» – 2012 . 2012 : . – . . ( . . – . , ; – . ; – , . – . ; , . . . – ; ; ; – – – – – . . . , ; ; , , – . . ; , – . ; , – – . , .); ; , , – ; ; , . – ; ; : ., , , ., -2012 : . ( . . . .) [ ./ .]. – . . : ; ; .: , 2012. – . , , . , , , . © « » , 2012 3 372.857 . . - , , . , , , , - , . . – , , , , – , . , , , . , , , , , - , . . - , , . , , , . , , , - . , , , . , , , - , . , , [1, . 22 – 24]. , - ( ), . , , , - . [2, . 44 – 46]. , , . , , « - , », « », , , . - « ». , , - , . , , , , - . , . , « « , » , », ». « . , , , , . , , . . - -2012: 4 . . 2. – , , , 2012 , . « », . , . « , - » , . , , , , , - . , , « : », , . - , , , . , . », « , « , - » , . , . . , - , [3, . 73 – 76]. 2 : + , , + , , . . . , . . « » « – - 9 – », , , , , , - . « , » 6 – 7 , . , , , , , . - . , , . , . , [4, . 23 – 26]. , , , , , - , - . , , . . , , « ». 9 2011 – 2012 . , . , 9 2010/2011 . . 1, – 7,53 7,47, - . , , ( , 1). , , . . , 5 7,8 7,7 7,6 7,5 7,4 7,3 7,2 1– , , - , , , , ( , ); , - ; . , , , - , , , . , : . 1. , . . , . / . . 2. // : . – 2009. – 3. – . 22 – 24. / « ». – 2008. – 16. – . 44 – 46. , . . . – 2008. – 3. – . 73 – 76. 3. 4. // . / . . , . . / . . . . // // . – 1995. – - 6. – . 23 – 26. The appliance of IT technologies during biology lessons makes them more interesting, visual, dynamic, helps pupils to understand and remember the material better. IT technologies allow be more effective organizing lessons feedback, give more opportunities to form information using skills and to develop creative abilities of pupils. . . , . 502.52(476.6) . . . ) - . . . . , , - -2012: 6 . . 2. – , 2012 , - [1]. , - , , [2]. , , , - ., [3]. . . . « - » . - . « » [4]. , , . . . ( « »( 3 1 4 – 500 2 – 500 ). ) , , , , , ( , ). , - [5; 6]. , . . 1. 1– « », 2010 - - - - : 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2011 0,017 0,013 0,013 0,105 0,29 0,27 0,28 0,29 0,054 0,028 0,031 0,040 8,26 8,25 8,28 7,89 20,80 20,90 18,90 83,40 42,02 27,80 24,96 76,96 2,82 2,74 2,68 2,98 0,120 0,138 0,127 0,178 – , . 0,016 0,018 0,013 0,049 0,56 0,43 0,59 0,52 0,049 0,041 0,045 0,068 7,75 7,95 7,95 7,33 24,40 18,70 18,70 41,90 65,90 63,40 68,40 84,76 3,90 4,23 4,26 4,53 0,095 0,138 0,132 0,204 .– 2011 0,010 0,008 0,008 0,061 0,18 0,17 0,18 0,19 0,104 0,083 0,079 0,049 8,45 8,46 8,47 8,36 23,51 24,10 24,69 64,34 25,79 23,70 20,80 37,44 2,43 2,33 2,30 2,90 0,121 0,139 0,153 0,235 . 0,024 N/ 9,03 N/ 0,3 N/ 6,5 – 8,5 300 100 7,0 0,1 - 7 1 ( - ) ( ) . (5 2010, 2 2011 3 2011) 4, - . , . . - « » 7,33 – 8,28, « . . . » - (SO42-, Cl-) » « . - - 4, . « . » 0,92 – 4,55 , . 4, , - . , 32 - . . Fe, , Ti, I, b, Rb, Sr, V, n, Cd, Cs, Y, Ni. 2– « « « » Fe Ti I b Sr V n Cd Cs Y Ni Rb », 4789,37±105,66 9088,77±506,94 18,92±8,56 1,48±0,80 56,09±4,05 25,72±14,33 41,66±10,21 9,29±1,55 20,78±2,51 » 6341,75±132,01 12839,26±654,25 774,63±107,42 67,42±17,60 3,22±1,28 67,89±4,83 9,80±0,80 62,36±13,57 11,10±1,84 89,80±23,10 0,3711±0,335 11,4±93,57 22,68±2,84 5826,27±128,48 12614,12±658,45 148,90±47,89 186,42±29,77 3,44±1,36 66,34±4,86 62,52±24,41 57,47±13,22 18,53±2,48 103,26±25,13 3,28±1,03 35,63±6,41 36,95±3,69 10268,10±166,90 14089,22±681,12 1531,35±150,08 22,02±9,96 7,48±1,94 87,65±5,46 149,70±37,04 139,99±20,23 6,28±1,32 138,4±728,53 2,80±0,93 25,27±5,28 36,29±3,57 , , , . - , [7]. . ( , « », « », b, « , n, Cd). », « b,V, Cd, », - « », » [8]. , - . , - -2012: 8 . . 2. – , 2012 . - . » . . . . ). ), « » - . , . ( .) , - . 1. , O. . . . . .– 2. 3. , 1992. – C. 11 – 17. / . , . . . : , 1977. – 244 . 4. , http://www.nemanenvironment.org. – 5. . , 2004. – 56 . 6. , . . ; . . . .– : 7. , . . . . – .: , 1996. – 319 . 8. [ ] / . mertvaya-voda. – : 03.02.2012 / , . . . – .: , / [ : 03.02.2012 ] / : . – 17.13.07-82. – . . : : , 2003. – C. 233 – 234. / – . . . : , . . – : . 01.09.04. – . / ., 1990. – 279 . . . , . . . . , , : http://www.vgr.by/home/tema-nomera/5284- The hydrochemical characteristics of water of the river Neman is represented, its dynamics and peculiarities of its change under the influence of wastewaters is studied. Concentrations of some chemicals in the sediments near the spot of effluent discharges in the river Neman are determined by X-ray fluorescent method. The main pollutants of the river waters are identified. – . . , . 599.73 . . « « dactyla 2007 , 2012 » » 3 , Artio- . . , 3 « . - » . , , . - . [1]. – - , [2]. « » . 9 : 1) « ; »; 2) 3) ; 4) . . « » ( 3) « « » 2011 2012 - . » , , , - . . « 3( » ) 23,2 % , – 0,9 3783 [3]. – 17,1 . – 12,6 . . . – 3,6 . , . . . . ( , )– . , ( ) . ( )– , « , » . 2007-2010 . . 3 « 3 3,0 , – » , – 6,0 , 2011 . 2012 . - . 1. 1– « 2011 . ( » ) - , ) - ), ./1000 ) 3 32 53 0,46 0,63 0,35 0,81 8,65 14,32 0,37 5,44 5,0 , – 71 . ) 9,7 14,4 14,2 3 3 78 71 , – 78 , - . 2012 ( 2– 2). « 2012 . ( » ) - , - - ) ), ./1000 1,08 11,62 13,51 0,49 7,32 4,72 . ) ) 4 43 50 0,46 0,63 0,35 , – 67 9,7 14,4 14,2 5 5 105 67 , – 105 2007 – 2010 « . , - . » 3. ., 2011 2012 -2012: 10 . . 2. – , 2012 3 – « » 2007 – 2012 . 2007 . 2008 . 2009 . 2010 . 2011 . 2012 . 1 78 84 2 93 106 5 103 136 2 129 127 3 78 71 5 105 67 , , . 2007 – 2012 , 5 . 1). 5 4 3 2 1 0 2007 2008 2009 2010 2011 1– (Alces alces) , 1,3 ( 2012 2007 2), 2012 . 140 120 100 80 60 40 20 0 2007 2008 2– c 2007 ( 2009 2010 2011 2012 (Capreolus capreolus) , 3), 2012 1,2 . 11 3– (Sus scrofa) : 1. « 3 , , 2. 3. 1. 3. Artiodactyla ). 2012 2007 - , , . 3 . , . . . 213 – 240. , . . (Artiodactyla), : 03.00.08 / . . [ 2. » « / . . , . . » , . . .– : .– : .… , 2005. – . . , 2001. – 44 . ]. – : http: www.volkovysk-leschoz.by. – : 21.03.2011 In territory of hunting economy Volkovysk «B R» 3 species of hoofed animals of mammals of group Artiodactyla Sus scrofa, Capreolus capreolus, Alces alces. Carrying out of researches on monitoring during the period with 2007 for 2012 has shown increase in number Alces alces, Capreolus capreolus and reduction of number Sus scrofa. The hunting grounds of detour 3 hunting economy Volkovysk «B R» are rather perspective for housekeeping on Sus scrofa, Capreolus capreolus. – , . . , , . 373.5.016:54 . . . . - : , . : , , ( , ). : , - » [1]. , . . -2012: 12 . . 2. – , 2012 , . : 1) 2) 3) 4) ; ; ; . » « , - , « » [2]. . , ( ). - , . . - : . – . - , . » : - . , 1. [2 – 4]: ( )– , . - , . , . . , , , , , , . , . , , , , , . , . - , . , . , , 3 : 1) . , - . 2) , 3) 2. , . - . . . . - « « », « », « » [4], ( ) . : ) , ( ); ) ( – , - . ). « », « », « » « » . . , - . . , , . « » , , . , « » , - . « » , . , , . , . « » . , - , , , , - 13 . , , , , , - . . - . . . – ( – ). – , , . . , , . 3. ( )– . : ; ) ) , ; , , , , – ; ) 4. . ( )– . 5. . ( ). « » [5]. . , , . , , 2011 . - 2012 « » . , ( )( 1). 1– 9 1. 2. - 3. 4. 5. , 6. , , ., 10 ., % 11 ., % 32 31 31 32 28 53 13 10 10 13 13 8 4 10 18 4 3 7 11 , , % , - , , , . . [6]. , , , - . , ( 1). , - -2012: 14 . . 2. – , 2012 100 90 80 . . 70 . . . . 60 50 40 30 20 10 0 2006/07 2007/08 2008/09 2009/10 2010/11 1– : , , , ( 2). . , , , 2006 - 4 . 100 90 80 70 60 50 40 30 20 10 0 2006/07 2007/08 2008/09 2009/10 2010/11 2– , . , , - . , , , . , , - , [5]. , , , - , . , , - : 1. 2. , . . . , 15 3. , , , , 4. 1. 6. , . , . . , 1994. – . 118 – 124. , . . / . . . – .: , . . 9 , . . / . . , . . 5. – . 52 – 64. , . . . . // . – 2003. – 8. – . 47 – 51. 2. 3. 4. 5. , . / . . , 1981. – . 88. / . . .– : . – .: , 1988. – . 66 – 78. / . . // .– .: - , 1982. – . 120. . – 1997. – / The effective organisation of educational process at modern school is impossible without use of the individually-differentiated approach to pupils. – . . , , , . 581.13 . . VACCINIUM VITIS-IDAEA , , ( – - ) . - , . , , , Vaccinium vitis-idaea L. ( [2], , . [1]. , ), - . , - Vaccinium vitis-idaea L., . – , , - Vaccinium vitis-idaea L. . » ( 2010-2011 . , ., ( . (% – -116. ) – . , Pinus sylvestris L. , 12Î400 2), – . . . ) . : [3]. - [4]. . . : (40 – 50) Vaccinium vitis-idaea L. Vaccinium vitis-idaea L. . ( , , – . , -26, . ) [5]. Statistica 6.0. – , Pinetum (sylvestris) Pleurosiosum (schreberi), Pinetum (sylvestris) Hylocomiosum (splendentis), Betuleto (pubescentis) Pinetum (sylvestris) Sphagnosum (angustifolii), Betuleto (pubescentis) Pinetum (sylvestris) Hylocomiosum (splendentis), Betuletum (pendulae) Pleurosiosum (schreberi). , -2012: 16 . . 2. – – , 2012 – - 16 – 93 %. 2010 . ( 17 % 45 % 20 % : 9 %. – 1) , , 2011 . ( ( – . 1) 7 %) 35 %, - . , , – 2010 .: , 47 %. 1– , 2010 – 2011 – 2011 , 19,7 24,0 22,2 17,4 17,9 18 10,0 1,6 23,3 25 25 27 22,2 17,6 34,4 25 22,3 16,4 17,6 20,8 19,0 18,3 17,8 17,6 16,9 15,7 17,4 17,9 18 17,6 16,9 15,7 19,5 30,1 64,6 13,1 39,2 11,7 23,8 3,8 25 24 25 25 27 25 25 24 Vaccinium vitis-idaea L. . . ,° 2010 – 2010 . - , 2011 , ( 2). 2– , 2010 – 2011 Vaccinium vitis-idaea L. , . ,% 46,19±0,16 44,78±0,07 12,36±0,04 13,73±0,04 2010 2011 : – 41 – 46 % 46 – 67 % ( – 2,57±2,19 2,05±1,41 1,39±0,38 1,21±0,48 , 2010 – 2011 : , 1). 0,038±0,004 0,070±0,004 0,057±0,005 0,049±0,004 – , 9,90±0,86 22,42±0,55 5,36±0,27 7,47±0,52 – , – . 69 – 73 % 33 %, , 2010 ., , 2010 . Vaccinium vitis-idaea L., , , , , , [6]. , , . , - Vaccinium vitis-idaea L. [7]. , , (2010 .) . (2010-2011) : , , - 17 . , [7]. , , , - , [6] ( , 1). - . , , Vaccinium vitis-idaea L. . , - [6, 7]. . 1– , Vaccinium vitis-idaea L. , , , , , - , : . . 1. , . . / . . , . . , . . . – 2006. – // 1. – . 1 – 11. 2. : 3. 4. .: 5. / 6. 7. », 2008. – . 2: , . . : , . . , 1983. – 196 . , . . . . , . . , . . , . . : 3 ./ . . / . . . , . . . . .– .– : : . .– / . . .: .– / . . .: : , 1998. – 60 . , 1989. – 464 . .– : , 1981. – 80 . . . – 472 . ., 2008. – 255 . / . . .– . - -2012: 18 . . 2. – , 2012 The leaves of Vaccinium vitis-idaea synthesized low number of biologically active substances in weather conditions that are close to normal. For large differences in weather conditions during the summer in the leaves of Vaccinium vitis-idaea content of biologically active compounds is increased by 30 – 70%. . . , , , . 574.583 . . ) . - . , , , . . - 0,6 0,73. 54 . – 4 . , , . [1]. , – . . - , . . . 14 , 2011 – . 12 – 15 . ( 2 . 98 9 ³/ . . - 30 - . 1140 . ), ². . 5 . 5 . , : 8.00 15.00 2 15.00 , , 4 , 1. 2 1 – 1,5 19.00 [2, 3], 4 , . [4 – 7]. 54 . , . , . . Bacillariophyta – 26 Chlorophyta – 21 ), Euglenophyta – 1 (48 % (38 %), - Cyanophyta – 6 » . [8]. , . - 1. 1– 1 Bacillariophyta Centrophyceae Pennatophyceae Protococcophyceae Conjugatophyceae Ulothrichophyceae Volvocophyceae Chroococcophyceae Hormogoniophyceae Euglenophyceae Chlorophyta Cyanophyta Euglenophyta : - . 2 2 2 2 1 1 1 2 1 14 2 5 5 3 1 1 1 3 1 22 2 9 7 3 1 1 2 3 1 29 2 18 13 5 1 1 2 3 1 46 19 Pennatophyceae – 18 , : . – . Protococcophyceae 13 , Conjugatophyceae , 5 . , 2– 2. 2 Bacillariophyta Centrophyceae Pennatophyceae Protococcophyceae Conjugatophyceae Volvocophyceae Chroococcophyceae Hormogoniophyceae Euglenophyceae : Chlorophyta Cyanophyta Euglenophyta Pennatophyceae 23 Conjugatophyceae 4 . , 2 2 1 2 1 1 2 1 12 , 2 5 4 3 1 2 2 1 20 – 2 9 5 3 1 3 2 1 26 Protococcophyceae 2 23 12 4 1 3 2 1 48 , 12 , . , , 0,6-0,73; - 0,3. , Bacillariophyta Chlorophyta. , . , agardhii Gom. . Melosirales Raphales. Araphales. , Scenedesmus Meyen, Tetrastrum Link. Closterium Nitzsch. Microcystis Kutz. Elenk. Anabaena Bory. – 16 , – 24 . Merismopedia tenuissima Lemm. Oscillatoria Chlorophyta, Nitzchia Hass, (Anabaena, Microcystis). , (Scenedesmus, Closterium, Tetraëdron Corda). Pinnularia Hust., Fragilaria Kütz. Euglenophyta. Euglenophyta . 4 Bacillariophyta – , - Chlorophyta. . Cyanophyta . , , 2. Anabaena flos-aquae, , Merismopedia Lemm. . Chlorophyta Bacillariophyta (13 ), , Euglenophyta Oscillatoria. 1 , . Bacillariophyta. 1 Bacillariophyta (18 ). . Microcystis, Anabaena . Chlorophyta, 2 – . - . ( 2 ) - 1. (45 ). , , . , . - , , . . -2012: 20 . . 2. – , 2012 1– . : 1. 54 15 23 31 4 9 . 2. Bacillariophyta Chlorophyta 20 2 – Chlorophyta (17 , 36 %). 1 (43 % ). Bacillariophyta – 25 (52 %), - . 3. . 1. , 16 // 19 2. . . 2004 . – , . . .: 3. 4. 5. 6. 7. 8. : : , , 2004. – C. 21 – 22. , / : . . - II : .- / . . .– , 2003. – 57 . , . . . – 1989. – . 25. – 4. – . 3 – 21. , . . . . 2. Centrales Mediales // . . . . , . . . . 3. Pennales // . . . . , . . – : , 1984. – 336 . , . . , 1990. – 208 . , . . . ( ) / . . // . .– .: . . , 1949. . .– .: . . / . . / . , . . . / . .– , 1950. // . . . . - : . .– : , 1999. – 396 . The specific structure of a phytoplankton at two stations of the river Molchad around Gezgalsky hydroelectric power station is investigated. The maximum specific variety of a phytoplankton is observed on the river from May to August. For a seasonal suktsessiya of types of a phytoplankton of this river the classical scheme isn't characteristic that, probably, is a consequence of rhythmical work of hydroelectric power station. The specific structure of both stations on the studied site is rather poor and quite similar. The calculated factors of similarity of Syorensen for the majority of tests are in limits 0,6-0,73. During research in a plankton of the river Molchad 54 types of algas from 4 departments were revealed. – . . , . 004.9 . . « Tetrapoda, Amphibia», « 3 5 » . - , , . - – . , , - 21 . , . , , - . , )( , ; 1) 2) 3) , [1]. ). : ; . , . , . , ( ). ( [2, . 173]. , ). « - », - , . . 100 « » : 48 – 230 , 52 – . , , . , - . « , 1-330101 – 1-310101 – 197/ » 25.05.2009 ( , . » : .), , « -0. . -1. ( Acrania Urochordata). -2. Vertebrata, Agnatha. -3. Gnathostomata, Pisces (Anamnia). -4. Tetrapoda, Amphibia. -5. Amniota, Reptilia, – -R. ( ). . , . -0 -1 -2 Aves -3 « » ( -1, -1, ( -0, , , -2 -R, .), « 2): ( Tetrapoda, « -0 -2 -1 2– 2– 1). -R -5 , 5) ( ( Mammalia. -4 1– -G 5 -2, -3, -4, - ). ( -0, Amphibia» -4 » Amphibia» -R -5 « Tetrapoda, « - « Tetrapoda, -3 ( )– ). -R, Amphibia» Tetrapoda, Amphibia»: -2012: 22 -0. -1. 1.1. 1.2. 1.3. 1.4. 1.5. -2. 2.1. 2.2. 2.3. 2.4. 2.5. -3. 3.1. 3.2. 3.3. 3.4. -4. 4.1. 4.2. 4.3. -5. -R. . , 2012 . . . ( ). . . . . . . . . . . . . . . . . . . . . ( ) . ( », ). -1) – 32 , ( . 15 , -1, -2, -3) – . . , 40 . - . -4 . , , . ( ) . . 2. – « . -R) – « », 65 – -5 » ( . ( )–« - » , . Power Point – 2007, Windows. PowerPoint , , , , . - , MS PowerPoint, . ( ), , . « – 2009». , 7.0 − − . – 2009» Delphi « Object Pascal , , : , ; : , ; − − − − - [3, . 27]. ; ; , ; : ( ; , − − – ), - ; ( - ); − . ; − , [4, . 21]. - 23 , « « Tetrapoda, Amphibia», » 5 3 - . , , . – - . 1. , . . . . .– , . . 2. [ ]: .… . : http://www/lib.ua-ru.net/diss//con/159745.html ., 2005. – 172 . – »( « // 15 – 16 2003 . / , 3. , . Power Point 2003 4. , . . . . , . . . « , . . ») / . . : « »/ . , , .– . – .: . : « . . .- , , 2003. – . 173 – 184. », 2004. – 304 . // : : 13.00.02 / . ., , 2005 . – , / , 2005. – . 19 – 25. This paper the developed educational-methodical complex of discipline «Vertebrate Zoology» and «Supraclassis Tetrapoda, classis Amphibia» modular program, including five theoretical and three additional modules describes. The modular training system substantially increases quality of specialist preparation, promotes a new type of education personnel as it is directed on realisation of continuous and rhythmic studying of a teaching material during for a semester or all academic year. It is aimed at control strengthening over depth and quality of trainees learning styles and developing their skills of regular self-study. – , . . , , . 611.822.1 . . . , , , , . . , - , . , , - , [1]. , , . , – , , - [2]. , [3]. – . . 200±25 . ( 80 , ). -2012: 24 – . . 2. – , 2012 , ( 2 5 10 20 45 90 7 7 7 7 7 7 42 : ) 7 6 7 7 7 4 38 3-5 - . : , , . . . - . , . , , - . , . , (Leica CM 1840, (-196 0 ), 20 . ) (-15 0 , ) , , , . . . ( , , , ) – ( irculaty) – ( spect) – - 4, . «Statistica 6.0 for Windows». <0,05 (U- – , (Me±IQR). : , , , , , - . . (2, 5, 10, 20, 45, 90 - ) - . . 6,3 % (Z=2,71; =0,01), 0,6 % (Z=-2,14; =0,03). 1,6 % (Z=2,00; =0,05). - 3,7 % (Z=2,00; =0,05). 4,1 % (Z=2,14; =0,03). 5 13,4 % (Z=-3,00; 19,1 % (Z=-3,00; 8,0 % (Z=-2,29; 5,5 % , 2,9 % (Z=-2,43; =0,02), =0,003), =0,003). 14,2 % (Z=-3,00; =0,003), 7,2 % (Z=-3,00; =0,003) 5 8,9 % (Z=-3,00; =0,003), =0,003) =0,003), =0,02). (Z=-2,29; =0,02), 5,1 % (Z=-3,00; 6,9 % (Z=3,00; 9,9 % 25 (Z=-2,86; =0,004), =0,022), 4,7 % (Z=-2,43; =0,02), 4,7 % (Z=-2,29; =0,02), 6,06 % (Z=-2,29; 7,2 % (Z=-3,00; =0,003). 