биоводород: возможное использование водорослей и бактерий

реклама
ÂÎÄÎÐÎÄÍÀß ÝÍÅÐÃÅÒÈÊÀ È ÒÐÀÍÑÏÎÐÒ
Ìåòîäû ïîëó÷åíèÿ âîäîðîäà
HYDROGEN ENERGY AND TRANSPORT
ÓÄÊ 576.8, 581.13
ÁÈÎÂÎÄÎÐÎÄ: ÂÎÇÌÎÆÍÎÅ ÈÑÏÎËÜÇÎÂÀÍÈÅ
ÂÎÄÎÐÎÑËÅÉ È ÁÀÊÒÅÐÈÉ ÄËß ÏÎËÓ×ÅÍÈß
ÌÎËÅÊÓËßÐÍÎÃÎ ÂÎÄÎÐÎÄÀ
Ñ. À. Ìàðêîâ
© 2007 Scientific Technical Centre «TATA»
Hydrogen production methods
Ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Îñòèíà Ïè, êàôåäðà áèîëîãèè
à/ÿ 4718, Êëàðêñâèëë, øòàò Òåííåññè, 37044, ÑØÀ
Òåë.: 1 (931) 221-7440; ôàêñ: 1 (931) 221-6323; E-mail: markovs@apsu.edu
Ââåäåíèå
Ìèêðîñêîïè÷åñêèå âîäîðîñëè è áàêòåðèè
âûäåëÿþò ìîëåêóëÿðíûé âîäîðîä, èñïîëüçóÿ äëÿ
ýòîãî íåîðãàíè÷åñêèå, íàïðèìåð, âîäó, èëè îðãàíè÷åñêèå âåùåñòâà, íàïðèìåð, ñàõàð. Ïîëó÷åíèå âîäîðîäà èç âîäîðîñëåé è áàêòåðèé î÷åíü
çàìàí÷èâî è ìîæåò íàéòè ïðàêòè÷åñêîå ïðèìåíåíèå â áëèæàéøåì áóäóùåì, îäíàêî â íàñòîÿùåå âðåìÿ âñå âîçìîæíûå ñïîñîáû ïðîèçâîäñòâà âîäîðîäà èç ìèêðîîðãàíèçìîâ íàõîäÿòñÿ íà
óðîâíå ýêñïåðèìåíòàëüíûõ ðàçðàáîòîê.
Öåëüþ íàñòîÿùåãî îáçîðà ÿâëÿåòñÿ îïèñàíèå íàèáîëåå ïåðñïåêòèâíûõ ñïîñîáîâ ïîëó÷åíèÿ âîäîðîäà èç âîäîðîñëåé è áàêòåðèé. Äîïîëíèòåëüíóþ èíôîðìàöèþ ïî ðàçíûì àñïåêòàì áèîëîãè÷åñêîãî âûäåëåíèÿ âîäîðîäà ìîæíî íàéòè â
ïîñëåäíèõ îáçîðàõ ïî ýòîé òåìå [1–4].
Ïîëó÷åíèå âîäîðîäà èç âîäû ñ ïîìîùüþ
ôîòîñèíòåòè÷åñêèõ ìèêðîîðãàíèçìîâ
 îïðåäåëåííûõ óñëîâèÿõ ìèêðîñêîïè÷åñêèå çåëåíûå âîäîðîñëè è öèàíîáàêòåðèè ìîãóò
âûäåëÿòü ìîëåêóëÿðíûé âîäîðîä â ôîòîñèíòåòè÷åñêèõ ðåàêöèÿõ, èñïîëüçóÿ âîäó êàê èñòî÷íèê ýëåêòðîíîâ è ñîëíå÷íûé ñâåò êàê èñòî÷íèê
ýíåðãèè. Ïîëó÷åíèå âîäîðîäà èç âîäû âîäîðîñëÿìè è öèàíîáàêòåðèÿìè ïîä äåéñòâèåì ñîëíå÷íîãî ñâåòà íàèáîëåå ïåðñïåêòèâíî, òàê êàê çàïàñû âîäû è ñîëíå÷íîé ýíåðãèè ïðàêòè÷åñêè
íåèñòîùèìû è âîçîáíîâëÿåìû.
Ñòàòüÿ ïîñòóïèëà â ðåäàêöèþ 22.12.2006 ã.
30
Êàê çåëåíûå âîäîðîñëè, òàê è öèàíîáàêòåðèè èñïîëüçóþò ôîòîñèíòåòè÷åñêèé àïïàðàò äëÿ
âûäåëåíèÿ âîäîðîäà. Ôîòîñèíòåç — ýòî êîìïëåêñ áèîõèìè÷åñêèõ ðåàêöèé äëÿ ïðåâðàùåíèÿ
(êîíâåðñèè) ñîëíå÷íîé ýíåðãèè â õèìè÷åñêóþ
ýíåðãèþ îðãàíè÷åñêèõ âåùåñòâ, òàêèõ êàê óãëåâîäû.  ïðîöåññå ôîòîñèíòåçà ýëåêòðîíû èç âîäû
ïåðåíîñÿòñÿ íà óãëåêèñëûé ãàç, êîòîðûé ïðåâðàùàåòñÿ â óãëåâîäû. Â áåçâîçäóøíûõ óñëîâèÿõ (áåç óãëåêèñëîãî ãàçà, êèñëîðîäà è àçîòà) çåëåíûå âîäîðîñëè è öèàíîáàêòåðèè ïåðåíîñÿò
ýëåêòðîíû íà ïðîòîíû è âûäåëÿþò ìîëåêóëÿðíûé âîäîðîä.
Çåëåíûå âîäîðîñëè. Ñïîñîáíîñòü ê âûäåëåíèþ âîäîðîäà çåëåíûìè âîäîðîñëÿìè áûëà îáíàðóæåíà Ãàôôðîíîì è Ðóáèíûì [5] 65 ëåò íàçàä.
 òå÷åíèè äîëãîãî âðåìåíè ñïîñîáíîñòü ê âûäåëåíèþ âîäîðîäà çåëåíûìè âîäîðîñëÿìè ðàññìàòðèâàëàñü êàê êóðüåçíûé ôàêò, íå èìåþùèé îñîáîé ïðàêòè÷åñêîé çíà÷èìîñòè: áîëüøèíñòâî âîäîðîñëåé âûäåëÿëè âîäîðîä â ìåíüøåì êîëè÷åñòâå,
÷åì äðóãèå ìèêðîîðãàíèçìû. Íàèáîëåe èçó÷åííîé âîäîðîñëüþ ñðåäè âûäåëÿþùèõ âîäîðîä ÿâëÿåòñÿ Chlamydomonas reinhardtii. Ýòà îäíîêëåòî÷íàÿ âîäîðîñëü óäâàèâàåò áèîìàññó â òå÷åíèè
6 ÷ è íå òðåáóåò áîëüøèõ óñèëèé äëÿ åå ïîääåðæàíèÿ. Chlamydomonas øèðîêî èñïîëüçóåòñÿ â
èññëåäîâàòåëüñêèõ ëàáîðàòîðèÿõ äëÿ èçó÷åíèÿ
ðàçëè÷íûõ àñïåêòîâ ôîòîñèíòåçà â êà÷åñòâå ìîäåëüíîé ñèñòåìû. Ôåðìåíò ãèäðîãåíàçà êàòàëèThe article has entered in publishing office 22.12.2006
International Scientific Journal for Alternative Energy and Ecology ISJAEE ¹ 1(45) (2007)
Ìåæäóíàðîäíûé íàó÷íûé æóðíàë «Àëüòåðíàòèâíàÿ ýíåðãåòèêà è ýêîëîãèÿ» ÀÝÝ ¹ 1(45) (2007)
© 2007 Íàó÷íî-òåõíè÷åñêèé öåíòð «TATA»
The review surveys data on molecular hydrogen production by algae and bacteria available in
literature and obtained by author with a view of practical application of this technology. The current
knowledge about physiology and biochemistry of H2 production by algae and bacteria was described and
biological H2-producing processes that could be used for à large-scale production of hydrogen already
today were identified. Particular attention in the review is given to bioreactors for hydrogen production by algae and bacteria.
