ЗАДАЧИ олимпиады ННГУ по МАТЕМАТИКЕ, 2009 год, 14 марта. Группа Б

реклама
ЗАДАЧИ олимпиады ННГУ
по МАТЕМАТИКЕ, 2009 год, 14 марта.
Группа Б
1. Представьте плоскость в виде объединения двух непересекающихся равных
множеств (множества считаем равными, если первое множество можно
совместить со вторым множеством или его отражением).
2. Пусть f :[ 0,1 [0,1 - функция, которая сопоставляет числу
х = 0,х1... хп… число f(х), полученное из х заменой всех цифр 3 на цифру 5 и
наоборот (всех цифр 5 на цифру 3). В каких точках из [0,1) функция f будет
непрерывной?
3. Найдите все функции f, удовлетворяющие условию
f(xy) = ( f(x) + f (y) ) / (x+y) при всех xR, не равных 0.
1
4. Найдите все решения дифференциального уравнения y ' '− 2 1− x y '
5. Проведите через прямую { x + y + z = 3; 2x – y + 3z = 4} плоскость,
паллельную линии пересечения плоскостей x - y - 2z = -1 и
3x + 2y - 4z = 9.
6. Вычислите предел функции
2
7. Вычислите интеграл
∫
0
tg x
sinx
− sin x
x4
1−
2
=0.
x
tg x
при x 0 .
cos x
dx .
ex e
8. Исследуйте сходимость ряда 2 2− 2 2− 2 2 2− 2 2 2 ... .
9. При заданном натуральном n приведите пример таких матриц А и В размера
пхп, чтобы только скалярные матрицы Х удовлетворяли паре соотношений
АХ=ХА, ВХ=ХВ (скалярными называются матрицы, пропорциональные
единичной).
10.Значение многочлена Р с целыми коэффициентами в четырех различных
целых точках равно 3. Докажите, что многочлен Р не имеет целых корней.
n
3
11.Решите уравнение в натуральных числах: 2 − 1= m .
12.Пусть f - дифференцируемая функция на [;3], и f() = f(3) = 0.
Докажите, что существует такая точка c(;3), что f(c) = f '(c)sin сcos c.
2
13.Последовательность {xn} задана рекуррентно: x1 = 1, при n x n = 10x n−1 − x n− 1 .
Докажите, что она имеет предел и вычислите его.
97
8
8
14.Найдите все вещественные решения уравнения cos x sin x= 128 .
Скачать