4,6 % (Z =-2,286; =0,022), 17,3 % (Z=-3,00; =0,003), 3,5 % (Z=-2,86; =0,004), 12,3 % (Z=-2,86; =0,004), 16,4 % (Z=-3,00; = 0,003). , . 22,0 % (Z=-2,43; =0,02), 13,3 % (Z=-2,71; =0,01), 27,7 % (Z=-2,86; =0,004) 31,7 % (Z=-3,00; =0,003) , 16,0 % (Z=-3,00; =0,003) 46,5 % (Z=-2,14; =0,032). 5,8 % (Z=3,00; =0,003) : 23,6 % (Z=-2,57; =0,01), 16,8 % (Z=-3,00; =0,003), 20,3 % (Z=-2,71; =0,01), 11,2 % (Z=-2,43; =0,02), 13,7 % (Z=-2,57; =0,01) 26,6 % (Z=-2,71; =0,01). 13,6 % (Z=-2,43; =0,02), 17,9 % (Z=-2,14; =0,03), 28,3 % (Z=-2,57; =0,010), 9,7 % (Z=-2,43; =0,015) 21,1 % (Z=-2,57; =0,01). 12,9 % (Z=3,00; =0,003) : 25,5 % (Z=-3,00; =0,003), 39,1 % (Z=-3,00; =0,003), 17,8 % (Z=-3,00; =0,003), 21,6 % (Z=-2,86; =0,004) 41,5 % (Z=-3,00; =0,003). 14,5 % (Z=-2,75; =0,01) - . 5,0 % (Z=2,49; =0,01), 47,2 % (Z=2,36; =0,02). 3,1 % (Z=1,98; =0,05). 12,6 % (Z=2,49; =0,01), 12,0 % (Z=-2,49; =0,01) 2,3 % (Z=1,98; =0,05). 5,6 % (Z=2,08; =0,04) 5,6 % (Z=-2,72; =0,01) 10,1 %(Z=-2,40; =0,02), , 11,5 % (Z=-2,56; =0,01), 15,2 % (Z=-2,24; =0,03). 5,0 % (Z=-2,56; =0,01) 13,0 % (Z=2,72; =0,01). 5,1 % (Z=2,08; =0,04). 90 , - : 1,6 % (Z=2,08; =0,04), (Z=2,65; =0,01). 2,3 % (Z=2,65; =0,01) 2,9 % (Z=2,65; =0,01), 1,3 % - 4,4 % (Z=-2,65; =0,01). 2,8 % (Z=-2,65; =0,01). 4,2 % (Z=2,65; =0,01), 2,3 % (Z=2,65; =0,01). 3,0 % (Z=2,65; =0,01), - . 2- , 10-20 45 ; ; . 90 , , . . . - . 1. , . . : 2. 3. , . . , . . . . / . . . / . . : 14.00.23 / . . .– ., 2003. – 44 . . – ., 2002. – 96 . , . . . – ., , 1995. – 272 . -2012: 26 . . 2. – , 2012 Experimental subhepatic cholestasis at rats invokes significant morphometrical indicators in neurons of lateral and medial kernels of forward horns of a spinal cord. The similar picture is characteristic for swelling of cages at destruction of their cytoskeleton. These greatest changes are defined in a lateral kernel of forward horns of a spinal cord. – . , , . , - . 598.2 . . (FAL O TINNUNCULUS) 2010 – 2011 . . ) , . ( 78 % 97,5 % : ). . . 85,2 % , 9% . . , , [1]. III 1700 - , . 1200- [2]. , : , . [3]. , - [1, 4, 5]. , : , , , - 9- . 10 – 15 “ . , ” - , [5]. ( : ) 2010 – 2011 . 1) 2010 – 2011 . ; 2) . 2010 – 2011 . ( I IV 2010 – 2011 . ) 1 . , . ( . 2) . ) ( , - . , 100 . , 2010 2011 . . , (Circus pygargus) [6, 7, 8]. K , , . . , , - , , . 27 ( • • • • • tus . • • • 1): ( , Rodentia, , Sorecidae); Microtus spp.; M. arvalis ( , M. rossiae-meridionalis); (M. oeconomus); Apodemus spp. ( , Mus musculus); Lacerta / Zootoca spp. (Lacerta agilis / Zootoca vivipara); ; Coleoptera. . ( 1). 2011 ., , – 83,4% [1]. 1– . Micromys minu- 2010 – 2011 5 66,7% 93,2% 2010 – 2011 . (%) . - Micro-tus spp. M. arvalis M. oecon omus Apode -mus spp. Lacerta /Zootoca Coleoptera 1. (2010) 148 54,1 12,2 22,3 3,4 1,4 1,4 4,1 1,4 1. (2011) 2. (20102011) 40 47,5 15 32,5 0 2,5 0 2,5 0 227 40,1 11,5 24,2 2,2 0 7,9 8,4 5,7 415 45,8 12,0 24,3 2,4 0,7 4,8 6,3 3,6 ( ) 97,5 % 85,2 % ( . 1). Microtus – 37,9 % 47,5 % 38,7 % Microtus arvalis 22,3 % 32,5 % 24,3 % Microtus oeconomus 0 3,4 % 2,4 % Apodemus. . ( 0 7,9 % ) Lacerta / Zootoca 2,5 % 8,4 % 6,3 % ( Coleoptera) – 3,6 % . 78 % . , . 0 . ( 2010 2011 . 1) ( 5 2 =1,222; p <0,7476), , 1 , df = 3, – ( NS) ( 2). 2– 1 , 2 - 2010 – 2011 Lacerta / Zootoca Coleoptera p<0,2985 p<0,45 p<0,64 p<0,45 p<0,00001 p<0,001 p<0,05 p<0,01 (df = 3, ( 2 . , - 1 (2010) 1 (2011) 1 2,5 % 0,7 % 4,8 % - 2). 2 =15,518; p <0,001), , - -2012: 28 . . 2. – ( , 2012 2) [6]. 1. , ( , ) . 2. 3. . ( ) , , . ( 1) , , . 4. , , ( – «nestlings period») – 3- 1, , – 2. . . 2010 – 2011 . 97,5 % ( ): 85,2 % – , 9 %. 78 % : - . , , . - . 1. , . . )/ . . (1761 – 1847): . 132 – 135. 2. 3. , . . . 4. . 7. 8. .– . / . ., : . (Fal o tinnunculus) . 2502012 . – : 2012, , 2 – 4 , 2006. – 320 . // . . (Fal o tinnunculus L., 1758) , . : . . . , 2012. – . – . 11. ., 1982. – . 158 – 220. , . . 6. . . , .– 5. // // III . . . ., , 16 – 18 (Fal o tinnunculus) . 2252011 . – : , . ./ . , - . 2002007 . – . . , 2007. – . 72 – 77. , . . . / . . , . . // , (1786 – 1853): VII . .. ., , 26 – 28 , 2011. – . 67 – 68. , . . (Circus pygargus L.) / . . // : . . . », , 24 – 25 2008 . – , 2008. – . 58 – 64. Vintchevski, Dz. Zmiany sk adu pokarmu b otniaka kowego Circus pygargus w trakcie trwania sezonu l gowego na obszarze zachodniej Bia orusi / Dz. Vintchevski // Wi cek, J., Polak, M., Kucharczyk, M., Grzywaczewski, G., Jerzak, L. Ptaki – rodowisko – Zagro enia – Ochrona. Wybrane aspekty ekologii ptaków. – Lublin: LTO, 2009. – . 295 – 307. Vintchevski, Dz. Comparison of a diet of the Montagu`s Harrier (Circus pygargus L.) during breeding season in two distinct plots in the Western Belarus / Dz. Vintchevski, A. Yasievitch // Stud. i Mat. CEPL. – 2009. – 3 (22) – P. 110 – 117. We analyzed a diet of 2 pairs of Common Kestrel nesting in 2010 – 2011 at different parts of the city Hrodna (W Belarus). Main category of prey for falcons were small rodents (mainly M. arvalis & M. oeconomus) – 85,2% of all pr y items (n=415). But at different nests we found different importance of that and other categories of prey. Possible causes of differences are discussed. . . , . 591.524.1(28):594.3 . . . . , 2011 . . , , - , . 9 . Limnaea stagnalis . 5 . , . , Planorbarius corneus, . – , . - 29 , ), , ( - . , . , , ; , , - . , , . - , . . 5 : « 2011 ( »( 1, 3), « ( ) , 1x1 . . ( 5). »( 4), , , . . 162; 2, . 126], 141], - 2), [3, . 163], [5, . 96]. 10 [1, . [4, . - [6]. 625 , 9 ,6 ,6 : Viviparus contectus Mull., Bithynia tentaculata L., Planorbarius corneus L., Planorbis nitidus L., Limnaea stagnalis L., Limnaea ovata Drap., Limnaea auricularia L., Valvata piscinalis Mull., Sphaerium corneum L. 9 , 1 Bivalvia – Sphaerium corneum. . , 88,89 % ( 1) 99,04 % ( 2). . 1% 11 % 89 % Gastropoda 99 % Bivalvia 1– 2– . . S. corneum - 1). 1– . 1 1. Planorbarius corneus 2. Limnaea stagnalis 3. Planorbis nitidus 4. Limnaea auricularia 5. Limnaea ovata. 6. Valvata piscinalis. 7. Bithynia tentaculata 8. Viviparus contectus 9. Sphaerium corneum 7 9 16 2 3 22 76 2 100 « 27 10 6 6 112 13 247 5 426 » 4 1 14 1 4 8 54 1 83 . -2012: 30 . . 2. – . . : V. ontectus, 48,16 %; 17,92 %; 17,44 % (3,36 % 1,12 %). L. - , V. piscinalis, L. stagnalis P. orneus, 9,12 % . B. tentaculata ovata ( = 1,6). 0,96 % 0,32 % , L. auricularia : S. orneum , 2012 P. nitidus, ( 2). 2– ( 1. Planorbarius corneus 2. Limnaea stagnalis 3. Planorbis nitidus 4. Limnaea auricularia 5. Limnaea ovata 6. Valvata piscinalis 7. Bithynia tentaculata 8. Viviparus contectus 9. Sphaerium corneum )% 9,12 17,44 0,32 1,12 1,6 17,92 3,36 48,16 0,96 57 109 2 7 10 112 21 301 6 625 . , 2 (56,25 % 76,0 % » – V. contectus, (65,06 % ( ), 57,98 % ( 1 L. stagnalis « - 2) 3). 3– 1 1. Planorbarius corneus 2. Limnaea stagnalis 3. Planorbis nitidus 4. Limnaea auricularia 5. Limnaea ovata. 6. Valvata piscinalis 7. Bithynia tentaculata 8. Viviparus contectus 9. Sphaerium corneum 43,75 56,25 - 2 3 22,0 76,0 2,0 - 6,34 2,35 1,41 1,41 26,29 3,05 57,98 1,17 4 1,20 16,87 1,20 4,82 9,64 65,06 1,20 . , 5 ( 40 %) 5– S. orneum ( 80 % ( 20 %). , . , :1– ( ), 3 – 4- ), 2 – ( 60 %), 4 – ( L. stagnalis P. orneus , . L. auricularia, L. ovata, B. tentaculata, V. ontectus, P. nitidus. V. iscinalis , , - 4). 4– % 1. Planorbarius corneus 2. Limnaea stagnalis 3 Planorbis nitidus 4. Limnaea auricularia 5. Limnaea ovata. 6. Valvata piscinalis 7. Bithynia tentaculata 8. Viviparus contectus 9. Sphaerium corneum 4 4 1 2 2 1 2 2 2 80 80 20 40 40 20 40 40 40 . 31 5– 1 1 2 3 4 2 3 0,66 0,66 0,29 0,25 4 0,29 0,25 0,25 0,22 0,25 0,22 0,88 0,88 , ( « »( 3 ( 2), . 9 , , 99,04 % . , . 5. 6. , Limnaea stagnalis. , Planorbarius corneus , 3. 4. 6 . 88,89 % 1. 2. - 5). . ,6 1 4). , - . , . . , . . / . . . – .: , 1971. – . 162 – 163. (Coleoptera: Carabidae) / . . // . – 2002. – 3. – . 126 – 137. , . . / . . . – .: , 1990. – . 163 – 183. Gzechowski, W. Carabid beetles of moist meadows in the Masovian Lowland Memor / W. Gzechowski. – Zool. – 1989. – W. 43. – C. 141 – 167. , . . / . . .– : , 1999. – C. 96 – 97. / . . . , . . . – .: , 1977. – . 152 – 174. Studying of specific structure of molluscs litoral zones of reservoirs of Grodno. Definition of their number, studying of distribution on reservoirs. Definition and the analysis of the general domination, a degree of domination of a species in gathering, degrees of a constancy of a species, specific riches. – . . , - . 37.01 . . , . . . , - . . , , , . - . , - , XXI ». « « » , , 1983 » . « « ». , , . , , -2012: 32 2020 « »( . . 2. – , 2012 – – 2020). , - – , , – , » [1, . 11]. . . , , , — [2]. , . . ( ) - . . « » 1 - . , , , - . ( - 1). , . , , - . . , , - , . « ». 21 » 60 % « . : , :« , - , ». , » [2, . 27 – 28]. , , , . , 50 % ( , , , 2). 1– 2– , , » » , - 33 , - ; ( ); , , , 2009 . 2012 » « . - « ». , , . . , - . . . , , . , , – - . , – , ? . – , , . , , , , , , - , , , - [3]. « – »( , , , , .1 , , 1 , ). - . , , , . . . , , , , . , - . 1,3 . 2001 , 2,2 . 1961. 21 %. 1,6 - « - , . . » (3,2 (3,6 ) ), (1,6 )( 3). , (1,8 - ). 3– 1– 4– ;2– ;5– ;3– ;6– - ; -2012: 34 . . 2. – , 2012 , , . , , - . , , , . , . , . – . . . , , , , , , . , , , . . , XXI , . , , , , , . - , . . 1. / ; . – 200 . , . . , . . 2. 3. : // / . . , . . . . . – .– .– 2020 : 44. : . . ., 2006. – 96 . Environmental education of youth and the formation of their motivation to act for the benefit of sustainable development of the state. The role and importance of educational institutions in the formation of environmental knowledge for action for the benefit of sustainable development. – . . , , - . 619.616 . . 1 23 ( , , , ) (85 – 87%) 1. , - . 1 Aspergillus flavus - B1. . , , . , , , . , 1- , . , . . - , , . 1, Aspergillus flavus , , Aspergillus 80 % rasiticus. , , . 1 , . , [1; 2]. - 35 – 2010 2011 . , ( 1 , , , ) . B1 ) 2010-2011 23 .( ( , , - 1). . . : 1 ( ( ). . ) 1 30711- 2001 [1]. (98:2) , , - . . 1. : 1 . , . , 1. 23- 1: ) « »( (23 [3]. « ) ( » » « ). - 1 WATERS Allians. , 1 . : - 23- , 2.( – ; « » »– « 1 ; « « »– )( » « 1). » , 1 . » « ). »( « 1 . – ( « 0,005 1 - , » ) . « » « » - . . -31. 60 – 75%. 1. Aspergillus flavus 84 %, 1. 1– B1 1 (%) 2010 .: 2010 .: « – » – - . – « 61,2 - 65,0 » 79,1 – . 70,4 – « » – « » 2011 .: « – - 64,6 84,2 » - – . 0,0096 85,1 76,2 – 77,6 « »– « »– » - 84 %. « . » - 70,3 75,4 -2012: 36 . . 2. – , 2012 1 « » – « « » »– – » « – « – . 0,002 87,1 0,004 87,1 » 68,9 » « 71,3 » 71,3 2011 . – . 64,0 – . 69,5 – . 64,9 – « » – - « » – – 68,0 - « 68,0 » « 65,1 » 60,7 , . , , 84,2 % . 1, 2011 , . « , » - « » . - , Aspergillus flavus 23 1. : . 3 4) ( 1 ( 10 , 2). . 1 2) – 100 . 30 (10-2, 10-3). ( - ( 5–7 25 – 26 °). . , 1 , ( 1 . . - 2) , 3 1 4) 2). 2– 1 ,% 1, 1 1. » 2. » 3. 0,002 (4,6±0,6)*103 0,004 (4,3±0,6)*103 » (2,9±0,6)*102 » (1,1±0,08)*102 4. Aspergillus flavus – 81; Penicillium sp. – 17; Aspergillus sp. – 2. Aspergillus flavus – 63, Aspergillus sp. – 37. Aspergillus sp.– 32; Penicillium sp.– 25; Mucor – 43. Aspergillus flavus – 13; Aspergillus sp. – 40; Penicillium sp.– 1; Mucor – 46. 37 ( 1) 2( , - 1) 3( 1). 1– (23( ) 2( 1) 1) , » . » 2). sp., Mucor sp. . -6 1 2 – 63 %) ( 2). 3 1 43 %, Aspergillus Aspergillus flavus, 25 % . , ( Aspergillus flavus, Aspergillus sp., Penicillinum . , Aspergillus. Aspergillus flavus ( 1 – 81 %, Mucor, 4 – 46 %. 3 – 32 %, 4 – 40 %). Aspergillus flavus (13 %). Penicillum. 2 – Aspergillus flavus ( 4 3 1) -2012: 38 . , . . 2. – ( , , . 1 , , 2012 , ) - , , . , 1 . . 1 , 1 , . 1 ( 1 ) Aspergillus flavus . 1. , . . : // 2. / . – 2000. – / . . , . . , 2007. – . 1. – . 283 – 304. , 10 . 1980 . , . . 3. 2773-80 . . 1. – . 2 – 12. , . . , . . , // .– . . - .: - , Three samples of grain (from 23) with detection flatoxin 1 were stored at the increased humidity (85-87 %) within several months. In the infected barley it is revealed ten times more than microscopic fungus in comparison with barley without mycotoxin. – . . , , - . 579.68 . . . . « » . . , , - . . , Saccharomyces cerevisiae. Pseudomonas putid . , . , , . , , , , [1 – 3]. , : 1. . - . , , . , , - . . 3 0,25 – 2,5 3 10 , – 10 – 20 , , 3 . , , . . , 2. , . . , . , , , , - , . 3. . , . . . , . , - , . , : , , . - , . , 39 , , , . - , . 4. . , , , , , , . . , , - , , , : , . » « ( . . . - . ) . . . – . » . « - . . 2011 . 4- . : 1: 2: 3: 4: . . . . , 500 , 500 , 500 , 500 « . ( ) ( - ) [4]. Saccharomyces cerevisiae . 2,0 – 3,7 . / 3, – , [5]. . . - . , , ». . ( Pseudomonas putid » « , , ) [6]. , . , . ( « » 1,3 – 2,1 . , 1– 1). . , (3,7±0,8) ⋅103 (4,7±0,4) ⋅103 (5,3±0,4) ⋅103 (16,3±12,2) ⋅103 1 2 3 4 - , (2,3±1,1) ⋅103 (4,7±1,1) ⋅103 (2,0±0,3) ⋅103 (63,3±11,9) ⋅103 / 3 (2,0±0,1) ⋅103 (4,1±1,0) ⋅103 (4,5±2,5) ⋅103 (27.1±18) ⋅103 4. 3,1 – 6 5,3 – 31 . . 2 3 : , - , - . . « . « 1,6 – 2 ( 2). - , , 2 . 2– « . 1 2 3 4 (1.0±0,1) ⋅10 (0,5±0,3) ⋅10 (1,0±0,4) ⋅10 (12,5±3,5) ⋅10 ». , (1,3±0,7) ⋅10 (0,8±0,7) ⋅10 (0,5±0,1) ⋅10 (2,3±0,4) ⋅10 / 3 (2,0±0,1) 10 (1,0±0,1) 10 (0,5±0,7) 10 (25,5±3,5) 10 -2012: 40 . . 2. – , 2012 . , - . 4,6 – 51 . , 2.1.2.12-33-2005 [7]. , , . , , [8]. « » P.putid 29 36 % , , ( 2- 3). , - 2,8 . 3- P.putid , , 3– P. putid , % , 1 2 3 4 . . 134,4 105,9 37,6 37,6 48 100 % 177,8 218,5 259,2 266,6 4– S. cerevisiae, % 28,8 49,5 97,9 61,8 – , 1 2 3 4 , S. cerevisiae 4). ( 62 %), ( - . . 336,1 356,2 244,0 256,1 ( , 256,1 208,1 324,2 224,1 , ( 100 %). 90,4 28,6 42,9 142,9 P. putid ) ( S. cerevisiae) . , « » . , . . , « , . » , . . , , . , , , , , . . , , , . 1. , . . / . . , . . .– : - , 1973. – 258 . 2. 3. 4. 5. , . . . – .: , . . . . . – .: , . . , . . / . . ; . . . ; - , 2003. – 348 . / , 2003. – 512 . / . . / . . . – .: , . . , 1990. – 89 . .– .: , 1989. – 288 . 41 6. 7. , . . / . . .– , 2004. – 124 . 2.1.2.12-33-2005 « », 2005 . 198. , . . , . . : 8. . . 28 / , . . . // . ., ,1–2 2006 . – , 2006. – . 284 – 286. It is studied the microbiological structure of water of the river Neman near to release of sewage of Open Society Grodno Azot and city treatment facilities of Grodno. It is established biological pollution of water of the river Neman after receipt sewage in it. – . . , , , . 615.099.08 + 612.3.354 . . , , . , , , . . , , ( ). . , - . , , , [1, c. 85 – 87]. , . . - . [2, c. 20 – 21]. ( ), , . , ( – .), , ). . - ( , , , , ( , ), , [3, c. 5]. , - , , . , . , , [4, c. 419]. – . , , , - . . - , – , . , , , ), . – , , , . - -2012: 42 . , c 14. , 14 ( , – PBS, ) 37 ° . ). 2- (5 % 2) ( M . . 2. – . , DMEM, 25 1 , , :5 , 10 , 20 ) (GSH) - [5, c. 97], [6, c. 74]. [7, c. 56]. -2- ]-2,5- 3-[4,5- ( ) . (H2DCFDA). . 2,72,7- H2DCFDA H2DCF 2,7 – (H2DCF). (DCF), . 1 (tBHP) (p<0,05) 3,7 , . ( (p<0,05) . . 1 , 2012 , . M 4,3 - . , - . , 4,2 . , (10 ) (p<0,05) 24,7 (p<0,05) , - . , 14 , tBHP- 1. 10000. 1– 14 100 Mel . %, - N 100 tBHP- (545 - ) 47 0.5081 ± 0.008879 10000 100 24 0.4499 ± 0.01196 * 8855 88,55 24 0.4861 ± 0.008922 # 9567 95,67 50 Mel+100 tBHP 22 0.4830 ± 0.01005 # 9506 95,06 100 Mel+100 tBHP 22 0.4436 ± 0.01215 * 8731 87,31 500 Mel+100 tBHP 24 0.4038 ± 0.007806 *# 7947 79,47 24 0.4441 ± 0.01250 * 8740 87,4 100 Trp 50 Trp+100 tBHP 24 0.5855 ± 0.007504 *# 11523 115,23 100 Trp+100 tBHP 23 0.5714 ± 0.006999 * # 11246 112,46 500 Trp+100 tBHP 22 0.5570 ± 0.009576 *# 10962 109,62 24 0.4596 ± 0.01621 * 9046 90,46 100 Suc 50 Suc+100 tBHP 21 0.5720 ± 0.01300 *# 11258 112,58 100 Suc+100 tBHP 21 0.5617 ±0.007451 *# 11055 110,55 500 Suc+100 tBHP 22 0.5324 ± 0.01178 # 10478 104,78 100 ± tBHP. : , # -p<0,05 - ; * -p<0,05 , , 50 , . 50 100 ( ), tBHP 500 ). (10 M tBHP) , ( - 43 . ( 2). , ) (100 (50 , , 500 ) - . , , , . 