Ñ. À. Ìàðêîâ
Áèîâîäîðîä: âîçìîæíîå èñïîëüçîâàíèå âîäîðîñëåé è áàêòåðèé äëÿ ïîëó÷åíèÿ ìîëåêóëÿðíîãî âîäîðîäà
çèðóåò ïðîèçâîäñòâî âîäîðîäà ó çåëåíûõ âîäîðîñëåé ñîãëàñíî óðàâíåíèþ [6]:
© 2007 Íàó÷íî-òåõíè÷åñêèé öåíòð «TATA»
© 2007 Scientific Technical Centre «TATA»
2H+ + 2e – → H2.
Ìîëåêóëÿðíûé êèñëîðîä âûçûâàåò èíàêòèâàöèþ ýòîãî ôåðìåíòà â òå÷åíèè 2–3 ìèí. Ê òîìó
æå ïðè íàëè÷èè êèñëîðîäà íå ïðîèñõîäèò ýêñïðåññèè ãåíà, îòâåòñòâåííîãî çà ãèäðîãåíàçó. Âûäåëåíèå âîäîðîäà âîäîðîñëÿìè, òàêèì îáðàçîì,
ðåãèñòðèðóåòñÿ òîëüêî â áåñêèñëîðîäíûõ (àíàýðîáíûõ) óñëîâèÿõ. ×òîáû ïîëó÷èòü âîäîðîä èç
çåëåíûõ âîäîðîñëåé, èõ êëåòêè íóæíî ïîìåñòèòü
â àòìîñôåðó èíåðòíîãî ãàçà, íàïðèìåð, àðãîíà,
èëè â àòìîñôåðó ìîëåêóëÿðíîãî àçîòà, èëè â óñëîâèÿ ÷àñòè÷íîãî âàêóóìà [7]. Ê òîìó æå íóæíî
ïîñòîÿííî óäàëÿòü êèñëîðîä, êîòîðûé âûäåëÿåòñÿ âîäîðîñëÿìè â ïðîöåññå ôîòîñèíòåçà.
Ïðîáëåìà ÷óâñòâèòåëüíîñòè ãèäðîãåíàçû è
åe ãåíîâ ê êèñëîðîäó äîëãîå âðåìÿ îñòàíàâëèâàëà èññëåäîâàíèÿ â îáëàñòè âûäåëåíèÿ âîäîðîäà
çåëåíûìè âîäîðîñëÿìè. Íåäàâíî íåïðåðûâíîå
âûäåëåíèå âîäîðîäà Ñ. reinhardtii áûëî äîñòèãíóòî ïóòåì óäàëåíèÿ ñåðû èç ñðåäû âûðàùèâàíèÿ, ÷òî âûçâàëî îáðàòèìóþ èíàêòèâàöèþ ôîòîñèíòåòè÷åñêîãî âûäåëåíèÿ êèñëîðîäà [8]. Âåäóòñÿ ðàáîòû ïî ïîëó÷åíèþ ìóòàíòîâ çåëåíûõ
âîäîðîñëåé ñ íå÷óâñòâèòåëüíîé èëè ìàëî ÷óâñòâèòåëüíîé ê êèñëîðîäó ãèäðîãåíàçîé [9]. Òàê,
óäàëîñü ïîëó÷èòü ìóòàíò Ñ. reinhardtii ñ ãèäðîãåíàçîé íà 330 % ìåíåå ÷óâñòâèòåëüíîé ê êèñëîðîäó. Ïîñëåäíèå äîñòèæåíèÿ âûçâàëè áîëüøîé èíòåðåñ â ìèðå ê çåëåíûì âîäîðîñëÿì, âûäåëÿþùèì âîäîðîä. Çà êîðîòêîå âðåìÿ áûëî
îïóáëèêîâàíî áîëüøîå êîëè÷åñòâî ñòàòåé [10–
13] è áûë äîñòèãíóò çíà÷èòåëüíûé ïðîãðåññ â
îáëàñòè âûäåëåíèÿ âîäîðîäà çåëåíûìè âîäîðîñëÿìè, âêëþ÷àÿ ìåõàíèçì ïðîöåññà è ñïîñîáíîñòü
ìàíèïóëèðîâàòü ôèçèîëîãèåé ñ öåëüþ ïîâûøåíèÿ ñêîðîñòè è ïðîäîëæèòåëüíîñòè âûäåëåíèÿ
âîäîðîäà. Ãåíû, îòâåòñòâåííûå çà ïðîèçâîäñòâî
âîäîðîäà, áûëè òàêæå îïðåäåëåíû [10, 12, 14].
Ñ. reinhardtii âûäåëÿåò âîäîðîä ñî ñêîðîñòüþ îò
4,0 äî 5,5 ìë/÷ íà ãðàìì ñóõîé êëåòî÷íîé áèîìàññû (ñì. òàáë.).
Èññëåäîâàíèÿ ïî èçó÷åíèþ âûäåëåíèÿ âîäîðîäà çåëåíûìè âîäîðîñëÿìè ñ÷èòàþòñÿ â íàñòîÿùååå âðåìÿ íàèáîëåå ïåðñïåêòèâíûìè.
Öèàíîáàêòåðèè. Îáðàçîâàíèå âîäîðîäà êëåòêàìè öèàíîáàêòåðèé áûëî âïåðâûå ïîêàçàíî â
1973 ã. [15]. Öèàíîáàêòåðèè ïî ñòðîåíèþ êëåòîê
è íà ìîëåêóëÿðíîì óðîâíå ÿâëÿþòñÿ òèïè÷íûìè
áàêòåðèÿìè. Îäíàêî èõ êèñëîðîäâûäåëÿþùèé ôîòîñèíòåç òèïè÷åí äëÿ âîäîðîñëåé (äà è âûãëÿäÿò
îíè êàê âîäîðîñëè), è ïîýòîìó öèàíîáàòåðèè òàêæå èçâåñòíû ïîä èìåíåì ñèíåçåëåíûõ âîäîðîñ-
ëåé. Äëÿ ïîääåðæàíèÿ êóëüòóð öèàíîáàêòåðèé
òðåáóåòñÿ ìåíüøå ïèòàòåëüíûõ âåùåñòâ ïî ñðàâíåíèþ ñ çåëåíûìè âîäîðîñëÿìè; ìíîãèå ïðåäñòàâèòåëè öèàíîáàêòåðèé ñïîñîáíû ïîëó÷àòü àçîò
äëÿ ïîñòðîåíèÿ êëåòî÷íûõ êîìïîíåíòîâ èç âîçäóõà. Îäíàêî ðàñòóò îíè íàìíîãî ìåäëåíåå çåëåíûõ âîäîðîñëåé, òàêèõ êàê Chlamydomonas. Äëÿ
âûäåëåíèÿ âîäîðîäà öèàíîáàêòåðèè èñïîëüçóþò
äâà ôåðìåíòà: íèòðîãåíàçó è ãèäðîãåíàçó.
Íèòðîãåíàçà êàòàëèçèðóåò ñëåäóþùóþ ðåàêöèþ:
N2 + 6e– + 6H+ + 16ATÔ → 2 NH4+ +
+ 16ÀÄÔ + 16Ôí + H2,
ãäå ÀÒÔ — àäåíîçèíòðèôîñôîðíàÿ êèñëîòà,
ÀÄÔ — àäåíîçèíäèôîñôîñôîðíàÿ êèñëîòà, Ôí —
íåîðãàíè÷åñêèé.
Îñíîâíàÿ ôóíêöèÿ ýòîé ðåàêöèè — àññèìèëÿöèÿ ìîëåêóëÿðíîãî àçîòà èç âîçäóõà; âîäîðîä
âûäåëÿåòñÿ öèàíîáàêòåðèÿìè êàê ñîïóòñòâóùèé
ïðîäóêò. Êàê è ãèäðîãåíàçà, ôåðìåíò íèòðîãåíàçà î÷åíü ÷óâñòâèòåëåí ê êèñëîðîäó. Ó öèàíîáàêòåðèé, êîòîðûå èñïîëüçóþò ýòîò ôåðìåíò,
íèòðîãåíàçà íàõîäèòñÿ â ñïåöèàëèçèðîâàííûõ
êëåòêàõ — ãåòåðîöèñòàõ. Íèòðîãåíàçà â ãåòåðîöèñòàõ çàùèùåíà îò èíãèáèðóþùåãî âîçäåéñòâèÿ
êèñëîðîäà. Ãåòåðîöèñòû èìåþò î÷åíü òîëñòóþ îáîëî÷êó, ñëàáî ïðîïóñêàþùóþ êèñëîðîä, ê òîìó
æå ãåòåðîöèñòû îáëàäàþò àêòèâíûì äûõàíèåì
(ïîãëîùåíèåì) è, â îòëè÷èè îò îñòàëüíûõ êëåòîê (âåãåòàòèâíûõ), íå âûäåëÿþò êèñëîðîä. Îïèñàííûå ÷åðòû äåëàþò ãåòåðîöèñòíûå öèàíîáàêòåðèè åäèíñòâåííûìè îðãàíèçìàìè, ñïîñîáíûìè âûäåëÿòü âîäîðîä â ïðèñóòñòâèè ìîëåêóëÿðíîãî
êèñëîðîäà â âîçäóøíîé àòìîñôåðå.
