ОГЛАВЛЕНИЕ 3 Сдвиг 3.1 3.2 4 38 Îñíîâíûå ïîíÿòèÿ î ñäâèãå . . . . . . . . . . . . . . . . . . . 38 Âîïðîñû äëÿ ñàìîïðîâåðêè . . . . . . . . . . . . . . . . . . . 40 Теория напряжённого и деформированного состояния 41 4.1 4.2 41 Îñíîâíûå ñâåäåíèÿ î íàïðÿæ¼ííîì ñîñòîÿíèè äåòàëè â òî÷êå Íàïðÿæåíèÿ íà ïðîèçâîëüíîé ïëîùàäêå ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè . . . . . . . . . . . . . . . . . . . . . . 4.3 Íàïðÿæåíèÿ íà ïðîèçâîëüíîé ïëîùàäêå ïðè ïëîñêîì íàïðÿæ¼ííîì ñîñòîÿíèè . . . . . . . . . . . . . . . . . . . . . . 4.4 Ãðàôè÷åñêèé ñïîñîá îïðåäåëåíèÿ íàïðÿæåíèé ïðè ïëîñêîì íàïðÿæ¼ííîì ñîñòîÿíèè. Êðóãè Ìîðà . . . . . . . . . . 4.5 Íàïðÿæåíèÿ íà ïðîèçâîëüíîé ïëîùàäêå ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè . . . . . . . . . . . . . . . . . . . . . . 4.6 Êðóãè ïðè Ìîðà îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè . . . . 4.7 Çàêîí Ãóêà ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè . . . . . 4.8 Ïîòåíöèàëüíàÿ ýíåðãèÿ óïðóãîé äåôîðìàöèè ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè . . . . . . . . . . . . . . . . . . 4.9 Îòíîñèòåëüíîå èçìåíåíèå îáú¼ìà òåëà . . . . . . . . . . . . 4.10 Òåîðèè ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé (òåîðèè ïðî÷íîñòè) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10.1 I òåîðèÿ ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé . . . . 4.10.2 II òåîðèÿ ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé . . . 4.10.3 III òåîðèÿ ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé . . . 4.10.4 IV òåîðèÿ ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé . . . 4.11 Âîïðîñû äëÿ ñàìîïðîâåðêè . . . . . . . . . . . . . . . . . . . 5 2 44 45 47 51 52 53 56 58 59 61 61 62 63 65 Геометрические характеристики поперечного сечения бруса 5.1 5.2 5.3 5.4 5.5 66 Îñíîâíûå ïîíÿòèÿ î ãåîìåòðè÷åñêèõ õàðàêòåðèñòèêàõ . . . Ìîìåíòû èíåðöèè ýëåìåíòàðûõ ñå÷åíèé . . . . . . . . . . . 5.2.1 Ïðÿìîóãîëüíèê . . . . . . . . . . . . . . . . . . . . . 5.2.2 Êðóã . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Êîëüöî . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Òðåóãîëüíèê . . . . . . . . . . . . . . . . . . . . . . . 5.2.5 Ïðîêàòíûå ïðîôèëè . . . . . . . . . . . . . . . . . . . Çàâèñèìîñòü ìåæäó ìîìåíòàìè èíåðöèè îòíîñèòåëüíî ïàðàëëåëüíûõ îñåé, îäíè èç êîòîðûõ öåíòðàëüíûå . . . . . . Ãëàâíûå îñè èíåðöèè è ãëàâíûå ìîìåíòû èíåðöèè ñå÷åíèÿ Çàâèñèìîñòü ìåæäó ìîìåíòàìè èíåðöèè ñå÷åíèÿ ïðè ïîâîðîòå îò ãëàâíûõ îñåé . . . . . . . . . . . . . . . . . . . . . . 66 68 68 69 69 70 70 71 72 74 3 ОГЛАВЛЕНИЕ 5.6 Îïðåäåëåíèå ãëàâíûõ ìîìåíòîâ è ïîëîæåíèÿ ãëàâíûõ îñåé èíåðöèè ñå÷åíèÿ . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Èññëåäîâàíèå ìîìåíòîâ èíåðöèè ãðàôè÷åñêèì ñïîñîáîì . 5.8 Ýëëèïñ èíåðöèè . . . . . . . . . . . . . . . . . . . . . . . . 5.9 Îïðåäåëåíèå ìîìåíòîâ èíåðöèè ñëîæíûõ ñå÷åíèé . . . . . 5.10 Âîïðîñû äëÿ ñàìîïðîâåðêè . . . . . . . . . . . . . . . . . . 6 Изгиб 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 7 . . . . . 76 77 78 80 82 84 Îñíîâíûå ïîíÿòèÿ îá èçãèáå. Ðàñ÷¼òíàÿ ñõåìà áàëêè . . . . 84 Ïîïåðå÷íàÿ ñèëà è èçãèáàþùèé ìîìåíò . . . . . . . . . . . 88 Äèôôåðåíöèàëüíûå çàâèñèìîñòè ìåæäó 𝑞 , 𝑄 è 𝑀 . . . . . 90 Ðàâíîäåéñòâóþùàÿ ðàñïðåäåë¼ííîé íàãðóçêè è å¼ ïîëîæåíèå 91 Ïîñòðîåíèå ýïþð ïîïåðå÷íûõ ñèë 𝑄 è èçãèáàþùèõ ìîìåíòîâ 𝑀 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Êîíòðîëü ïðàâèëüíîñòè ïîñòðîåíèÿ ýïþð 𝑄 è 𝑀 . . . . . . 94 Íàïðÿæåíèÿ â áàëêå ïðè èçãèáå . . . . . . . . . . . . . . . . 95 6.7.1 Íîðìàëüíûå íàïðÿæåíèÿ â áàëêå ïðè èçãèáå . . . . 96 6.7.2 Êàñàòåëüíûå íàïðÿæåíèÿ â áàëêå ïðè èçãèáå. Ôîðìóëà Æóðàâñêîãî . . . . . . . . . . . . . . . . . . . . 100 Ðàñ÷¼ò áàëîê íà ïðî÷íîñòü ïî äîïóñêàåìûì íàïðÿæåíèÿì . 105 Ðàöèîíàëüíàÿ ôîðìà ïîïåðå÷íîãî ñå÷åíèÿ áàëêè . . . . . . 109 Ïåðåìåùåíèÿ áàëîê ïðè èçãèáå . . . . . . . . . . . . . . . . 111 6.10.1 Ïðîãèá è ïîâîðîò ïîïåðå÷íîãî ñå÷åíèÿ áàëêè . . . . 111 6.10.2 Äèôôåðåíöèàëüíîå óðàâíåíèå èçîãíóòîé îñè áàëêè 112 Áàëêè ïåðåìåííîãî ñå÷åíèÿ . . . . . . . . . . . . . . . . . . . 115 Áàëêè ðàâíîãî ñîïðîòèâëåíèÿ . . . . . . . . . . . . . . . . . 117 Âîïðîñû äëÿ ñàìîïðîâåðêè . . . . . . . . . . . . . . . . . . . 118 Кручение 119 7.1 119 7.2 7.3 7.4 7.5 7.6 Îñíîâíûå ïîíÿòèÿ î êðó÷åíèè. Êðóòÿùèé ìîìåíò . . . . . 