2– , 0 100 100 Mel 50 Mel+100 tBHP 100 Mel+100 tBHP 500 Mel+100 tBHP 100 Trp 50 Trp+100 tBHP 100 Trp+100 tBHP 500 Trp+100 tBHP 100 tBHP (I *10-3, 100 Suc 50 Suc+100 tBHP 100 Suc+100 tBHP 500 Suc+100 tBHP 30 0.02483 ± 0.0005917 0.06614 ± 0.002452 * 0.02947 ± 0.0005510 0.01413 ± 0.0002431 *# 0.09424 ± 0.001845 *# 0.1356 ± 0.003711 *# 0.02716 ± 0.0003995 *# 0.05581 ± 0.001548 *# 0.05486 ± 0.001969 *# 0.05675 ± 0.001889 *# 0.02834 ± 0.0004189 *# 0.04391 ± 0.0009653 *# 0.04511 ± 0.001234 *# 0.04463 ± 0.001257 *# : * -p<0,05 ) 60 0.04919 ± 0.0005974 0.2870 ± 0.004599 * 0.04810 ± 0.0008417 0.02312 ± 0.0004289 *# 0.3737 ± 0.005177 *# 0.4957 ± 0.008569 *# 0.04508 ± 0.0008211 *# 0.2397 ± 0.006354 *# 0.2922 ± 0.009302 * 0.2446 ± 0.007095 *# 0.04808 ± 0.0005808 # 0.2199 ± 0.002704 *# 0.2661 ± 0.008910 * 0.2635 ± 0.009168 *# 120 0.07916 ± 0.001696 0.5212 ± 0.006984 * 0.07324 ± 0.001671 # 0.01872 ± 0.0002863 *# 0.7685 ± 0.008768 *# 0.9418 ± 0.01766 *# 0.06874 ± 0.001279 *# 0.4941 ± 0.01568 * 0.6327 ± 0.02010 *# 0.5105 ± 0.01083 * 0.07299 ± 0.001109 # 0.4159 ± 0.004847 *# 0.5339 ± 0.01717 * 0.5045 ± 0.02372 * 0.1106 ± 0.002101 0.8369 ± 0.008223 N * 0.1206 ± 0.002502 # 0.02942 ± 0.0006910 *# 1.232 ± 0.02227 *# 1.407 ± 0.03020*# 0.1154 ± 0.001881 # 0.9188 ± 0.02117 *# 0.9172 ± 0.02621 *# 0.9147 ± 0.01368 *# 0.1260 ± 0.002052 *# 0.7048 ± 0.008692 *# 0.7870 ± 0.05572 * 0.7180 ± 0.03065 *# , # -p<0,05 , 100 tBHP , - , , tBHP- in vitro , , 14 . 50 - , , . . , , , , , , - . 1. 2. , . . . / . . . – .: , 1996. – 134 c. , . . / . . // . – 2000. – 3. – . 20 – 27. 3. , . . : / . . // .– 1996. – 4. – . 2 – 10. 4. Bendich, A., Machlin, I. J., Scandurra, O., Rurton, G. W., Wayner, D. D. M. The atioxidant role of vitamin C // Adv. in Free Radical Biology & Medicine. – 1986. – . 419. -2012: 44 . . 2. – , 2012 5. Stocks, J. The auto-oxidation of human red cells lipid induced by hydrogen peroxide / J. Stocks, T. L. Dormandy // Br. J. of Haematology. – 1971. – Vol. 20 – P. 95 – 111. 6. Ellmann, G. L. Tissue sulfhydryl groups / G. L. Tllman // Arch. Biochem. Biophys. – 1959. – Vol. 82. – P. 70 – 77. 7. Mossman, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity / T. Mossman // Immunol. Methods. – 1983. – Vol. 65. – P. 55 – 63. Results of many studies suggest a role of oxidative stress (high levels of free radicals and a simultaneous decline of antioxidant defense mechanisms) in the development of many pathological processes. The oxidative stress is associated with disturbance of antioxidant-prooxidant balance in the cells and tissues and accompanied by impairment of cellular metabolism and cell death. We have studied the antioxidant effect of natural polyphenols and melatonin during organic hydroperoxide-induced oxidative stress in various cell cultures. The results obtained demonstrated pronounced cytoprotective effect of therapeutic doses of melatonin and natural polyphenols that resulted in the decrease of cell oxidative damage, reducing reactive oxygen species (ROS) generation and increasing cell survival. . . , . , , . 556 . . , . . . . . . , , . , . , - , , , , - [1, . 116]. . 4250 2 , 01.01.2009 . . 12,4 % – 16,8 %). – 18 ( – 38,8 350 2 , , – 78,09 ( – 25391 , 226 . 3) [2 – 5]. – 106779 5 , . - , - . . [6, . 123]. . . . . - . , - . – . : , . : . , . – . , . ., ; – 1946 – 1966 ., – 1967 – 1990 ., ; – 1991 – 2008 ., . . 1922 – 2008 . ( – . – 1922 – 1945 ; , . – . . 1922 – 2008 , ., 4 , 1). 45 1– – . – . , 1922 – 1945 1946 – 1966 228 80 1967 – 1990 125 61 1991 – 2008 . . . – . – . – . , 3 , 227 79 71 55 159 68 1922 – 1945 695 75 1946 – 1966 681 83 1967 – 1990 462 63 1991 – 2008 290 59 528 70 1922 – 1945 990 77 1946 – 1966 975 69 1967 – 1990 667 57 1991 – 2008 484 55 971 65 1922 – 1945 - - 1946 – 1966 98 58 1967 – 1990 86 58 1991 – 2008 1922 – 1945 . ( 25 – 43 7 – 18 % . 1946 – 1966 . 5 – 19 % . 1967 – 1990 . 13 – 21 9 – 12% , 13 6 % 1991 – 2008 . (39 – 56 9 – 18%) 53 50 79 55 23 – 43 ) , . – . , . . ( 1– 1). , -2012: 46 . . 2. – , 2012 : , , . ( 2). 1922 – 2008 ., , - , . ,0 2– , – . . . . 1922 – 1945 -20 -18 -16 -18 – . – . – . – . 1946 – 1966 -17 -14 -12 -15 1967 – 1990 -15 -13 -11 -14 1991 – 2008 -10 -8 -7 -9 , , - , . , , . . - . – , . , , . . . , - , . . , , . . , - . 1946–1966 . . , - , . , , - , . 1. 2. . . , . . / . . .– , 2008. – . 1: .– , 2008. – . 2: , . . 3. . . 4. 2008. – . 3: 5. 01.01.1982 – 2008 . / 6. ; . . . . , / . . . . . . .– : : : . – 161 . : . – 161 . : 3 .– , 688 , 2008. – 245 . .– : .– , 2006. – 160 . 3 .; . . – 224 . : 3 .; . : . . ./ , 1975. – 240 . The atical describes analysis of the change climatic element: the maximum water storage in snow, as the main factor causing fluctuations in space and time of maximum discharge and strata of the spring flood runoff in rivers of Neman basin. It defines the nature of the influence of melioration drainage runoff during spring flood in this basin. – . . , . , , . 47 67.02 . . . , - . - , - , . . , , - . ( ) [1]. « » . – , ( , , , ( ), , , ), . . . , 45 . : 1050-88. ( ), , . - . ( , ) , . . – , , , , . , ( 1,4-4 . - ) . ( , ) , ( ). , , 3000 . - , , : [2]. » . « - ( -63). , . , - . . -63 - , . 550-580° 500 . . « -2299, 1) 2) 3) –6 – 150 » - : ; ; – . : 1) – ; -2012: 48 2) 3) 4) 5) 6) ( 0,01 – 0,012 600 HV; 1) 1,4 .– ( , 2012 ); ; 370 HV; + : , 1– ; (500:1) : 1) 2) 2000 . - 30 000 3) 4) 5) 6) . 30 000 , . – 6% , , – . . . , c , − − − − − - : ; , , ; ; ; , . 1. 2. 3. , , . , , :c . / . . : . . / . , . . / . [ . . . . – .: .]; .– . . . . : , 2002. – 163 . , 1976. – 256 . .– : , 2008. – 519 . Production of gas spring rod with ionized nitrogen nitriding in glow discharge plasma can: reduce energy consumption, reduce the number of operations, reduce the cost of details, to solve the problem of environmental protection. . , . , . 49 621.643 . . , , . - , . , . . . . , . , ( ) - , , . . , - , . , , . - , , . , . . - , . , , - , . , , - . . , - , ( ). ; , - . ; , . , . - – . 5 . . – , – , . , , - . , , . , , , - . , , . , , : ( .), , ( , ( , , , .), , .). , . - ( ), ): , , . -2012: 50 .– , 2012 1– . , , - . . , . . , ( · ) 2– , - , . . . : , , , . . , - , . , , - , , . 51 , , , , . 1. 2. , . . , . . , 2005. – 72 . , . . : : 3, . . // 3. 4. / . / ./ . . .– . .– . , , 2002. – 52 . , . . , . . .– : , 2006. – . 3. – 35 . : / . – 2002. – .: . - 3. – 31 . In this paper we analyze the market and technology of materials used in the construction of modern pipelines. Determine the most rational types of insulating materials suitable for use in the construction of pipelines. Identified components of the economic effect, the application of pre-insulated pipes. The influence of material structure on the thermal insulation characteristics. The variants of composite materials based on the foam matrix. . . , , , . - . 621.9 . . CALS. 60 , . CALS, , - , , , CALS. , , , « , », . - , , . 3-250.35.01, ». , « - , - , . , LS-Dyna, , . , « « – »( . 1) [1]. » , , 40 , 25 (18 ). - . , SolidWorks [2]. « , – LsPrePost . », NXUnigraphics 5, LS-Dyna, . - -2012: 52 .– , 2012 1– 3-250.35.01 [1] : , − ( − - . 2); ; − . 2– 3-250.35.01 [1] , ( , . 3). 40 , , 60 60 ( ). - 4. 4– 3– – 3-250.35.01 3-250.35.01 53 , , , . , . , , . – 60 . 40 , , , - 60 . 50…52 HRC 58…60 HRC, 42…43 HRC, . , 60 , - , ( .) « – ». 3-250.35.01 60 , 1 1654-86 5000 2 5000 3 2000 Ø 32 – 98 Ø 50 – 98 Ø 55 – 98 Ø 160 – 99 Ø 150 – 99 Ø 150 – 68 Ø 160 – 68 – 100 Ø 50 – 100 Ø 55 Ø 160 – 100 – 100 Ø 150 – 100 – 70 Ø 160 – 70 – 100 Ø 50 – 100 Ø 55 – 100 Ø 160 – 100 Ø 150 – 100 – 70 Ø 160 – 70 100 120 70 Ø 32 Ø 150 120 70 Ø 32 Ø 150 100 100 120 70 - , , , . 1. , . . // , 2. / . . . : . . ANSYS -1, 2004. – 512 . . 6. . . – 2011. – / . . 1 (116). – . 77 – 81. , . . , . . .– , . . - .: - Possibilities of optimization of the turning cartridge details with CALS-technology are considered. The use of low-hardenability steel 60PP for the manufacture of the gear wheel is proposed. This work improves the reliability of industrial equipment. . . , , , . - -2012: 54 .– , 2012 691.332.5 . . . . « 1998 – 2015 .» , 2015 . . - , - . , . : , , . . , . 1,7 – . , . , . – , , , , [1-3]. , . . , - . , , . : , , , . , . - , , . . , , . . . D 400-500 « ». -3. -3 – , - . 300, 400 . 500 – 3 , - . . -3 , 0,5, 1 1,5% . . [4-7]. 55 ( . ( . 1) ) - , -3 1%. 1– , -3, % 0 378 359 322 3 300 400 500 3 3 0,5 436 416 376 1 476 449 399 1,5 483 456 405 , 300, 400 3 500 , - 100×100×100 1% -3. . 2-4. 2– 0 0,52 0,78 2,02 3 300 400 500 , -3, % 1 0,73 1,12 3,05 3 3 3– 3 , 3 300 400 500 -3, % 1 303 398 502 0 308 402 512 3 3 4– ,% 3 300 400 500 -3, % 1 16 17 17 0 21 22 24 3 3 . , , , . - , , , , - , 10 . , ( ) - . . , , , , - .% - , , , , . 1 -3 1. -2012: 56 .– , 2012 1– , -3 1. 2. 3. 4. 5. 6. 7. , . . 1990. – 183 . , . . . . .– , . . . . .– 12852.0-77. 01.09.1994. – 4 . – 10180-90. 01.09.2006. – 31 . – 12730.1-78. 5 .– 19. 12730.2-78. 4 .– 19. 1% 1,5 – 1,6 / . . . . / . . .– .: , . . , , , 2004. – 381 . . , 2006. – 446 . . 19. / . . , . , .– 12852-67; . 01.07.1978 .– 10180-78; . 01.01.91 19. . .– . .– 12730-67; . 01.01.80 01.06.2007. – 12852.2-77; . 01.01.80 01.06.2007. – Investigated the influence of specific chemical additives on the physical-mechanical properties of composite building materials based on silicates. Shown the efficiency of plasticizing agents to increase the strength of porous silica concrete. . . , . 678.046.36 . . , . 6. , . , . . . - : 57 − , ; − , . , - , . , , - . 6 ( 6) , . -6 - , , . . . , . - , [2]. , . , , - , , , . : , : , . , , 1000 . , , - . . . -6 0,1; 0,5 1 3 .%. , 100 - . . , . , . , , ( . ). m( ) - , : ( , ) – – S– m– τ– = S⋅m , / 10 τ , , ; , ; ( 11645-73); , ; : = 230 º , = 21,17 , , . 1 , 2 . , , 1. 1– 7,46 7,1 7,98 5,44 8,21 7,74 -2012: 58 .– , 2012 , . . . , . , , , . - . + . , . - , . 2. 2– -6 . -6, 0,1 .% -6, 0,5 .% -6, 1 .% 1, 0,8033 0,7307 0,6826 0,6080 2, 0,7593 0,7237 0,6986 0,6058 3, 0,7868 0,7402 0,7111 0,6251 0,7831 0,7315 0,6974 0,6130 3,92 3,636 3,487 3,065 , 503,21, /10 1. , - , , , . , .% 1– , , - , . , , , , , . . - 59 : 1. , . . [ . . . . 2. , : .]; . . . , . . .– , , 2000. , . 3. : . , . . . . , , 2007. – 431 . : .… . , . / , / .– : . / .– . . . , , 1999. – 164 . This paper discusses the need for multifunctional use of the available fillers of polymeric matrices. Unsubstantiated nature of the activity of dispersed particles of blue clay and the influence of activated filler on the rheological properties of polyamide 6 melt. . . , , , - . 620.178.153.4:620.178.169 . . . , . . , « » [1, 2]. - . , , , ( . - ), . , , , - , , . , , . . , , , - [3-6]. . 6( « ») 11 ( Rilsan, Arkema, « » - ), « ( ». « », - ). , , . - ) , - . , ( ) . ( , 11, ), ( 6), (75 . : – 3-4 . – 10-30 – 350-360° , . 40 – 10 , 250-350 , - -2012: 60 .– , 2012 NT-206. 1- -4 . -1 pV: p = 2 , V = 0,5 ( ) « » - . , , , – – - . 1 2. ) ) 1– 11+ – , 10×10 ; – ) ) 2– 6+ – , 10×10 ; – 1. - . , . - . . 1– *, 6 . **, 96 97 92 95 6+ 11 (Rilsan) 11+ :* ** 1-4 . . 2 . 322 368 300 350 4, 8 3. 12 3. 2– , 11 (Rilsan) 6 6+ 0,8368 0,7554 0,8114 4 0,8365 0,7543 0,8112 8 0,8358 0,7533 0,8102 12 0,8351 0,7524 0,8093 - 61 3– ,% 4 11 (Rilsan) 6 6+ 8 0,04 0,15 0,02 12 0,12 0,25 0,15 0,20 0,40 0,26 3– 6 . , - 6 11 (Rilsan). , 6 - . 6 11 . 1. , . ., , . . / . . . .– .: , 2010. – 456 . 2. . . 3. , . . [ , . . .]; . . . . . .– : , 2006. – 403 . ( , , 2005. – 260 . .– : 4. .– 5. / , . . . . / )/ . . / . , . . . , [ .] // 3. – 2008. – . 76 – 81. // », . 6. : : « 2011 . – . 183 – 186. / . . , 19 – 20 , . . II « », . , 17 – 18 2012 . – : : , . . // - : , 2012. – . 48 – 51. Were researched the structure and physical-mechanical properties of fluorine-containing composites based on aliphatic polyamides. This article shows results of the tribological wear testing of polyamide coatings, modified nanophase particles of fluorinecontaining polymer-oligomer components. . . , . -2012: 62 .– , 2012 678.8 . . . , , . , , - . , 100 , . , , , , , , - , , , , , , - , . , , . , - , . . , . , , - , [1]. , . , . , . »– « ( , -4) ( 150 500 - ) , . « » - : − − − 45 ( 45 ( 45 ( )– )– )– ( ( 08 ) ) ( ). « ». 220. ( ), - , . , « , » [2]. , « ( 45, » 08 ), Ra 0,008 . - , , , . , 1, - 63 , 1– Fe ( ) – Al ( ) - , I·10-11 Fe ( ) – Al ( ) ) Al ( 1 Fe ( 2 Fe – Al+ 2,41 23,95 3 Fe+ – Al 1,67 13,783 4 Fe+ – Al+ 0,086 9,12 4,296 ) 30,45 , ( . 1). . Al ( .1 . ) ) ) Fe ( ) ) ) ) – Al ( ) 1– ); ) Al ( Fe – Al+ – Al+ Fe ( Fe+ ) Al, Fe – Al », . ; ) Fe+ ) – Al ( – Al; ) , , , Al , , . : Fe – Cu; Fe – Fe; ( . 2-3). Fe. - -2012: 64 2– Fe ( – .– 45) – Fe ( – , 2012 08 ) - , I·10-11 Fe ( Fe ( – 08 ); Fe – Fe + Fe+ Fe+ 1 2 3 4 45) – Fe ( – – Fe – Fe + ) Fe ( ) 4,934 13,808 4,344 3,494 2,064 11,972 9,49 5,62 3– Fe ( ) – Cu ( ) - , I·10-11 Fe ( ) 4,04 1,726 0,73 0,665 Fe ( ) – Cu ( ) Fe – Cu + Fe+ – Cu Fe+ – Cu + 1 2 3 4 Fe ( ) 27,54 22,376 7,868 7,258 , . , , - . , , ( 45, 08 ), . , , - . 1. / . . [ .] // .. , . . 2. : ., , 19 – 20 » . . - »: 2011 .; . . . . : , 2009. – 31 . – . 297 – 307. / . . .– .: « The aim is to develop new polymer composite materials with optimal office performance and study of the effect of the coating rotaprint ultrafine polytetrafluoroethylene tribosystems in knots. According to data obtained tribotests found that sustained release film with low resistance and high shear adhesion activity generated in the case of applying rotaprint coatings to both bodies involved in the process of friction. – . , . , , . 294.36 . . , . . - 65 . , – . : . [1]. : , . – [2]. , - . . : , . , , . [5]. (1D, 2D 3D), . , , .[4] 1D- . : . 2D2D» « 2.5D- . . . , , . 2D- - 3D- . , , , - . Moldflow Adviser 2012 ( MF). . Moldflow Adviser 2012 , , Autodesk , - , . . 1. . SolidWorks 2011. 2. . (Autodesk Moldflow Adviser 2012). - . 1). 3 . , - , . , 142 , 95,4 . 1– «Gate Locations» . -2012: 66 2– .– , 2012 3D- 3. 3D- , - . , , . - . , , . : , , ( , ), . 3 ; 4 , , . . 3– . - 67 1– ;2– ;3– ;4– 4– ;5– . ( ;6– ). ( ) – Autodesk « - . MoldFlow Adviser 2012. SolidWorks 2011 ». 1. 2. , . // http://cadobzor.ru/ / . .– ; CAD . . . . [ .: , 2009. – 208 . ]. – 2011. – : : 10.11.2011. 3. . . , . . // [ http://www.barvinsky.ru/articles/art_041_global_market_of_cae_2010.htm. – 4. 5. .– / ]. – 2011. – : : 21.10.2011. / . . , . . // : http://www.barvinsky.ru/articles/ [ ]. – 2011. – art_044_temperature_in_hot_runners_mold.htm. – : 25.10.2011. MoldFlow – // Autodesk [ : http://www.autodesk.ru/adsk/servlet/pc/index?siteID=871736&id=14659045. – ]. – 2011. – : 25.09.2011. This work shows how to use the computer software for the design of the mold. Conducted the computer analysis of molding polymer products with cold and hot runner gating systems. . . , , . 678.01:621.7:627.217 . . , . . 6 11 . - , . . . , , , , - , , - . - [1]. -2012: 68 ( .– , 2012 ) , . - , . . 100 , , , [1 – 5]. 10 ( ) , ). ( . , 0,01 – 0,05, , , , , , - . , , - , , , . – 6 (210/310 80 – 200 . . ) 11 (“Rilsan”) . ( ) – ( NT-206. ( ( « », . ). 252. ), ). , , ) [2-4]. ( , ( , - ) . ( , 1) , - , . , . , , . 1– – [1] 6 ( 1,5 11 . %) , , . 1. . 69 1– Ra, 76,8 68,9 45,6 55,6 40,3 25,5 6 6 + 0,5 .% 6+1 .% 11 11 + 0,5 .% 11 + 1 .% .( ) 6 11 2 ) ) 3. ) ) ) ) 2– 6( , ) 0,5 .%( , ) 1 .%( , ) . , 1,5-2 6 1 .% Ra = 96,9-76,8 45,6-52,6 , ( 11 6 ( , 2 , , ). ( <50 0,5 % 20 % ( . ) 1,5-2 <50 .) Ra=40,3 , . 3). 1 .% 11 - Ra=25,5 11 ) . ) ) ) ) ) 3– 11 ( , ) 0,5 .%( , ) 1 .%( , ) . , 6 , . - - . , , 6 1 6 1,5 – 2 , 11 – 2 .% - ( 1). , , - . - , . -6 -11 ( «Rilsan») , 1. : , 2006. – 523 . , . , / . . [ .]; . . .– : -2012: 70 2. [ .]. – ( , , , 2005. – 260 . , . – 2000. – . 6, : , 2006. – 403 . : )/ .– . . , . . , 2012 , . 3. [ .] // , 4. . ; , 5. . . . . .– . , . . . . / . . / . . . .– : - .]; . . . , , 1999. – 164 . 6. . / . . [ / : - 1. – . 31–39. , .– . . . [ .]; , 2009. – 532 . This paper presents the results of modifying the volume of powder compositions based on polyamide 6 and polyamide 11 dispersed synthetic fluorine-containing components. The estimation of the parameters of the functional characteristics of the formed coatings deposited from composite formulations developed by flyuodization. An analysis of the impact of the energy state of the fillers on the technological aspects of the formation of compounds. . . , - . 66.03:66.011:66.017 . . CALS, . , CALS- . . 6( , 6) . , - . , . , , . : , , , , . , ( ) , , , , . . , - , , . , , . , , [1]. , , - , , . - , . « , » [1, 2]. , « » « ». , . [3]. , . - 71 , - [4, 5]. CALSDS-10 40 . Dietze & Schell Maschinenfabrik Gmbh & co. kg. 6( – ). , - . ( 65-375 , . 1). - , – 260-1500 . . « : – 24 – 1200 » – 2500 , « » , - . - CAD- AutoCAD 2012, SolidWorks 2012 SolidWorks [6]. 1– ,2– COSMOSWorks, ,3– ,4– 1– ( ); 2) 45 ( 1– ,2– ( - . 2, 3): 1) ; 3) 40). ,3– 1– ,4– ,2– ,3– ,4– 3– 2– DS-10 DS-10 , , , 45, [4, 5]. -2012: 72 1,8 ( .– , 2012 . 4). 4– SolidWorks 2012 « . 5): 1) . - ». ; 2) ; 3) . 6 « » . ) ) ) 5– ) ; ) ; ) ) ) 6– « ) . » ; ) ( . - ) , CALS, , . 1. , . . / 2. : . . . , . . : , . . / . . .– 3. 