Äðóãîé ôåðìåíò, îòâåòñòâåííûé çà âûäåëåíèå âîäîðîäà ó öèàíîáàêòåðèé, ýòî òàê íàçûâàåìàÿ îáðàòèìàÿ (äâóõñòîðîííÿÿ) ãèäðîãåíàçà, êîòîðàÿ ìîæåò êàòàëèçèðîâàòü òàêæå è ïîãëîùåíèå âîäîðîäà. Îòäåëüíûå âèäû öèàíîáàêòåðèé
ìîãóò èìåòü êàê íèòðîãåíàçó, òàê è ãèäðîãåíàçó.
Ñïîñîáíîñòü öèàíîáàêòåðèé ê âûäåëåíèþ âîäîðîäà, êàòàëèçèðóåìàÿ òîëüêî ãèäðîãåíàçîé, èçó÷åíà ñëàáî. Áîëüøèíñòâî èññëåäîâàíèé ïîñâÿùåíî
âûäåëåíèþ âîäîðîäà ñ ïîìîùüþ íèòðîãåíàçû y
ñîäåðæàùèõ ãåòåðîöèñòû öèàíîáàêòåðèé. Ìíîãî÷èñëåííûå âèäû è øòàììû öèàíîáàêòåðèé áûëè
èçó÷åíû íà ñïîñîáíîñòü ê âûäåëåíèþ âîäîðîäà
[19]. Cêîðîñòü ïðîèçâîäñòâà âîäîðîäà âàðüèðóåòñÿ â ïðåäåëàõ 10–40 ìë/÷ íà ãðàìì ñóõîé êëåòî÷íîé áèîìàññû (ñì. òàáë.). Ïî ñðàâíåíèþ ñ çåëåíûìè âîäîðîñëÿìè âîäà, îäíàêî, âîâëå÷åíà â
ïðîèçâîäñòâî âîäîðîäà ó ãåòåðîöèñòíûõ öèàíîáàêòåðèé ÷åðåç ñåðèþ ïðîìåæóòî÷íûõ ðåàêöèé.
Äðóãèì íåäîñòàòêîì Í2-âûäåëÿþùèõ ñèñòåì, îñ-
Ñêîðîñòü âûäåëåíèÿ âîäîðîäà âîäîðîñëÿìè è áàêòåðèÿìè
Ìèêðîîðãàíèçì
Ñhlamydomonas reinhardtii
Anabaena variabilis
Enterobacter aerogenes
Rubrivivax gelatinosus
Ñêîðîñòü âûäåëåíèÿ âîäîðîäà,
ìë Í2/ã ñóõîé êëåòî÷íîé áèîìàññû â ÷àñ
äî 5,5
äî 20
äî 400
äî 700
International Scientific Journal for Alternative Energy and Ecology ISJAEE ¹ 1(45) (2007)
Ìåæäóíàðîäíûé íàó÷íûé æóðíàë «Àëüòåðíàòèâíàÿ ýíåðãåòèêà è ýêîëîãèÿ» ÀÝÝ ¹ 1(45) (2007)
Ññûëêà
13
16
17
18
31
Âîäîðîäíàÿ ýíåðãåòèêà è òðàíñïîðò
Ìåòîäû ïîëó÷åíèÿ âîäîðîäà
Ïîëó÷åíèå âîäîðîäà ïóòåì êîíâåðñèè
óãàðíîãî ãàçà
Ïîëó÷åíèå âîäîðîäà ïóòåì êîíâåðñèè óãàðíîãî ãàçà (ÑÎ) îñíîâàíî íà óíèêàëüíîé ðåàêöèè,
íàéäåííîé Óôôåíîì [20] ó ôîòîñèíòåòè÷åñêîé
ïóðïóðíîé áàêòåðèè. Ïóðïóðíûå áàêòåðèè — ýòî
îäíîêëåòî÷íûå ìèêðîîðãàíèçìû ñâîåîáðàçíîé
ðîçîâîé èëè êðàñíîé îêðàñêè, ñâÿçàííîé ñ íàëè÷èåì ó íèõ ïèãìåíòîâ ôîòîñèíòåçà. Êóëüòóðû
øòàììà ïóðïóðíîé áàêòåðèè, îïèñàííîé Óôôåííîì, âûäåëÿþò âîäîðîä â ðåçóëüòàòå òàê íàçûâàåìîé øèôò-ðåàêöèè (ðåàêöèè êîíâåðñèè) ñîãëàñíî óðàâíåíèþ:
CO + H2O → CO2 + H2.
Îáðàçîâàíèå âîäîðîäà â ýòîì ñëó÷àå ïðîèñõîäèò èç âîäû, ÷òî áûëî ïîêàçàíî â îïûòàõ ñ
èñïîëüçîâàíèåì 3Í2Î.  îòëè÷èè îò öèàíîáàêòåðèé è âîäîðîñëåé ïóðïóðíûå áàêòåðèè íå èñïîëüçóþò äëÿ ðàçëîæåíèÿ âîäû ñîëíå÷íóþ ýíåðãèþ,
è ïîêàçàííàÿ âûøå ðåàêöèÿ èäåò â òåìíîòå.
Áîëüøèì ïðèåìóùåñòâîì ïî ñðàâíåíèþ ñ ïîäîáíîé æå õèìè÷åñêîé ðåàêöèåé, êîòîðàÿ òðåáóåò
âûñîêèõ òåìïåðàòóð è íåñêîëüêèõ ñòàäèé, ÿâëÿåòñÿ òî, ÷òî ýòà ðåàêöèÿ ïðîèñõîäèò ïðè êîìíàòíîé òåìïåðàòóðå â îäíó ñòàäèþ. Âûäåëåíèå
âîäîðîäà êàòàëèçèðóåòñÿ äâóìÿ ôåðìåíòàìè: ãèäðîãåíàçîé è ñïåöèôè÷åñêîé ÑÎ-ãèäðîãåíàçîé, ðàáîòàþùèìè âìåñòå.
Ìíîãî÷èñëåííûå øòàììû ïóðïóðíûõ áàêòåðèé, âêëþ÷àÿ Rubrivivax gelatinosus CBS2, áûëè
âûäåëåíû â ÷èñòóþ êóëüòóðó â Íàöèîíàëüíîé
ëàáîðàòîðèè âîçîáíîâëÿåìûõ èñòî÷íèêîâ ýíåðãèè â ÑØÀ è èññëåäîâàíû íà âûäåëåíèå âîäîðîäà. Ñêîðîñòè âûäåëåíèÿ âîäîðîäà ýòèìè áàêòåðèÿìè âàðüðèðóþòñÿ îò 140 äî 700 ìë/÷ íà ãðàìì
ñóõîé êëåòî÷íîé áèîìàññû (cì. ññûëêó ê òàáë.).
Ðÿä ïðîáëåì ñóùåñòâóåò íà ïóòè ïðàêòè÷åñêîãî ïðèìåíåíèÿ øèôò-ðåàêöèè. Îäíà èç íèõ —
òîêñè÷íîñòü óãàðíîãî ãàçà. Íàëè÷èå äîñòàòî÷íîãî êîëè÷åñòâà óãàðíîãî ãàçà ïðè ïðàêòè÷åñêîì
ïðèìåíåíèè ýòîé ðåàêöèè äëÿ ìàññîâîãî ïîëó÷åíèÿ âîäîðîäà ìîæåò ñòàòü äðóãîé ïðîáëåìîé. Â
íàñòîÿùåå âðåìÿ ïðåäïîëàãàåìûì èñòî÷íèêîì ÑÎ
ïðåäñòàâëÿåòñÿ ãàç, ïîëó÷àåìûé ïóòåì òåðìàëü-
32
íîé ãàçèôèêàöèè áèîìàññû è ñîäåðæàùèé áîëüøîå êîëè÷åñòâî óãàðíîãî ãàçà.