7.1.1 Âû÷èñëåíèå ìîìåíòîâ, ïåðåäàâàåìûõ íà âàë, ïî ìîùíîñòè è ÷èñëó îáîðîòîâ . . . . . . . . . . . . . . . . . Íàïðÿæåíèÿ êðóãëîãî âàëà ïðè êðó÷åíèè è ðàñ÷¼ò íà ïðî÷íîñòü . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ïåðåìåùåíèÿ ïðè êðó÷åíèè êðóãëîãî âàëà . . . . . . . . . . Ðàñ÷¼ò âèíòîâûõ öèëèíäðè÷åñêèõ ïðóæèí ñ íåáîëüøèì óãëîì ïîäú¼ìà âèòêà . . . . . . . . . . . . . . . . . . . . . . . . Êðó÷åíèå áðóñüåâ íåêðóãëîãî ñå÷åíèÿ . . . . . . . . . . . . . Êðó÷åíèå òîíêîñòåííûõ áðóñüåâ (ñâîáîäíîå êðó÷åíèå) . . . 7.6.1 Ñâîáîäíîå êðó÷åíèå òîíêîñòåííûõ áðóñüåâ ñ îòêðûòûì ïðîôèëåì . . . . . . . . . . . . . . . . . . . . . . 121 122 127 129 131 132 133 ОГЛАВЛЕНИЕ 4 7.6.2 7.7 8 Îáùèé ñëó÷àé ñâîáîäíîãî êðó÷åíèÿ òîíêîñòåííîãî áðóñà ñ îòêðûòûì ïðîôèëåì . . . . . . . . . . . . . . 134 7.6.3 Ñâîáîäíîå êðó÷åíèå òîíêîñòåííûõ áðóñüåâ ñ çàìêíóòûì ïðîôèëåì . . . . . . . . . . . . . . . . . . . . . . 135 Âîïðîñû äëÿ ñàìîïðîâåðêè . . . . . . . . . . . . . . . . . . . 137 Устойчивость сжатых стержней 8.1 8.2 8.3 8.4 8.5 8.6 139 Ïîòåðÿ óñòîé÷èâîñòè ñæàòûì ñòåðæíåì. Ôîðìóëà Ýéëåðà äëÿ êðèòè÷åñêîé ñèëû . . . . . . . . . . . . . . . . . . . . . . 139 Âëèÿíèå ñïîñîáà çàêðåïëåíèÿ ñòåðæíÿ íà êðèòè÷åñêóþ ñèëó143 Ïðåäåëû ïðèìåíèìîñòè ôîðìóëû Ýéëåðà. Ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé . . . . . . . . . . . . . . . . . . . . 146 Ðàñ÷¼ò ñæàòûõ ñòåðæíåé ñ ïîìîùüþ êîýôôèöèåíòà ñíèæåíèÿ îñíîâíîãî äîïóñêàåìîãî íàïðÿæåíèÿ . . . . . . . . . 148 Âûáîð ôîðìû ïîïåðå÷íîãî ñå÷åíèÿ è ìàòåðèàëà ñæàòîãî ñòåðæíÿ íà îñíîâàíèè ýêîíîìè÷åñêèõ ñîîáðàæåíèé . . . . . 151 Âîïðîñû äëÿ ñàìîïðîâåðêè . . . . . . . . . . . . . . . . . . . 153 Глава 1 Основные понятия 1.1 Предмет сопротивления материалов  ñîïðîòèâëåíèè ìàòåðèàëîâ èçó÷àåòñÿ ïðî÷íîñòü ýëåìåíòîâ êîíñòðóêöèè è ñîîðóæåíèé. Ñîïðîòèâëåíèå ìàòåðèàëîâ äèñöèïëèíà ýêñïåðèìåíòàëüíî-òåîðåòè÷åñêàÿ. Îíà òåñíî ñâÿçàíà ñ ìàòåìàòèêîé è òåîðåòè÷åñêîé ìåõàíèêîé.  îòëè÷èå îò òåîðåòè÷åñêîé ìåõàíèêè, ãäå òåëà (äåòàëè) ñ÷èòàþòñÿ àáñîëþòíî æ¼ñòêèìè, â ñîïðîòèâëåíèè ìàòåðèàëîâ äåòàëè ñ÷èòàþòñÿ äåôîðìèðóåìûìè.  ñîïðîòèâëåíèè ìàòåðèàëîâ èçó÷àåòñÿ ïðî÷íîñòü, æ¼ñòêîñòü è óñòîé÷èâîñòü ýëåìåíòîâ êîíñòðóêöèé, èìåþùèõ ôîðìó áðóñà. Прочность — это способность детали сопротивляться разрушению. Жёсткость — это способность детали сопротивляться изменению формы и размеров. Устойчивость – это способность детали сопротивляться быстро нарастающим изменениям формы и размеров при достижении силами, так называемых, критических значений. 1.2 Изучаемые объекты 1.Брус или стержень – это деталь (тело) (рис. 1.1), один размер которой значительно больше двух других. Áî́ëüøèé ðàçìåð íàçûâàåòñÿ äëèíîé áðóñà. Ìǻíüøèå ðàçìåðû ïîïåðå÷íîãî ñå÷åíèÿ. Ýëåìåíòû áðóñà: îñü áðóñà ëèíèÿ, ñîåäèíÿþùàÿ öåíòðû òÿæåñòè ïîïåðå÷íûõ ñå÷åíèé; 5 ГЛАВА 1. ОСНОВНЫЕ ПОНЯТИЯ 6 Ðèñ. 1.1. Áðóñ ïîïåðå÷íîå ñå÷åíèå ñå÷åíèå áðóñà ïëîñêîñòüþ, ïåðïåíäèêóëÿðíîé îñè. Ýòè ïîíÿòèÿ îäíîçíà÷íû: äëÿ ëþáîãî áðóñà îäíà îñü è äëÿ ëþáîé òî÷êè îäíî ïîïåðå÷íîå ñå÷åíèå. Áðóñüÿ áûâàþò ïðÿìûìè è êðèâûìè. Åñëè îñü ïðÿìàÿ ëèíèÿ, òî áðóñ ïðÿìîé, åñëè îñü êðèâàÿ ëèíèÿ áðóñ êðèâîé. Åñëè ðàäèóñ êðèâèçíû îñè áðóñà çíà÷èòåëüíî áîëüøå ðàçìåðîâ ïîïåðå÷íîãî ñå÷åíèÿ, òî áðóñ ìàëîé êðèâèçíû, åñëè æå ðàäèóñ ìåíüøå ðàçìåðîâ ïîïåðå÷íîãî ñå÷åíèÿ, òî áðóñ áîëüøîé êðèâèçíû. Áðóñüÿ áûâàþò ïëîñêèìè è ïðîñòðàíñòâåííûìè. Åñëè îñü áðóñà ïëîñêàÿ êðèâàÿ, òî áðóñ ïëîñêèé; åñëè æå îñü ïðîñòðàíñòâåííàÿ êðèâàÿ, òî áðóñ ïðîñòðàíñòâåííûé. Áðóñüÿ áûâàþò ïîñòîÿííîãî è ïåðåìåííîãî ïîïåðå÷íîãî ñå÷åíèÿ. Ïðèìåðû áðóñüåâ: âàëû (ðàçëè÷íûå); êðûëî ñàìîë¼òà è ò.ä. 2. Ïëàñòèíà ýòî òåëî, îäèí ðàçìåð êîòîðîãî (òîëùèíà) çíà÷èòåëüíî ìåíüøå äâóõ äðóãèõ. Ïëàñòèíà, èìåþùàÿ èñêðèâëåíèÿ â îäíîì èëè â äâóõ íàïðàâëåíèÿõ, íàçûâàåòñÿ îáîëî÷êîé. Ïðèìåðû: ãàçîâûé áàëëîí, áàê ðàêåòû, ôþçåëÿæ ñàìîë¼òà. 1.3 Основные гипотезы о деформируемом теле 1.Ãèïîòåçà ñïëîøíîñòè.  ñîïðîòèâëåíèè ìàòåðèàëîâ âñå òåëà, äåòàëè ñ÷èòàþòñÿ ñïëîøíîé ñðåäîé áåç ïóñòîò (ïðåíåáðåãàÿ àòîìíûì ñòðîåíèåì ìàòåðèàëà). 2. Ãèïîòåçà èäåàëüíîé óïðóãîñòè.  ñîïðîòèâëåíèè ìàòåðèàëîâ âñå ìàòåðèàëû ñ÷èòàþòñÿ èäåàëüíî óïðóãèìè. Óïðóãîñòü ýòî ñïîñîáíîñòü òåëà (äåòàëè) âîññòàíàâëèâàòü ñâîè ôîðìó è ðàçìåðû ïîñëå ñíÿòèÿ íàãðóçêè. Åñëè ôîðìà è ðàçìåðû âîññòàíàâëèâàþòñÿ ïîëíîñòüþ, òî ýòî ñëó÷àé èäåàëüíîé óïðóãîñòè. ГЛАВА 1. ОСНОВНЫЕ ПОНЯТИЯ 7 Ïðîòèâîïîëîæíîå óïðóãîñòè ñâîéñòâî ïëàñòè÷íîñòü. Ïëàñòè÷íîñòü ýòî ñïîñîáíîñòü òåëà (äåòàëè) ïîëó÷àòü íåèñ÷åçàþùèå, îñòàòî÷íûå èçìåíåíèÿ ôîðìû è ðàçìåðîâ. 