4. . , . . / . . , , : , , 2010. – 157 . , .: « : 10.05.2012. khim.by. – .– , , 2008. – 354 . « »[ » // , . , 19 – 20 . , ]. – : 2012 . – 80- XX : : - : http://grodno., 2012. – . 106 – 111. . 73 5. , . . / : 6. .: . . , . . : II , 2012. – . 99 – 102. , . . SolidWorks. , 2006. – 800 . // : .- . ., . , 17 – 18 / . 2012 . – . [ .]. – In this article proposed design and materials science solutions of improvement in the rewinder work. These obtained solutions were confirmed by the results of in-process and bench testing. Were conducted virtual testing with the help of CALS-technologies. . . , . 629.3:004.94 . . , - . , , , . , Aided Design) — , 3D CAD (Computer - , . CAE (Computeraided engineering) [1]. « » . « , ) ( », , . , - [2]. , ( ) , . , , . , - . . 35 27.2-05757883-202:2009. - . , , - 45º , . ( - ), 54 HRC. 35 . , . , , . 35. 20, . . - -2012: 74 .– 20 , 2012 , . , 17000 - . . , . 1– , 35 1050-88, SolidWorks , - , . 2– : , , 17000 : , 20. . . . - 75 , , , , ( , 2 351,571 Ø105 ×6 2 (257,241 , , 257241376 , . 20, 2 3). - . 17000 ), , . 3– 35 - 20, . . : 1. 2. , . , . . . ; . (CAD/CAM/CAE) / : . . . .– .– .: , : , 2004. – 560 . , / , 2006. – 409 . . . , . . , The structural features of the seam weld the shaft, an analysis of the stress-strain state of a virtual model of the propeller shaft tube and pipe material selection is made in order to improve performance. . . , , , . - . 621.892 . . , . - , , . , , . , , , . , , . . , [1 – 6]. -2012: 76 .– , 2012 , , , , , . , , . , , , - . , A. Begelinger , , , De Gee A.W. . , . , , . , . , . , , . , ( « ». ), [7] , . , . -24, -150 . - ( ) ). - 5 ( .). « ». . , , - (80-90 %) . : , , , . , , , , ( -24) 0.00 0.02 0.04 Absorbance Units 0.06 0.08 0.10 0.12 ( 1800 1– 5 1600 1400 1200 Wavenumber cm-1 -24 (1) .% 1000 800 -24, (2) . 1). , - 77 « , » -1 1146-1229 -150 . 2). 2.0 1.5 0.0 0.5 1.0 Absorbance Units 2.5 3.0 ( 1800 1600 1400 1200 Wavenumber cm-1 2– 5 -150 1000 (1), .% 800 -150 , (2), (3) . 67.5 87 , -150 -24 56.5 42.5 . , , . - , . , , . 3 . 2 y = 7,1443x - 22,774x + 85,318 180 , 150 120 90 60 30 0 0 0,5 1 2 , 5 .% 3– -24 , - . , [8] , , , , . , . [7]. - -2012: 78 1. 2. , . . , . . 1999. 374 . 3. , . . 4. , . . , : / . . / . / . . .– , . . . . .– , , . . . .: . . .: , 1989. : . , 1981. , 2012 303 . . ., 354 . / . . // . 1996. . 17, 6. . 827 – 831. 5. , . . / . . . – .: , 1972. 272 . 6. Struk, V. A. Carbon modifier for mineral oils / V. A. Struk, E. V. Ovchinnikov, S. U. Kukla // International conference BALTTRIB’99. – Kaunas, 1999. . 124 – 126. 7. , . . / . [ .] // , : , . , , 11 – 15 . 2008 . / . . »; . . . , 2008. . 26 – 33. 8. . / . . .] // XXI : . XVII .. ., , 13 – 18 2010 .: 4 . / , .: . . [ .]. – : , 2010. . 1. – . 31 – 40. The structure and rheological properties of lubricating greases modified nanophase particles of fluorine-containing polymer of oligomeric compounds are studied. It is shown that the introduction of the nanomodifiers into the polymer matrix increases the strength characteristics of the matrices, so the effectiveness of the lubricant increases. – . , . , , . 538.911 . . , . . , , - [1 – 3]. , . , [4], [7]. [5] [6], [5 – 7], , [2-6]. , – 10 ) 1,7-4 , 4 : 1,5 – 10 , 1,5 – 2,5 , , – . - – (0,5 - , - , , . , ( [8]. ), [9]. , , Ti-Al-N. , , Ti-Al Ti1–xAlxN ( 40 ) , , Ti-Si-N Ti Al [10, 11]. [12]. x 0,5 – 0,6. - [12]. , Al-Ti-N . , 279.048. 1 , - 79 (7,5 ÷ 32)·10–3 , – 50 . . , , ( ) 11 - . , . - AlTiN, . AlTiN, AutoScan, . 1 – 2. . - . Al-Ti-N, . ( - . 3). 1– 1,1·10-2 AlTiN: – 3,2·10-2 (· 300) 60 % 100 50 , – % 80 40 60 30 40 20 10 20 0 0 2– 1,1·10-2 : – AlTiN, , – ) ) 3– : – Al-Ti-N, , 3,2·10-2 1,1·10 -2 , Al-Ti-N, – , 3,2·10-2 - -2012: 80 .– , 2012 . - , ( . 1, 2). , ( . 4). . . 1,1·10-2 Al-Ti-N, c Al-Ti-N , , – 75,5 HRC, , 3,2·10-3 , , . , , . 3,2·10-3 Al-Ti-N, ) – 84,5 HRC. : . , - . ) 4– Al-Ti-N, -2 : – 1,1·10 , , – 3,2·10-2 Al-Ti-N, - . . , . . , Al-Ti-N . –50 , , , - . » . 1. , . . / . . , . . . – .: , 1994. – 496 c. 2. , . . / . . , . . . – .: , 1978. – 295 . 3. , . . / . . , . . . – .: , 1977. – 216 . 4. , . . / . . , . . , . . .– : , 1976. – 416 . 5. , . . / . . , . . . – .: , 1983. – 336 . 6. , . . / . . . – .: , 1981. – 352 . 7. , . / . . – .: , 1988. – 376 . 8. , . . / . . .– : , 1980. – 260 . 9. , . . / . . . – .: , 1986. – 206 . 10. Ding, X. Abrasive wear resistance of Ti 1–x Al x N hard coatings deposited by a vacuum arc system with lateral rotating cathodes / X. Ding, C. T. Bui, X. T. Zeng // Surf. And Coat. Technol. – 2008. – Vol. 203. – P. 680 – 684. 11. Mechanical properties and machining performance of Ti 1–x Alx N-coated cutting tools. plating / A. Horling [et al.] // Surf. And Coat. Technol. – 2005. – Vol. 191. – P. 384 – 392. 12. / . . [ .]. – : , 2005. – 96 . The morphology and structure of the surface layers of aluminum and titanium nitrides coatings on a metal surface are studied. The character of the mutual influence of layers on the distribution of the active centers and interfacial interactions energy is established. – . , . . , , 81 004.9 . . SimPy (Simulation in Python) Python. . . . – - , , - . – . – , , , - . , . , . , , , . , , - : 1) 2) 3) 4) 5) ( ) ; ; ; ; . . , . , . , - . , . : , - . , ), , . — , , - . . . . (Howard-Matalytski) – , HM S1 ,S2 ,...,Sn . n . , [1]. , - . . ), 2) : 1) ( - ). , , ( , , , , . -2012: 82 . . 2. – , , , 2012 , - . . . , . , , , . ( : , – ( ) ). - , . , . « » , , « , , . , . « « . » » » - , . , , , , . « », . , . - , . , , . – ( , ). - – , – , – - , . SimPy (Simulation in Python) – , - Python. – Process Resource – . . . Monitor, ( , - 1). . , ), - S4 . . , , . - - ) - ) ) S2 S1 S3 1- , : P = pij 4×4 0 0 0 0 0 0 = 0 0 0 0,5 0,25 0,25 µ1 (t ) = sin(5t + 1), µ 2 (t ) = 3t + 2, µ3 (t ) = 1 + sin 4t , µ 4 (t ) = 4t − 1, 1 1 1 0 . : - 83 [0,3], S2 – 2 3 3, : S3 – 1, 2 , K1 = 25 , 100 : 0 0 0 0 0 0 0 0 0 0 ( 2) 0 0 0 0 = , r = 0 0 0 0 0 0 0 30 400 380 0 20 50 70 S1 – - S4 – 25 r (1) 1. , K 2 = 100 . - 0 0 . 0 0 . ( - 2). v1(t) 2800 2100 1400 700 2 4 6 8 t S1 2– . , SimPy - Python. . 1. , . . , 2008. – 771 . / . . , . . , . .– : This article describes the basic principles of simulation NM-networks with priorityapplications using discrete-event simulation using open software library SimPy (Simulation in Python) package of Python. We also consider the use of simulation forsolving the problems of finding the expected revenue given the logistics of the transport system. . . , , , . 517.925 (075.8) . . , . , . . , , - -2012: 84 y= ∞ ∑h mt − mν−s . . 2. – , 2012 , (1) m =0 s, ν ∈ N. [1, . 35] p −k ν t ( ) k =1 j=1 , p p − k )ν s pν ( αk t t t − = k 1 ∞ . h 0 t pν + y= k ∑ h − ∑ α h j k−j k (2) ∑ H = h k+ j – p 0 , . 1. 2 2 1 1 w ′′ + ww ′w ′′ + 3w ′3 − w 2 w ′2 . 3 3 3 = −10 h 02 = −1 , w ′w ′′′ = h 01 h 02 = −1 (3) h 01 = −10 –5, 6, 1, 3. , ν = − r = 5 , h 01 = −10 . (1), : 26 2 17 3 1351 2651 h2 = − h1 , h 3 = h1 , h 4 = − h14 , h 5 = h15 , 135 450 182250 1822500 , hi, p=2 (4) ß1, ß2, - h2 = β1h1 + β 2 , h3 = β1h2 + β 2 h1 , h4 = β1h3 + β 2 h 2 (5), 1 1 β1 = − h1 , β2 = − h12 . 5 1350 h1 = 5h (4), (3) ( −5 ( t − t 0 ) 2 ( t − t 0 ) + h 4 w= ( t − t0 ) 10 5 + h ( t − t0 ) 2. h 01 h 02 = −1 (5) 5 ) 1 + h2 54 . (6) w ′′′ = ww ′′ + 5w ′2 − w 2 w ′ . = −6 h 02 = −1 , (7) –5, 6, h 01 = −6 1, 5. , s = 1 , ν = − r = 5 , h 0 = −6 . (1), : 1 1 3 1 1 h 2 = − h12 , h 3 = h1 , h 4 = − h14 , h 5 = h15 , 5 25 125 625 (8) , 2 w=− z = t − t0 . , 3 4 6 h1 h h h + 6 − 111 + 1 16 − 1 21 + ... , z z 5z 25 z 125 z (9), (9) , h h b1 = 16 , q = − 15 . z 5z , , (7) 6(t − t 0 ) + h . (t − t0 ) (t − t0 )5 + h h1 = 5h - 5 w=− ( ) (10) 3. ( w ′′′ = 6w 2 w ′ + d w ′ − w 2 ) 2 , d= 18 9±7 3 . (11) 85 3 , h01 = −1 3 3 2, 5. h03 = 1 ± 3 (1), s = 1 , ν = −r = 5 , h 0 = 1 ± 2 3 . h01 = −1 , h 02 = 1 ± 2 3 h02 = 1 ± 2 3 3, 4, –5, 12, , h03 = 1 ± - : h2 = 1 97 3 ± 243 2 1 67 3 ± 126 3 1 67163 3 ± 116373 4 ⋅ h1 , h 3 = ⋅ h1 , h 4 = ⋅ h1 , 165 7 3 ± 9 225 21 3 ± 38 1125 33733 3 ± 58419 h5 = h6 = 1 2401891537 3 ± 4160198334 ⋅ , 16875 656882709 3 ± 1137754238 (12) 1 5255155215396320724433 3 ± 9102195834726994619553 6 ⋅ h1 , 84375 2348364191466334374557 3 ± 4067486094295098031581 , p=3 hi , ( β1 , β 2 , β3 , ) h3 = β1h2 + β 2 h1 + 1 ± 2 3 β 3 , h 4 = β1h3 + β 2 h2 + β 3 h1 , h 5 = β1h4 + β 2 h3 + β 3 h2 , h 6 = β1h5 + β 2 h4 + β 3 h3 . (13) 1 1 2 β1 = ± h1 3 , β 2 = m 25 3 m 51 h1 , β 3 = 0 . (13), (12), 15 9075 (11) h1 = 165h ( (1 ± 2 3 ) ( t − t w= 0 )10 + 11( 9 m ( t − t 0 ) ( ( t − t 0 )10 m 11 ) ( ) 3 h ( t − t 0 ) ± 6 4 3 m 13 h 2 5 ( ) ) 3h ( t − t 0 ) ± 3 25 3 m 51 h 2 5 ) . (14) 4. w IV = 18ww′′ + 9 w′ 2 − 24 w 3 . h01 = 1 h02 = 5 , h02 = 5 (15) h01 = 1 3, 4, 8, –5, 8, 12. , (1), s = 2 , ν = −r = 5 , h0 = 5 . 11 2 2 3 7 13 4 5 h2 = h1 , h3 = h1 , h4 = h1 , h5 = h1 , … 180 675 54000 2430000 , hi , p=2 : (16) β1 , β2 , h2 = β1h1 + 5β 2 , h3 = β1h2 + β 2 h1 , h4 = β1h3 + β 2 h2 . (17), (16), (15) 5(t − t 0 ) + 20h(t − t 0 ) 8 w= (17) 1 1 2 β1 = h1 , β 2 = − h1 . 15 900 h1 = 30h 3 ((t − t ) − h) 2 5 . (18) 0 5. w IV = 3ww′′′ + 9w′w′′ − 3w 2 w′′ − 6ww′ 2 . h01 = −1 h02 = −2 , h02 = −2 1, 3, 4, –2, 3, 4. , (1), s = 1 , ν = −r = 1 , h0 = −2 . 1 2 1 3 1 4 1 5 1 6 h2 = − h1 , h3 = h1 , h4 = − h1 , h5 = h1 , h6 = − h1 , … 2 4 8 16 32 , w=− z = t − t0 . (19) h01 = −1 2 3 4 2 h1 h1 h h + − + 1 − 1 + ... , z z 3 2z5 4z 7 8z9 : (20) -2012: 86 . . 2. – , 2012 , 2 h b1 = − , q = − 12 . z 2z , h1 =a 2 , (19) w= . − 2(t − t 0 ) (t − t0 )2 + a - (21) (3), (7), (11), (15), (19) (6), (10), (14), (18), (21). . , . , 1. , . . . . / . . – 2000. – 3. – . 33 – 39. . / . 2. , , . . , . . , , - , This article provides a formula for finding rational solutions of differential equations for the negative resonance. Also, specific examples should be shown how to find all the coefficients used in this formula. . . , - , , , . 004.91+347.78.031 . . . , , . . . , - . . , , , , , , , - . , , , - – . , , - , . , , , , , , - , . , , , , , - . , , . , - , - 87 , , , , - , , . , , - . , , , , , , , . , , . , , - , , , . , , , , - , . . , , , - . , , , . , . . , , . . . . . , , , , , - . / ... / ( ; - ). ( ; ; ). / ( ; ; ; ). . . . . / / . . . , . , , [1, 2]. ( ) - , . - , . , ( ) . OAuth, Google, Facebook, Twitter . - , . -2012: 88 . . 2. – , 2012 : − − − − ; ; ; . ( , ), ( , .1 . 2). 1– 2– . , , , , , - . , . - 89 , , . 1. What Cloud Computing really means [Electronic resource]. – Mode of access: http://www.infoworld.com/d/cloudcomputing/what-cloud-computing-really-means-031. – Date of access: 28.04.2012. 2. QuickStudy: Application Programming Interface (API) [Electronic resource]. – Mode of access: http://www.computerworld.com/s/article/ 43487/Application_Programming_Interface. – Date of access: 28.04.2012. This article describes the general approaches to create the staffing system of the higher education institution for the Grodno region. Special attention is paid to the specific areas of implementation identification, subject area investigation, the main advantages of the proposed system description and justification. . . , , , . 517.925.3 . . , . [1, . 174]. , . R– : ( . ) x& = θ ⋅ γ 0 − x − x ⋅ y n , & n y = n ⋅ α ⋅ γ 0 − x − x ⋅ y + δ ⋅ (z − y ), z& = λ ⋅ x + γ ⋅ µ − z, 1 0 , λ1 ∈ R , λ1 < 0 , N – n∈N , θ , γ 0 , α , δ ∈R . , (1) R3 . . (1) : ( ) (1) , . γ 0 − x − x ⋅ y n = 0, z − y = 0, λ ⋅ x + γ ⋅ µ − z = 0. 0 1 2). nα a 0 = θγ 0 , a1 = θ , b = , b1 = δ , b 2 = λ1 , b3 = γ 0 µ . θ 1, : x& = a 0 − a1 x − a 2 x ⋅ y n , & n y = b ⋅ a 0 − a1 x − a 2 x ⋅ y + b1 ⋅ (z − y ), z& = b ⋅ x − z + b . 2 3 , (2) x& = − a1 x − a 2 x ⋅ y n , & n y = b ⋅ − a1 x − a 2 x ⋅ y + b1 ⋅ (z − y ), z& = b ⋅ x − z. 2 (3) ( , ( - ) (2) , ( ) -2012: 90 (3) : ( , 2012 ) x ⋅ a1 + a 2 ⋅ y n = 0, z − y = 0, b ⋅ x − z = 0. 2 , . . 2. – (3) R3 , - : , : n – n – 1. 2. a1 >0, a2 a ) − 1 <0, a2 ) − , (3) ; O(0,0,0 ) . (3) O(0,0,0 ) − ba1 b2 , 1. 2. 3. 4. 5. a1 , b1 ∈ R a1 , b1 ∈ R a1 , b1 ∈ R a1 , b1 ∈ C a1 , b1 ∈ C C – b1 = 0 (3) (1) 1. . (3) − a1 − λ , z x = b , 2 x = 0, a 1) y = 0, 2) y n = − 1 , a 2 z = 0, z = y. −1 − γ 0 − A −1 − γ 0 + B (γ 0 µ + 1) 2 2λ1 0 : 0 − b1 − λ b1 = (− a1 − λ )⋅ (− b1 − λ ) ⋅ (− 1 − λ ) = 0, 0 −1 − λ λ1 = −1, λ2 = − a1 , λ3 : O(0,0,0 ) – a1 , b1 > 0 , O(0,0,0 ) – a1 , b1 < 0 , O(0,0,0 ) – , a1 ⋅ b1 < 0 Re (a1 ) > 0 , Re (b1 ) > 0 , Re (a1 ) < 0 , Re (b1 ) < 0 , , Re (a ) – (3) , n =1 (γ 0 µ + 1) + 4γ 0 λ1 − 1 + γ 0 − , (γ 0 µ + 1)2 + 4γ 0 λ1 2λ1 (3). , 2 = −b1 . . O(0,0,0 ) – O(0,0,0 ) – . . . bx − y = c . , Oz . : + 4γ 0 λ1 2λ1 (γ 0 µ + 1)2 + 4γ 0 λ1 −1 + γ 0 + . . 2λ1 , , (γ 0 µ + 1)2 + 4γ 0 λ1 −1 + γ 0 − 2λ1 (γ 0 µ + 1)2 −1 + γ 0 + 2λ1 (x 0 , y 0 , z 0 ) : , + 4γ 0 λ1 . −θδ − θδλ − θλ − θλ − θ y0δ − θ y0δλ − θ y0 λ − θ y0 λ − λ nα x0 − λ nα x0 − λδ − λ δ − λ 2 − λ 3 − θ x0δλ1 = 0, . θ = 1, α = 0, δ = 1, 2. (1), γ 0 = 2, µ = 2, λ1 = −3, n = 1 , : 2 2 x& = 2 − x − x ⋅ y, & y = z − y, z& = −3 ⋅ x + 4 − z, (4) 2 : A ,2,2 , B(1,1,1) . 3 2 2 (4) 91 A: ( −3 − β ) ⋅ ( −1 − β )2 − 2 = 0, : β1 = − β 2, 3 = 3 3 35 + 3 129 4 5 − − , 3 3 3 35 + 3 129 3 3 35 + 3 129 35 + 3 129 2 5 1 4 . + − ± i 3 − + 3 3 6 3 2 3 35 + 3 129 3 35 + 3 129 B: ( −2 − β ) ⋅ ( −1 − β )2 + 3 = 0, : β1 = 3 316 + 36 77 2 4 + − , 3 6 3 316 + 36 77 3 3 316 + 36 77 316 + 36 77 1 4 1 2 . − − ± i 3 − 3 3 12 3 2 6 3 316 + 36 77 3 316 + 36 77 A , (4) B– . β 2, 3 = − 1. , . 3 . . . / . – 2- .– .: . , - . , , 1990. – 488 . In this paper we consider an autonomous third-order polynomial right hand sides, which is a mathematical model of genetic circuits. The system is investigated by methods of qualitative theory of differential equations. The states of equilibrium are found, their classification is given and their stability is investigational on Lyapunov. – , . . , , - . 517.5 . . – [–1,1] – –1 1. - . . . [1, 2]. , : 1) ak ∈ R , , C, R . . {a k } k+∞=1 – | a k |< 1 ; 2) ak ∈ C , , al = ak ; 3) a1 = 0 . : µn ( x ) = n x + ak ∑ arccos 1 + a x , k =1 - al , k -2012: 92 λ n ( x) µ n′ ( x) = − , λ n ( x) = 1− x2 xk , k = 1, K , n − 1 – . . 2. – 1 − a k2 n ∑ 1+ a k =1 k x , 2012 . N n (x ) , N n ( x) = sin µ n ( x ) 1− x 2 x0 = −1 , xn = 1 . , x ∈ [−1;1]. f ∈ C[−1;1] x k , k = 1, K , n L(1) n (x, f ) = f (1)N n (x) + λ n (1) n −1 ∑(−1) k +1 (1 + x k )(1 − x)N n (x) . λ n (x k )(x − x k ) f (x k ) k=1 (1) f ( x ) ≈ L(n1) ( x, f ) , 1 ∫ 1 f ( x) −1 n −1 f ( x k )(1 + x k ) (−1) n f (1) 1+ x dx ≈ π+ π. 1− x λ n (1) λ n (x k ) k =1 1 ∑ f ( x) −1 . ∫ −1 f ∈ C[−1;1] 1. ∫ 1+ x 1+ x dx ≈ L(n1) ( x, f ) dx. 1− x 1− x (1) n −1 (−1) k +1 f ( x k )(1 + x k ) f (1) 1+ x dx = In + Ik , λ n (1) λn ( xk ) 1− x k =1 1 ∫ ∑ L(n1) ( x, f ) −1 1 In = ∫ −1 1 sin µ n ( x ) dx, 1− x ∫ Ik = −1 sin µ n ( x) dx. x − xk Ik 1 Ik = ( )( ) x = 1− y 2 / 1+ y 2 . ∫ −1 sin µ n ( x ) dx, k = 1,..., n − 1. x − xk , 1− y 2 = sin Φ n ( y ) − sin µ n 1+ y 2 ± y k , y k = (1 − x k )/(1 + x k ) , k = 1, K , n − 1. ∞ I k = −(1 + y k2 ) sin Φ n ( x ) ∫ y − 2 −∞ y 1+ y 2 y k2 dy. , J k (z ) ∞ J k ( z) = ∫ −∞ [3, . 92]. sin Φ n ( x) y y −z 1+ y 2 2 2 dy, Ik Ik = −(1 + yk2 ) [3, . 48] lim z → yk , Im z >0 J k (z). , sin Φ n ( y ) = 1 2i n y−zj n y − z j , j ∏ y−z ∏ y−z j =1 j − j =1 - 93 y2 + zk 1 2i −∞ ∞ =0. 1 − ak y − zj n n y − zj 1 y dy. 2 2 2 j y − z 1+ y ∏y−z ∏ y−z ∫ J k (z) = 1 + ak − j j=1 j=1 (2) J k (z ) 1 ( J k′ ( z ) − J k′′ ( z )), 2i J k (z) = ∞ J k′ ( z ) = y−zj n ∫∏ y−z − ∞ j =1 J k′ (z ) J k′ ( z ) = 2πi res y=z = 2πi lim y=z y − z 1+ y 2 j n ∞ y 1 2 y−zj ∏ y−z j =1 n y− ∏ y−z j =1 = 2 2 y =i z−zj n πi ∏ z−z 1 + z j =1 J k′′ (z ) 2 πi − 1+ z j ∏ y−z j =1 n ∏ z+z 1 + z j =1 J k′′ (z ) (2) , J k′ (z ) n 2 z−zj z+zj n ∏ z−z ∏ z+z j j =1 J k ( z) = 1 πi 2i 1 + z 2 z−zj n ∏ z−z j =1 = + j j =1 n πi 1+ z 2 ∏ j =1 Ik , I k = −(1 + y k2 ) n π 1+ z 2 j =1 k y − z 1+ y 2 j 2 1 y −z j y 1 2 dy. = y = y+i . j . j , j z + z j π = z + z j 1+ z 2 yk − z j ∏y 2 2 2 i−zj ∏i−z j =1 y − z 1+ y 2 y= z, y=i. j y−zj n z+zj n πi J k′′ ( z ) = − 2 j =1 y 1 2 y−zj ∏ y−z + 2πi res y 1 + 2πi lim y =i y + z 1+ y 2 j y−zj ∫∏ y−z n y y − z 1+ y j n − ∞ j =1 1 2 zj 2 dy, J k′′ ( z ) = −zj n z−zj ∏ z−z j =1 . j = (−1) k +1 π . In I n = (−1) n π . 1 ∫ f ( x) −1 2. 1 ∫ −1 . [–1,1] f ( x) n −1 f ( x k )(1 + x k ) (−1) n f (1) 1+ x dx ≈ π+ π. 1− x λ n (1) λ n (x k ) k =1 ∑ x k , k = 0, K , n − 1 . f ∈ C[−1;1] n −1 f ( x k )(1 − x k ) (−1) n +1 f (−1) 1− x + dx ≈ π π. 1+ x λ n (−1) λn ( xk ) k =1 ∑ – –1 1. . , . 