Ìíîãèå áàêòåðèè ìîãóò âûäåëÿòü âîäîðîä â
ðåçóëüòàòå áðîæåíèÿ, èñïîëüçóÿ äëÿ ýòîãî îðãàíè÷åñêèå ñîåäèíåíèÿ, íàïðèìåð, ñàõàðà. Áàêòåðèè, âûäåëÿþùèå âîäîðîä, íàéäåíû ñðåäè ïðåäñòàâèòåëåé 25 % ðîäîâ áàêòåðèé, ïðåäñòàâëåííûõ â ïîñëåäíåì èçäàíèè îïðåäåëèòåëÿ áàêòåðèé
Áåðãè [21]. Ñðåäè ýòèõ áàêòåðèé åñòü òàêèå èçâåñòíûå âèäû, êàê Escherichia coli, à òàêæå ïàòîãåííûå äëÿ ÷åëîâåêà áàêòåðèè, òàêèå êàê
Salmonella. Ñïîñîáíîñòü áàêòåðèé âûäåëÿòü âîäîðîä èçâåñòíà åùå ñ 19 âåêà [22]. Ãèäðîãåíàçà
êàòàëèçèðóåò ýòîò ïðîöåññ. Ñêîðîñòè îáðàçîâàíèÿ âîäîðîäà áàêòåðèÿìè, îñóùåñòâëÿþùèìè
áðîæåíèå (äî 400 ìë/÷ íà ãðàìì ñóõîé êëåòî÷íîé áèîìàññû), íàìíîãî âûøå ïî ñðàâíåíèþ ñî
ñêîðîñòÿìè îáðàçîâàíèÿ âîäîðîäà ôîòîñèíòåòè÷åñêèìè ìèêðîîðãàíèçìàìè (ñì. òaáë.). Îäíàêî
ýôôåêòèâíîñòü îáðàçîâàíèÿ âîäîðîäà ïðè áðîæåíèè íåâûñîêà — îáû÷íî 20–30 % ýíåðãèè,
çàêëþ÷åííîé â èñïîëüçóåìîì îðãàíè÷åñêîì âåùåñòâå. Íàðÿäó ñ âûäåëåíèåì âîäîðîäà ïðè ñáðàæèâàíèè ñàõàðîâ ïðîèñõîäèò îáðàçîâàíèå äðóãèõ ïðîäóêòîâ, íàïðèìåð, óêñóñíîé êèñëîòû. Â
ýòèõ ïðîäóêòàõ è îñòàåòñÿ îñòàòîê íåâûñâîáîæäåííîé ýíåðãèè. Ê òîìó æå ñòîèìîñòü îðãàíè÷åñêèõ âåùåñò⠗ èñõîäíûõ ñóáñòðàòîâ äëÿ âûäåëåíèÿ âîäîðîäà, òàêèõ êàê ñàõàðà èëè êðàõìàë, îòíîñèòåëüíî âûñîêà, è êîëè÷åñòâî èõ
íåäîñòàòî÷íî.
Îïðåäåëåííûé èíòåðåñ â ïðèêëàäíîì ïëàíå
ïðåäñòàâëÿþò áàêòåðèè, ñïîñîáíûå ðàñòè â äåøåâûõ îðãàíè÷åñêèõ ñðåäàõ, âêëþ÷àÿ ðÿä áûòîâûõ è ñåëüñêîõîçÿéñòâåííûõ îòõîäîâ. Ìîæíî,
íàïðèìåð, ñî÷åòàòü ïðîäóêöèþ âîäîðîäà ñ î÷èñòêîé ñòî÷íûõ âîä. Ñòî÷íûå âîäû ñîäåðæàò áîëüøîå êîëè÷åñòâî îðãàíè÷åñêèõ âåùåñòâ äëÿ áðîæåíèÿ. Îáû÷íî êîíå÷íûé ïðîäóêò òàêîãî áðîæåíèÿ — ìåòàí, âûäåëÿåìûé àðõèáàêòåðèÿìè.
Îáðàçîâàíèå ìåòàíà èäåò ÷åðåç ñòàäèþ îáðàçîâàíèÿ âîäîðîäà. Òåîðåòè÷åñêè ìîæíî îñòàíîâèòü
ïðîöåññ íà óðîâíå âîäîðîäà. Óñòàíîâêè äëÿ îáðàçîâàíèÿ ìåòàíà óæå äåéñòâóþò â ðÿäå ñòðàí,
âêëþ÷àÿ ÑØÀ, Êèòàé è Èíäèþ. Èõ ìîæíî áóäåò èñïîëüçîâàòü è äëÿ ïîëó÷åíèÿ âîäîðîäà.
Ïðîáëåìà çäåñü — íåýôôåêòèâíîñòü ñáðàæèâàíèÿ îðãàíè÷åñêîãî âåùåñòâà ñòî÷íûõ âîä â âîäîðîä. Òîëüêî ìàëàÿ ÷àñòü ýíåðãèè, çàêëþ÷åííîé â îðãàíè÷åñêèõ âåùåñòâàõ (ñì. âûøå), âûñâîáîæäàåòñÿ ïðè ýòîì ïðîöåññå ïî ñðàâíåíèþ ñ
80–90 % ýíåðãèè ïðè îáðàçîâàíèè ìåòàíà. Ïîâûøåíèå âûõîäà ýíåðãèè ïðè âûäåëåíèè âîäîðîäà èç ñòî÷íûõ âîä ïîòðåáóåò áîëüøèõ èññëåäîâàòåëüñêèõ óñèëèé. Äðóãîé ïðîáëåìîé ïðè
ìàññîâîì ïðîèçâîäñòâå âîäîðîäà ìîæåò ñòàòü
îãðàíè÷åííîå êîëè÷åñòâî ñòî÷íûõ âîä.
 êà÷åñòâå ñûðüÿ äëÿ áðîæåíèÿ ìîæíî òàêæå
èñïîëüçîâàòü öåëëþëîçó. Ðÿä áàêòåðèé ñïîñîáåí
ñáðàæèâàòü ýòî âåùåñòâî, ñîñòàâëÿþùåå îñíîâó
êëåòî÷íûõ ñòåíîê ðàñòåíèé. Öåëëþëîçà — ñàìîå
ðàñïðîñòðàíåííîå îðãàíè÷åñêîå âåùåñòâî íà ïëà-
International Scientific Journal for Alternative Energy and Ecology ISJAEE ¹ 1(45) (2007)
Ìåæäóíàðîäíûé íàó÷íûé æóðíàë «Àëüòåðíàòèâíàÿ ýíåðãåòèêà è ýêîëîãèÿ» ÀÝÝ ¹ 1(45) (2007)
© 2007 Scientific Technical Centre «TATA»
Ïîëó÷åíèå âîäîðîäà íà îñíîâå áðîæåíèè
© 2007 Íàó÷íî-òåõíè÷åñêèé öåíòð «TATA»
íîâàííûõ íà ãåòåðîöèñòíûõ öèàíîáàêòåðèÿõ,
ÿâëÿåòñÿ òî, ÷òî îíè òðàòÿò ìíîãî êëåòî÷íîé
ýíåðãèè íà ýòîò ïðîöåññ. Îêîëî 40 % êëåòî÷íîé
ýíåðãèè, çàïàñåííîé â âèäå ÀÒÔ, òðàòèòñÿ íà
ïîäåðæàíèå íèòðîãåíàçû. Òàêèì îáðàçîì, êàòàëèçèðóåìîå íèòðîãåíàçîé âûäåëåíèå âîäîðîäà —
î÷åíü ýíåðãîçàâèñèìûé ïðîöåññ. Ñ ýòîé òî÷êè
çðåíèÿ áîëåå ïåðñïåêòèâíûì áûëî áû èñïîëüçîâàíèå öèàíîáàêòåðèé, íå ñîäåðæàùèõ ãåòåðîöèñò,
êîòîðûå ìîãóò èñïîëüçîâàòü äëÿ âûäåëåíèÿ âîäîðîäà òîëüêî ãèäðîãåíàçó, íå ïîòðåáëÿÿ ïðè ýòîì
îãðîìíîãî êîëè÷åñòâà ýíåðãèè. Ê òîìó æå âîäà
íàïðÿìóþ âîâëå÷åíà â ïðîèçâîäñòâî âîäîðîäà ó
òàêèõ öèàíîáàêòåðèé. Îäíàêî øèðîêîå èñïîëüçîâàíèå áåçãåòåðîöèñòíûõ öèàíîáàêòåðèé äëÿ âûäåëåíèÿ âîäîðîäà óïèðàåòñÿ â òó æå ïðîáëåìó
÷óâñòâèòåëüíîñòè ãèäðîãåíàçû ê êèñëîðîäó, îïèñàííóþ âûøå äëÿ çåëåíûõ âîäîðîñëåé.
