Äîêóìåíò LATEX Wild Mathing Çàäà÷è, ôîðìóëû è òåîðåìû Àëãåáðà 1. 2. 3. 4. 5. Íàéäèòå ïðîèçâåäåíèå x1 x2 êîðíåé ìíîãî÷ëåíà f (x) = x2 + 7x + 1. Ðåøèòå íåðàâåíñòâî log22 x < 4. Ðåøèòå óðàâíåíèå sin√2x = 1. Ðåøèòå íåðàâåíñòâî 2x ⩽ x + 1. ( ) Íàéäèòå íàèìåíüøåå çíà÷åíèå âûðàæåíèÿ ÌÃÓ, 2021 log22 (ax) + log22 1−a x è âñå çíà÷åíèÿ ïàðàìåòðà a, ïðè êîòîðûõ îíî äîñòèãàåòñÿ. Ãåîìåòðèÿ 1. 2. 3. 4. 5. . △ABC ∼ △A1 B1 C1 ⇒ ∠ABC = ∠A1 B1 C1 BC ∥ AD ⇒ ∠DAB + ∠ABC = 180◦ (l ⊥ β, l ⊂ α) ⇒ α ⊥ β γ ∩ α = a, γ ∩ β = b α ∥ β a∥b . . Ïóñòü è . Òîãäà . Ôîðìóëà êîñèíóñà óãëà ìåæäó âåêòîðàìè ⃗a è ⃗b: ⃗a · ⃗b c . cos (⃗a, ⃗b) = |⃗a| · |⃗b| Àíàëèç 1. Îïðåäåëåíèå ÷èñëà e: x 1 1+ . x→∞ x e = lim 2. Ñóììà ðÿäà îáðàòíûõ êâàäðàòîâ: ∞ X 1 1 1 1 1 π2 = 2 + 2 + 2 + ... + 2 + ... = . 2 n 1 2 3 n 6 n=1 3. 4. Òàáëè÷íûé èíòåãðàë: Z 1 dx = arctg x + C. 1 + x2 Ãàììà-ôóíêöèÿ ÷åðåç àáñîëþòíî ñõîäÿùèéñÿ èíòåãðàë: +∞ Z Γ(z) = tz−1 e−t dt, z ∈ C, Re(z) > 0. 0 5. Ïðåêðàñíàÿ ôîðìóëà Ðàìàíóäæàíà: 1+ 1 1 1 1 + + + + ... + 1·3 1·3·5 1·3·5·7 1·3·5·7·9 r 1 = 1 1+ e·π . 2 2 1+ 3 1+ 4 1+ 1+ 5 1 + ... 1 Äîêóìåíò LATEX Wild Mathing Ðåøåíèÿ 1. 2. Ïîñêîëüêó äèñêðèìèíàíò êâàäðàòíîãî òðåõ÷ëåíà ïîëîæèòåëåí, òî ïî òåîðåìå Âèåòà x1 x2 = 1. Èñïîëüçóÿ, ôîðìóëó ðàçíîñòè êâàäðàòîâ, ïîëó÷èì log22 x < 4 ⇔ (log2 x − 2) (log2 x + 2) < 0. Äàëüøå âñå ïðîñòî: −2 < log2 x < 2 ⇔ 3. 1 < x < 4. 4 Ðåøèì ïðîñòåéøååå òðèãîíîìåòðè÷åñêîå óðàâíåíèå: sin 2x = 1, π + 2πn, n ∈ Z, 2 π x = + πn, n ∈ Z. 4 2x = 4. Íå çàìåòèâ áîëåå ïðîñòîãî ïóòè, âûïîëíèì ðàâíîñèëüíûå ïðåîáðàçîâàíèÿ. x + 1 ⩾ 0, 2x ⩽ x2 + 2x + 1, 2x ⩾ 0 x ⩾ −1, ⇔ x2 ⩾ −1, x⩾0 ⇔ x ⩾ 0. Âûðàæåíèå èìååò ñìûñë òîëüêî ïðè x > 0 è 0< a < 1, è äàëüíåéøèå ðàññóæäåíèÿ ïðîâåäåíû . Òîãäà, èñïîëüçóÿ íåðàâåíñòâî ìåæäó ñðåäíèì ñ ó÷åòîì ýòîãî. Ïóñòü b = log2 (ax), c = log2 1−a x êâàäðàòè÷åñêèì è ñðåäíèì àðèôìåòè÷åñêèì, à òàêæå ñâîéñòâî ñóììû ìîäóëåé, ïîëó÷èì 5. r log2 (ax) + log2 b2 + c2 |b| + |c| |b + c| ⩾ ⩾ = 2 2 2 2 1−a x = log2 (−a2 + a) log2 ⩾ 2 2 1 4 = 1. Òàêèì îáðàçîì, äîêàçàíà îöåíêà: log22 (ax) + log22 1−a x ⩾ 2, ïðè÷åì ðàâåíñòâî äîñòèãàåòñÿ òîëüêî ïðè a = 12 . Äîïîëíåíèÿ Ñèìâîëû ∅ ∀ ∃ % {a} φ ε Q B ̸∈ ± × ̸= ≡ ∼ = ¾¿ · · · Çàäà÷à Ðåøèòå íåðàâåíñòâî |log3 x| ⩾ 1. Èñïîëüçóÿ ðàâíîñèëüíûå ïåðåõîäû, ïîëó÷èì Ðåøåíèå. " Îòâåò: 0; 13 ∪ [3; +∞) x ⩾ 3, ⇔ 1 log3 x ⩽ −1 0<x⩽ . 3 log3 x ⩾ 1, . 2