1. . . , . // . – . – 2008. – . 52, 5. – . 11 – 15. / . -2012: 94 2. , . . . – 1996. – . 40, 3. – . 42 – 46. 3. , . . . . 2. – / . / . . . , 2012 // .– - : , 1979. – 176 . The rational interpolating process with nodes in the zeros of Chebyshev – Markov sine-fractures is considered. The interpolating Lagrange function is obtained in this case. Using the Lagrange function new quadrature formulas are obtained. – . . , , , , . 004.91+347.78.031 . . , . . , , , . , . . . . , . , , , , . , – , , , - , , , , , . , - : − − − − − − ( , .); ; ; ; ; , . , , . , , . , , ( : - ). , , , , - [1]. , ( ), , , , . , , , , , . – , . . . . , , : - , . [2]. . . , . : , , . - , - . . . 95 , . , . . . . . . - , . , , . , . , , , , . - . . . , , , , . , , , , , - . . . , . , - , . « » , . . , , . . , . . , . , , , - : , – . – , - . . - . . . [3]. . , , , . . : , , . . , , . . . , - . , , . . . , , , , . - , . , , , . -2012: 96 . . 2. – 1 , 2012 . 1– . , , - . , , . , . , , , 1. , . 2. news.asp?id=1265. – 3. e_mail/e_mail.htm. – , , . / ]. – [ : 15.04.2012. [ : 01.04.2012. ]. – . .– : .: , 2007. – 544 . : http://www.arendazala.by/ http://cdo.bseu.by/library/ibs1/applic_l/ Sets out the general approach for creating an Internet portal, which supports research, communication and organizational interaction. We consider its modular structure, as well as the advantages and disadvantages of such a structure. We describe the possible functionality of the developed Internet portal. . . , , , . 003.26 . . , . , , - . . , . . . , « »– , . . - 97 , , – , . - , . – « –« », « - » ». , , » , . « « » , , . , « » . , , - . (RSA) ( ). , . , , - . , - , . . — , , . - , . E F , Y 2 + a1 XY + a3Y = X 3 + a2 X 2 + a4 X + a6 [1, . 84], : (1) (1) Y 2 = X 3 + aX 2 + b E(F ) , , (2) (1) – , , , . , Ο. ( x, y ) ∈ E ( F ) , . - , ( x, y ) + Ο = Ο + ( x, y ) = ( x, y ), Ο + Ο = Ο . (1) ( x1, y1 ) ( x, y ) , ( x2 , y2 ) [2, . 12]: y2 − y1 2 , γ =λ , x2 − x1 x = γ − x1 − x2 , y = − y1 + λ ( x1 − x). ( x, y ) = ( x1, y1 ) + ( x1, y1 ) . λ= , 3 x 2 + a 2 x = 1 − 2 x1 , 2 y1 3 x12 + a y = − y1 + 2 y ( x1 − x). 1 . , . – , DSA . 34.10-2001 – ISO/IEC 14888-3:2006/Amd 1:2010. 2010 . 1. 2. 3. 4. 5. 6. : . . . . . , . . 1. ANSI X9.62 NIST . - -2012: 98 2. [3, . 2]. . . 2. – , 2012 , . . , . , . , [4, . 117]. 3. - . . . , [5, . 3]. 4. . - . . , P 4 15. 13 15P [4, . 111]. 16P, m . 5. . . , - , . 1. / A. A. 2. , . . : , . . , . . , . . . – .: , 2006. – 328 . , . . : / A. A. , . . , . . . – .: , 2006. – 268 . 3. , . . 2/ . [ http://www.uic.unn.ru/~zny/compalg/Lectures/ca_02_quadraticresidue.pdf. – : 16.04.2012. 4. , . : / . – , 2005. – 229 . 5. , . . 4[ http://www.uic.unn.ru/~zny/compalg/Lectures/ca_04_Shanks.pdf. – : 16.04.2012. ]. – : , . – ]. – .: : The article concerns the main issues of the cryptography elliptic curve. The article studies the reasons of the interest to elliptic curves and cryptography elliptic curve, main concepts of elliptic curves, coding algorithms and electronic digital signature on the basis of elliptic curves and algorithms of problems of their implementation resolving. . . , , , . 378.4 . . , . , , - . . – , , , - [1]. , – [2]. . . ( . , . , . ) , , [2– 4]. , , . , , , , , ( , , ). ( , ), . 99 ( ( ) - ). ( ) ( ) . ; . - ; ; ; . : , ; 1. - . . . . – . – . : , , , , , . 2. . – . « » « ( ( » - ) , ). ( , ) , , - ( ). : , , , - . . 3. . . . . : , . , . 4. . – . , - . , , . : , , , ( ) - . , , . 1). 1– . , , , - 1. - - ; . ; – - , , , ; - . , , , . – - . . - - ; - - . . -2012: 100 . . 2. – , 2012 1 2. - - - - ; - ; ) - - ; – « » » « , ( - . . ). ( - , ) , - ( , ). - 3. - - ; ; - - , - . . - . . , . - 4. - - , ; , ; . - - - , , - , . - . . - , , , . , :6 – , ). , , , 1. 2. 3. 4. , . . , . . / . . , . . , . . .– .: / . . : , 1986. – 240 . / . . / . . .– .: , 1996. – 342 c. .– , 1986. – 371 c. , . . . – .: , 1967. – 439 . . 101 This article opens essence of concept «theoretical thinking», it tells about its main forms, types and components. Also it speaks about requirement of formation of theoretical thinking at pupils on mathematics lessons. – . . . , , - 372.851 . . . – , . , - , . , , , . . , , - , . . - , . , . , . – , – , . – . , - , , , , , , . , , , . , . . , , . . , . , , , - . , , . . , , . : , . , . , . . , . , . . , . , . , . , - , , , , , , , , . . . - -2012: 102 . . 2. – , 2012 . : , - , . , , , cos x = 1 , , , . cos 2 x cos x + sin 2 x sin x = 1 , , . π 4π tg + tg 15 15 , tgx < 4π π 1 − tg ⋅ tg 15 15 , . , - . tgx < 3 , , tgx < tg π , 3 . , . , - . , , - « » « ». . - . . : − , , , - ; − , , , , ; − , , : - . , . , , . : , , , . , , , - , . . , , , . , ( , ) , . , . . . , . . . 1 + 2x 1 − x2 + 2x2 = 1 . 2 , - 103 π π = sin α , α ∈ − ; . 2 2 sin α + cos α 1 + 2 sin α cos α π = 1 − 2 sin 2 α ⇔ = cos 2α ⇔ sin α + = cos 2α . 2 4 2 1 − x2 ≥ 0 , ≤ 1. sin u ≥ 0, cos u = 1 ; 2 π 3π u ∈ − ; , sin u = sin 2u ⇔ , < sin 0 , u 4 4 1 cos u = − . 2 π π 6− 2 2 π , : x1 = sin − = , x 2 = sin − = − . 4 2 3 4 4 π 3π u ∈ − ; , 4 4 1 + 2x 1 − x 2 1 2 + 2x2 = 1 ⇔ x + 1− x 2 2 2 2 = 1 − 2x ⇔ 1 − 2x2 ≥ 0 . , π u1 = 3 , u 2 = 0. - = 1 − 2x 2 . 2 , 1 − x2 ≥ x2 , 1− x2 ≥ x ≥ . , : = 1 − 2x 2 ⇔ 2 π =u, 4 x + 1 − x2 x + 1− x2 ≥ 0 , x + 1− x2 α+ x + 1 − x2 2 ( ) = 1 − x2 − x2 ⇔ x + 1− x2 2 = 1 − x 2 + x 1 − x 2 − x ⇔ 2 2 1− x + x = 0 1 − x = −x 1 2 2 ⇔ − 1 − x − x = 0 ⇔ 1 ⇔ ⇔ 1 − x + x 1 2 2 = 1− x2 − x +x 1− x = 2 2 2 2 x 2 = 1, x ≤ 0 1 − x 2 = x 2 , x ≤ 0 x = − 2 ⇔ . 1 2 ⇔ 2 2 ⇔ 2 2 6− 2 x x x x x x x 1 2 , 4 2 2 1 0 , + − = ≥ − − = + + ≥ − x = 2 2 2 4 . - . , , ; . , . - . 1. 1968. – 431 . 2. 2004. – 320 . 3. , . . , . , . / . . / , . . . – .: : . . . – . .: . – / . . , .: , , . . - , 1991. – 144 . The theoretical framework and a set of rational methodological approaches to the formation and development of the creative mathematical activity of students in the study trigonometry on the lessons of mathematics in the school of physics and mathematics schools. – , . . , , , . -2012: 104 . . 2. – , 2012 517.925.42 . . - . – . . dx dy = P(x, y), = Q(x, y), dt dt (1) P, Q ∈ C1 (Ω), Ω ⊆ R 2 , 2π . x (1) ( x, y ) Ω c = {( x, y ) : x ∈ [ x0 , x0 + 2π ], y ∈ R} , , dx dy = f (x, y), = g(x, y) dt dt (2) [1]. , , [2]. – (1) , (1) [3] [4] (2). , , . . Ω x = {( x, y ) : x ∈ [ x0 , x0 + 2π ], γ 1 = γ 1 ( x) ≤ y ≤ γ 2 = γ 2 ( x )} ⊂ Ω c – X = ( P , Q) – , (1) Ωx , Ωx . (1) div( BX ) = 0 , ( γ1 B ∈ C 1 (Ω x ) , , . ), , γ2 , div(BX ) - , B Ωx [1]. (1) (10) , . . x Ψ (x, y) ∈ C1 (Ω x ) k ≠0 ∂Ψ ∂Ψ P+ Q > 0(< 0). Φ = kΨdivX + ∂x ∂y , 1 1. 2π Ωx , (1) 1. Ψ W = {( x, y ) ∈ Ω x : Ψ ( x, y ) = 0} , 1°. Β =| Ψ |1 / k Ωx , Ψ 2°. 3°. 4°. 5°. 1. , – , Ωx (3) [6]. Ωx (1) ; (1) W ; ; W W , 1 Ωx , (1), , Ψ>0 Ωx , W Wnc , Ψ < 0. , ; W. Wcs . W 2. , W. Ωx , (1) [5]. - 105 Ψ 1. s (1) Ωx Ωx , (1) Ωx , s +1 W k . , , s −1 , Ωx , k Ωx (1) . s +1 , Ψ > 0 ( Ψ < 0 ), ) k sign(ΨΦ) < 0 ( k sign(ΨΦ) > 0 ). 1 s=0 . ( 3. , - . (1). Ω x = {( x, y ) | x ∈ [0,2π ], y ∈ R} x& = d 0 (x) + d1 (x)y + d 2 (x)y 2 , y& = h 0 (x) + h1 (x)y + h 2 (x)y2 + h 3 (x)y3 , hi ( x ) ∈ C ( R) , i = 0,3 , d j ( x) ∈ C ( R ) , j = 0,2 Ψ (6) Ψ ( x, y ) = Ψ0 ( x ) + Ψ1 ( x ) y + Ψ2 ( x) y 2 , Φ ( x, y ) 0 - . 2π – 1 (1) (6) . Ψi ( x ) ∈ C 1 ( R ) . (7) y Φ( x, y ) = Φ 4 ( x) y 4 + Φ 3 ( x ) y 3 + Φ 2 ( x ) y 2 + Φ1 ( x) y + Φ 0 ( x ), Φ i (x) , i = 0, 4 h 0 , h1 , h 2 , h 3 , , Φ(x, y) = Φ 0 (x) . (8) d 0 , d1 , d 2 , Ψ 0 , Ψ1 , Ψ 2 Φ(x, y) k. - Φ i (x) , i = 1, 4 (8) . Φ 4 (x) = Ψ 2 (x)(kd '2 (x) + (3k + 2)h 3 (x)) + Ψ '2 (x)d 2 (x) ≡ 0 , Ψ 2 (x) = Ψ 2 , , 2 Φ 3 (x) = −Ψ1 (x)h 3 (x) − Ψ 2 (d1' (x) − h 2 (x)) + Ψ1' (x)d 2 3 −2Ψ 2 (d1' (x) − h 2 (x)) + 3Ψ1' (x)d 2 . h 3 (x) = 3Ψ1 (x) Φ 2 (x) = + 2 3 d 2 (x) = d 2 . k=− Ψ 2 (x) , d 2 (x) Φ3 (x) ≡ 0 Φ 2 ( x ) , Φ1 ( x ) Φ 0 ( x) , 4Ψ 2 Ψ 0 (x)(d1' (x) − h 2 (x)) − Ψ12 (x)(2d1' (x) + h 2 (x)) − 2Ψ 2 Ψ1 (x)(d 0' (x) − 2h1 (x)) + 3Ψ1 (x) 3Ψ1 (x)(d 2 Ψ '0 (x) + Ψ1' (x)d1 (x)) − 6d 2 Ψ 0 (x)Ψ1' (x) . 3Ψ1 (x) Φ 2 ( x) ≡ 0 , h1 ( x ) h1 (x) = 4Ψ 2 Ψ 0 (x)(d1' (x) − h 2 (x)) − Ψ12 (x)(2d1' (x) + h 2 (x)) − 2Ψ 2 Ψ1 (x)d 0' (x) + −4Ψ 2 Ψ1 (x) 3Ψ1 (x)(d 2 Ψ 0' (x) + Ψ1' (x)d1 (x)) − 6d 2 Ψ 0 (x) Ψ1' (x) , −4Ψ 2 Ψ1 (x) Φ1 ( x) ≡ 0 , + Φ1 (x) = + 12Ψ 2 Ψ 0 (x)(d1' (x) + h 2 (x)) − Ψ12 (x)(2d1' (x) + h 2 (x)) + 3Ψ1 (x)(d 2 Ψ 0' (x) + Ψ1' (x)d1 (x)) + −12Ψ 2 −12Ψ 2 (d1 (x)Ψ 0' (x) + d 0 (x)Ψ1' (x)) + 6(Ψ 2 Ψ1 (x)d '0 (x) − d 2 Ψ1' (x)Ψ 0 (x)) − 24Ψ 22 h 0 (x) , −12Ψ 2 h0 ( x) h 0 (x) = + 12Ψ 2 Ψ 0 (x)(d1' (x) + h 2 (x)) − Ψ12 (x)(2d1' (x) + h 2 (x)) + 3Ψ1 (x)(d 2 Ψ '0 (x) + Ψ1' (x)d1 (x)) + 24Ψ 22 −12Ψ 2 (d1 (x)Ψ 0' (x) + d 0 (x)Ψ1' (x)) + 6(Ψ 2 Ψ1 (x)d '0 (x) − d 2 Ψ1' (x)Ψ 0 (x)) . 24Ψ 22 - -2012: 106 . . 2. – , 2012 Φ 0 ( x) Φ 0 (x) = 1 (24Ψ 22 Ψ1 (x)(Ψ 0' (x)d 0 (x) − Ψ 0 (x)d 0' (x)) + 16Ψ 22 Ψ 02 (x)(d1' (x) − h 2 (x)) + 24Ψ Ψ1 (x) 2 2 +4Ψ 2 Ψ 0 (x) Ψ12 (x)(d1 (x) + 2h 2 (x)) − 6d 2 Ψ1' (x)Ψ 0 (x)(Ψ12 (x) + 4Ψ 2 Ψ 20 (x)) + 6 Ψ 2 Ψ13 (x)d '0 (x) + +3Ψ13 (x)(d 2 Ψ 0' (x) + Ψ 0' (x)d1 (x)) − Ψ14 (x)(2d1' (x) + h 2 (x)) + 12Ψ 2 Ψ1 (x)(Ψ 0 (x)(d 2 Ψ 0' (x) + +Ψ1' (x)d1 (x)) − Ψ1 (x)(d1 (x)Ψ 0' (x) + Ψ1' (x)d 0 (x)))). Φ 0 ( x) (6) x ∈ [0,2π ] , (7) – - . - Ωx . (6), Ψ Ψ = (y − a sin(x) − b)(y − c sin(x) − d), (9) , W (6) 1 Ωx . , (6) – 1 1 2 a = −c , d = −b , h2 ( x) = 0 , h3 ( x) = − , d 2 = , d1 = 1 , h0 ( x ) = c cos( x ) sin( x) − sb cos( x) , 2 2 a, b, c, d ∈ R , . (9). 3 2 (c (1 − cos 2 ( x )) − 2cb sin( x) + b 2 + (c 2 sin( x ) − cb) cos( x )) , Φ ( x, y ) = Φ 0 ( x) 4 c 2 3b2 3c 3 b c 4 sin x c 4 + b4 Φ 0 (x) = c 2 cos x sin x( + + 2(cb cos x − d 0 )) + cos3 x( − )+ + 4 2 2 2 2 b2 3c 2 c 4 cos 4 x − cos 2 x(c 4 + 3c 2 b 2 ) + cb cos x(2d 0 − − )+ + 3c2 b2 − 2cbsin x(b2 + c 2 ). 2 2 2 c , b , d0 , Φ0 > 0 . , c = 1 , b = 10 , d 0 = −100 , h1 ( x ) = 1 ((701cos 2 (x) + 40 cos(x) − 4040) sin(x) cos(x) + 10601 − 5030cos(x) − 2 −602 cos 2 (x) + 30 cos 3 (x) + cos 4 (x)). Φ 0 ( x) > 0 x ∈ [0;2π ] , (9) – Φ 0 (x) = - (6) P(x, y) = −99.5 + 0.5(1 + y) 2 , Q(x, y) = cos x(sin x − 10) + ( (10) . , Ψ1 ( lim y →±∞ , Ψ2 , Ω0 ) 1, (10) 303 3 15 3 15 y3 − cos 2 x − sin x + cos x( sin x − ))y − . 2 4 2 4 2 2 , P ( x, y ) = 0 Q ( x, y ) = 0 (10) . y + sin x − 10 = 0 y − sin x + 10 = 0 , ( . 1). (10) t Ω0 . - dy = m∞ , dt Ω1 Ω2 (10) - . 1– 3 LC (10) 107 . 2. (10) . . . , – Ψ (6) , Ψ - (7) (6). . 1. , . . / . . , . – .: , 1976. – 496 . 2. , . . / . . , . . . – .: , 1969. – 300 . 3. , . . / . . // . – 1997. – . 33, 5. – . 689 – 699. 4. , . . / . . , . . // . – 2001. – . 37, 3. – . 384 – 390. 5. , . . / . . , . . // . . . . 2. – 2007. – 2 (52). – . 3 – 8. 6. Cherkas, L., Grin, A., Schneider, K. R. A new approach to study limit cycles on a cylinder / L. Cherkas, A. Grin, K. R. Shneider // Dynamics of continuous, discrete and impulsive systems. Series A: Mathematical Analysis. – 2011. – 18. – . 839 – 951. . . The paper contains a one approach to obtain the exact evaluation of the number and localization of limit cycles surrounding the cylinder for autonomous systems with the cylindrical phase space. It is based on the construction of the Dulac-Cherkas function. Presented theoretical results are applied to a class of mentioned autonomous systems. – . . , , . , , - . 517.977.1 . . L32 [t1 − h, t1 ] × R 3 L32 [t1 − h, t1 ] × R 3 {x,y}. {x,y}- L32 [t1 − h, t1 ] × R 3 {x,y}. , . L32 [t1 − h, t1 ] × R 3 . . ( ): x& (t ) = A1 x(t ) + A2 y (t ) + C1 x (t − h) + C2 y (t − h) + B1u (t ), x ∈ R , y ∈ R , u ∈ R , n1 n2 r (1) µ y& (t ) = A3 x(t ) + A4 y (t ) + C3 x(t − h) + C4 y (t − h) + B2 u (t ), t ∈ T = [ 0, t1 ] , { x0 (⋅, µ ), y0 (⋅, µ )} = {ϕ (θ ),ψ (θ ),θ ∈ [−h, 0) } ,{ x(0), y(0)} = {x0 , y0 } . (2) Ai , Ci ,i = 1, 4, B j , j = 1, 2 – T , u (t ), t ∈ T – r , ϕ (θ ), φ (θ ) – r n = n1 + n2 . , , u (⋅) ∈ U – n1 - - n2 , µ ∈ (0, µ ], µ << 1 , x0 ∈ R , y0 ∈ R . , µ– , , 0<h – 0 0 n1 n2 : 1) n 1 = 1, n2 = 2, r = 1 , 2) n 1= 1, n2 = 2, r = 2 . n=3 µ L32 [t1 − h, t1 ] × R 3 . . 1. rankP% (eλ h , 0) = 3 2. rankN% (λ , eλ h , 0) = 3 ∀λ ∈ Λ 00 ; 3. rank[C , B] = 3 , [1] , λ; µ: -2012: 108 . . 2. – µ >0. L32 [t 1 − h, t 1 ] × R 3 (1), (2) {x, y} – , 2012 ~ P (e λh , µ ) = M −1P(e λh , µ ) K , P(eλh , µ ) = [ B( µ ), A(eλh , µ ) ⋅ B( µ ), A2 (eλh , µ ) ⋅ B( µ )], ~ N (eλh , µ ) = M −1 N (eλh , µ ), N (eλh , µ ) = [λE + A(eλh , µ ), B( µ )], A(e λh , µ ) = A( µ ) + C ( µ )e λh , A( µ ) = M ( µ ) A , 0 1 0 A1 A2 B1 C1 C2 C ( µ ) = M ( µ )C , B ( µ ) = M ( µ ) B , A = , C = , B = , M = 0 1/ µ 0 . C3 C4 B2 A3 A4 0 0 1/ µ 1 0 K = 0 µ 0 0 1. 1 0 0 — K = 0 0 0 0 0 , µ 2 0 0 1 0 0 µ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . µ 0 0 0 µ2 0 0 0 µ 2 n 1= 1, n2 = 2, r = 1 (1), (2) 0 0 0 1 0 1 0 , , A = 0 1 0 C = 0 0 0 B = − 1 . − 1 0 0 −1 0 0 1 ( 2 [1]) (3) : 0 − µ + eλh ~ λh P (e , µ ) = − 1 −µ 1 0 −µ , −µ µ + e λh µ − e λh − e 2 λh ~ P ( z, µ ) , ( z, µ ) = −( µ 2 + µ 2 z − zµ − 2 µz 2 + z 2 + z 3 ) — z = eλh . 0 eλ h 0 λ 1 e λh 0 ~ λh ~ λh , 0 , λ + 1 0 − 1 P (e ,0) = − 1 0 0 N (e , µ ) = 1 2 λh λh λh 2 2 0 −e −e µλ 1 0 − µ − e µ λh λ 0 e 1 0 0 z 1 z 0 λ ~ ~ ~ λh 0 , N ( z,0) = 0 λ + 1 0 − 1 . N (e ,0) = 0 λ + 1 0 − 1 , P ( z ,0) = − 1 0 0 1 0 − z − z2 0 0 0 1 0 0 1 ~ P ( z,0) z (0) ∈ C , Z 00 = {−1,0,0} , Z 0 = Z 0 µ 0 ∪ Z 0 µc , Z 0 µ 0 = 2, Z 0 µc = 1. ~ P ( z ,0) λ jk , j = 2,3, k = 0,±1,..., . arg z1 (0) = arg(1) = 0, ln z1 (0) = ln | −1 |= 0, Λ 00 = {λ1k (0) = ln | z1 (0) | +i (arg z1 (0) + 2π k ), k = 0, ±1,...} = {2iπ k , k = 0, ±1,...}, Λ 0 µ 0 = {λ jk ( µ ) = ln | z j ( µ ) | +i(arg z1 (µ ) + 2π k ), j = 2, 3, k = 0, ±1,...}, Λ 0 µc = {λ1k ( µ ) = ln | z1 ( µ ) | +i (arg z1 ( µ ) + 2π k ), k = 0, ±1,...}. . ( z, 0) = det P% ( z ,0) = − z 2 − z 3. 1. , 1 2. ~ N (eλh ,0) . Λ00 = {2iπk , k = 0,±1,...} . N% (e λ h ,0) M 234 = −e ( λ + 1) , λh . . 109 2iπ k N% (−1, 0) = 0 0 {2iπ k , k = 0, ±1,...} . e2iπ kh ( 2iπ k + 1) ≠ 0 , k ≠ − M 234 = e 2 iπkh ( 2 iπ k + 1) . rankN% (λ , eλ h , 0) = 3 . 1 , 2iπ 1 −1 0 i π k 2 + 1 0 −1 . 0 0 1 e 2iπ kh ( 2iπ k + 1) 0, ∀k = 0,±1,... . 0 0 1 0 0 0 − 1 . −1 0 0 1 [C,B]= 0 3. . [C,B] , , . µ ∈ 0, µ 0 , L [t − h, t1 ] × R . 3 2 1 2. - — 1, ([C,B]) = 3. , , , rank ) {x, y} - 3 n 1 = 1, n2 = 2, r = 2 (1), (2) 0 1 0 0 0 1 0 1 , , −1 0 B = A = 0 1 0 C = 0 0 0 −1 0 0 − 1 0 0 0 1 2 [1]) : ( 0 1 −µ + e λh % λ h , µ ) = −1 0 P(e −1 1 0 0 (4) 0 0 −µ −µ −1 − e λ h µ + e λh µ − e λh − e 2λh e λh − e 2λh 0 , 0 0 0 − e λh − e 2λh 0 1 e λh 0 e λh − e 2 λh 0 1 ~ λh 0 0 , − 1 0 , P (e ,0) = − 1 0 − 1 1 0 0 − 1 − e λh 0 0 λµ 1 0 λ 1 e λh 0 1 ~ N (e λh ,0) = 0 λ + 1 0 − 1 0 , − 1 − eλh 0 0 1 0 1 z 0 1 0 1 z λ 0 0 z − z2 ~ ~ ( , 0 ) 0 1 0 N z = λ + − 1 0 . 0 0 0 , P ( z ,0 ) = − 1 0 − 1 2 −1− z 0 0 1 0 0 1 0 0 −1 − z − z − z λ ~ λh N (e , µ ) = 0 − 1 − e λh e λh 1 λ +1 0 ~ P , . , , 0 . z (0 ) ∈ C , ~ P ( z,0) λ jk , j = 2,3, k = 0, ±1,..., , , z − z2 0 M 156 = − 1 0 0 , 1 − z − z2 0 M 156 ( z ,0) = det M 156 = − z 2 − 2 z 3 − z 4 . Z00 = {−1, −1, 0, 0} , Z 0 = Z 0 µ 0 ∪ Z 0 µ c , Z 0 µ 0 = 2, Z 0 µ c = 2. P% ( z, 0) . arg z1 (0) = arg(1) = 0, ln z1 (0) = ln | −1 |= 0, Λ 00 = {λ1k (0) = ln | z1 (0) | + i(arg z1 (0) + 2π k ), k = 0, ±1,...} = {2iπ k , k = 0, ±1,...}, Λ 0 µ 0 = {λ jk ( µ ) = ln | z j ( µ ) | +i (arg z1 ( µ ) + 2π k ), j = 3, 4, k = 0, ±1,...}, Λ 0 µc = {λlk ( µ ) = ln | zl ( µ ) | +i (arg zl ( µ ) + 2π k ), l = 1, 2, k = 0, ±1,...}. . -2012: 110 1 ~ N (eλh ,0) ~ N (eλh ,0) 2. M 234 . = −e ( λ + 1) , e 2iπ kh ( 2iπ k + 1) , 2iπ k N% ( −1, 0) = 0 0 0, k ≠ − rankN% (λ , eλ h , 0) = 3 . 1 , 2iπ 1 −1 2iπ k + 1 0 0 0 e 2iπ kh ( 2iπ k + 1) 0 0 1 0 1 [C,B]= 0 0 0 −1 0 . −1 0 0 1 0 , . - . {2iπ k , k = 0, ±1,...} . 3. - Λ 00 = {2iπ k , k = 0, ±1,...} . λh M 234 = e 2 iπ kh (2iπ k + 1) . , 2012 M 156 ( z ,0) = det M 156 = − z 2 − 2 z 3 − z 4 . 1. , . . 2. – 0 1 −1 0 . 1 0 0, ∀k = 0,±1,... . , [C,B] - — 1, . ([C,B]) = 3. , , µ ∈ 0, µ 0 , ) , rank {x, y} - L [t1 − h, t1 ] × R . 3 2 3 Maple. L32 [t 1 − h, t 1 ] × R 3 1. , . . . / . . .– - // : : , 2012. – . 2. . . . – . 135 – 139. .: The task {x, y} – controllability in L32[t1 − h, t1 ] × R3 for linear stationary singulyarno of indignant systems with delay the third order with delay in a condition is considered. Sufficient conditions {x, y} – controllability in L32[t1 − h, t1 ] × R3 are considered at all rather small values of parameter of a singulyarnost. Conditions don't depend on parameter, are expressed through matrix parameters of system and have a rangovy appearance. Examples of application of the received conditions for the analysis {x, y} – controllability in L32[t1 − h, t1 ] × R3 are given. . . , , , , - . 