© 2007 Scientific Technical Centre «TATA»
Ñ. À. Ìàðêîâ
Áèîâîäîðîä: âîçìîæíîå èñïîëüçîâàíèå âîäîðîñëåé è áàêòåðèé äëÿ ïîëó÷åíèÿ ìîëåêóëÿðíîãî âîäîðîäà
íåòå. Ê ñîæàëåíèþ, ýôôåêòèâíîå ñáðàæèâàíèå
öåëëþëîçû ïðåäñòàâëÿåò åùå áîëüøóþ ïðîáëåìó ïî ñðàâíåíèþ ñî ñòî÷íûìè âîäàìè.  ýòîì
ïëàíå áîëåå âûãîäíûì êàæåòñÿ ïðîèçâîäñòâî âîäîðîäà â âèäå ñîïóòñòâóþùåãî ïðîäóêòà ïðè ïîëó÷åíèè ðÿäà âûñîêîöåííûõ è òðåáóåìûõ â áîëüøèõ êîëè÷åñòâàõ âåùåñòâ. Âîäîðîä ìîæåò áûòü
ïîëó÷åí, íàïðèìåð, ïðè ïðîèçâîäñòâå óêñóñíîé
êèñëîòû. Åùå áîëåå ïåðñïåêòèâíûì ìîæåò ñòàòü
èñïîëüçîâàíèå ïóðïóðíûõ ôîòîñèíòåòè÷åñêèõ
áàêòåðèé äëÿ ïîëó÷åíèÿ âîäîðîäà èç îðãàíè÷åñêèõ ñîåäèíåíèé â ðåçóëüòàòå òàê íàçûâàåìîãî
ôîòîáðîæåíèÿ. Íåêîòîðûå îðãàíè÷åñêèå ñîåäèíåíèÿ, òàêèå êàê ìàëàò, ìîãóò ðàçëàãàòüñÿ ïóðïóðíûìè áàêòåðèÿìè â ïðèñóòñòâèè ñâåòà ñ ïîëíûì âûñâîáîæäåíèåì ýíåðãèè. Åäèíñòâåííûìè
ïðîäóêòàìè òàêîãî ìåòàáîëèçìà ÿâëÿþòñÿ òîëüêî Í2 è ÑÎ2.
Ïîòåíöèàëüíàÿ ïðîáëåìà, ñâÿçàííàÿ ñ ïðàêòè÷åñêèì èñïîëüçîâàíèåì ïóðïóðíûõ áàêòåðèé,
ýòî èñïîëüçîâàíèå èìè ýíåðãåòè÷åñêè íåýôôåêòèâíîãî ôåðìåíòà — íèòðîãåíàçû (ñì. âûøå).
Íåäàâíî áûë ïðåäëîæåí åùå îäèí àëüòåðíàòèâíûé ñïîñîá ïîëó÷åíèÿ âîäîðîäà ïðè ñîâìåñòíîì
èñïîëüçîâàíèè âîäîðîñëåé è áàêòåðèé [23]. Ïðåäïîëàãàåìûé ïðîöåññ îñíîâàí íà èñïîëüçîâàíèè
âîäîðîñëåé, âûðàùèâàåìûõ â ïðóäàõ äëÿ ïîëó÷åíèÿ èç íèõ êðàõìàëà. Ýòîò êðàõìàë ïðåäïîëàãàåòñÿ çàòåì èñïîëüçîâàòü äëÿ ïðîèçâîäñòâà âîäîðîäà ïðè áàêòåðèàëüíîì áðîæåíèè. Äëÿ ýòîãî
ïðîöåññà ìîãóò áûòü èñïûòàíû òåðìîñòàáèëüíûå
áàêòåðèè, ýôôåêòèâíîñòü îáðàçîâàíèÿ âîäîðîäà
ïðè áðîæåíèè êîòîðûõ ìîæåò ñîñòîâëÿòü äî 83 %
ýíåðãèè, çàêëþ÷åííîé â èñïîëüçóåìîì îðãàíè÷åñêîì âåùåñòâå. Ïðèåìóùåñòâîì íîâîãî ìåòîäà ÿâëÿåòñÿ ïðèìåíåíèå ñîëíå÷íîé ýíåðãèè è âîäû (äëÿ
âûðàùèâàíèÿ âîäîðîñëåé) ïðè ïðîèçâîäñòâå âîäîðîäà. Ïðåäëîæåííûé àëüòåðíàòèâíûé ïðîöåññ
íå èíãèáèðóåòñÿ êèñëîðîäîì (íå èñïîëüçóåò ÷óâñòâèòåëüíóþ ê êèñëîðîäó ãèäðîãåíàçó âîäîðîñëåé) è íå ïðåäñòàâëÿåò íèêàêîé îïàñíîñòè äëÿ
ëþäåé (êàê â ñëó÷àå ÑÎ-øèôò-ðåàêöèè).
© 2007 Íàó÷íî-òåõíè÷åñêèé öåíòð «TATA»
Áèîðåàêòîðû äëÿ ïîëó÷åíèÿ âîäîðîäà
èç ìèêðîîðãàíèçìîâ
Áèîðåàêòîðû ñ÷èòàþòñÿ áîëüøèíñòâîì èññëåäîâàòåëåé àáñîëþòíî íåîáõîäèìûìè äëÿ ïðîìûøëåííîãî ïîëó÷åíèÿ âîäîðîäà èç âîäîðîñëåé è áàêòåðèé, ïîýòîìó ïðîåêòèðîâàíèå áèîðåàêòîðîâ íà÷àëîñü ñ ìîìåíòà îáíàðóæåíèÿ âûäåëåíèÿ âîäîðîäà
ýòèìè îðãàíèçìàìè. Áèîðåàêòîðû — ýòî ïðèáîðû
äëÿ îïòèìàëüíîãî êóëüòèâèðîâàíèÿ è ôóíêöèîíèðîâàíèèÿ ìèêðîîðãàíèçìîâ (èëè âûäåëåíèÿ âîäîðîäà ìèêðîîðãàíèçìàìè). Âîäîðîñëè è áàêòåðèè, îñîáåííî ôîòîñèíòåòè÷åñêèå, â áîëüøîì êîëè÷åñòâå ìîæíî âûðàùèâàòü â îòêðûòûõ âîäîåìàõ.
 òàêèõ óñëîâèÿõ ìîæíî ïîëó÷àòü äîñòàòî÷íîå
äëÿ âûäåëåíèÿ âîäîðîäà êîëè÷åñòâî îðãàíèçìîâ,
îäíàêî î÷åíü òðóäíî êîíòðîëèðîâàòü ðîñò âîäîðîñëåé èëè áàêòåðèé. Âîäîåìû ìîãóò, íàïðèìåð,
áûòü çàãðÿçíåíû äðóãèìè ìèêðîîðãàíèçìàìè, íå
âûäåëÿþùèìè âîäîðîä.
Äëÿ ïîëó÷åíèÿ âîäîðîäà áûëè èñïûòàíû
íåñêîëüêî òèïîâ áèîðåàêòîðîâ. Ýòè áèîðåàêòî-
ðû ìîãóò áûòü ðàçäåëåíû íà äâå ãðóïïû íà îñíîâå ïðèðîäû ðåàêöèè âûäåëåíèÿ âîäîðîäà: (1)
ôîòîáèîðåàêòîðû ñ èñïîëüçîâàíèåì öèàíîáàêòåðèé è çåëåíûõ âîäîðîñëåé äëÿ ôîòîâûäåëåíèÿ
âîäîðîäà è (2) áèîðåàêòîðû, èñïîëüçóþùèå òåìíîâûå ïðîöåññû áðîæåíèÿ èëè êîíâåðñèè óãàðíîãî ãàçà äëÿ âûäåëåíèÿ âîäîðîäà áàêòåðèÿìè.