3.Ãèïîòåçà îäíîðîäíîñòè è èçîòðîïíîñòè. Ìàòåðèàë (òåëî, äåòàëü) ñ÷èòàåòñÿ îäíîðîäíûì, åñëè åãî óïðóãèå ñâîéñòâà îäèíàêîâû âî âñåõ òî÷êàõ. Åñëè óïðóãèå ñâîéñòâà íå îäèíàêîâû ìàòåðèàë íåîäíîðîäåí. Ìàòåðèàë ñ÷èòàåòñÿ èçîòðîïíûì, åñëè åãî óïðóãèå ñâîéñòâà îäèíàêîâû ïî âñåì íàïðàâëåíèÿì. Åñëè óïðóãèå ñâîéñòâà íå îäèíàêîâû ìàòåðèàë àíèçîòðîïåí (ïðèìåð: äðåâåñèíà). 4.Ãèïîòåçà Ñåí-Âåíàíà. Åñëè ê íåêîòîðîé ÷àñòè òåëà ïðèëîæåíà ñàìîóðàâíîâåøåííàÿ ñèñòåìà ñèë, òî äåéñòâèå ýòî ñèñòåìû áûñòðî óáûâàåò ïî ìåðå óäàëåíèÿ îò ìåñòà ïðèëîæåíèÿ ñèë (ðèñ 1.2). Ðèñ. 1.2. Âëèÿíèå ñèñòåìû ñàìîóðàâíîâåøåííûõ ñèë Ñëåäñòâèå. Åñëè ñèñòåìó ñèë, ïðèëîæåííóþ â íåêîòîðîé ÷àñòè äåòàëè, çàìåíèòü ñòàòè÷åñêè ýêâèâàëåíòíîé ñèñòåìîé, ïðèëîæåííîé â ýòîé æå ÷àñòè äåòàëè, òî ýòà çàìåíà ñêàæåòñÿ òîëüêî â îáëàñòè ïðèëîæåíèÿ ñèë. 5.Ãèïîòåçà íåèçìåííîñòè íà÷àëüíûõ ðàçìåðîâ. Äàæå ïðè ìàêñèìàëüíî äîïóñòèìûõ äåéñòâóþùèõ ñèëàõ èçìåíåíèå ôîðìû è ðàçìåðîâ äåòàëåé íàñòîëüêî ìàëû, ÷òî ïðè ñîñòàâëåíèè óðàâíåíèé ðàâíîâåñèÿ èìè ìîæíî ïðåíåáðå÷ü. Íàïðèìåð: øàðíèðíî-ñòåðæíåâîé êðîíøòåéí.  ñîîòâåòñòâèè ñ ýòîé ãèïîòåçîé 𝑙′ = 𝑙, 𝛼′ = 𝛼 (ðèñ 1.3). Ðèñ. 1.3. Íåèçìåííîñòü íà÷àëüíûõ ðàçìåðîâ 6. Ãèïîòåçà ïëîñêèõ ñå÷åíèé. Ñå÷åíèå áðóñà, ïëîñêîå è ïåðïåíäèêóëÿðíîå îñè äî íàãðóæåíèÿ, îñòà¼òñÿ ïëîñêèì è ïåðïåíäèêóëÿðíûì îñè ïîñëå íàãðóæåíèÿ . ГЛАВА 1. 1.4 ОСНОВНЫЕ ПОНЯТИЯ 8 Классификация внешних сил Âíåøíèìè íàçûâàþòñÿ ñèëû, ñ êîòîðûìè ñîñåäíèå äåòàëè (òåëà) äåéñòâóþò íà èçó÷àåìóþ äåòàëü. Âíåøíèå ñèëû áûâàþò ïîâåðõíîñòíûìè è îáú¼ìíûìè. Ïîâåðõíîñòíûå ñèëû ñèëû, ïðèëîæåííûå ê ïîâåðõíîñòè äåòàëè (ïðèìåð: ïîäú¼ìíàÿ ñèëà êðûëà ñàìîë¼òà). Îáú¼ìíûå ñèëû ñèëû, ïðèëîæåííûå ê êàæäîìó ýëåìåíòó äåòàëè (òåëà) (ïðèìåð: ñèëà âåñà, èíåðöèîííûå ñèëû). Âíåøíèå ñèëû áûâàþò ðàñïðåäåë¼ííûìè è ñîñðåäîòî÷åííûìè. Ðàñïðåäåë¼ííûå ñèëû ñèëû, ïðèëîæåííûå êî âñåé äåòàëè èëè ê å¼ ÷àñòè. Ñîñðåäîòî÷¼ííûå ñèëû ñèëû, ïðèëîæåííûå ê íåáîëüøîé ÷àñòè ïîâåðõíîñòè äåòàëè (ïðèìåð : ñèëà âçàèìîäåéñòâèÿ øàðèêà (ïîäøèïíèêà) è áåãîâîé äîðîæêè). Ñèëû áûâàþò ïîñòîÿííûìè è âðåìåííûìè. Ïîñòîÿííûå ñèëû ñèëû, äåéñòâóþùèå â òå÷åíèå äëèòåëüíîãî ïðîìåæóòêà âðåìåíè. Âðåìåííûå ñèëû ñèëû, äåéñòâóþùèå â òå÷åíèå íåáîëüøîãî ïðîìåæóòêà âðåìåíè Ñèëû áûâàþò ñòàòè÷åñêèìè è äèíàìè÷åñêèìè. Ñòàòè÷åñêèå ñèëû ñèëû, êîòîðûå ìåäëåííî èçìåíÿþòñÿ îò íóëÿ äî êîíå÷íîãî çíà÷åíèÿ è äàëåå íå èçìåíÿþòñÿ (çäàíèå ïðè ñòðîèòåëüñòâå). Äèíàìè÷åñêèå ñèëû ðàçäåëÿþò íà óäàðíûå è öèêëè÷åñêè èçìåíÿþùèåñÿ. Óäàðíûå ñèëû ñèëû, ïðè êîòîðûõ âîçíèêàþò áîëüøèå óñêîðåíèÿ Ïðèìåð: ñèëà âçàèìîäåéñòâèÿ øàññè ñàìîë¼òà è ïîëîñû (â ìîìåíò ïîñàäêè). Öèêëè÷åñêèå ñèëû ýòî ñèëû, ïåðèîäè÷åñêè èçìåíÿþùèåñÿ îò îäíîãî êðàéíåãî çíà÷åíèÿ äî äðóãîãî è îáðàòíî. Ïðèìåð: ñèëà, èñïûòûâàåìàÿ øàòóíîì äâèãàòåëÿ âíóòðåííåãî ñãîðàíèÿ. 1.5 Метод сечений. Понятие о напряжениях Ïîä äåéñòâèåì âíåøíèõ ñèë â äåòàëè âîçíèêàþò âíóòðåííèå ñèëû (ðèñ 1.4) ñèëû âçàèìîäåéñòâèÿ îòäåëüíûõ ÷àñòåé äåòàëè. Èìåííî âíóòðåííèìè ñèëàìè îïðåäåëÿåòñÿ ïðî÷íîñòü äåòàëåé, ïîýòîìó îïðåäåëåíèå âíóòðåííèõ ñèë ÿâëÿåòñÿ âàæíåéøåé çàäà÷åé ñîïðîòèâëåíèÿ ìàòåðèàëîâ. Âíóòðåííèå ñèëû îïðåäåëÿþòñÿ â äâà ýòàïà: ГЛАВА 1. ОСНОВНЫЕ ПОНЯТИЯ 9 Ðèñ. 1.4. Âíóòðåííèå ñèëû íà ïåðâîì ýòàïå îïðåäåëÿåòñÿ ñóììà âíóòðåííèõ ñèë â ïîïåðå÷íîì ñå÷åíèè äåòàëè; íà âòîðîì ýòàïå ðåøàåòñÿ âîïðîñ î òîì, êàê ýòà ñóììà ðàñïðåäåëåíà ïî ïîïåðå÷íîìó ñå÷åíèþ. Ïåðâûé ýòàï ñòàòè÷åñêè îïðåäåëèìàÿ çàäà÷à, âòîðîé ýòàï ñòàòè÷åñêè íåîïðåäåëèìàÿ çàäà÷à. Ñóììà âíóòðåííèõ ñèë íàõîäèòñÿ ñ ïîìîùüþ ìåòîäà ñå÷åíèé îñíîâíîãî ìåòîäà îïðåäåëåíèÿ âíóòðåííèõ ñèë â ñîïðîòèâëåíèè ìàòåðèàëîâ. Ñóòü ìåòîäà ñå÷åíèé. Èçîáðàçèì òåëî ïðîèçâîëüíîé ôîðìû, íàãðóæåííîå ñèñòåìîé ñèë 𝐹1 , 𝐹2 , 𝐹3 , 𝐹4 . Ìûñëåííî ïðîâîäèì ñå÷åíèå. Ëåâóþ ÷àñòü òåëà îòáðàñûâàåì, èçîáðàæàåì ïðàâóþ ÷àñòü. Ïîêàæåì âíåøíèå ñèëû, äåéñòâóþùèå íà îñòàâøóþñÿ ÷àñòü, è âíóòðåííèå ñèëû, ðàñïðåäåë¼ííûå êàêèì-òî îáðàçîì. Ïðèâåä¼ì âíóòðåííèå ñèëû ê êàêîé-íèáóäü òî÷êå 𝐶 . Ïîëó÷èì ãëàâ→ − → − → − → − íûé âåêòîð 𝑅 è ãëàâíûé ìîìåíò 𝐿 âíóòðåííèõ ñèë. 𝑅 è 𝐿 ñóììà âíóòðåííèõ ñèë â ïîïåðå÷íîì ñå÷åíèè òåëà. Îïðåäåëèì 𝑅 è 𝐿 . Ïîêàæåì îñè êîîðäèíàò. Ñîñòàâèì óðàâíåíèÿ ñòàòèêè (óðàâíåíèÿ ðàâíîâåñèÿ) ⎧ ∑︁ ⎪ 𝐹𝑥 + 𝑅𝑥 = 0; ⎪ ⎪ ⎪ ⎪ ∑︁ ⎪ ⎪ ⎪ 𝐹𝑦 + 𝑅𝑦 = 0; ⎪ ⎪ ⎪ ∑︁ ⎪ ⎪ ⎨ 𝐹𝑧 + 𝑅𝑧 = 0; ∑︁ ⎪ ⎪ 𝑀𝑥 + 𝐿𝑥 = 0; ⎪ ⎪ ⎪ ∑︁ ⎪ ⎪ ⎪ 𝑀𝑦 + 𝐿𝑦 = 0; ⎪ ⎪ ⎪ ∑︁ ⎪ ⎪ ⎩ 𝑀𝑧 + 𝐿𝑧 = 0. Èìååì 6 óðàâíåíèé ñòàòèêè è 6 íåèçâåñòíûõ (𝑅𝑥 , 𝑅𝑦 , 𝑅𝑧 , 𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧 ), òî åñòü çàäà÷à ñòàòè÷åñêè îïðåäåëèìà. Âíóðòåííèå ñèëû 𝑅 è 𝐿 íå ìîãóò ñëóæèòü äëÿ îöåíêè ïðî÷íîñòè ГЛАВА 1. 