519.872 . . . . : . , , . - . - . 1 7.0.[1]. ( , ) ( , , ). [2]. 111 1- ( ) , ; , - , , , ( ). — , . : 1) ; . 2) : ( ); ; . 3) : - ; . 2- ( ) , - , . — . : - ; ( ) ). ( : ; ( ) ; . : ; . 3- : - ; . , , ( , ). - — , – 3- ( . ) . — 1) . , , - : - ; 2) 3) . : - ; . : , , . . « ». , . , . », » « .( . , , : :« » : « 1). 1– « » », « », « », -2012: 112 . . 2. – , 2012 « ». , - , , , , , . : . , , 99, . . 0,14 , : 90, « ». « . : 90, », , « 1742», 99, 0,14 « - . », - . , « ». - – ». , . . , , , « , ». ». « « , , , ». , , , . « .( », « », 150 .» : 21 29,7, « 2). 2– « » , , . , , , : , ), ( ), , , , , . , , . , , : , , , ( - . , », , , « , . , , , - . , ». « , , , , , - . , - . , . , , , « - 113 ». , - . , , , , , , , , , , ». , : - , . . , , , , « , . - . « , . , », , « , , . . ( , - ». – , , , , .), ( : - ), , . , , , , . , , . , - , . , . , , « - ». , « : . , « ». » , 1000 ., 20 : 1000×20 « , » . . , . , « », – - . « » », , , - , . - , . , , , - , . , , . , , , , , - 1/ - : - . , . , . . 1. 7.7. [ : . 2. , . . / . 31 , . .]. – .: «1 », 1999. – 400 . // –3 2011 .– 1. – . 231 – 234. The description of complex technology of collecting registration production data for offset printing house is provided. A number of formal definitions is entered. In a basis of realization of technology the three-level model of automation of processes of planning and the accounting of manufacturing enterprise with a order form of the organization of works lies. The technology is described in a cut of three blocks: the material account, the accounting of receipt of orders in production and shipments of finished goods, calculation of prime cost of the order. – , . . , , . -2012: 114 . . 2. – , 2012 004.91+347.78.031 . . , . . , , . . - , , . . . , - , . : , - . . , , , , . . , , : - . , , , , . . , , . - , , , , , , . , . , . , . , - , [1]. . - [2, 3]. , . . , , (n- ). . 1 . 1– , ( - . , ) . , 115 , . , , - , , , , , . , . , , : 1. 2. 3. . . . . , . . , . , - . 2 , - . 2– , . , , . . , , , - . 1. M. .NET 3.5 / . , . , . , . » 2009. – 1392 . 2. PowerDesigner / . . // : XV . .. .– : 2006. – . 211 – 212. 3. Microsoft Patterns & Practices Team. «Microsoft® Application Architecture Guide». Microsoft Press-2009. – 560 . , , . . C# 2008 . – .: OOO « , . . , . - Article presents main approaches to the implementation of a universal and flexible architectural solution client-side web-based systems. The advantages of a composite approach to the organization of architecture and functionality of the client. In particular, describe the possible integration of client with the infrastructure system that supports the laser express expertize. – . . , , , . -2012: 116 . . 2. – , 2012 37.016:51:005.935.33 . . - . . . , : . - : , . , , , , . , - , , . , , , , , , [1]. , , , , , ) - , . - ( . . 1968 . « , ». - , , , . , , . . - , [2]. , , . : ; , ; ; ; ; , . : , , - , , . . - – . , - , . . , [4]. . : 1) : , , , , , , , , , , , ; 2) 3) 4) ( ) , – , , , ( : , ; , - , 5) ); : , ; ; 8-10 , , , ; ; , " ", " ", " ; "; , - ; 6) , , , . , », :« 35 . 10- - 117 1) y = sin x; 2) y = cos x; 3) y = tgx; 1 4) y = ctgx. y = cos x - 1) 2π ; 2 y = sin x 2) π ; 3) 2; 4) 2π . 2 π π 1) [− 1;1]; 2) − + 2πn; + 2πn, n ∈ Ζ; 2 2 π 3) [0; π ]; 4) 2πn; + 2πn, n ∈ Ζ. 2 3 1) R; 2) [− 1;1]; 3) x ≠ 90°; 4) x ≠ f ( x ) = tgx 4 π + πn, n ∈ Ζ. 2 π 3π 6π . ; ctg ; ctg 5 4 10 f ( x) = 3 sin x + 2. 1 ctg 2 3 y= 4 sin C1. 12 x . cos x − 1 4x ≥ 0. 3 f ( x) = 2 sin 4 xctg 5 x 3 . , y = ctg 2 x − 2 sin 2. 4x . 3 – - , . . 1. . : – , . – , . 2. , . . . , . , . , , . - , . 3. , . , – - . 4. . . - . , - . – , . -2012: 118 . . 2. – , 2012 , . 5. , . , . ) – 6. ( , Χ = 5,81. , - . , , , - ( - , . . . , ) . . D = 1,85. , - : , , . , – . σ = 1,36. , . : , . , - . [4,45; 7,17] . As = 0,014 . . ( ), ( , - ) . . . Ex = 2,14 : ), . - , . , , - . , - . , , . , , , . , , , , - , . 1. , . . : 2. 5. .– . , 2011. – 8 . : / : http://www.psihologija.com – . 1/ . . ] /. – 3. , », 1998. – 344 . 4. . .– . [ . / . . . . . / . . , . . : .– : 29.04.2012. « .: - – - // . – 2009. – 1. – . 82 – 83. : / . . , , 2001. – 168 . Testing allows the diagnostics of the results of learning, setting the level of academic achievements, the degree of competence. Due to its advantages it may be productively used in combination with other approaches of control for providing effective feedback according to the goals of diagnostics. – , . . , , , . - 119 666.9.015.42 . . , . . . - . . , - . , , [1,2] - . , , . - . , [3,4]. , , . : − − ; ; − − − ; ; , , , − . . - . ( , ) , - [3]. [4] , - . , . : . , , , , - [5]. , . . . 3 1. . -2012: 120 . . 2. – , 2012 1– - 42,5 311 - 1060 - - 77,00 13,00 2 886,6 311 - 1060 - - 75,82 12,80 3 886,6 311 - 1060 - - 74,69 12,61 4 886,6 311 - 1060 - - 73,45 12,40 5 592,1 299 293 1060 - 1 74,69 12,61 6 886,6 311 - 1060 3,315 0,6 3 74,69 12,61 V- Melment F10, % 1 886,6 , , 3 3 3 3 Vinnapas, % , , , , ,% 10, 0 9,8 5 9,7 0 9,5 4 9,7 0 9,7 0 1,5 4 3,0 0 4,6 2 3,0 0 3,0 0 " - - - - - - - - 25 10 25 10 ". - 2. 3. « » ( 3 2650 , 2 2900 - ). =2,32. Melment F10 ( , - ), Vinnapas Re 5044N, , . 2– 1 2 3 4 5 9179-77 67 5 5 1,5 15 CaO + MgO, % CO2, % ,% d 0,2 ,% d 0,08 ,% « 61-64 2,5-4,5 max 0,6-1 max 1 1 » 3– ,% Al2O3 4,6 CaO 64,88 SO3 2,14 3A 5 MgO 1,61 SO4*2H2O - 34,92 35,5 0,79 - - - - - - - - 73,2 42,5 [6]. . 1 . 14 . - 121 14 , . 40 . 5, . ( 4) , 20 % - , . . 3,5 1( ) 2 (2 %) 3 3 (Vinnapas+ , ) 4 (Vinnapas+f10) 5 (1 %) 2,5 6 (3 %) 2 1,5 1 0,5 0 0 10 20 30 40 50 , 1– 2 14 - , 20 . 2 5 . ,% 3 1( ) 2 (2 %) 3 (Vinnapas+ 2,5 ) 4 (Vinnapas+f10) 5 (1 %) 2 6 (3 %) 1,5 1 0,5 0 0 20 40 60 80 , 2– 14 , , , . -2012: 122 . . 2. – ( , 2012 4) - , , . - . 1% 1. . , . . / . . . – 2004. – 2. , . . / . . // 1 (25). – . 149 – 153. // . . – 2005. – 3. . . . .– .: 3. – . 10 – 15. / . . [ / . . . .– .: / .– .: . , 2002. – 12 . 6. . . . [ .]; , 1975. – 183 . 5. . . .]; , 1951. – 253 . 4. . - . , 1974. – 312 . : 1335-2002. – . . [ . 01.01.03. – .]; . . : There are some difficulties in designing compositions of self-compacting concrete on the basis of straining cement. On the one hand it is necessary to execute demanded flow characteristics of concrete mixes, with another - to provide strength and deformation characteristics of concrete. Compositions of self-compacting concrete differ from traditional with presence additivesfiller, and also introduction of the agent inoculating viscosity of a liquid phase and a superplasticizer compatible to it. Introduction of these components, as a rule renders negative agency on deformations of expansion of self-compacting concrete, and also promotes increase in a final shrinkage approximately on 30 … 50 % more, than at traditional concrete. In the given work researches of agency of the additive of a lime on deformation of expansion of self-compacting solutions on the basis of straining cement are shown. – . . , , , - . 539.3.691.693 . . , . , - . . , - , , , . , . , - , . . , , , ( : , , , , , - . . , 1). [1] - 123 1– , ,0 ) % 1 18 – 28 45 – 65 2 8 – 26 – 3 18 – 26 – 4 16 – 22 60 5 14 – 20 – , 12 – 22 – - 18 – 28 45-65 - 16 – 22 60 , 16 – 22 60 - 16 – 22 60 18 – 26 – – , 6 ( – ) 7 8 , 9 ( ) 10 11 : ( . – 1). , , , , - [2]. ) ) ) ) 1– : ) ); ) :1– ,5– ,2– ,3– ; ) ; ) . ,4– - -2012: 124 . . 2. – , 2012 , , : , , , , . , , , , [3] ( . 2). –2 1 : – – – – OSB 2 , . . 500 – 700 6 – 13 15 – 30 15 – 30 600 – 800 15 – 30 15 – 35 12 – 25 3 9 – 20 6 – 13 15 – 25 5 – 50 12 – 20 14 – 30 14 – 30 10 – 50 4 10 – 20 10 – 25 5 6 7 8 9 10 25 – 55 4 – 18 10 – 200 15 – 50 4–6 15 – 50 30 – 70 10 – 15 50 – 200 12 – 70 10 – 15 12 – 70 4–8 5 – 10 5 – 10 8 – 22 15 – 25 5–8 5 – 11 4 – 11 10 – 18 15 – 30 3 – 15 5 – 15 14 3 – 15 3 – 10 3 – 10 10 – 80 5 – 15 5 – 12 6 – 13 50 – 110 15 15 – 25 20 – 35 1 – – – 2 : – – 11 – – – : ( ) – 13 , – – – . , , - . , , . , , [4]. , , , , , , . , . , , , , 1. 2. 30494-96 : . // : 02.04.2012. // : http:/www.vash-dom.by. – : 02.04.2012. // - . [ : [ ]. – . 1999-01-01. – , 1999. ]. – : http:/www.mo-potolok.ru/. – 3. 4. [ [ http:/www.art-con.ru. – : 02.04.2012. ]. – ]. – , : 125 The article deals with building materials, currently used for finishing the ceiling space. A systematic requirements necessary to implement the choice of decorative materials. . . , . , - . 624.07 . . , . XX . - . - , , . , , , . 60- 20 . - , , − ( . ( − − . ( 70. Marshall-Vega Inc. : . , ); 80-90 - )); ; , . ( , . (1998 .). ). [3]. , , 1986 . , - , . EUROCRETE. . 90- 20 100 , . : – . , . , 60-70- - , , . . , , , . .), , , , , , - . , , , . , , 1975 40 . - 1989 , . , , , - . . : , . . -2012: 126 . . 2. – . , 2012 « », « , » . , 2000 » - . , « » , « . [4]. , 60-80- XX . , 20 . , . . 1975 . -10 . , , : , , , - . . . – - 6 . . 6 . [5]. , , , . , , , . , - , . , « » , « »( . ) - . « 2011 ., . 2011» , , - , , . . — , ( 400 ), , , ( 8 - . . 5,5 [3]. , 1 . . - ). : 1. • • 2. « » -6; – – « »( . 255 « “ 4, 8, 10 4 • • • -7.5; ) ), 3. 4. : « 28 . »( . » 510 ) ”( 4, 8, 10 - . - : 4 6 14 8 ; ; 5. « – 10, 12, 4, » 8, 6, 14. : 1. 1103-98 « , -01-2011 « 2. . , », , . ( ) », , , 3. . BY 691148.143.001-2011 « » 127 . . , , , , , , , , , . - , . , – - , , . 2003 . 2020 – , [4]. 90- , , , - , , , . , , . , - , . , . , [3]. , . , , , - . , , - . [1, 2], , 1. . 1103-98. . [ ]. – ; : 2. -01-2011. 01. – : ( « 3. »: ) », 2011. – 46 . « [ ]. – . 1998-10-01. – : , 1998. – 36 . ; . 2011-05- . // [ : http://yazk.ru/istoriya-kompozitnoy-armatury.html. – : 20.04.2012. . // [ : http://ts-project.ru/poleznaya-informatsiya/istoriya-sozdaniya-plastikovoj-armatury. – : 20.04.2012. . // ]. – : http://alientechnologies.ru/articles/0000.php. – : 20.04.2012. ]. – 4. ]. – 5. [ This article describes the history of non-metallic reinforcement in structures, prospects and problems of application of the reinforcement in Belarus . . , , , . 539.3.691.693 . . , . , - . , , , , - – . , , , , . ( , ) . , . , - -2012: 128 . . 2. – , 2012 , . , , , , , - , . , . , , , , – . – - , , . : , . , , , . , . , : ( - , , , , , ); .). , - , , . ; ; ; ; ; ; ; ; : ; - ; ; ; . : , ); ( , ( .« » « » , ); , ); , ( ); ; ( , ; , . 1– 1 − − − − − − − 6,3 – 7,9 1) 1) - ; ; 2) 3) ; ; 2) 3) ; , ; ; ; ; 4) ; 4) - , , 20 42 – 124 ; 37 – 160 2) 3) 4) 5) 6) ; ; , ; ; , ; − − , 7,2 – 20,4 ; ; , , , , ); , ; , 20 ; , ; , ; ; - 1) 2) 3) ; 1) - ; ; 4) 5) ; , 7,0 – 17,8 1) 2) ; ; ; ; ( 1) , ; − − − − − − − , . ; − − − − − − − − 5,5 – 7 ; 2 6) 7) 1) 2) 3) ; - 2) ; ; ; 3) 1) ; ; - ( ) - 129 1 − 14 – 40 - , ( − − − − , , 23,6 – 67,0 1) 2) 3) , ; ; 5) 14,9 – 24 ; 15,5 – 42 1) 2) 3) ; ; - 29 3) ; ; , ; , 1) ; ; ; , - ; 6) 1) 2) 3) 57 ; ( ; - 4) 5) ; ; ; ; ; − − − − − − 1) 2) ; ; − − − − − ; - ; − − − − − − 2) 3) - 4) ; ; ; ); , 1) ; ; 4) - - ; ); 5) ; ; ; 6) ; 16,5 – 30 ; 16 – 40 1) 1) - ; ; 2) ; − − − - ; 2) 3) ; 1) 2) 3) ; ; ; 3) ; 4) ; 5) − − − − − 5–8 ; 7 – 10 1) 2) ; , ; ; - 3) ; ; - - ; , - , . , , ; : ; ; ; - ; . . - , , 1. 2. 3. 4. 5. , , . . , 1975. – 528 . , . . , 2004. , . . 31-1.98 , . . , 1989. 6. : , 2012. – . – 2- : / / . . . – 2- , , , : http //www. deal.by. – ., . . .– . .: 2.03.13-88 « . – 3, ( , .– . [ . / . . . – 2., 1994. »). . ]/ : 01.04.2012. . – .: .– .– : : . - . - -2012: 130 7. , http//www.dekotrade.ru. – . . 2. – [ ] / , 2012 . – : : 01.04.2012. 8. [ : http//propol. rb1.ru. – : 01.04.2012. , , : 02.04.2012. [ : 03.04.2012. 9. http // www.prom.ua. – 10. , httb//www.napol.ru. – ]/ [ ]/ ]/ .– .– : .– : The article deals with building materials, currently used for finishing the ceiling space. A systematic requirements necessary to implement the choice of decorative materials. . . , . , - . 624.014 . . . . ( )– , . 50- 20- . . , ( , ) - , – . - , , . . , , ), ( , - 1). , , ( ). - , [1]. 1– ( ) ) ; ) ; ) ; ) , , - . , , . , . , , : . , , ( 2), . , 131 , . , . ( . - ) , , - . 2– : . : Wx , W y , Jx, J y , . : , [2]. , , , , , , . , , , , [3]. , - [4, 5] . , ( , - [6]. ) . ( 3). , , M x max = Wx σ y . M x max / A , , : bf c/bf t 1 3 . 40 100 , 0,5 : h = 100, 200 300 0,2 σ y = 250 , . 3– Wx , , , , . , . -2012: 132 ) . . 2. – , 2012 , - Wxeff. Eurocode 3 [4]. , , - , « », , (TheodorvonKarman), , . . - , . , . , , , - . . - CFSteel, Eurocode 3. t=1 50 M x max / A . , . . 200 (40, ). , , c/bf = 0,4 bf = 50 h= 0,5 c/bf = 0,2 300 . t = 1,5 h = 100 bf = 60...70 bf= 60 t = 2.3 t=2 h = 100 bf> 100 . . 3 bf = 80 , , 4– ; , h = 200 h = 200 300 y= , M x max / A bf= 80...90 (h = 100 . h=100 300 t= . ) y = 250 : 350 5.1 . . , , , - . . ( 1 ) . , , - , ( 133 ). t = 1,5...2,0 ). bf= 60…90 ( - . - . . 1. , . , . . / , . . , . . // . – 2010. – 4. – . 37 – 39. , . . / . . – . – .: . , 1946. – 532 . Adany, S. Buckling mode classification of memberswith open thin-walled cross-section by using FiniteStrip Method. Research Report / S. Adany // JohnsHopkinsUniversity. – 2004. – 99 p. EN 1993-1-3:2004 Eurocode 3. Design of steel structures. Part 1-3: General rules. Supplementary rules for cold-formed members and sheeting / Euro-pean Committee for Standardisation CEN. – Brussels, 2004. – 125 p NAS (2004): North American Specification for thedesign of Cold-Formed Steel Structural Members /American Iron and Steel Institute. – Washington, D.C.,AISI/COS/NASPEC, 2004. II-23-81* / .- .: , 1990. — 96 . . . 2. 3. 4. 5. 6. In this paper we examine the work of a thin-wall profile in accordance with current design standards. Displayed and analyzed patterns of influence of the width of the belt width and limb C-shaped profile on the performance in a transverse bending with different thicknesses of steel. – . . , , . 624.012.45 . . , . . , - . . . , . ( ), - [1]. , : , , , , , , [2]. ; , ; - . : . , . [3]. , , - . , , . , , , , – - . , , , , . . - . , [4]. -2012: 134 . . 2. – , 2012 . , , , , , . , - . , . , - , [1]. , , ). , , , , - [1]. . , (8 . ). ( ~2 23,6 % ( ) . ~1,5 - ) , [1]. - , . ). , 14 (4,4 %) – CaSO4. [1]. , . - , . 5 – 10 % , , . 1 7 - ( – - 2,8 % [1]. , . , ) [1]. - 1335 « . ». . - , 750 . 1, , . 135 1. , . . .– : , . . , . . , . . . . 2. . . 3. / . . , . . / .– : , 1974. – 312 . / . . , . . // : : 2008 . / , . . 4. . , , 1980. – 256 . , XV ; - - , . . . / . . [ , . .]. – . – .: , 27 – 28 , 2008. – 283 . , 1983. – 248 . The scope of tightening concrete theoretical approaches control the growth kinetics samonapryazheniya tightening of cement type M. . , . . . , - , . 62.059 . . , – . . , , , - . « » – - . , . , . 500 , 70 , ,« » . , – , , , , . , , , . - , - . – . . , « . » . , , , , . , . - , , ( 1– ). -2012: 136 . . 2. – , 2012 . , , . , 2.7 3.0 2 . , , ( . . 1), , - , , . 6.0 . 400 . 2– * 1 . . . , . , , . : 300 . ( , . 3). , . – . 10 20 . , - , , , , . , , , . , , , * , . , - 137 3– 4– 2 -2012: 138 ( 1) . . 2. – , 2012 . 4) : , , ., , ; 2) , , - 10 . , , . – . , – , , – House , , Home, - , , , , 1. 2. 3. . . , . . 1985. – 208 . , . . . . .– .– ., 1855. – 60 . / . . , . . . – : , / : , 2004. – 194 . This article describes an environmentally friendly house with attached garage and conservatory. We describe the design decisions taken in implementing the current problems and future requirements. Also there is conducted study of space-planning decisions. . . , , , . 519.711.3 . . . - . . : , . . 143]. [1, - , . , [2, - 29, 3]. . . - [4, . 70], . , . l. m1 , m2 ,..., mn ( - . 1 ). ) ) 1– A = (δ ij ) n×n , δ ij - : l δ ij = ∫ 0 M i ⋅M j dx EJ (i, j = 1,..., n ) (1) 139 Mi M xj , ( xi j . 2) 2– (1), Mi - M j: l − xi l x, 0 ≤ x ≤ xi Mi = , l − x x , x < x ≤ l i l i xi ≤ x j . , l − x j x, 0 ≤ x ≤ x j l Mj = . l − x x , x < x ≤ l j j l (1) xj (2) Mi ⋅M j Mi ⋅M j Mi ⋅M j dx + ∫ dx + ∫ dx . δ ij = ∫ EJ EJ EJ xi xj 0 (2) (3), xj xi l 1 2 δ ij = 2 ( l − xi ) ( l − x j ) ∫ x 2 dx + xi ( l − x j ) ∫ ( l − x ) xdx + xi x j ∫ ( l − x ) dx l EJ 0 xi xj xi , δ ij = l 2 2 2 2 2 1 xi 2l x j + x j ( xi + x j ) − l ( xi + 3x j ) . EJ 6l (4) xi > x j (4) , (4) xi ≤ x j . , . j i (3) n A , xi 2l 2 x j + x j ( xi2 + x 2j ) − l ( xi2 + 3x 2j ) , xi ≤ x j 1 ⋅ A = (δ ij ) = . n×n 2 2 2 2 2 6lEJ x 2l x + x ( x + x ) − l ( x + 3x ) , x > x j i i j i j i i j : 1) (5), , xi ≤ x j xi > x j ; 2) , δ ij , xi ≤ x j , (5) - , , , (5) , . . xi = x j , - (5) δ ii = xi2 (1 − xi2 ) [0, xi ] (1) A = (δ ij ) n×n 3lEJ , ( i = 1,..., n ) . xi 2 xi x j − 3 1 = ⋅ xj 2EJ 2 x x − j i 3 δ ii = ( ( xi ≤ x j ) . , xi ≤ x j . , xi > x j xi3 , ( i = 1,..., n ) . 