Ôîòîáèîðåàêòîðû (äî ñèõ ïîð òîëüêî ëàáîðàòîðíûå) â âèäå ïëîñêèõ çàêðûòûõ áóòûëîê
èñïîëüçîâàëè äëÿ çåëåíûõ âîäîðîñëåé [24]. Äëÿ
öèàíîáàêòåðèé íàèáîëåå ïðàêòè÷íû òðóá÷àòûå
ôîòîáèîðåàêòîðû [25, 26]. Òàê, ôîòîáèîðåàêòîð äëÿ âûäåëåíèÿ âîäîðîäà èç ìóòàíòà öèàíîáàêòåðèè Anabaena variabilis PK84 ñîñòîèò èç
ïðîçðà÷íîé ïîëèâèíèëõëîðèäíîé òðóáêè (42 ì
äëèíîé, ∅7,9 ìì), çàêðó÷åííîé ñïèðàëüþ âîêðóã âåðòèêàëüíîãî ïëàñòèêîâîãî ïðîçðà÷íîãî
öèëèíäðà [25]. Ýòî òàê íàçûâàåìûé òðóá÷àòûé
ñïèðàëüíûé ôîòîáèîðåàêòîð. Îáúåì ôîòîáèîðåàêòîðà 2 ë, âûñîòà 0,4 ì. Ôîòîáèîðåàêòîð ïðîáóëüêèâàëñÿ ïîä äàâëåíèåì ñìåñüþ âîçäóõà è
óãëåêèñëîãî ãàçà (äî 5 %) äëÿ ñíàáæåíèÿ öèàíîáàêòåðèé óãëåðîäîì è îòäåëåíèÿ âîäîðîäà.
Ñêîðîñòü âûäåëåíèÿ âîäîðîäà â òàêîì ôîòîáèîðåàêòîðå äîñòèãàëà 19 ìë Í2/ì2 â ÷àñ ïðè îñâåùåíèè ôëóîðåñöåíòíîé ëàìïîé. Èíòåíñèâíîñòü
îñâåùåíèÿ 3 Âò/ì2. Ôîòîáèîðåàêòîð áûë èñïûòàí òàêæå ïðè åñòåñòâåííîì îñâåùåíèè è â åñòåñòâåííûõ òåìïåðàòóðíûõ óñëîâèÿõ â òåïëèöå
(Màðêîâ, íå îïóáëèêîâàíî). Èíòåðåñíî, ÷òî õîòÿ
îñâåùåíèå áûëî âàæíî äëÿ âûäåëåíèÿ âîäîðîäà, äíåâíûå ôëóêòóàöèè â âûäåëåíèè âîäîðîäà
ñâÿçàíû áîëüøå ñ òåìïåðàòóðîé, íåæåëè ñ îñâåùåíèåì. Äðóãîé òðóá÷àòûé ôîòîáèîðåàêòîð, òàê
íàçûâàåìûé îêîëîãîðèçîíòàëüíûé ôîòîáèîðåàêòîð, äëÿ âûäåëåíèÿ âîäîðîäà èç öèàíîáàêòåðèé
áûë ïîñòðîåí íà îòêðûòîì âîçäóõå íà Ãàâàéñêèõ îñòðîâàõ [27]. Ôîòîáèîðåàêòîð ðàñïîëàãàëñÿ
íà ïîñòàâëåííîé ïîä óãëîì 10° ïëàòôîðìå è ñîñòîÿë èç 20 ìåòðîâûõ ïëàñòèêîâûõ òðóá äèàìåòðîì 3,8 ñì è îáùèì îáúåìîì äî 230 ë. Ôîòîáèîðåàêòîð ïðîáóëüêèâàëñÿ ñìåñüþ âîçäóõà è óãëåêèñëîãî ãàçà. Òàê êàê áèîðåàêòîð ðàñïîëîãàëñÿ
ïîä óãëîì, ïóçûðüêè óãëåêèñëîãî ãàçà ìåäëåííî
ïîäíèìàëèñü ïî òðóáàì, ýôôåêòèâíî ñíàáæàÿ
êëåòêè öèàíîáàêòåðèé óãëåêèñëûì ãàçîì (óãëåðîäîì) è óäàëÿÿ âîäîðîä. Èíòåðåñíî, ÷òî ïîäîáíûå ôîòîáèîðåàêòîðû äëÿ âûðàùèâàíèÿ âîäîðîñëåé è áàêòåðèé îáúåìîì äî 10000 ë ñòðîèëè
â Ñîâåòñêîì Ñîþçå â 80-õ ãîäàõ íà áàçå Èñòèòóòà áèîòåõíèêè â Ìîñêâå è Óçáåêèñòàíå. Ïðåèìóùåñòâî îêîëîãîðèçîíòàëüíîãî ôîòîáèîðåàêòîðà íàä ñïèðàëüíûì çàêëþ÷àåòñÿ â òîì,
÷òî ïåðâûé íå òðåáóåò áîëüøèõ äàâëåíèé äëÿ
ñíàáæåíèÿ öèàíîáàêòåðèé óãëåêèñëûì ãàçîì.
Íåäîñòàòîê åãî â òîì, ÷òî ôîòîáèîðåàêòîðó íóæíî ìíîãî ïðîñòðàíñòâà (çåìëè) äëÿ óñòàíîâêè.
Òðàäèöèîííûå ôåðìåíòåðû, òàê íàçûâàåìûå
áèîðåàêòîðû-áàêè, èñïîëüçóåìûå, íàïðèìåð, ïðè
ïèâîâàðåíèè, îáû÷íî ïðèìåíÿþòñÿ äëÿ ïîëó÷åíèÿ âîäîðîäà â ýêñïåðèìåíòàëüíûõ óñòàíîâêàõ
ïðè èñïîëüçîâàíèè áðîæåíèÿ. Áèîðåàêòîðû ñ
ïîëûìè âîëîêíàìè [18] áûëè óñïåøíî èñïûòàíû äëÿ ïîëó÷åíèÿ âîäîðîäà áàêòåðèÿìè ïðè èñ-
International Scientific Journal for Alternative Energy and Ecology ISJAEE ¹ 1(45) (2007)
Ìåæäóíàðîäíûé íàó÷íûé æóðíàë «Àëüòåðíàòèâíàÿ ýíåðãåòèêà è ýêîëîãèÿ» ÀÝÝ ¹ 1(45) (2007)
33
Çàêëþ÷åíèå
Áèîëîãè÷åñêîå ïðîèçâîäñòâî âîäîðîäà èìååò
ðÿä ïðåèìóùåñòâ ïî ñðàâíåíèþ ñ äðóãèìè ñïîñîáàìè ïîëó÷åíèÿ âîäîðîäà. Îíî òðåáóåò íåáîëüøèõ âîäîåìîâ èëè ïðîñòûõ óñòðîéñò⠗ (ôîòî)áèîðåàêòîðîâ, êîòîðûå ìîãóò áûòü ïðîñòûì ïðîçðà÷íûì áàêîì èëè ïëàñòèêîâûìè òðóáêàìè.
Áèîðåàêòîðû, îñíîâàííûå íà áðîæåíèè èëè
øèôò-ðåàêöèè, ìîãóò áûòü èñïîëüçîâàíû óæå
ñåãîäíÿ. Äðóãîå ïðåèìóùåñòâî áèîëîãè÷åñêîãî
ïðîèçâîäñòâà âîäîðîäà — ýòî íèçêèå ýíåðãåòè÷åñêèå çàòðàòû, îñîáåííî ïðè ïðîèçâîäñòâå èç
âîäîðîñëåé è áàêòåðèé, èñïîëüçóþùèõ ñîëíå÷íûé ñâåò êàê èñòî÷íèê ýíåðãèè. Òåõíîëîãèÿ ïîëó÷åíèÿ âîäîðîäà, îñíîâàííàÿ íà ñîëíå÷íîé
ýíåðãèè, ìîæåò áûòü âíåäðåíà â ïðàêòèêó, åñëè
íàéòè ïóòü ýôôåêòèâíîãî èñïîëüçîâàíèÿ ñîëíå÷íîãî ñâåòà âîäîðîñëÿìè è áàêòåðèÿìè. Ïîòåíöèàëüíî ôîòîñèíòåòè÷åñêèå âîäîðîñëè è áàêòåðèè ìîãóò ïðåâðàùàòü ñîëíå÷íóþ ýíåðãèþ â
ýíåðãèè âîäîðîäà ñ 30–40 % ýôôåêòèâíîñòè [3].