10 ОСНОВНЫЕ ПОНЯТИЯ òåëà (äåòàëè), ò.ê. çàâèñÿò îò ðàçìåðîâ ïîïåðå÷íîãî ñå÷åíèÿ. Ïîýòîìó ïåðåõîäèì ê íàïðÿæåíèÿì. Íàïðÿæåíèå ýòî ñèëà, ïðèõîäÿùàÿñÿ íà åäèíèöó ïëîùàäè ñå÷åíèÿ. Âûäåëèì â ñå÷åíèè ïëîùàäêó êîíå÷íîãî ðàçìåðà ∆𝐴 (ðèñ. 1.5). Íà ïëîùàäêå äåéñòâóþò êàêèì-òî îáðàçîì ðàñïðåäåë¼ííûå âíóòðåííèå ñèëû. Ïîêàæåì ∆𝑅 ðàâíîäåéñòâóþùóþ âíóòðåííèõ ñèë íà ïëîùàäêå ∆𝐴. Ðèñ. 1.5. Âíóòðåííèå ñèëû ∆𝑅 Ðàññìîòðèì îòíîøåíèå = 𝑝𝑐𝑝 ñðåäíåå íàïðÿæåíèå íà ïëîùàä∆𝐴 êå ∆𝐴. Ýòîé õàðàêòåðèñòèêîé ïîëüçîâàòüñÿ íå óäîáíî, ò.ê. îíà çàâèñèò îò ïëîùàäè ïëîùàäêè, ïîýòîìó 𝑝𝑐𝑝 ðàññìàòðèâàåòñÿ â ïðåäåëå, 𝑝 = ∆𝑅 lim ïîëíîå íàïðÿæåíèå â èññëåäóåìîé òî÷êå ñå÷åíèÿ äåòàëè. Δ𝐴→ 0 ∆𝐴 Íà ïðàêòèêå â ðàñ÷¼òàõ íà ïðî÷íîñòü ïîëüçóþòñÿ íå ïîëíûìè íàïðÿæåíèåì, à åãî ñîñòàâëÿþùèìè íà íîðìàëü ê ñå÷åíèþ è íà ïëîñêîñòü ñå÷åíèÿ. Îáîçíà÷èì ïðîåêöèè (ñîñòàâëÿþùèå) íà íîðìàëü ê ñå÷åíèþ ÷åðåç 𝜎 è íà ïëîñêîñòü ñå÷åíèÿ 𝜏 ; 𝜎 íîðìàëüíîå íàïðÿæåíèå, 𝜏 êàñàòåëüíîå íàïðÿæåíèå. Âûðàçèì 𝜎 è 𝜏 ÷åðåç 𝑝 √ 𝜎 = 𝑝 cos 𝛼, 𝜏 = 𝑝 sin 𝛼, 𝑝 = 𝜎2 + 𝜏 2. Íàïðÿæåíèÿ 𝜎 è 𝜏 â ñèñòåìå ÑÈ èçìåðÿþòñÿ â Ïà (Ïà = 1.6 Í ). ì2 Вопросы для самопроверки ×òî èçó÷àåò ñîïðîòèâëåíèå ìàòåðèàëîâ è êàêîâî çíà÷åíèå íàóêè â îáùåì öèêëå èíæåíåðíûõ äèñöèïëèí? ×òî ïîíèìàåòñÿ ïîä ïðî÷íîñòüþ, æ¼ñòêîñòüþ, óñòîé÷èâîñòüþ êîíñòðóêöèé? Îñíîâíûå ãèïîòåçû ñîïðîòèâëåíèÿ ìàòåðèàëîâ.  ÷¼ì ñóòü ïðèíöèïà Ñåí-Âåíàíà? Êàêèå ñèëû íàçûâàþò âíåøíèìè, à êàêèå âíóòðåííèìè, èõ ðàçëè÷èå? Âíóòðåííèå ñèëîâûå ôàêòîðû è èõ îïðåäåëåíèå. ×òî òàêîå íàïðÿæåíèå â òî÷êå ïîëíîå, íîðìàëüíîå, êàñàòåëüíîå? Центральное растяжение и сжатие 2.1 Напряжения при центральном растяжении и сжатии Прямой брус испытывает центральное растяжение или сжатие, если он нагружен силами, приложенными вдоль его оси. Èçîáðàçèì áðóñ, èñïûòûâàþùèé öåíòðàëüíîå ðàñòÿæåíèå (ðèñ 2.1, à). Ðèñ. 2.1. Íîðìàëüíûå ñèëû â áðóñå ïðè öåíòðàëüíîì ðàñòÿæåíèè Ïðèìåíèì ìåòîä ñå÷åíèé: ðàññåêàåì áðóñ ïëîñêîñòüþ 𝑎 − 𝑎, ïåðïåíäèêóëÿðíîé îñè áðóñà (ðèñ 2.1, á). Âíà÷àëå îòáðîñèì íèæíþþ ÷àñòü. Ïðèâåä¼ì âíóòðåííèå ñèëû ê öåíòðó òÿæåñòè 𝐶 ïîïåðå÷íîãî ñå÷åíèÿ. 11 ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 12 Ïîëó÷èì òîëüêî ñèëó 𝑁 , ïàðû ñèë íåò, òàê êàê íåò âíåøíèõ ñèë, âûçûâàþùèõ ýòó ïàðó. 𝑁 íîðìàëüíàÿ (ïðîäîëüíàÿ) ñèëà; 𝑁 âåëè÷èíà àëãåáðàè÷åñêàÿ (ìîæåò áûòü êàê ïîëîæèòåëüíîé, òàê è îòðèöàòåëüíîé). Ïðè ðàñòÿæåíèè 𝑁 > 0, ïðè ñæàòèè 𝑁 < 0. ∑︀ Ñîñòàâèì óðàâíåíèå ñòàòèêè: 𝑍 = 0 : 𝑁 − 𝐹 = 0 ⇒ 𝑁 = 𝐹. Ê òàêîìó æå ðåçóëüòàòó ïðèä¼ì, åñëè áóäåì ðàññìàòðèâàòü ðàâíîâåñèå íèæíåé ÷àñòè áðóñà (ðèñ 2.1, â). Òàêèì îáðàçîì, нормальная сила в любом поперечном сечении бруса равна сумме проекций на нормаль к этому сечению внешних сил, действующих по одну сторону от данного сечения. Ãðàôèê èçìåíåíèÿ íîðìàëüíîé ñèëû ïî äëèíå áðóñà íàçûâàåòñÿ ýïþðîé íîðìàëüíûõ ñèë. Èçîáðàçèì ýïþðó íîðìàëüíûõ ñèë (ðèñ 2.1, ã). Òåïåðü íåîáõîäèìî îïðåäåëèòü íàïðÿæåíèÿ. Çàäà÷à ïî îïðåäåëåíèþ íàïðÿæåíèé ÿâëÿåòñÿ ñòàòè÷åñêè íåîïðåäåëèìîé è äëÿ å¼ ðåøåíèÿ ñëåäóåò óñòàíîâèòü çàêîíîìåðíîñòü äåôîðìàöèé. Ïðè öåíòðàëüíîì ðàñòÿæåíèè èëè ñæàòèè ñïðàâåäëèâà ãèïîòåçà ïëîñêèõ ñå÷åíèé, ïðè ýòîì îñü áðóñà íå èñêðèâëÿåòñÿ. Ïîýòîìó ëþáûå âîëîêíà, íàõîäÿùèåñÿ ìåæäó äâóìÿ ïîïåðå÷íûìè ñå÷åíèÿìè, óäëèíÿþòñÿ íà îäíó è òó æå âåëè÷èíó. Ñëåäîâàòåëüíî, äåôîðìàöèè ïî ñå÷åíèþ îäèíàêîâû è ïîýòîìó íàïðÿæåíèÿ ðàñïðåäåëåíû ïî ñå÷åíèþ ðàâíîìåðíî, òî åñòü 𝑁 𝜎= , 𝐴 ãäå 𝐴 ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ (êîíå÷íàÿ, íî îíà ìàëî îòëè÷àåòñÿ îò íà÷àëüíîé). Ïðè ðàñòÿæåíèè 𝜎 > 0, ïðè ñæàòèè 𝜎 < 0.  ñîîòâåòñòèè ñ ãèïîòåçîé Ñåí-Âåíàíà ïîëó÷åííàÿ ôîðìóëà ñïðàâåäëèâà íà íåêîòîðîì ðàññòîÿíèè îò òî÷êè ïðèëîæåíèÿ ñèëû. Êàñàòåëüíûå íàïðÿæåíèÿ (â ïîïåðå÷íîì ñå÷åíèè) ðàâíû íóëþ, ò.ê. íåò ñäâèãà. À â íàêëîííûõ ñå÷åíèÿõ áðóñà åñòü è íîðìàëüíûå è êàñàòåëüíûå íàïðÿæåíèÿ.  ïðîäîëüíîì ñå÷åíèè íåò íè íîðìàëüíûõ, íè êàñàòåëüíûåõ íàïðÿæåíèé. 