3EJ . 1 ), , - (6) -2012: 140 . . 2. – , (5) , 2012 (6). A A − λE = 0 , E – (7) . , (5) (6) l, EJ , .3 λi (7), ( i = 1,.., n ) (5) (6). 4 ( n 5 100 ). (5), (6) : . , .3 max λi ( n ) = 10 −3 ( 0.0128 + 10.2659n ) , (8) max λi ( n ) = −0.0442 + 0.0807n , , (5) n = 10 , (6) , - max λi = 0 . (8) (5), (6) n , 4– λi , A 0 < λi ≤ 10−3 ( 0.0128 + 10.2659n ) – 0 < λi ≤ −0.0442 + 0.0807 n – ( i = 1,.., n ) , . . .5 6 ( ). , . 5– - . 3– , 4 90 % 0, 10 % .5 6 A 0. 6– - 141 ( ) - . : , . , - , , . Method of lumped masses for research on dynamics of statically determinate beam was studied. Universal formulas for automatic definition of elements for flexibility matrix were received. The research of spectral characteristics of received matrix was carried out. 1. , . . / . . , . . . – 4.– : , 1972. – 735 . , . . / . . , . . , . . .– : , 2010. – 216 . Darmawijoyo, Horssen W. T. van. On boundary damped for a weakly nonlinear wave equation / Darmawijoyo, Horssen W. T. van. // Nonlinear Dynamics. – 2002. – Vol. 30. – P. 179 – 191. / . . [ .]; . . . . . – .: , 1984. – 415 . 2. 3. 4. – . . , . 624.012.45 . . , . . , . . , . , - , . , . . - – 15 – 30%. , - , , , . , , , ( ), ( . ) , - . – « – – ». – , - [1, . 13]. , , ( - . ). , - , . 10-30 . . , , [2, . 189]. , , , . . . - -2012: 142 . . 2. – , 2012 ( ) [3, . 112]. – , , , . . - , . , . . , - . - , . - , , . . – - , ; – , [4, . 263]. , , , U- . . – , « – » . 1– . , , . . . , - . S– , U= SL , Vt , ;L– , . , ;t– 2 / ⋅ . , KπηU , . ε ), 20 = 0.01005 /( – , ;V– - ς = 9000 ⋅ – , ( 15 = 0.01138 /( ( = 81); = 6; U – . ), , 2 25 = 0.00894 /( )); – - ; /( ). 90000 – . Zeta PALS ( ( - Brookhanen Instruments Corporation, , ), ) , . , , . - 143 0,6 6 , 6° 6 0 20 30 . 100 ° Zetasizer Nano ( ( , ...10 5 100 . 1 13, - ) ) M3-PALS ( ). M3-PALS - . . ( , . - ), , . ( 1- – ; 2) . 4πηkQR ς =− , B, εIE ;k– [5, . 69]. ;Q– – ;R– SurPASS. SurPASS ( , - ) . . , ( , ) , , , . , , , , . . - - . , , ( ). , ( - ). ( ). , . . . - , . , , , . , , , . . , - . ( , ). . ( 10-4 ), , , . . , , , . . , ( ). . µ ε −1 M N A µ2 ⋅ = ⋅ (α + P= ) ε − 2 d 3ε 0 3kT [6, . 173; 7, . 343]. - -2012: 144 . . 2. – , 2012 , . 2– 1– 15×20 ;2– 0,5 1° ; 5 – 30 3 ;6– ;3– ); 4 – ( ( ;8– ;7– ) . : 2-3º , . - . , , ( .) - . = f(C), [8, . 4 – 5]. . – – », . , , . 1. 2. 3. 4. 5. 6. 7. 8. , .] // . . , . . , 1988. – 575 . . . , . . .: , 1989. – 463 . , . . , . . .: , 1968. – 246 . , . . , 1971. – 414 . , . . . . , . . – 10. – . 13 – 16. . – 1978. – : -3 / // . . / . . , . – ., .– / . . / . . , . . , . . . [ .]. – , 1984. – 368 . / . . . / . . . .: , 1973 . , . . , . . , . . , .: .– . . .– .– .: // - // .– : , 2009. – . 2. – 302 . In article the action mechanism plastification additives for concrete is is short described such parametres of an estimation of efficiency of softeners as electrokinetic potential and the dipol moment, the reasons of their influence on plastification effect Are considered. The basic methods of definition of these characteristics, and also measuring devices and a principle of their action are described. . . , . 691.53 . . . , . 145 . , , - , . , , , , . , : , . 310.3 [1] , 310.1 [2]. , : -1 [4]. , . ( ) , 1 . 1. 1– % ,% – 0,2 0,35 0,5 0,2 0,35 0,5 1,0 1,5 2,0 0,2 0,35 0,5 1,0 1,5 2,0 (NaNO2) ,% 28,75 28,50 28,25 28,00 28,50 28,25 28,00 27,50 27,25 27,00 29,00 29,25 29,50 29,75 30,00 30,25 – – -0,87 -1,75 -2,65 -0,87 -1,75 -2,65 -4,46 -5,45 -6,42 0,93 1,72 2,56 3,39 4,20 5,00 500- 20 « ». 1– , , 1 – 7 %, - . 1 – 5 %. [1] [2]. : , -1 - , . . . 2 2 3. -2012: 146 . . 2. – , 2012 2– % (NaNO2) – – 0,2 0,35 0,5 1,0 1,5 2,0 0,2 0,35 0,5 1,0 1,5 2,0 , 3 – 40 4 – 10 4 – 00 3 – 55 3 – 45 3 – 40 3 – 50 3 – 30 3 – 10 1 – 10 0 – 45 0 – 30 0 – 20 500- 20 « . , 5 – 10 5 – 20 4 – 50 5 – 00 4 – 50 4 – 50 4 – 40 4 – 50 4 – 25 2 – 30 1 – 50 1 – 10 1 – 00 . ». 2– 2.1 1.00 0.33 1.9 1.7 0.50 1.5 1.17 . 0.35% 1.1 0.5% 0.75 % 0.2 % 1.3 1.83 0.9 1% 0.7 1.5% 1.17 0.5 2.50 2% 3.17 0.3 . . . . . 4.42 3.50 0.1 4.83 3.67 5.17 -0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 , 3– -500- 0 , 26,5 %. - . , 7 – 81 %. : – 5 – 91 %; – 147 310.4 [3]. , , , , , [4]. . - 0,46, , 106 – 115 . . 3 4. 3– % , ,% (NaNO2) (Na2 O3) – 0,2 0,35 0,5 1,0 2,0 3,0 4,0 0,2 0,35 0,5 1,0 2,0 3,0 4,0 1,0 3,0 109,5 110,0 110,5 111,0 112,5 114,5 115,3 115,8 107,0 105,5 104,5 103,8 102,5 101,3 100,0 106,6 100,9 – 0,46 0,91 1,37 2,74 4,57 5,30 5,75 -2,28 -3,65 -4,57 -5,21 -6,39 -7,49 -8,68 -2,65 -7,85 5,0 100,0 4,57 – 500- 20 = 0,46. 4– , 106 – 115 , , 0,46 . - -2012: 148 1–3% 2 – 9 %, . . 2. – , 2012 3 – 5 %, . : 1. 28,75. -500- 0 0,2 26,5 %, -500- 20 – 29 30,25 % . - 2% 1–5% 2. : – 5 – 91 %; – 7 – 81 %. 3. – 0,46. 1–3% 2 – 9 %, 1. 3 – 5 %, . . 310.3-76. – , 1976. – 9 . . 2. , . 1978-01-01. – 310-60; . [ ]: .: 3. . 310.4-76; . 1983-01-07. – 4. 9147-73, 6675-73, : [ ]: - .: 310.1-76. – , 1976. – 3 . [ 310-60; ]: [ ]: .: . 6529-74; . 1982-01-01. – , 1980. – 18 . . 1978-01-01. – 310.4-81. – , 1981. – 17 . 9147-80. – .: - The article deals with the study of the influence of some anti-freezing additions and additions quickening solidification on the qualities of cement systems, in particular on an average density and the terms of freezing of cement solution as well as the changes in the consistency of cement and sandy solution. – . . , . , - . 539.3.691.693 . . , » « . [1 – 2]. . . 24104 [3]. 6,29 . 200 , 3 . [4]. 3 20 29227 [5] 2 H2SO4 ./ 3 60 nO4 12738 [6] 3 3 250 0,1 , . 40 – 45 . : V1 = 8,85 3 ; V2 = 8, 75 3 ; V = 8,80 3 . , : 5NaNO2 + 2KMnO4 + 3H 2 SO4 = 2MnSO4 + K 2 SO4 + 5NaNO3 + 3H 2 O. ./ 100 3 3 - 149 NaNO2 C ( 1 NaNO2 ) ⋅ V ( 1 NaNO2 ) = C ( 1 KMnO4 ) ⋅ V ( 1 KMnO4 ), 2 2 5 5 C ( 1 NaNO2 ) – 2 (1) ; V ( 1 2 NaNO2 ) – ; C ( 1 KMnO4 ) – 5 ; V ( 1 KMnO4 ) – 5 . (1) : C ( 1 NaNO2 ) = 2 C ( 1 NaNO2 ) = 2 0,1 C ( 1 KMnO4 ) ⋅ V ( 1 KMnO4 ) 5 5 , V ( 1 NaNO2 ) 2 3 ./ 8,80 ⋅ 20 3 3 = 0,227 (2) ./ 3 . NaNO2 W ( NaNO2 ) = C ( 1 NaNO2 ) ⋅ Va ⋅ M ( 1 NaNO2 ) 2 2 ⋅ 100 %, m0 M ( 1 NaNO2 ) – 2 (3) , M ( 1 NaNO2 ) = 2 M ( NaNO2 ) – M ( NaNO2 ) , Z (4) , ;Z – , . 69 M ( 1 NaNO2 ) = 2 W ( NaNO2 ) = 0,227 ./ =34,5 2 ⋅ 0,20 6,29 3 3 , ⋅ 34,5 ⋅ 100 %=24,9 %. , 24,9 %. . , [7]. 3 50 Cl2 3 0,05 . Ba2+ 25336 [8], 105±2 - . Na2SO4 . - BaCl2 + Na2CO3 = BaCO3 ↓ +2NaCl. BaCO3 0,7536 . Na2 O3 W ( Na2CO3 ) = W(Na2 CO3 )= Na2 O3 m( BaCO3 ) ⋅ M ( Na2CO3 ) V0 ⋅ ⋅ 100 %, M ( BaCO3 ) ⋅ m0 Va 0,7536 ⋅ 106 ⋅ 6,29 197 ⋅ 200 50 Na2 O3 ⋅ 10H2O 3 3 ⋅ 100 %=25,8 %. (5) -2012: 150 , 2012 W ( Na2 O3 ) ⋅ M ( Na2CO3 ⋅ 10H 2O ) , M ( Na2 CO3 ) W ( Na2 O3 ⋅ 10H 2O ) = M ( Na2CO3 ⋅ 10H 2 O ) – ; M ( Na2CO3 ) – . . 2. – (6) , - , W ( Na2 O3 ⋅ 10H 2 O ) = , . 25,8 % ⋅ 286 106 = 69,6 %. 69,6 %. 25,8 %, 1. 1– . % % % % % (NaNO2) (Na2 O3 · 10H2O) - (Na2 O3) , . . 24,9 69,6 25,8 1 4,5 , 2), ( - . ,° 2– , , . . . , , . The article deals with the study of the chemical structure of SSN derived as a secondary product at the public corporation “Grodno Chemical Fibre” at the production of polyamide threads. 1. , . . / . . , . . 2. 3. , . . , . : , . . // / . . : , . . 24104-2001. – , .– . – 2009. – 12. – .14 – 15. .: , 1974. – 263 . 24104-88; . 2002-07-01. – , 2001. – 8 . 151 4. 5. . / . . . 20292-74; . 1994-01-01. – . . . 1. .– .: . . 1979-01-01. – 1978. – 4 . , . . 7. 8. 1984-01-01. – , 1992. – 400 . 29227-91. – , 1992. – 15 . 12738-77. – 12738-67; : , : 6. : .: / . . , . . . .– .: : .: , 1968. – 508 . : 25336-82. – , 1982. – 102 . , .: : – . . , . . , - . 624.07 . . , , . . XX . - , . . , , , . , , , . - ( , ) . 80. . ( 1986 . . - ) 1988 . , . - . . 60( . 70- . XX - , .), , , , , , , . 1972 , - . 1 1975 61,01 . – . . 22 % , . – 20 %. 1,7 . 9 , 4 20×60 - [3]. . − − 1103-98. . – ,1998 . 01-2011 )– − − - : ( - , 2011 . [1]: – – ; . , . , -2012: 152 . . 2. – , 2012 , , , - . , . , , . , , . - , . . : , - . , , - , . . , - , - . . , . , , . , . , [2]. , . , , , , , . , , , , . , , , . . . , 100 ° – , . . - , . , , , , . , , , , , . - . . . , , , . , , , . 5 . 20 . +450 ° , -40 , . -40 ° . 35..50 %. . . 350 ° [2]. . : 1,8-2 1500 3 , 80 %, 50 000 , , − − − − − 2,5 – 3 %, 65 % -6 5,5-6,5·10 . [2]: ; , ; ; , ; ; , - 153 − − − − − − ; : ; ; 9 ; 30-40%; . : − − − − 4 , , ; , ; ; . , - [1]: − ( − , ); , , − − − − , - , ; ; ; . ( , − − ; , , ; ; , . , , . , 0,00001 ° 50 ° 0,5 0,000012 ° , , 0,00001 ° . . , . - , - 70d. , . – . - . . - . , . . . , , . , , , . , , , . , , - , , [2]. , . . - . 1. 1103-98. 01. – : . [ ]. – ; . 1998-10- : , 1998. – 36 . 2. -01-2011. . 2011-05-01. – : « 3. .– ( »: « [ : http://armatura.fo.ru/blog. – ) [ ]. – », 2011. – 46 . ]/ : 15.04.2012. ; - In this article the basic properties of nonmetallic armature, its advantage and shortcomings are described, areas for effective use of fiberglass armatures are defined. Possibilities of replacement of metal armature on the nonmetallic are described. . , . , -2012: 154 . . 2. – , 2012 539.3.691.693 . . , . . - . . , [1]. (NaNO2), 1. (Na2CO3). . , 6084-100-0 -500-0 , 5802 [2] 28840 [3]. 7,07 . 500- 20. 1 1. 1– , % 1 20 ° ) 20 ° ) – – 1 – – 5 – – 8 – – 1 3 20 ° ) 5 0,2 0,5 1 3,79 3,77 3,79 5,83 5,38 5,82 62,60 63,80 63,10 1,95 1,92 1,72 2,13 2,13 2,01 2,00 2,08 1,95 , 2 – – 4,30 4,41 4,54 6,11 6,37 6,27 5,14 5,10 5,11 3 – 4,42 6,25 5,12 3,79 – – 5,68 8,5 8,63 8,47 8,54 6,29 – – 1,86 – – 2,09 – – 2,01 – – 20 ° ) 3 – – 5 – – 10 1,35 1,48 2,02 1,62 6,22 5,1 5,52 6,7 6,59 6,71 – 5,62 6,67 – - 8,66 8,40 10,00 6,38 6,37 6,60 8,27 8,37 8,28 6,73 6,65 6,68 10,35 10,34 9,97 10,73 10,68 10,74 11,8 11,75 11,81 8,50 7,84 7,63 7,85 7,11 8,92 8,51 8,23 7,96 10,09 10,17 10,14 11,29 11,96 11,51 8,72 7 8,96 6,45 8,31 6,69 10,12 10,72 11,79 7,99 7,96 8,23 10,13 11,59 8,46 11,14 14,26 14,20 11,24 12,05 11,37 11,97 11,06 11,45 10,43 10,19 10,19 13,52 13,28 13,33 13,53 13,57 13,73 13,87 13,67 13,85 12,19 12,52 12,55 12,23 12,37 12,23 16,40 16,63 16,06 17,52 17,75 17,40 18,11 18,37 18,16 8,50 11,11 10,83 13,2 11,55 11,50 10,27 13,38 13,61 13,80 12,42 12,28 16,36 17,56 18,26 10,15 155 ) ) ) 20 18 16 14 12 , 10 8 6 4 2 0 0 1 0,5% 3% 10% 2 . . 3 4 5 0,2% , 1% 5% 7 . . . . 1– – : ; – ; 6 – -2012: 156 . . 2. – , , 2012 1–8% , . , , . , - 15 %, 1–3 . . 1 – 5 %, 1–3 . . , 0,2 0,5 % - 7- . [4] , 1158 [5]. , 5° , 2– 2 2. , , % 1 -5 ° ) 2 3 3 – – 3,16 3,05 3,07 3 1,10 1,08 0,95 1,04 – – 3 – – 5,32 5,53 5,50 5,45 -5 ° ) , 3,09 4,05 4,45 4,46 3,22 3,12 3,24 6,77 6,91 6,78 4,32 3,19 6,82 - . 2– , ( 3% 5 ° ) . . ( , 5° ) 3% 3% 3% . , . , , , 1, 3 24 – 38 % - . 5% . , 5° , . – . 157 1. , . . ./ . . . 2. – .: . . / . . . .) [ .]. – [ ]: 5802-78. – , 1981. – 22 . , . . 1993-01-01. – .: ; . 3. 28840-90. – 4. 8905-87; , . . . .]. – : . , . . // : , 2011. – 497 . , . . // -2011: . : , 2011. – 497 . 5802-78; . 1986-07-01. – .: ( [ ]: , 1991. – 8 . – -2011: . . ./ . . ; 5. .: . . ( . 1158-2008. – . 2009-01-01. – – , / .) : ]: - .[ : , 2000. – 11 . . . . , - . 72.03(075.8) . XIV – XVII . , - . , , , , - . XIV – XVII . . : ( ) ( , ), . , - . . , , . XV . – - , . , , ( . , 1). . . , . – . – , , 1– . . XIV – XVII . -2012: 158 1506 – 1510 . , , . . 2. – 1568 . , 2012 . , . . . , . , 8 . ., , 70 . . – – , , . . - . . - . , , - , . - . [1, c.137]. , . . : . ( ) 12×12 , . , - . , , , « . – , , ». , , , , . 1,25 XVII . , . , . , - . . XVI . . . , - , . 20 – 30 . XVI ., . , . , . : , , ( XVI – , . XVI . – XVII . , , [2, c.169]. . XVII .) « » [1, c.140]. ( 2), . , , , , - , - . 2– . XVII . . . 159 XVI . , . , . - , - . , . . 1891 . , 201941 – 1942 . – 1983 . . XX . - . [2, c.171]. 1968 ., - 1987 . . . , ( , , [2, . 59] – , . - ) , . , , , , . , . - , , ( , « » , ). – . , . ( , 3 – 13 ., 9. , .) , 525], [3, . : . , , , , . » [4, c. 351]. , . - , . – , . : , , – - , - . , . 1. 2. , . . , . . / . .– : , 2007. – 200 . / . . .– : , 1986. – 240 . 3. , . . , 1978. , . , 1998. – 538 . 4. .: XIII – XVIII . / . ./ ; . . . .– . . : . .– In the work examined achitecture peculiarities of the Mirski Castle. Special attention is given to the research of the elements of Gothic and Renaissance in castle erection. The study of reflection of the national colour traits in castle construction became the important part of the analysis. – . . . , , - -2012: 160 . . 2. – , 2012 530.1 . . . , , . . , . , . - , . . - . ( ) - . , , : – ( . . . gif). jpeg , , , ( ). , , – - , , , . . . . , , . . - , . . – . , , ; – . . - ; – 1. 2. – . . . . – , . , » – - , , , . , , , . , , . , . . , , . , , . – , , , – . , , , ln3/ln2=1.584962501. , . , . , - , . , . , , . . . , . , . . . , - , . , . ln9/ln3=2.0. , 161 1– . . , , . - , . - , . . , , , , , - , . ln4/ln3=1,261859507. 2– , . . – , , – , : . , . .3 : . , , , . - , . , . ( ) ( δ = 1 / 3 ). 60o - −60 o . . . , (X1Y1) − (X2Y2 ) , . . r -2012: 162 . . 2. – , 2012 3– ( ). . 3 ) . . . . . , . . , (Limited Diffusion Agregation – . , . , .- . , . , . , . . , . .– , / .- . : , 1991. . / . , / - . ). . / . , - , – 1. 2. 3. 4. 5. 6. . , , LDA- - ( / . – .: . – .: . . . .– . .– .: , 2000. – 352 . , 2002. , 1993. .: / . , 1993. .– : , 2001. Fractals find the increasing and the increasing application in a science. The principal cause of it consists that they describe the real world sometimes even better, than the traditional physics or mathematics. – . . , . , , . 530.1 . . . , 1825 , - . , , – . 1907 . - . . , , , . , - . , ( . 1). , λ, , ( φ . , , X [0, 2π] . - ∆t ) RND ( ξ ): , , - 163 φ = 2πξ . 1– λ =1, , : ∆x = λ cos φ, ∆y = λ sin φ. , ∆t . , . - , ( x k , yk ) : φk = 2πξk ; x k = x k −1 + cos φk ; y k = yk −1 + sin φk ; t = 0 : x 0 = 0; y0 = 0, t=k. ) , . 2. , . . N max = 2000 – ( , .3 t = 10,100,1000 . , , - , N max . . , , – , , . « . , , . . , . 2– 3– 4– » - -2012: 164 . . 2. – , , 2012 . , . . . ( x ki , yki ) t=k i - : 1) rki2 = x 2ki + y2ki ; 2) : δ= rki2 − Rm k ; δ Rm k := Rm k + ; i (i − 1) δ2 Sm k := Sm k + ; i i Rm k – k . 5– 3) N max ( - , ): N max Sm k := Rm k Sm k N max tk . - , . . 5. , , - 165 r 2 = at + b . .5 . N max → ∞ . : , , - , , . , , . , , . , , . , r r , r r= - t t ∑ ∆r r k , k =1 r ∆ rk – k . t r r2 = ∆ rk k =1 ∑ t = ∑ 2 t ∑ ( ∆ r )2 = + k =1 t ∑∑ ( ∆ r ) ⋅ ( ∆r ) + k =1 t r ( ∆ r )2 r ∑∑ ( ∆r ) ⋅ ( ∆r ) r r i i r r k i = k =1 i ≠ k =t , k =1 i ≠ k r ( ∆ r )2 = 1 , , r r ( ∆ri ) ⋅ ( ∆ri ) = 0 , , . , , - – . . ( a = 1, b = 0 ) . , , . ( , , ) , . , ( ). , . r + ∆r r , 2πr∆r . , – - – . 1. , 1976. 2. 3. , . . / , . . , . . .– , 1978. , . . . . 4. 5. , . 6. , . 29. – 424 . / .– / / . . .– , 1977. – . 50. . – .: 1968. / . . / . . . . . . . , 1976. . // .– .: .– , - . . ., 1976. – Brownian motion – in science, random motion of microscopic visiblesuspended in the liquid (or gas) particles (Brownian particle) solids (dust grains, grains of particulate matter, particles of pollen, etc.) caused by the thermal motion of the fluid (or gas). We should not confuse the term «Brownian motion» and «thermal motion»: the Brownian motion is a consequence and evidence of the existence of thermal motion. – , . . . , . , -2012: 166 . . 2. – , 2012 678.01:620.3 . . . , , , , . , . , ( ), , (1) [1]: (xyz) , (x’y’z’). C cos x ' x cos y ' x cos z ' x C = cos x ' y cos y ' y cos z ' y , x, y, z – , (1) cos x ' z cos y ' z cos z ' z x’,y’,z’ – - . , abc αβγ ( , . 1). 1– (a, b, c) , ( ) , ( , , ) , , b, , ,z x z , M, M – 1 a 1 − M = 0 0 - . - −1 , , : x = y ,y z z , ctgγ a 1 b sin γ − 0 = x −1 y z , [2]: (2) c cos β a b cos γ c (cos α − cos β cos γ ) , ( M ) = 0 b sin γ sin γ c⋅r 0 0 sin γ cos γ cos α − cos β a*r* ar sin γ sin α * cos β cos γ − cos α = 0 br sin γ 0 sin γ cr a * ( cos β * − cos γ *cos α *) sin α * b *sin α * 0 (3) a *cos β * b *cos α * c* (4) 167 ( r = 1 − cos 2 α − cos 2 β − cos 2 γ + 2cos α cos β cos γ ( ) 1 2 , r∗ = 1 − cos 2 α∗ − cos 2 β∗ − cos 2 γ∗ + 2cos α∗ cos β∗ cos γ∗ a*, b*, c*, *, *, * – 1 2 , [3]. :« ». ) . 19 – , - , . . , 10−6 ÷ 10−8 (6 – 8 - ) . . 9 , . , , , , - . : 1– + : , – , – + + + + – + , + + + + – , – - . , , ( , , , ( ( ( ), ). - ), , ) ( ), . (h k l). , hkl , - /h, b/k, /l, , , z. , . . hkl , . (hkl) ( hi )l - , ( hi )l = g ( hi )l .