Îäíàêî â íàñòîÿùåå âðåìÿ ìàêñèìàëüíàÿ ýôôåêòèâíîñòü êîíâåðñèè ñîëíå÷íîé ýíåðãèè â âîäîðîä âîäîðîñëÿìè, îïèñàííàÿ â ëèòåðàòóðå,
áûëà 24 % [28]. Òåì íå ìåíåå ýòî íàìíîãî áîëüøå ýôôåêòèâíîñòè êîíâåðñèè ñîëíå÷íîé ýíåð-
34
ãèè â äðóãèå áèîëîãè÷åñêèå òîïëèâà, îñíîâàííûå íà ôîòîñèíòåçå, òàêèå êàê áèîýòàíîë è
áèîäèçåëü (â íàñòîÿùåå âðåìÿ ìåíüøå 4 %). Â
ñâÿçè ñ ýòèì Íàöèîíàëüíûé íàó÷íûé ñîâåò ÑØÀ
ñîâåòóåò ïåðåãðóïèðîâàòü íàöèîíàëüíóþ èññëåäîâàòåëüñêóþ ïðîãðàììó ïî áèîëîãè÷åñêèì òîïëèâàì ñ òåì, ÷òîáû áîëüøå âðåìåíè è ðåñóðñîâ
óõîäèëî íà ôóíäàìåíòàëüíûå èññëåäîâàíèÿ â
îáëàñòè âûäåëåíèÿ âîäîðîäà âîäîðîñëÿìè è áàêòåðèÿìè, îñíîâàííîãî íà ôîòîñèíòåçå.
Ñïèñîê ëèòåðàòóðû
1. Tamagnini P., Axelsson R., Lindberg P.,
Oxelfelt F., Wünschiers R., Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria
// Microbiology and Molecular Biology Rev. 2002.
Vol. 66, No. 1. P. 1–20.
2. Kruse O., Rupprecht J., Mussgnug J. H.,
Dismukes G. C., Hankamer B. Photosynthesis: a
blueprint for energy capture and biohydrogen production technologies // Photochemical and Photobiological Sci. 2005. Vol. 4. P. 957–969.
3. Prince R. C., Kheshgi H. S. The photobiological production of hydrogen : potential efficiency
and effectiveness as a renewable fuel // Critical
Rev. in Microbiology. 2005. Vol. 31. P. 19–31.
4. Rupprecht J., Hankamer B., Mussgnug H.,
Ananyev G., Dismukes C., Kruse O. Perspectives
and advances of biological H2 production in microorganisms // Appl. Microbiology and Biotechnology. 2006. Vol. 72, No. 3. P. 442–449.
5. Gaffron H. Rubin J. Fermentative and photochemical production of hydrogen in algae //
J. of General Physiology. 1942. Vol. 26. P. 219–240.
6. Das D., Dutta T., Nath K., Kotay S. M.,
Das A. K., Veziroglu T. N. Role of Fe-hydrogenase in biological hydrogen production // Current
Science. Vol. 90, N. 12. P. 1627–1637.
7. Markov S. A., Bazin M. J., Hall D. O. Hydrogen photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor // Enzyme and Microbial Technology. 1995. Vol. 17. P. 306–310.
8. Melis A., Zhang L., Forester M., Ghirardi M. L., Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii // Plant Physiology. 2000.
Vol. 122. P. 127–135.
9. Seibert M., Flynn T., Benson D., Tracy E.,
Ghirardi M. Development of selection and screening
procedures for rapid identification of H2-producing
algal mutants with increased O2 tolerance/Ed. by
O. R. Zaborsky // Biohydrogen. 1998. P. 227–234.
10. Forestier M., King P., Zhang L., Posewitz M., Schwarzer S., Happe T., Ghirardi M.,
Seibert M. Expression of two [Fe]-hydrogenases
in Chlamydomonas reinhardtii under anaerobic
conditions // European Journal of Biochemistry.
2003. Vol. 270. P. 2759–2758.
11. Melis A., Happe T. Trails of green alga
hydrogen reserch — from Hans Gaffron to new
frontiers// Photosynthesis research. 2004. Vol. 80.
P. 401–409.
12. Posewitz M. C., King P. W., Smolinski S. L.,
Zhang L., Seibert M., Ghirardi M. Discovery of
International Scientific Journal for Alternative Energy and Ecology ISJAEE ¹ 1(45) (2007)
Ìåæäóíàðîäíûé íàó÷íûé æóðíàë «Àëüòåðíàòèâíàÿ ýíåðãåòèêà è ýêîëîãèÿ» ÀÝÝ ¹ 1(45) (2007)
© 2007 Íàó÷íî-òåõíè÷åñêèé öåíòð «TATA»
ïîëüçîâàíèè øèôò-ðåàêöèè. Ïîëûå âîëîêíà ñäåëàíû èç ïîëóïðîíèöàåìîé ìåìáðàíû. Íåáîëüøèå ìîëåêóëû è ãàçû ñâîáîäíî ïðîõîäÿò ÷åðåç
ìåìáðàíó ïîëûõ âîëîêîí, êëåòêè æå, â ñâÿçè ñ
èõ ðàçìåðàìè, íå ìîãóò ïðîéòè ÷åðåç ìåìáðàíó.
Òàêèì îáðàçîì, áèîðåàêòîðû ñ ïîëûìè âîëîêíàìè ïîçâîëÿþò áûñòðî îòäåëÿòü âîäîðîä îò
êëåòî÷íîé ñóñïåíçèè. Áàêòåðèàëüíûå êëåòêè
ðàñòóò íà ïîëûõ âîëîêíàõ. Òàêèå êëåòêè íàçûâàþòñÿ èììîáèëèçîâàííûìè êëåòêàìè. Ìíîãèå
âîäîðîñëè è áàêòåðèè ñóùåñòâóþò â ïðèðîäå â
èììîáèëèçîâàííîì ñîñòîÿíèè, íà ÷àñòè÷êàõ
ïî÷âû èëè â ñèìáèîçå ñ äðóãèìè îðãàíèçìàìè.
Ñ÷èòàåòñÿ, ÷òî èììîáèëèçàöèÿ ïîâûøàåò ôèçèîëîãè÷åñêèå ôóíêöèè âîäîðîñëåé è áàêòåðèé.
Áèîðåàêòîð, êîòîðûé óñïåøíî èñïîëüçîâàëñÿ
äëÿ øèôò-ðåàêöèè, ñîñòîÿë èç ïëàñòèêîâîé êîëîíêè (ÀÌ-4ÎÌ -SD, Asahi Medical CO., ßïîíèÿ) ñ ïîëûìè âîëîêíàìè 180 ìêì äèàìåòðîì.
Îáúåì êîëîíêè áèîðåàêòîðà 48 ìë, à îáùàÿ ïëîùàäü ïîëûõ âîëîêîí 0,8 ì2. Áîëüøàÿ ðàçíèöà
ìåæäó ïîâåðõíîñòüþ è îáúåìîì áèîðåàêòîðà ïîçâîëÿëà ïîñòðîèòü êîìïàêòíóþ ñèñòåìó ñ âûñîêîé ïëîòíîñòüþ êëåòîê âíóòðè. Áèîðåàêòîð áûë
ïîñòðîåí òàê, ÷òî ÑÎ (10 % in N2) è ïèòàòåëüíàÿ ñðåäà ñ ïîìîùüþ íàñîñà ïîñòóïàëè èç âíóòðåííåãî ïðîñòðàíñòâà âîëîêîí íàðóæó âíóòðè
êîëîíêè áèîðåàêòîðà. Áàêòåðèè áûëè èììîáèëèçîâàíû íà âíåøíåé ñòîðîíå ïîëûõ âîëîêîí.
Âûäåëåíèå âîäîðîäà ñî ñðåäíåé ñêîðîñòüþ 125 ìë
â ÷àñ íà ãðàìì ñóõîé êëåòî÷íîé áèîìàññû (ìàêñèìàëüíàÿ ñêîðîñòü 700 ìë â ÷àñ íà ãðàìì ñóõîé
êëåòî÷íîé áèîìàññû) íàáëþäàëàñü áîëåå 8 ìåñÿöåâ. Âîäîðîä (20 % Í2 â àòìîñôåðå ÑÎ2), ïîëó÷åííûé â áèîðåàêòîðå ñ ïîëûìè âîëîêíàìè, ìîæíî áûëî ïîñëå óäàëåíèÿ óãëåêèñëîãî ãàçà íåïîñðåäñòâåííî èñïîëüçîâàòü â òîïëèâíûõ ýëåìåíòàõ.