2.2 Продольная деформация бруса при центральном растяжении и сжатии. Закон Гука Èçîáðàçèì áðóñ äî è ïîñëå íàãðóæåíèÿ (ðèñ. 2.2, à, á), ãäå ∆𝑙 àáñîëþòíàÿ äåôîðìàöèÿ (àáñîëþòíîå óäëèíåíèå) áðóñà. Ïðè ðàñòÿæåíèè ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 13 ∆𝑙 > 0, ïðè ñæàòèè ∆𝑙 < 0. Ðèñ. 2.2. Ïðîäîëüíàÿ äåôîðìàöèÿ áðóñà ∆𝑙 Ðàññìîòðèì îòíîøåíèå = 𝜀 îòíîñèòåëüíàÿ ïðîäîëüíàÿ äåôîð𝑙 ìàöèÿ: ïðè ðàñòÿæåíèè 𝜀 > 0, ïðè ñæàòèè 𝜀 < 0. Äåôîðìàöèÿ ñâÿçàíà ñ íàïðÿæåíèÿìè ýêñïåðèìåíòàëüíî ïîëó÷åííîé çàâèñèìîñòüþ: 𝜎 = 𝐸 · 𝜀 çàêîí Ãóêà, ãäå 𝐸 ìîäóëü ïðîäîëüíîé óïðóãîñòè. Äëÿ ñòàëè 𝐸 = 2 · 105 ÌÏà, äëÿ àëþìèíèåâûõ ñïëàâîâ 𝐸 = 0, 7 · 105 ÌÏà. ∆𝑙 𝑁 , 𝜀 = Çàïèøåì çàêîí Ãóêà â äðóãîì âèäå: òàê êàê 𝜎 = 𝐴 𝑙 𝑁 ·𝑙 , òî ∆𝑙 = çàêîí Ãóêà, çàïèñàííûé ÷åðåç äåéñòâóþùóþ ñèëó è 𝐸·𝐴 ðàçìåðû áðóñà, ãäå 𝐸 ·𝐴 æ¼ñòêîñòü áðóñà ïðè öåíòðàëüíîì ðàñòÿæåíèè è ñæàòèè. Çàïèøåì çàêîí Ãóêà â îáùåì ñëó÷àå íàãðóæåíèÿ áðóñà, êîãäà íîðìàëüíàÿ ñèëà èçìåíÿåòñÿ ïî åãî äëèíå. Âûäåëèì èç áðóñà ýëåìåíò äëèíîé 𝑑𝑧 è ïîêàæåì åãî îòäåëüíî (ðèñ. 2.2, â). Óäëèíåíèå ýëåìåíòà îïðåäåëÿ𝑁 (𝑧) · 𝑑𝑧 åòñÿ ïî ôîðìóëå 𝑑(∆𝑙) = , èíòåãðèðóÿ, ïîëó÷èì 𝐸·𝐴 ∫︀𝑙 𝑁 (𝑧) · 𝑑𝑧 ∆𝑙 = çàêîí Ãóêà â îáùåì ñëó÷àå íàãðóæåíèÿ áðóñà. 𝐸·𝐴 0 2.3 Поперечная деформация бруса при центральном растяжении и сжатии. Закон Пуассона Èçîáðàçèì áðóñ äî è ïîñëå íàãðóæåíèÿ (ðèñ. 2.3, à, á), ∆𝑏 àáñîëþòíàÿ ïîïåðå÷íàÿ äåôîðìàöèÿ: ïðè ñæàòèè ∆𝑏 > 0, ïðè ðàñòÿæåíèè ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ ∆𝑏 < 0. Îòíîøåíèå 14 ∆𝑏 = 𝜀поп îòíîñèòåëüíàÿ ïîïåðå÷íàÿ äåôîðìàöèÿ. 𝑏 Ðèñ. 2.3. Ïîïåðå÷íàÿ äåôîðìàöèÿ áðóñà Ýêñïåðèìåíòàëüíî ïîëó÷åíà çàâèñèìîñòü 𝜀поп = −𝜇 · 𝜀 çàêîí Ïóàññîíà, ãäå 𝜀 ïðîäîëüíàÿ äåôîðìàöèÿ, 𝜇 êîýôôèöèåíò Ïóàññîíà èëè êîýôôèöèåíò ïîïåðå÷íîé äåôîðìàöèè (𝜇 = 0 ... 0,5). 2.4 Испытания на растяжение. Основные механические характеристики Äëÿ âûÿâëåíèÿ ñïîñîáíîñòè äåòàëåé, ìàòåðèàëîâ ñîïðîòèâëÿòüñÿ ðàçðóøåíèþ ïðîâîäÿòñÿ èñïûòàíèÿ ñòàíäàðòíûõ ëàáîðàòîðíûõ îáðàçöîâ íà ðàñòÿæåíèå âïëîòü äî ðàçðóøåíèÿ. Ñóùåñòâóþò òàêæå èñïûòàíèÿ íà ñðåç, èçãèá, êðó÷åíèå, ñæàòèå. Âñå ìàòåðèàëû óñëîâíî äåëÿòñÿ íà ïëàñòè÷íûå è õðóïêèå. Ðàçðóøåíèþ ïåðâûõ ïðåäøåñòâóþò áîëüøèå ïëàñòè÷åñêèå äåôîðìàöèè, âòîðûõ ìàëûå. Äëÿ èñïûòàíèé íà ðàñòÿæåíèå ñóùåñòâóþò ñïåöèàëüíûå ðàçðûâíûå ìàøèíû. Èñïûòàíèÿ ïðîâîäÿòñÿ íà îáðàçöàõ, ôîðìà, ðàçìåðû è êà÷åñòâî îáðàáîòêè êîòîðûõ îãîâîðåíû â ñîîòâåòñòâóþùåì ÃÎÑÒå. Èçîáðàçèì öèëèíäðè÷åñêèé îáðàçåö (ðèñ. 2.4) äèàìåòðîì 𝑑 è äëèíîé ðàáî÷åé ÷àñòè 𝑙.  ïðîöåññå èñïûòàíèé àâòîìàòè÷åñêè çàïèñûâàåòñÿ ãðàôèê çàâèñèìîñòè óäëèíåíèÿ îáðàçöà ∆𝑙 îò äåéñòâóþùåé ñèëû 𝐹 ìàøèííàÿ äèàãðàììà (äèàãðàììà ðàñòÿæåíèÿ). Èçîáðàçèì äèàãðàììó ðàñòÿæåíèÿ äëÿ ìàëîóãëåðîäèñòîé ñòàëè (ðèñ. 2.5). ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 15 Ðèñ. 2.4. Îáðàçåö äëÿ èñïûòàíèé íà ðàñòÿæåíèå Äî òî÷êè 𝐴 çàâèñèìîñòü ìåæäó ∆𝑙 è 𝐹 ëèíåéíàÿ. Ýòî îáëàñòü äåéñòâèÿ çàêîíà Ãóêà.  ýòîé îáëàñòè ðàáîòàþò âñå äåòàëè ìàøèí. Äî òî÷êè 𝐵 äåôîðìàöèè óïðóãèå.  òî÷êå 𝐶 íàáëþäàåòñÿ ïëîùàäêà òåêó÷åñòè (êîãäà óäëèíåíèå îáðàçöà ðàñò¼ò ïðè ïîñòîÿííîé ñèëå). Äàëåå íà÷èíàåòñÿ êðèâàÿ óïðî÷íåíèÿ. Ïåðåä òî÷êîé 𝐷 â ðàáî÷åé ÷àñòè îáðàçöà îáðàçóåòñÿ òàê íàçûâàåìàÿ øåéêà è äàëüíåéøèé ðîñò äåôîðìàöèé âñåãî îáðàçöà îáóñëîâëåí äåôîðìàöèÿìè â øåéêå. Ïîñëå òî÷êè 𝐷 íàãðóçêà ñíèæàåòñÿ, òàê êàê ðåçêî óìåíüøàåòñÿ ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ îáðàçöà è â òî÷êå 𝐸 íàñòóïàåò ðàçðóøåíèå. Î çàêîíå ðàçãðóçêè è ïîâòîðíîãî íàãðóæåíèÿ. Îáðàçåö íàãðóæàåì äî òî÷êè 𝐾 , à çàòåì ðàçãðóæàåì. Ðàçãðóçêà èä¼ò ïî ïðÿìîé, ïàðàëëåëüíîé ïðÿìîé äåéñòâèÿ çàêîíà Ãóêà. Ïîâòîðíîå íàãðóæåíèå ïðîèñõîäèò ïî òîé æå ïðÿìîé äî òî÷êè 𝐾 , à çàòåì âîñïðîèçâîäèòñÿ îñòàâøàÿñÿ ÷àñòü äèàãðàììû. Ïîëíîå óäëèíåíèå îáðàçöà ∆𝑙 ñîñòîèò èç óïðóãîé ∆𝑙упр è îñòàòî÷íîé ∆𝑙ост äåôîðìàöèé, ∆𝑙 = ∆𝑙упр + ∆𝑙ост . Èçìåðèâ äëèíó ðàáî÷åé ÷àñòè ïîñëå ðàçðóøåíèÿ 𝑙к (ñîñòûêîâàâ ÷àразр ñòè), îïðåäåëèì ∆𝑙 ост = 𝑙к − 𝑙 îáñîëþòíîå îñòàòî÷íîå óäëèíåíèå ïîñëå ðàçðóøåíèÿ è ââåä¼ì ïåðâóþ ìåõàíè÷åñêóþ õàðàêòåðèñòèêó 𝛿= разр ∆𝑙ост · 100%, 𝑙 ãäå 𝛿 îòíîñèòåëüíîå îñòàòî÷íîå óäëèíåíèå ïîñëå ðàçðóøåíèÿ. Õàðàêòåðèñòèêà 𝛿 íèêîãäà íå îïðåäåëÿåòñÿ ïî äèàãðàììå, à îïðåäåëÿ- ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 16 Ðèñ. 2.5. Äèàãðàììà ðàñòÿæåíèÿ ìàëîóãëåðîäèñòîé ñòàëè åòñÿ íà îáðàçöå íà ðàñ÷¼òíîé äëèíå 𝑙. Îáû÷íî 𝑙 = 10𝑑; äëÿ óêîðî÷åííûõ îáðàçöîâ 𝑙 = 5𝑑 (𝛿5 > 𝛿10 ). Ïîñëå ðàçðóøåíèÿ îáðàçöà çàìåðÿåòñÿ äèàìåòð øåéêè 𝑑к , âû÷èñëÿåòñÿ ïëîùàäü øåéêè 𝐴к è îïðåäåëÿåòñÿ ñëåäóþùàÿ õàðàêòåðèñòèêà ìàòåðèàëà 𝐴 − 𝐴к · 100%, 𝜓= 𝐴 ãäå 𝜓 îòíîñèòåëüíîå îñòàòî÷íîå ñóæåíèå ïîñëå ðàçðóøåíèÿ, 𝐴 íà÷àëüíàÿ ïëîùàäü. Ýòè äâå õàðàêòåðèñòèêè 𝛿 è 𝜓 îïðåäåëÿþò ïëàñòè÷íîñòü ìàòåðèàëà è íàçûâàþòñÿ äåôîðìàöèîííûìè. Íà äèàãðàììå ðàñòÿæåíèÿ îðäèíàòû è àáñöèññû çàâèñÿò îò ðàçìåðîâ ∆𝑙 , îáðàçöà, ïîýòîìó å¼ ïåðåñòðàèâàþò. Âìåñòî ∆𝑙 ðàññìàòðèâàþò 𝜀 = 𝑙 𝐹 à âìåñòî 𝐹 𝜎 = .  