( (5) [1]: ( hi )l = M −1 gM ( hi )l . (5, 6) ( hi )l – (6) , . ( hi )l . 2. . , : , , , . . , , . . , m3, 432, m3m , , . S (kkk) , . S (h00) , k h , , - -2012: 168 . . 2. – 2– ( , 2012 (h00)) 1 1, m 1 (h00) 2 2, 1 ,2/m,mm2,222,mmm 2 ± ( ± h00) 3 3 − 33 ( h 00 ) − 34 − 4 4,4/m,4mm,422,4/mmm, 4 , 4 2m − ( ± h00) − 6, 3 ,6m,3m,6mm,32,622, 3 m, 5 − 6 − 6/mmm, 6 , 6 m2 ( h0h 1) , , - . , . . , , - , . , , - . , . , . - . – , . , , . ( ) , . , - . , , ( ) , , , , – , ( . - . ) . . – - . ( ) , , - , . , - . , , 1. , . . [ .] // 2. , . . 3. , . . / . . [ .]; . , . – 2009. – 4. – . 35 – 47. : . / . . .– : . . . . , . . .– : : , 1998. – 78 . , , , 2010. – 336 . / . . - : - The general form of regular polyhedral crystal habit built of nanocrystals of different shapes. It is shown that, depending on the atomic interactions on the concentration of molecules, nanoparticles may have a habit of the shape of a sphere, ellipsoid of revolution, a triaxial ellipsoid, scales or whisker. – , . . , , - 169 620.3 . . S (r ) , . . . . , – – , , : , . . , . , . - . – , . . , – . , , . , L0, . ( L0 = 100 - ), . . 1. (S ) 1– SV – , , , L0 – 1, : S (r) = α, n – . SV L n exp α 0 − 1 r 3 (1) , 2 , . , - L0 - . , , , . L0 = h, k , m – . – . 1 −1 1,5 ⋅ h ( θ D ) 2 = 230 ( θ D ) 2 km , [ ], (2) ; θD – , -2012: 170 , . . . . 2. – , 2012 [4], . , . [5], , , - , , , , 5 . .2 , E0 ( E) 2– ( E0 ) 3 -1 - . [5]. L0 − + 25 , 270 -1 ( SiO 2 , . . 3. . , -1 300 , . 3– SiO 2 800 [4] . ( L0 > 100 « « ), o 1000 C [7] Fe − Cr a , - Fe » ». 7 , . 4, , L0 , - . , , , . . , , ( . , , - .). . , , . , - 171 . 15÷30 L0 = 8 , , [1] 4– ∆R . L0 − Fe − Cr [6] , r ≈ 100 , , 1. r ≈ 30 . . - , . . : / . . .]; . . . . , . . .– : , 2009. – 439 . , . . : , , : / . . [ .]; . . . . , . . .– : , 2010. – 336 . , . . / . . // –2. : 2003. – . 3. – . 4 – 11. , . / . . – .: . .. . 1967. – 696 . Ajayan, P.M., Schadler, L.S., Braun, A.V. Nanocomposite science and technology / P. M. Ajayan, L. S. Schadler, A. V. Braun // Willey – VCY. Gmbh I Co KgaA, 2004. − 230 p. , . . / . . , . . . − .: , 1967. − 143 . Poole, Ch. P., Owens, F. J. Introduction to nanotechnology / Ch. P. Poole, F. J. Owens // Wiley – interscience, 2003. – 320 p. , ., , . . .: , 2005. – 334 .). [ 2. 3. 4. 5. 6. 7. We propose a unified function describing the dependence of the parameters of the physical properties of substances on the size of the particles in the nanoscale. The method of bringing this function to a linear form. According to experimental data, the required parameters. – , . . , , - . 584.1 . . 3- 6- , 0, 1+ τ 0,±1 2 τ– , (532), 1984 . 3. 6- . 3, 5. . - Al Mn. . . [1], , , , . 1. , - -2012: 172 1– . . 2. – , 2012 , – ) , 5. . , , , , - . . . (h, k, l), , . (h, k, l) - , . , . 5, . 2) ( . 3). . G, 3 m3m : - 0 0 1 −1 0 0 1 0 0 G = 1 0 0 , 0 − 1 0 , 0 1 0 . 0 1 0 0 0 1 0 0 −1 2– 3– 3 , . 2 - z. xy. , 0, ±1. . . 173 , 532 [3]. , ( ) 5. 3 z, . 532 , p- : , t- 3- 5 yz − λ(λ + 1) λ + 0,5 0 t z = − λ(λ + 0,5) − λ(λ + 1) 0 0 0 1 p yz 3 yz, τ 2 (2λ + 1)(τ + 2) = 6 (2λ + 1) − 3 − (2λ + 1)(τ + 2) 6 τ 2 + 0,5 1 3 5 z − 1 2 4 − τ2 10 4 − τ2 − 10 t yz = − τ 2 3+ τ 2 0 pz = 4 − τ2 10 τ2 + 1 5 4τ 2 − 1 10 τ2 − 4 5 τ2 − 4 5 2τ 2 + 1 5 − τ τ = 5 −1 ; λ – 2 , 2λ + 1 3 1 3 2λ + 1 3 3+ τ 2 τ 2 0 0 0 1 1 =x x 1− x λ= , 3 −1 . 2 , , . - . t p= p : 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 t= 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 1 0 . 0 532 3- [2]. 532 , , ( , ), , . . , . , -2012: 174 . . 2. – , 2012 , . - , , , , . D. Shechtman 2011 - . , , , , 6×6 . . 6±1 - 3- , 3- 3- . 1. Shechtman, D., Blech, I., Gratias, D., Cohn, J.W. // Phys. Rev. Lett. – 1984. – V. 53. – P. 1951. 2. , . . 3. . // . 1991. – . 36, . 4. – . 809 – 812. 3. , . . / . . . . , . 2. – 2011. – 3. – . 129 – 135. 6- / , . . // We construct the matrix generators of the point group symmetry of the dodecahedron (532), a 3 and 6 dimensional spaces. Boreholes matrix generators are 0, 1 + τ and 0, ± 1, respectively. Where is the golden ratio. – , . . , , - . 537.226 . . , Al Fe , . . . , , . , , . . . ( ) [1]. ( , . 1). 1– . - 175 , . - , - . « », - . .. , , , , . , , . - . , (hkl). . 2 , [1]. - , , 5 , , . , (1). U ( x ) = U exp ( −λ ⋅ x ) , – (1) . , , , . , , . . , ( 1), - . 2– U(x). ; , ; , – – – , ; - – . – x=0 : , , , - , . ( ) , . . . ( - ) ∫ Ws = E ( x )e dx. , ,W , : W = Ws − E F . (2) , (3) -2012: 176 « » . . 2. – , 2012 , - . , . , , , - – – , . . , , ( , , ) - . . . . , . , , . . , , . , - , , , , « » « » , . 2( ) - u, Ag, u. 3( , ) ) ) ) Cu, Ag, Au ( ), 3– , u, Ag, [3]. ( ) ( ) u , . . , ( , . ) , - , . . , , , , . , , . . , - . , , , [4]. , , , , , . 1. , . . . . , . . , . . // . . 8 (47). – . 60 – 66. 2. , . . 1976. – 112 . 3. , . ( , . . – .: , 1978. – 352 . 4. . – 2009. – 4. – .10. . . / . . . . – , . , 2005 – . , . , . . Tlln (S,Se) / .- . , .– .: , )/ . / . . [ .]. – - 177 It has been established that the existence of electrostatic mosaic is possible for the surfaces of polycrystals Al and Fe in case of their electrically neutral surfaces. The amount of surface charge is influenced by symmetry of Fermi surface. – . , . , , - . 37.01653 . . , SKY CHARTS Sky Charts, . , . , Sky Charts». « ». . - , . , - . , , . , . Sky Charts. : 12- 20 , , . . , . , . , , - , . Sky Charts , , , , , , , . . : , : ( ), , - , , . . : ( , ) ( Sky Charts ). . , . Preference Catalog and Objects Parameters. , . , . , , . File – Online Recourses. Date / Time : system time) (use . Observatory Chart Appearance Projection . , , . ( ) ). Eyepiece , . . . CCD . = 9 (180°). - . , - , . . ° 20 ( - . «Eyepiece» − − − . . = 0 (0°), 40 2000 : 2000 / 20 = 100; 40° / 100 = 4°; 4° × 601 = 241, 24 . Identification ) long – Lines ( (short – . ) , , , , - , : , , , . Calendar . . , , -2012: 178 , ), , , . . 2. – , , ( , . , , 2012 - , . , , ( , ). , . . , . – : 1. «Field min» = 0 catalog. 2. 3. 4. 5. Stars 1. «Field max» = 30). . TYCHO catalog ( SKY2000, (nebulae), «Show Eyepiece». +100 , , 51. (Nebulae). . ( . 1). Find. ( – 1– 6. , , ( 51, , . ( ), ( , . .). , . .), . . B – V, , ( ( ), , . . «ESO SkyCat DSS» 7. (Online resource), «Images», , Connect. , 2– , 51, , , , . , , . , . ( ). 51. , Object list. , +1040 ). )( , «3' Ref. Cat. Bright Galaxies» ). +0030 . «Heasarc SkyView». $temp.fit M51.fit. ( .2). . - 179 8. , , , , . .), , , ). , , . 3. . «Intensity» «neg») ( ( 51, 9. ( , , .3). ). «Suppress Image». Background Image. . , , 10. ( - ( : , - . . : : NGC 6543, M 32, M 1, M 95, M 96, M 105, NGC 3344, NGC3386, NGC 3115, M 97, M 82, M 63, M 94, M 106, M 64, M 85, M 100, M 57, NGC 6826, M 27, M 77, NGC 246, NGC 613, NGC 7793, NGC 1097, NGC 1232, M 78, Barnard 33, NGC 3621, NGC 3109, M 104, NGC 5128, M 90. . , , , ( , Horizon Chart). . : , , . . , Sky Charts ( ) , . « , ». Astronomical computer program Sky Charts help to explore galaxies and nebulaes and allow monitoring of the galaxies to determine location and conditions of visibility. As a result of exploring astronomical computer program Sky Charts was developed lab «Galaxy observation». Also to use the program can increase the interest in the study of astronomy. – . , . , , - . 530.1 . . , . . , . . , . . ( ) . . . , , , [1]. . , , , , , . , -2012: 180 . . 2. – [2]. , 2012 [3]. - , . – . , e . , : m0 = m − , , ,l0 = σ,E0 = ε, , , . : τ0 = (m 0 ⋅σ2 / 2ε)0,5 , v0 = σ / τ0 ,a 0 = σ / τ20 ,F0 = σm0 / τ02 , σ,ε − . : m'i = mi / m0 R ij = rij / σ, Uij = u ij / ε, τ' = τ / τ0 : &&i = Fxi mx &&i = Fyi my (1) &&i = Fzi mz Fxi , Fyi , Fzi – , i , . (N − 1) i Fxi = ∂U (x j − xi ) , ∂R ij rij Fyi = ∂U (y j − yi ) , ∂R ij rij Fzi = ∂U (z j − zi ) , ∂R ij rij ( ), : (2) r r r rij = rj − ri , rij2 = (x j − x i )2 + (y j − yi ) 2 + (z j − zi ) 2 , i = 1..N, j = 1..N,i ≠ j U= ∑u i, j i, j ∂Uij 24 = ∂R ij R ij . 6 12 1 − 2 1 . R ij R ij (1) . ( 1. 2. 3. x 0i , y0i , z 0i , v x0i , v y0i , vz0i , i = 1..N 4. 5. 6. : ) τ' m'i ∆τ . ): σ : k=0 : k = k +1 ( τ0 : 181 τ = k∆τ 7. 24 = R ij 6 12 (x − x i ) 1 − 2 1 j , R ij m i ⋅ R ij R ij 24 8. a yi = R ij 6 12 (y − yi ) 1 − 2 1 j , R ij m i ⋅ R ij R ij a xi a zi = 24 R ij τ τ + ∆τ : 6 12 (z − z ) 1 − 2 1 j i R ij R ij m i ⋅ R ij 9. t: v xi,k = vxi,k −1 + a xi ∆τ, 10. v yi,k = v yi,k −1 + a yi ∆τ, v zi,k = v zi,k −1 + a zi ∆τ t: 11. 12. yi,k zi,k 13. 14. vxi,k −1 + vxi,k a xi ∆τ2 , 2 2 v yi,k −1 + v yi,k a yi ∆τ2 = yi,k −1 + ∆τ + , 2 2 vzi,k −1 + vzi,k a ∆τ2 = zi,k −1 + ∆τ + zi , 2 2 τ < τmax 4, . x i,k = x i,k −1 + ∆τ + 10. , [4]. 1– . , . , . . ( - 1). . . . - , . . , - . 1. 2. , . . , . .[ / . . ]. – 2008. , . . .– .: , 2001. – 356 . -2012: 182 3. 4. . , . ., , . . . . 2 .; . .[ .: . ( . ]. – 2005. / . .) [ .] / . , . . 2. – . . . . , .– . . , 2012 , . . , 2012. – . 237 – 239. : // Molecular dynamics is modeled by the motion of particles (atoms) in the Van der Waals nanoclusters. We study and analyze the geometric and dynamic characteristics of the atoms in the cluster. Compared to the dynamics of internal and surface atoms. . . , . , , . 539.21-022.532 . . ( ( ) ) ( ) . , , « » , , , . , . . , :« » . . » [1]. « , - , , : N P= Wj – , N – j ∑w j=1 V j (1) , ,V – , , . N , [2, . 49]. ( ( ) - ) = 0,74. . . , 1, ). ( 1, ). 2. 1– : ) ( 2– ), ; ) ( ) : ) . ; ) 183 , , , . . , , , - . j- nj, – rj, ρ j = n j / 4πrj2 (2) j. - 1000. 50 . 3 . 3– a n(n-1) 3 . . , , [3, . 23 – 31]. . , . « – - ». , , . , , ( , ( , 4, 4, ). 4– ), : ) - ; ) , , 0,74, - 0,76. – 0,79, – , 0,81. , . ( 5). , « « » - », . . , , » , , ( 6). , « - -2012: 184 . . 2. – , 2012 5– 6– « , « » » . , « » - , , , , 0,74. 7– « – » , . , . . , - , , . « – » « » , . , ( , . 7). , , , , - . 1. , . . 2002. – . XLVI, 5. 2. , . . 3. , . . , . . // : / . . .– / . .: // . . .– , 1972. – 396 . / . . – 2010. – . 23 – 31. . . , . . , . . - 185 If the properties of closed packing spheres structures were analysed, there are two types of these packings. The coordination numbers of different spheres are described. – , . , - . 539.21 . . , . . , , 1000. , , 1 - . : A 2 (s) = A2 (s ) – sin(2 πsrj ) 1 n , ∑ n j (f j )2 N j =1 2πsr j (1) ,s– – nj , fj rj – j . 2 (2) - F . , A2 (s ) , - , . N F(h, k, l) = ∑ f j cos 2π(hx j + ky j + lz j ), 1 , (hkl) – fj – (2) , ( xyz ) j – - . , 1000. , 1 , - , [1, . 67]. , , : . - Fm3m , ( , 1). , – : 2d sin θ = nλ, d– , – L, , : ∆(2θ) = – λ , L cos(θ) – , n = 1, 2, 3,K . . - (4) . ( ) , , ( (3) ) . , - -2012: 186 1– , 2012 . R2 R2 R2 R2 1 12 12 26 24 790 51 48 2170 76 72 3996 2 6 18 27 96 886 52 72 2242 77 96 4092 3 24 42 28 48 934 53 72 2314 78 0 4092 4 12 54 29 24 958 54 32 2346 79 96 4188 5 24 78 30 0 958 55 144 2490 80 24 4212 6 8 86 31 96 1054 56 0 2490 81 108 4320 7 48 134 32 6 1060 57 96 2586 82 96 4416 8 6 140 33 96 1156 58 72 2658 83 120 4536 9 36 176 34 48 1204 59 72 2730 84 48 4588 10 24 200 35 48 1252 60 48 2778 85 144 4728 11 24 224 36 36 1288 61 120 2898 86 24 4752 12 24 248 37 120 1408 62 0 2898 87 144 4896 13 72 320 38 24 1432 63 144 3042 88 24 4920 14 0 320 39 48 1480 64 12 3054 89 96 5016 15 48 368 40 24 1504 65 48 3102 90 72 5088 16 12 380 41 48 1552 66 48 3150 91 144 5232 17 48 428 42 48 1600 67 168 3318 92 48 5280 18 30 458 43 120 1720 68 48 3366 93 144 5424 19 72 530 44 24 1744 69 96 3462 94 0 5424 20 24 554 45 120 1864 70 48 3510 95 48 5472 21 48 602 46 0 1864 71 48 3558 96 8 5480 22 24 626 47 96 1960 72 30 3588 97 240 5720 23 48 674 48 24 1984 73 192 3780 98 54 5774 24 8 682 49 108 2092 74 24 3804 99 120 5894 25 84 766 50 30 2122 75 120 3924 100 84 5978 : R2 – , – 1– fCu ( s ) , . . 2. – , ( , f– – , ) , f (s ) – ,s– [2, . 331]. , , . , 1- , [2, . 333]. , « - 187 » , - . . , , , , , , - . . . . F(hkl) . . (hkl), F(hkl) - (hkl) 10!. . - . , , . - n f (s) , n– n- . , n R (r) , , , : A (s) = ∑f r ∫ R ( r ) = A (s) 1. , . . , . . , . . , . . ., 1961. – 863 . 2. j s n 2πsr , 2πsr exp 2πsr ds. 2πsr / . . .– : , . . - , 2009. – 438 . / . . .– .: . . .- . Nanocrystals can be prepared either by dispersing the large crystal, or cultivation around the central atom. In the second case, the growth of the particle can be considered as the formation of new coordination spheres around the central atom. We investigated the coordination sphere, until 1000. Table 1 shows the number the squares of the radii of coordination spheres, their coordination numbers, the number of atoms in a volume bounded by the coordination sphere. – , . . , , - . 378.018 . . . – . . , . : . , , , , - . . 170 7 – 11 . , , . – , . , , . - -2012: 188 , . . 2. – , 2012 , - . . , ( ), ), ( . , . « ». - , . , , . . - . , — . . , . . , , . , . , . , , » « « » . . , — . , , . - , , : 1) ( , , , . .); 2) ( , ); 3) . , ( ), , - . , , - , ( ). ( ) ( .), , : , , ( , , , . .), . .). , , ( , : , . . ? - ? , . , - , , . « :« , » , ...». , . ? ? ? .( ? , , , ?). . . , , , , - . . – ( ), , - , , , ( , , , ). , , , . , , , . ( ) , , . , - 189 , , , . . ( , : ), . , - ( Y, 0), , , . , , . , , , . , , . , – , – , – , . , ( ). : , , - . . • , . • • • • , - . ( ). , . , . , ( ). , , ,« », • ( , . ( , . ), . ) ), ), , , ( , , , , - . ( ) , . . , , , . , , . - , . . ( ), , , , . , , . , , > 100 %; , : < 0 oC. ( ). , ( ) , , « , , » , . , ( - , : ). , ( ), . - , ), ( , , . , , - -2012: 190 . . 2. – , 2012 . , - ( ). , , . , , , , , . : , , , - . .), , . , - , , - . The decision of problems concerns to practical methods of training and leans on active cogitative activity. Training of pupils to the decision of problems in physics – difficult process. Stages which allocate during the decision of problems are shown. Each stage is in detail considered. – , . . , , - . 548.4+548.7 . . S(r), - . S(r), . S(r). - . . , – . - [1]. , . , . , . 1– ; ; . 1 , , : . , , . . , S(r) , - 191 . - 2 [2, 3]. 2– . Sv – , L0 – - S = S(r ) , 2, : Sv S(r) = L exp α ( 0 ) n − 1 r , α, n – . L0 3 (1) 2 [4]: L0 = h, k, m . : −1 −1 1,5 ⋅ h (θD ) 2 = 230(θ D ) 2 km , , (2) ; θ – : Y = αX (4). 3 L 2 2 0 X (r ) = r − 1 r p L 0 S Y (r ) = ln v S(r ) ( α = tg (ϕ) . (4) 3– 3). (3) (4) S(r) Y(X), ( 4). -2012: 192 4– R– Y X ,C– Y=0 R . . 2. – S(r). ( .(4) – (5)) (- ), X (4) Y = α(X + A) S(r) . , 2012 : (5) : ln S0 (r ) – Sv (0) S (r ) = αX (6) . S (r ) . (6): α = 0,0088 , 0,89. α = 0,0018 , n =1. = 1,09 = 5,52 n =2. 0,88. 0,40496 , : α = 0,0045 , 505 K , L 0 = 30,8 , L0 . L - 12,7 : α = 0,198 , 0,84. α = 0,0021 , n =1. n =2. 1337 K , L = 17,7 = -2,59 . = -5,48 , , . , α , n =2. - . . 1. = -0,59 0,88. . 0,97. α = 0,0048 , n =1. = -0,35 0,95. - L – - . . / . . , . . , . . // .– : . – 2008. – . 223 – 272. , . . , / . . . – .: , 2005. – 416 . Ajayan, P. M. Nanocomposite science and technology / P.M. Ajayan, L. S. Schadler, A. V. Braun. – Weinheim: Willey, CY. Gmbh ICo KgaA, 2004. – 230 p. , . . : / . . // . 2. – 2007. – 2. – . 65 – 71. : 2. 3. 4. We analyze the generalized function S (r), describing the dependence of the properties of substances on the size of the particles in the nanoscale. The technique of adjusting the function S (r), obtained experimentally. – , . . . , , - 193 378.018 . . . . – - . , . , « » , - . . , , , , . , , , « , — » , , , , . , « » , , , , , , , , . , , : , , , - , . . , . , , - , , . , , , - . , , . - , , . , , - [1]. , , - . . . - . , , . . , , , , , , . , , , - . . , . . , , , . — . . , , , , , . , , . , , . - , . . , - , . , - . . . , . -2012: 194 , . , . . 2. – , , 2012 , , - . . , , . - [4]. , . , , - , : . . , . , , - . . , , , , . , . , , , . , . - . , : , , , , [3]. : , , . , , . - – . , , , . - , , . - . . , . , , , , . : — , , . . , . , . . , , . . , , — , , , . . , , , . , , . , - , . , , : , . . . , - . , . , - , .[5] . - , , . . , . , , , , - . , « ». , – », « , . . 195 , . - , . . . , . , - . , . , . , , . , . — , - . . , . 1. 2. 3. 4. 5. : / . / .– . . . – 2010. , . . , . . . . , . . .: . . .: , . . , 1983. / .. . . / . . // .– : , , 2006. – 172 . . , : . ,– . – 1997 . / , . . // : . – 2002. – 4. Value of out-of-class work is considered. Creation of system of additional education and education allows keeping and strengthening physical and mental health of children, steady interest to informative activity, and development of creative abilities of children. Additional education at school – means of continuous formation and formation of the person. – , . . . , , -