© 2007 Scientific Technical Centre «TATA»
Âîäîðîäíàÿ ýíåðãåòèêà è òðàíñïîðò
Ìåòîäû ïîëó÷åíèÿ âîäîðîäà
© 2007 Íàó÷íî-òåõíè÷åñêèé öåíòð «TATA»
© 2007 Scientific Technical Centre «TATA»
Ñ. À. Ìàðêîâ
Áèîâîäîðîä: âîçìîæíîå èñïîëüçîâàíèå âîäîðîñëåé è áàêòåðèé äëÿ ïîëó÷åíèÿ ìîëåêóëÿðíîãî âîäîðîäà
two novel radical s-adenosylmethionine proteins
required for the assembly of an active [Fe] hydrogenase // The Journal of Biological Chremistry.
2004. Vol. 279, No. 24. P. 25711–25720.
13. Ghirardi M. L., King P. W., Posewitz M. C.,
Maness P. C., Fedorov A., Kim K., Cohen J., Schulten
K., Seibert M. Approaches to developing biological
H2-producing organisms and processes // Biochemical
Society Transactions. 2005. Vol. 33. P. 70–72.
13. Markov S. A., Eivazova E. R., Greenwood J.
Photostimulation of H2 production in the green
alga Chlamydomonas reinhardtii upon photoinhibition of its O2-evolving system // Int. J. Hydrogen Energy. 2006. Vol. 31. P. 1314–1317.
14. Happe T., Kaminski A. Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardti // European Journal of Biochemistry. 2002.
Vol. 269. P. 1022–1032.
15. Îùåïêîâ Â. Ï., Íèêèòèíà Ê. À., Ãóñåâ Ì. Â.,
Êðàñíîâñêèé À. À. Âûäåëåíèå ìîëåêóëÿðíîãî âîäîðîäà êóëüòóðàìè ñèíåçåëåíûõ âîäîðîñëåé //
ÄÀÍ ÑÑÑÐ. 1973. T. 213. C. 739–746.
16. Markov S. A. Bioreactors for hydrogen
production/Ed. by O. R. Zaborsky // Biohydrogen.
1998. P. 393–390.
17. Tanisho S. Feasibility study of biological
hydrogen production from sugar cane by fermentation // Hydrogen Energy Progress XI. Proc.
11th World Hydrogen Energy Conference, Stuttgart, Germany, 23–28 June 1996. Vol. 3. P. 2601–
2606.
18. Markov S. A., Weaver P. F., Seibert M.
Potential of using microorganisms in hollow-fiber
bioreactors for hydrogen production // Ibid.
P. 2619–2624.
19. Schütz K., Happe T., Troshina O., Lindblad O., Leitão E., Oliveira P., Tamagnini P. Cy-
THE SOLAR SYSTEM
photovoltaics, solar thermal
• mono- & poly-crystalline, amorphous PV modules
• AC inverters
• cabling components for PV systems
• mounting structures for PV systems
• turn-key grid-connected PV plants
• solar tracking PV plants
• roof-integrated PV plants
• façade-integrated PV plants, PV sun shading & louvre blinds
• PV systems & hybrid systems for off-grid applications
• PV street lighting
• flat plate, evacuated pipes, unglazed & air solar collectors
• solar boilers, piping & components for solar thermal system
• complete natural & forced circulation DHW systems
• combined space heating & DHW solar systems
• combined solar thermal & gas systems
• solar cooling
• concentration systems for solar thermal power
THE GREEN PLANET
biomass, biogas, liquid biofuels
• Woodlogs, woodchips & woodpellets gasification boilers
• biomass district heating
• combined solar thermal & biomass systems
• steam cycle, gasification, ORC & Stirling engine biomass-fired CHP
• farm, landfill & sewage biogas plants
• biodiesel & vegetables oil burners
WATER, WIND AND FIRE
hydropower, windpower, geothermal energy
• turbines, components & turn-key mini-hydro plants
• large-hydro plant refurbishment
• offgrid & grid-connected small-scale windpower
• windfarms
• turn-key geothermal heating & cooling plants
• geothermal well drilling
anobacterial H2 production — a comparative analysis // Planta. 2004. Vol. 218. P. 350–359.
20. Uffen R. L. Anaerobic growth of a Rhodopseudomonas species in the dark with carbon
monoxide as sole carbon and energy substrate //
Proc. of the National Academy of Sciences of the
USA. 1976. Vol. 73. P. 3298–3302.
21. Tanisho S. Why and how much hydrogen
bacteria evolve by fermentation // Hydrogen 2004.
Abstracts 15th World Hydrogen Energy Conf.,
June 27–July 2, 2004, Yokohama, Japan. P. 112
22. Êîíäðàòüeâà Å. Í., Ãîãîòîâ È. Í. Ìîëåêóëÿðíûé âîäîðîä â ìåòàáîëèçìå ìèêðîîðãàíèçìîâ. Ì.: Íàóêà, 1981.
23. Benemann J. R. A photobiological hydrogen production process // Presentation at National Hydrogen Association Meeting, Hollywood, CA,
April 27, 2004. P. 1–14.
24. Schulz R., Schnackenberg J., Stangier K.,
Wünschiers R., Zinn T., Senger H. Light-dependent hydrogen production of the green alga/Ed. by
O. R. Zaborsky // Biohydrogen. 1998. P. 243–251.
25. Markov S. A., Weaver P. F., Seibert M.
Spiral tubular bioreactors for hydrogen production by photosynthetic microorganisms: design and
operation // Appl. Biochemistry and Biotecnology. 1997. Vol. 63–65. P. 577–584.
26. Tredici M.R., Zittelli G. C., Benemann J. R.
A tubular integral gas exchange photobioreactor for
biological hydrogen production/Ed. by O. R. Zaborsky
// Biohydrogen. 1998. P. 391–401.
27. Szyper J. P., Yoza B. A., Benemann J. R.,
Tredici M., Zaborsky O. R. Internal gas exchange
photobioreactor/Ed. by O. R. Zaborsky // Ibid.
P. 441–446.
28. Greenbaum E. Energetic efficiency of hydrogen photoevolution by algal water splitting//
Biophysical Journal. Vol. 54. P. 365–368.
MICROGEN & POLYGEN
distributed cogeneration, trigeneration
• biogas- & natural gas-fired ICE CHP plants
• natural gas microturbines
• diesel- & biofuels-fired ICE CHP plants
• tri-generation plants
HYENERGY
hydrogen and fuel cells
• distributed generation with fuel cells systems
• fuel cells vehicles
• hydrogen-fuelled internal combustion engine vehicles
ECOMOVE
alternative vehicles and fuels
• hybrid vehicles
• electric vehicles, PV recharging stations for electric vehicles
• pure and in-blend biodiesel, biodiesel-validated vehicles
• dedicated LPG & CNG vehicles, transformation kits
• technologies and systems for sustainable urban mobility
CONSULTING, DESIGN, SERVICES, ESCOs,
CARBON TRADING, R&D
• renewable energy planning, resource assessment
• project development & design
• green labelling, renewable energy trading
• ESCOs, performance contracting, third party financing
• renewable energy heat service & leasing schemes
• green energy banking & financing schemes
• carbon management, carbon trading, CDM & Joint implementation
• professional training
• technology information & transfer
• R&D, demonstration, testing & certification
PROFESSIONAL SOFTWARE, TECHNICAL PRESS
SECTOR ASSOCIATIONS, INSTITUTIONS
International Scientific Journal for Alternative Energy and Ecology ISJAEE ¹ 1(45) (2007)
Ìåæäóíàðîäíûé íàó÷íûé æóðíàë «Àëüòåðíàòèâíàÿ ýíåðãåòèêà è ýêîëîãèÿ» ÀÝÝ ¹ 1(45) (2007)
Organising staff
Piazzetta Trento e Trieste 10/b
32032 Feltre (BL)
Fax 0439 84 98 54
Italian exhibitors
segreteria@solarexpo.com
Ph. 0439 849 855
International desk
exhibition@solarexpo.com
Ph. +39 0439 840 922
Press and advertising
stampa@solarexpo.com
Ph. 0439 847 652
Info
Ph. 0439 849 855
35
Скачать