ðåçóëüòàòå ïîëó÷èì ãðàôèê, íàçûâàåìûé äèà𝐴 ãðàììîé óñëîâíûõ íàïðÿæåíèé (ðèñ. 2.6). Õàðàêòåðíûå îðäèíàòû ýòîé äèàãðàììû ÿâëÿþòñÿ ìåõàíè÷åñêèìè õàðàêòåðèñòèêàìè ìàòåðèàëà (õàðàêòåðèñòèêè ïðî÷íîñòè). 𝜎п ïðåäåë ïðîïîðöèîíàëüíîñòè íàèáîëüøåå íàïðÿæåíèå, äî êîòîðîãî ñïðàâåäëèâ çàêîí Ãóêà. 𝜎у ïðåäåë óïðóãîñòè íàèáîëüøåå íàïðÿæåíèå, äî êîòîðîãî ïðàêòè÷åñêè íå âîçíèêàþò (𝜀ост < 0, 005) ïëàñòè÷åñêèå äåôîðìàöèè. 𝜎т ïðåäåë òåêó÷åñòè íàïðÿæåíèå, ïðè êîòîðîì íàáëþäàåòñÿ ðîñò äåôîðìàöèé ïðè ïîñòîÿííîé íàãðóçêå. 𝜎в ïðåäåë ïðî÷íîñòè îòíîøåíèå íàèáîëüøåé íàãðóçêè, êîòîðóþ âûäåðæèò îáðàçåö äî ðàçðóøåíèÿ, ê ïåðâîíà÷àëüíîé ïëîùàäè åãî ïîïåðå÷íîãî ñå÷åíèÿ. ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 17 Ðèñ. 2.6. Äèàãðàììà óñëîâíûõ íàïðÿæåíèé ìàëîóãëåðîäèñòîé ñòàëè Ïðèìåð ïðî÷íîñòíûõ õàðàêòåðèñòèê äëÿ ìàëîóãëåðîäèñòîé ñòàëè 20: 𝜎п = 200 ÌÏà; 𝜎у = 220 ÌÏà; 𝜎т = 240 ÌÏà; 𝜎в = 400 ÌÏà. Äèàãðàììû íàïðÿæåíèé áîëüøèíñòâà êîíñòðóêöèîííûõ ìàòåðèàëîâ íå èìåþò ïëîùàäêè òåêó÷åñòè (ðèñ. 2.7). Ðèñ. 2.7. Äèàãðàììà íàïðÿæåíèé ìàòåðèëîâ, íå èìåþùèõ ïëîùàäêè òåêó÷åñòè Äëÿ òàêèõ ìàòåðèàëîâ ââîäèòñÿ ïîíÿòèå óñëîâíîãî ïðåäåëà òåêó÷åñòè 𝜎0,2 ýòî íàïðÿæåíèå, ïðè êîòîðîì îñòàòî÷íûå äåôîðìàöèè ðàâíû 0,2 %. Î çàêîíå ðàçãðóçêè è ïîâòîðíîãî íàãðóæåíèÿ ïðèìåíèòåëüíî ê äèàãðàììå íàïðÿæåíèé. Îáðàçåö íàãðóæàåòñÿ äî òî÷êè 𝐾 , à çàòåì ðàçãðóæàåòñÿ (ðèñ. 2.6). Ðàçãðóçêà ïðîèñõîäèò ïî ïðÿìîé, ïàðàëëåëüíîé ãóêîâñêîìó ó÷àñòêó äèàãðàììû.  ðåçóëüòàòå ïðåäâàðèòåëüíîãî íàãðóæåíèÿ ìàòåðèàë îáðàçöà áóäåò èìåòü äðóãèå ìåõàíè÷åñêèå õàðàêòåðèñòèêè, êîòîðûå îáóñëîâëåíû íàêë¼ïîì. Íàêë¼ï èëè íàãàðòîâêà ýòî óâåëè÷åíèå ïðî÷íîñòíûõ (êðîìå 𝜎𝐵 ) ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 18 è óìåíüøåíèå äåôîðìàöèîííûõ õàðàêòåðèñòèê ìàòåðèàëà â ðåçóëüòàòå ïðåäâàðèòåëüíîãî íàãðóæåíèÿ çà ïðåäåë òåêó÷åñòè. Äåëåíèå ìàòåðèàëîâ íà ïëàñòè÷íûå è õðóïêèå äîâîëüíî óñëîâíîå. Õðóïêèå ìàòåðèàëû, êàê ïðàâèëî, íåðàâíîïðî÷íû . Ñæàòèþ îíè ñîïðîòèâëÿþòñÿ ëó÷øå, ÷åì ðàñòÿæåíèþ (ðèñ. 2.8), òî åñòü 𝜎вс > 𝜎вр . Ðèñ. 2.8. Äèàãðàììà íàïðÿæåíèé õðóïêîãî ìàòåðèàëà 2.5 Расчёты на прочность при центральном растяжении и сжатии Âíà÷àëå îá îïàñíûõ íàïðÿæåíèÿõ. Îïàñíûå íàïðÿæåíèÿ îáîçíà÷àþò ÷åðåç 𝜎𝐿 ýòî òå íàïðÿæåíèÿ, ïðè êîòîðûõ ìàòåðèàë ëèáî ðàçðóøàåòñÿ, ëèáî ïîëó÷àåò íåäîïóñòèìûå ïëàñòè÷åñêèå äåôîðìàöèè. Äëÿ äåòàëåé èç ïëàñòè÷íûõ ìàòåðèàëîâ 𝜎𝐿 = 𝜎т , ò.ê. ïðè äîñòèæåíèè ïðåäåëà òåêó÷åñòè äåòàëü ïîëó÷àåò ïëàñòè÷åñêèå äåôîðìàöèè è íàðóøàåòñÿ å¼ íîðìàëüíàÿ ðàáîòîñïîñîáíîñòü. Äëÿ äåòàëåé èç õðóïêèõ ìàòåðèàëîâ 𝜎𝐿 = 𝜎в , ò. ê. ïðè äîñòèæåíèè ïðåäåëà ïðî÷íîñòè äåòàëü ðàçðóøàåòñÿ. Òàêèå íàïðÿæåíèÿ â äåòàëÿõ äîïóñêàòü íåëüçÿ. Íàèáîëüøèå íàïðÿæåíèÿ â äåòàëÿõ, îòâå÷àþùèå áåçîïàñíîé ðàáîòå ìàòåðèàëà, íàçûâàþòñÿ äîïóñêàåìûìè íàïðÿæåíèÿìè è îáîçíà÷àþòñÿ ÷åðåç [𝜎]. Åñëè ìàòåðèàë äåòàëåé íåîäèíàêîâî ñîïðîòèâëÿåòñÿ ðàñòÿæåíèþ è ñæàòèþ, òî ñîîòâåòñòâåííî [𝜎]𝑝 äîïóñêàåìîå íàïðÿæåíèÿ íà ðàñòÿæåíèå, [𝜎]𝑐 äîïóñêàåìîå íàïðÿæåíèÿ íà ñæàòèå. Äîïóñêàåìûå íàïðÿæåíèÿ îïðåäåëÿþòñÿ êàê ÷àñòü îïàñíûõ: [𝜎] = 𝜎𝐿 , 𝑛𝐿 ãäå 𝑛𝐿 êîýôôèöèåíò çàïàñà ïðî÷íîñòè. Êîíêðåòèçèðóåì, Äëÿ ïëàñòè÷- ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 19 íûõ ìàòåðèàëîâ: 𝜎т , 𝑛т ãäå 𝑛т êîýôôèöèåíò çàïàñà ïðî÷íîñòè ïî ïðåäåëó òåêó÷åñòè. Äëÿ õðóïêèõ ìàòåðèàëîâ: [𝜎] = [𝜎] = 𝜎в , 𝑛в ãäå 𝑛в êîýôôèöèåíò çàïàñà ïðî÷íîñòè ïî ïðåäåëó ïðî÷íîñòè. Íåîáõîäèìî îòìåòèòü, ÷òî 𝑛в > 𝑛т . Èç êàêèõ ñîîáðàæåíèé íàçíà÷àåòñÿ êîýôôèöèåíò çàïàñà? Çàïèøåì îáñòîÿòåëüñòâà, êîòîðûå íåîáõîäèìî ó÷èòûâàòü ïðè íàçíà÷åíèè êîýôôèöèåíòà çàïàñà. 1. Ñèëû, äåéñòâóþùèå íà äåòàëü, èçâåñòíû íå òî÷íî. 2. Ìåõàíè÷åñêèå õàðàêòåðèñòèêè, èñïîëüçóåìûå â ðàñ÷¼òàõ íà ïðî÷íîñòü (𝜎т è 𝜎в ) èìåþò ðàññåÿíèå, à â ñïðàâî÷íîé ëèòåðàòóðå ïðèâåäåíû ñðåäíèå çíà÷åíèÿ. 3. Ðàñ÷¼òíàÿ ñõåìà, èñïîëüçóåìàÿ â ðàñ÷¼òàõ íà ïðî÷íîñòü, îòðàæàåò ðåàëüíóþ äåòàëü ïðèáëèæ¼ííî. 4. Ìåòîäû (ôîðìóëû) ñîïðîòèâëåíèÿ ìàòåðèàëîâ íå ÿâëÿþòñÿ àáñîëþòíî òî÷íûìè. Ñ ó÷¼òîì ýòèõ îáñòîÿòåëüñòâ â àâèàïðîìûøëåííîñòè êîýôôèöèåíò çàïàñà 𝑛т = 1,2 3,0 (â çàâèñèìîñòè îò îòâåòñòâåííîñòè äåòàëåé). Ðàñ÷¼ò íà ïðî÷íîñòü Ïðè ðàñ÷¼òàõ íà ïðî÷íîñòü ðàññìàòðèâàþòñÿ 3 çàäà÷è: 1. Ïðîâåðêà ïðî÷íîñòè. Äëÿ òîãî, ÷òîáû ðàáîòà äåòàëè áûëà áåçîïàñíîé, íåîáõîäèìî | 𝜎 | наиб = | 𝑁 | наиб ≤ [𝜎]. 𝐴 Ýòà ôîðìóëà óñòàíàâëèâàåò óñëîâèå ïðî÷íîñòè ïðè öåíòðàëüíîì ðàñòÿæåíèè è ñæàòèè. Åñëè [𝜎]𝑝 ̸= [𝜎]𝑐 , òî â ïðàâîé ÷àñòè óñëîâèÿ ïðî÷íîñòè äîëæíî áûòü ñîîòâåòñòâóþùåå äîïóñêàåìîå íàïðÿæåíèå. 