического материала и от ориентации среза (при использовании кристаллических пьезоэлектрических материалов). Вибрационный гироскоп работает следующим образом. При подаче питания на вибрационный гироскоп с помощью электродов возбуждения 41 и 42 генерируются изгибные колебания упругих элементов 31 и 32. При этом инерционная масса 2 начинает совершать колебания вдоль оси Y с линейной скоростью υу (фиг. 2). При появлении переносной угловой скорости ωz вокруг оси Z возникают силы инерции Ко-1- 019467 риолиса, вызывающие вибрационные перемещения инерционной массы 2 в направлении оси X с линейной скоростью υх. Эти перемещения из-за большой продольной жесткости упругих элементов 31 и 32 вызывают деформацию плеч опорной рамки 1 в местах крепления упругих элементов 31 и 32 (фиг. 2). Возможность деформации плеч опорной рамки 1 при вторичных колебаниях инерционной массы 2 обеспечивается благодаря наличию сквозных отверстий вытянутой формы 51 и 52 в плечах опорной рамки 1 вблизи мест крепления упругих элементов 31 и 32. Сигнал, пропорциональный амплитуде этой деформации, снимается с измерительных электродов 61 и 62. Так как первичные и вторичные колебания осуществляются в одной плоскости XY, то при этом упрощается резонансная настройка вибрационного гироскопа (совмещение частот первичных и вторичных колебаний) и уменьшается влияние перекрестных связей между первичными и вторичными колебаниями. Таким образом, повышается чувствительность вибрационного гироскопа и точность измерения угловой скорости. Возможен вариант исполнения предлагаемого вибрационного гироскопа с двумя инерционными массами 21 и 22 (фиг. 3). При этом инерционные массы 21 и 22 закреплены с помощью упругих элементов 311, 321, и 312, 322 соответственно на двух противоположных плечах опорной рамки 1. В опорной рамке 1 вблизи мест крепления упругих элементов 311 и 321 выполнены сквозные отверстия вытянутой формы 511 и 521 и нанесены измерительные электроды 611 и 621, а вблизи мест крепления упругих элементов 312 и 322 выполнены сквозные отверстия вытянутой формы 512 и 522 и нанесены измерительные электроды 612 и 622. При подаче питания на вибрационный гироскоп возбуждаются противофазные колебания инерционных масс 21 и 22 вдоль оси Y. При этом обеспечивается дополнительно повышение точности измерения угловой скорости путем исключения влияния на показания вибрационного гироскопа боковой составляющей ускорения (в силу того, что полезные сигналы, обусловленные угловой скоростью ωz, будут противофазными, а сигналы, обусловленные боковой составляющей ускорения, будут синфазными). В остальном принцип работы вибрационного гироскопа с двумя инерционными массами соответствует принципу работы вибрационного гироскопа с одной инерционной массой. В целом, по сравнению с известными устройствами, предлагаемое изобретение позволяет повысить точность измерения угловой скорости и чувствительность вибрационного гироскопа за счет упрощения резонансной настройки вибрационного гироскопа и снижения влияния перекрестных связей между первичными и вторичными колебаниями. ФОРМУЛА ИЗОБРЕТЕНИЯ Вибрационный гироскоп, содержащий упругие элементы, на поверхность которых нанесены электроды возбуждения, отличающийся тем, что он дополнительно содержит опорную рамку и по крайней мере одну инерционную массу, при этом инерционная масса закреплена с помощью упругих элементов на двух противоположных плечах опорной рамки, в которых вблизи мест крепления упругих элементов выполнены сквозные отверстия вытянутой формы и нанесены измерительные электроды, причем инерционная масса и упругие элементы выполнены заодно с опорной рамкой из пьезоэлектрического материала. Фиг. 1 -2- 019467 Фиг. 2 Фиг. 3 Евразийская патентная организация, ЕАПВ Россия, 109012, Москва, Малый Черкасский пер., 2 -3-