2. Íàçíà÷åíèå ðàçìåðîâ ïîïåðå÷íîãî ñå÷åíèÿ. Ðàçðåøèì óñëîâèå ïðî÷íîñòè îòíîñèòåëüíî ïëîùàäè 𝐴≥ | 𝑁 | наиб . [𝜎] Ýòà ôîðìóëà èñïîëüçóåòñÿ ïðè îïðåäåëåíèè ðàçìåðîâ ïîïåðå÷íîãî ñå÷åíèÿ äåòàëè. ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 20 3. Îïðåäåëåíèå ãðóçîïîäú¼ìíîñòè. Ðàçðåøèì óñëîâèå ïðî÷íîñòè îòíîñèòåëüíî | 𝑁 | наиб | 𝑁 | наиб ≤ [𝜎] · 𝐴. Ýòà ôîðìóëà èñïîëüçóåòñÿ ïðè îïðåäåëåíèè äîïóñòèìûõ âíåøíèõ ñèë. Äëÿ îïðåäåëåíèÿ | 𝑁 | наиб ïðèìåíÿåòñÿ ìåòîä ñå÷åíèé, îïðåäåëÿþòñÿ íîðìàëüíûå ñèëû è ñòðîèòñÿ ýïþðà íîðìàëüíûõ ñèë ○. N 2.6 Статически неопределимые задачи при растяжении и сжатии Ñòàòè÷åñêè íåîïðåäåëèìûìè íàçûâàþòñÿ êîíñòðóêöèè, îïðåäåëåíèå óñèëèé â ýëåìåíòàõ êîòîðûõ ÿâëÿåòñÿ ñòàòè÷åñêè íåîïðåäåëèìîé çàäà÷åé. Ñòàòè÷åñêè íåîïðåäåëèìûå ýòî çàäà÷è, â êîòîðûõ ÷èñëî íåèçâåñòíûõ óñèëèé ïðåâûøàåò ÷èñëî óðàâíåíèé ñòàòèêè. Ñòàòè÷åñêè îïðåäåëèìàÿ êîíñòðóêöèÿ, â îòëè÷èå îò ñòàòè÷åñêè íåîïðåäåëèìîé, ïðè âûõîäå èç ñòðîÿ îäíîãî ýëåìåíòà ïðåâðàùàåòñÿ â ìåõàíèçì. Ðàññìîòðèì ñòàòè÷åñêè îïðåäåëèìóþ êîíñòðóêöèþ (ðèñ. 2.9).  ðåàëüíûõ óñëîâèÿõ øàðíèðíîå çàêðåïëåíèå âñòðå÷àåòñÿ ðåäêî, íî ìíîãèå ñëó÷àè íà ïðàêòèêå ìîæíî ïðèâåñòè ê òàêîìó çàêðåïëåíèþ. Ðèñ. 2.9. Ñòàòè÷åñêè îïðåäåëèìàÿ ñòåðæíåâàÿ ñèñòåìà Ñëàáûì çâåíîì ñèñòåìû ÿâëÿåòñÿ âåðòèêàëüíûé ñòåðæåíü. Íîðìàëüíàÿ ñèëà â ñòåðæíå îïðåäåëÿåòñÿ ìåòîäîì ñå÷åíèé. Êîíñòðóêöèÿ íàõîäèòñÿ â ðàâíîâåñèè, ïîýòîìó äëÿ ïëîñêîé ñèñòåìû ìîæíî çàïèñàòü òðè óðàâíåíèÿ ñòàòèêè. Íåèçâåñòíûõ óñèëèé òîæå òðè, ñëåäîâàòåëüíî ñèñòåìà (êîíñòðóêöèÿ) ñòàòè÷åñêè îïðåäåëèìà. Òåïåðü èçîáðàçèì ñòàòè÷åñêè íåîïðåäåëèìóþ ñèñòåìó òàêîãî æå òèïà (ðèñ. 2.10). Ãîðèçîíòàëüíûé áðóñ ïîääåðæèâàåòñÿ äâóìÿ ñòåðæíÿìè.  ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 21 ðåàëüíûõ êîíñòðóêöèÿõ ãîðèçîíòàëüíûé áðóñ èìååò áîëüøîå ñå÷åíèå è ñ÷èòàåòñÿ àáñîëþòíî æ¼ñòêèì, òî åñòü íåäåôîðìèðóåìûì. Ðèñ. 2.10. Ñòàòè÷åñêè íåîïðåäåëèìàÿ ñòåðæíåâàÿ ñèñòåìà Ñëàáûìè ýëåìåíòàìè ñèñòåìû ÿâëÿþòñÿ âåðòèêàëüíûå ñòåðæåíè 1 è 2, ïîýòîìó íåîáõîäèìî íàéòè íîðìàëüíûå ñèëû â ýòèõ ñòåðæíÿõ. Ïðèìåíèì ìåòîä ñå÷åíèé. Âåðõíþþ ÷àñòü ìûñëåííî îòáðîñèì è èçîáðàçèì îñòàâøóþñÿ. Ïîêàæåì ñèëû âçàèìîäåéñòâèÿ îñòàâøåéñÿ ÷àñòè ñ îòáðîøåííîé ÷àñòüþ. Íåèçâåñòíûõ ñèë ÷åòûðå, óðàâíåíèé ñòàòèêè òðè, òî åñòü ýòî îäèí ðàç ñòàòè÷åñêè íåîïðåäåëèìàÿ êîíñòðóêöèÿ. Åñëè áû áûëî òðè âåðòèêàëüíûõ ñòåðæíÿ, òî ñèñòåìà áûëà áû äâà ðàçà ñòàòè÷åñêè íåîïðåäåëèìàÿ è òàê äàëåå. Äëÿ ðåøåíèÿ çàäà÷è âîñïîëüçóåìñÿ óðàâíåíèÿìè ñòàòèêè. Áóäåì èõ ñîñòàâëÿòü òàê, ÷òîáû 𝐻𝐴 è 𝑉𝐴 íå âîøëè â óðàâíåíèÿ. Òàêèì îáðàçîì ìû ëèøàåìñÿ äâóõ óðàâíåíèé, íî è äâóõ íåèçâåñòíûõ è îñòà¼òñÿ òîëüêî îäíî óðàâíåíèå 𝑁1 · 𝑏 + 𝑁2 · 𝑐 − 𝐹 · 𝑎 = 0. Ýòî óðàâíåíèå, ñ òî÷êè çðåíèÿ ñòàòèêè, ÿâëÿåòñÿ íåðàçðåøèìûì. Íåäîñòàþùåå óðàâíåíèå ñîñòàâèì íà îñíîâàíèè çàêîíîìåðíîñòè äåôîðìàöèè êîíñòðóêöèè, âûðàçèâ êîòîðóþ ìàòåìàòè÷åñêè, ïîëó÷èì äîïîëíèòåëüíîå óðàâíåíèå. Çàêîíîìåðíîñòü äåôîðìàöèé â ðàññìàòðèâàåìîì ñëó÷àå çàêëþ÷àåòñÿ â òîì, ÷òî ãîðèçîíòàëüíûé áðóñ íå äåôîðìèðóåòñÿ. Ïîñëå íàãðóæåíèÿ ãîðèçîíòàëüíûé áðóñ îñòà¼òñÿ ïðÿìûì ýòî çàêîíîìåðíîñòü äåôîðìàöèè äàííîé êîíñòðóêöèè (ðèñ. 2.11). Âåðòèêàëüíûå ñòåðæåíè íå òîëüêî óäëèíÿþòñÿ, íî è ïîâîðà÷èâàþòñÿ, íî ýòè ïîâîðîòû ÷åðåçâû÷àéíî ìàëû è èìè ìîæíî ïðåíåáðå÷ü. Àáñîëþòíûå óäëèíåíèÿ âåðòèêàëüíûõ ñòåðæíåé ÿâëÿþòñÿ êàòåòàìè ïîäîáíûõ òðåóãîëüíèêîâ, ïîýòîìó ìîæíî çàïèñàòü 𝑏 ∆𝑙1 = ∆𝑙2 𝑐 ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 22 Ðèñ. 2.11. Èññëåäîâàíèå çàêîíîìåðíîñòè äåôîðìàöèé ýòî ìàòåìàòè÷åñêîå âûðàæåíèå çàêîíîìåðíîñòè äåôîðìàöèè êîíñòðóêöèè, à ïî ñóùåñòâó íåäîñòàþùåå âòîðîå óðàâíåíèå. Íåîáõîäèìî ïåðåéòè îò óäëèíåíèé ê óñèëèÿì. Âîñïîëüçóåìñÿ çàêîíîì Ãóêà 𝑁2 · 𝑙 𝑁1 · 𝑙 , ∆𝑙2 = . ∆𝑙1 = 𝐸1 · 𝐴1 𝐸2 · 𝐴2 Ñ÷èòàåòñÿ, ÷òî ñòåðæíè èçãîòîâëåíû èç ðàçëè÷íûõ ìàòåðèàëîâ è èìåþò ðàçëè÷íûå ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ. Ïîäñòàâèì óäëèíåíèÿ âî âòîðîå óðàâíåíèå 𝑏 𝑁1 · 𝐸2 · 𝐴2 = . 𝑁2 · 𝐸1 · 𝐴1 𝑐 Ýòî óðàâíåíèå ïåðåìåùåíèé èëè óðàâíåíèå ñîâìåñòíîñòè äåôîðìàöèé. Îíî âûðàæàåò òîò ôàêò, ÷òî ãîðèçîíòàëüíûé áðóñ íå äåôîðìèðóåòñÿ. Òåïåðü èìååì äâà íåèçâåñòíûõ è äâà óðàâíåíèÿ. Ðåøàåì èõ ñîâìåñòíî è ïîñëå ìàòåìàòè÷åñêèõ ïðåîáðàçîâàíèé ïîëó÷àåì 𝑁1 = 𝑏+ 𝑐2 𝑏 𝑎 · 𝐸2 ·𝐴2 𝐸1 ·𝐴1 · 𝐹, 𝑁2 = 𝑐+ 𝑏2 𝑐 𝑎 · 𝐸1 ·𝐴1 𝐸2 ·𝐴2 · 𝐹. Íåîáõîäèìî îáðàòèòü âíèìàíèå íà òî, ÷òî âíóòðåííèå ñèëû ïðîïîðöèîíàëüíû âíåøíèì ñèëàì. Ýòî ðåçóëüòàò òîãî, ÷òî äëÿ ìàòåðèàëà ñïðàâåäëèâ çàêîí Ãóêà è ïåðåìåùåíèÿ ìàëû. Èñïîëüçóÿ ïîñëåäíèå ôîðìóëû, ðàññìîòðèì îñîáåííîñòè ñîïðîòèâëåíèÿ ñòàòè÷åñêè íåîïðåäåëèìûõ êîíñòðóêöèé. 1. Ïóñòü æ¼ñòêîñòü ïåðâîãî ñòåðæíÿ 𝐸1 ·𝐴1 óâåëè÷èòñÿ, òîãäà 𝑁1 òàêæå óâåëè÷èòñÿ, à 𝑁2 óìåíüøèòñÿ, ò. å. â ñòàòè÷åñêè íåîïðåäåëèìûõ êîíñòðóêöèÿõ ïðè óâåëè÷åíèè æ¼ñòêîñòè êàêîãî-ëèáî ýëåìåíòà âîçðàñòàåò íàãðóçêà íà ýòîò ýëåìåíò çà ñ÷¼ò ðàçãðóçêè äðóãèõ ýëåìåíòîâ. Ñëåäîâàòåëüíî, èçìåíåíèå æ¼ñòêîñòè îäíîãî èëè íåñêîëüêèõ ýëåìåíòîâ ïðèâîäèò ê ïåðåðàñïðåäåëåíèþ âíóòðåííèõ óñèëèé â ýëåìåíòàõ êîíñòðóêöèè.  ñòàòè÷åñêè îïðåäåëèìûõ êîíñòðóêöèÿõ òàêîãî íå íàáëþäàåòñÿ òàì ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 23 âíóòðåííèå óñèëèÿ íå çàâèñÿò îò æ¼ñòêîñòè, à îïðåäåëÿþòñÿ òîëüêî ãåîìåòðèåé è ïîëîæåíèåì ýëåìåíòà â ñèñòåìå. 2.  ñòàòè÷åñêè íåîïðåäåëèìûõ êîíñòðóêöèÿõ ÷àñòü ýëåìåíòîâ âñåãäà íåäîãðóæåíà. Ýòî íåæåëàòåëüíîå ÿâëåíèå. Çàìåòèì, ÷òî ýëåìåíò êîíñòðóêöèè ÿâëÿåòñÿ ïîëíîñòüþ çàãðóæåííûì, åñëè â ýòîì ýëåìåíòå 𝜎𝑖 = [𝜎]. Ýòî óñëîâèå âûïîëíÿåòñÿ òîëüêî äëÿ ÷àñòè ýëåìåíòîâ è íèêàêèì ïåðåðàñïðåäåëåíèåì æ¼ñòêîñòåé íåâîçìîæíî äîáèòüñÿ ïîëíîé çàãðóçêè âñåõ ýëåìåíòîâ. Äîêàæåì ýòî. Ïóñòü â ðàññìîòðåííîé âûøå ñèñòåìå ñòåðæíè âûïîëíåíû èç îäíîãî ìàòåðèàëà , òîãäà 𝐸1 = 𝐸2 = 𝐸; [𝜎1 ] = [𝜎2 ] = [𝜎]. Èç ðèñ. 2.11, âûðàæàþùåãî ñîâìåñòíîñòü äåôîðìàöèé, ñëåäóåò: 𝑐 ∆𝑙2 > ∆𝑙1 â ðàç, ïîäåëèì îáå ÷àñòè íåðàâåíñòâà íà 𝑙; 𝑏 ∆𝑙2 ∆𝑙1 𝑐 > â ðàç; 𝑙 𝑙 𝑏 𝑐 𝜀2 > 𝜀1 â ðàç, óìíîæèì îáå ÷àñòè íåðàâåíñòâà íà 𝐸 ; 𝑏 𝑐 𝐸 · 𝜀2 > 𝐸 · 𝜀1 â ðàç, ñëåäîâàòåëüíî, â ñîîòâåòñòâèè ñ çàêîíîì Ãóêà 𝑏 𝑐 𝑐 íàïðÿæåíèå 𝜎2 > 𝜎1 â ðàç, ò. å. íàïðÿæåíèå âî âòîðîì ñòåðæíå â ðàç 𝑏 𝑏 áîëüøå, ÷åì â ïåðâîì ñòåðæíå. Òàêèì îáðàçîì, âîçìîæíîñòè ìàòåðèàëà êîíñòðóêöèè ïîëíîñòüþ íå èñïîëüçóåòñÿ. Ýòî íåïðèÿòíàÿ îñîáåííîñòü ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåì. Îäíàêî ñòàòè÷åñêè íåîïðåäåëèìûå êîíñòðóêöèè èìåþò è áîëüøèå ïðåèìóùåñòâà îíè áîëåå íàä¼æíû (áîëüøàÿ æèâó÷åñòü äî âûõîäà èç ñòðîÿ íàèìåíåå íàãðóæåííîãî ýëåìåíòà). Ïîýòîìó ýòè ñèñòåìû øèðîêî ïðèìåíÿþòñÿ äëÿ íàèáîëåå îòâåòñòâåííûõ óçëîâ ìàøèí è ñîîðóæåíèé. 3.  ñòàòè÷åñêè íåîïðåäåëèìûõ êîíñòðóêöèÿõ âíóòðåííèå íàïðÿæåíèÿ ìîãóò âîçíèêàòü è ïðè îòñóòñòâèè âíåøíèõ ñèë ýòî òåìïåðàòóðíûå è ìîíòàæíûå íàïðÿæåíèÿ.  ñòàòè÷åñêè îïðåäåëèìûõ êîíñòðóêöèÿõ òàêîãî íå áûâàåò. 2.6.1 Решение трёх основных задач применительно к статически неопределимым конструкциям 1. Ïðîâåðêà ïðî÷íîñòè. Íåîáõîäèìî ïðîâåðèòü ïðî÷íîñòü êàæäîãî ýëåìåíòà. Äëÿ 𝑖-îãî ýëåìåíòà | 𝑁 |𝑖 ≤ [𝜎]𝑖 . 𝐴𝑖 ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 24 Òàêóþ ïðîâåðêó íåîáõîäèìî ñäåëàòü äëÿ âñåõ 𝑛 ýëåìåíòîâ êîíñòðóêöèè. Åñëè óñëîâèå ïðî÷íîñòè áóäåò âûïîëíÿòüñÿ äëÿ âñåõ ýëåìåíòîâ ñèñòåìû, òî ðàáîòà êîíñòðóêöèè â öåëîì áóäåò áåçîïàñíîé. 2. Íàçíà÷åíèå ðàçìåðîâ ïîïåðå÷íûõ ñå÷åíèé ýëåìåíòîâ. Äëÿ 𝑖-îãî ýëåìåíòà | 𝑁𝑖 | . 𝐴𝑖 ≥ [𝜎]𝑖 Íà ïåðâûé âçãëÿä êàæåòñÿ âñ¼ ïðîñòî, îäíàêî çàäà÷à íàìíîãî ñëîæíåå, ò. ê. 𝑁𝑖 = 𝑓 (𝐴1 , 𝐴2 , . . . , 𝐴𝑛 ) åñòü ôóíêöèÿ îò ïëîùàäåé âñåõ ýëåìåíòîâ, ïîýòîìó â ÿâíîì âèäå ýòî íåðàâåíñòâî íå ðàçðåøèìî.  ñòàòè÷åñêè íåîïðåäåëèìûõ êîíñòðóêöèÿõ ÷àñòü ýëåìåíòîâ áóäåò âñåãäà íåäîãðóæåíà. Çàäà÷à íàçíà÷åíèÿ ðàçìåðîâ ïîïåðå÷íûõ ñå÷åíèé ýëåìåíòîâ íåîïðåäåë¼ííà, òî åñòü èìååò áåñ÷èñëåííîå ìíîæåñòâî ðåøåíèé. Íà ïðàêòèêå îáû÷íî çàäàþòñÿ ñîîòíîøåíèÿìè èñêîìûõ ïëîùàäåé 𝐴1 : 𝐴2 : . . . : 𝐴𝑛 è çàäà÷à ñòàíîâèòñÿ îïðåäåë¼ííîé. Äàëåå çàäà÷à ðåøàåòñÿ ìåòîäîì ïîïûòîê.  ïåðâîé ïîïûòêå áåðóò ëþáîé ýëåìåíò 𝑖 è | 𝑁𝑖 | (1) . Ïëîùàïðèìåíÿþò ê íåìó ôîðìóëó íàçíà÷åíèÿ ïëîùàäè:𝐴𝑖 ≥ [𝜎]𝑖 äè îñòàëüíûõ 𝑛 − 1 ýëåìåíòîâ îïðåäåëÿþòñÿ èç çàäàííîãî ñîîòíîøåíèÿ ïëîùàäåé â ïåðâîì ïðèáëèæåíèè. Íî îñòà¼òñÿ íåèçâåñòíûì, óäîâëåòâîðÿþòñÿ ëè óñëîâèÿ ïðî÷íîñòè â ýòèõ 𝑛 − 1 ýëåìåíòàõ. Ïîýòîìó íóæíî ïðîâåðèòü âûïîëíåíèå óñëîâèé ïðî÷íîñòè âî âñåõ 𝑛 − 1 ýëåìåíòàõ. Äëÿ 𝑚-îãî ýëåìåíòà | 𝑁 |𝑚 ≤ [𝜎]𝑚 . (1) 𝐴𝑚 Åñëè äëÿ âñåõ ýëåìåíòîâ óäîâëåòâîðÿþòñÿ óñëîâèÿ ïðî÷íîñòè, òî çàäà÷à çàâåðøåíà. Íî îáû÷íî ÷àñòü íåðàâåíñòâ íå óäîâëåòâîðÿåòñÿ è ïîýòîìó ïðèõîäèòñÿ äåëàòü âòîðóþ, òðåòüþ è ò. ä. ïîïûòêè. Îäíàêî, åñëè âî âòîðîé ïîïûòêå èñõîäèòü èç íàèáîëåå íàãðóæåííîãî ñòåðæíÿ, òî ýòà ïîïûòêà áóäåò îêîí÷àòåëüíîé. Íàèáîëåå íàãðóæåííûé ýëåìåíò èìååò íàèáîëüøåå îòíîøåíèå ⎞ ⎛ | 𝑁𝑘 | ⎜ 𝐴(1) − [𝜎]𝑘 ⎟ ⎟ ⎜ 𝑘 , ⎜ ⎟ [𝜎]𝑘 ⎠ ⎝ наиб | 𝑁𝑘 | (2) . Ïî 𝐴𝑘 , èñ[𝜎]𝑘 (2) (2) (2) ïîëüçóÿ ñîîòíîøåíèå ïëîùàäåé, íàõîäÿòñÿ 𝐴1 , 𝐴2 , . . . , 𝐴𝑛 . Ýòè ïëî(2) òîãäà âòîðîå ïðèáëèæåíèå çàïèøåòñÿ â âèäå 𝐴𝑘 ≥ ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 25 ùàäè áóäóò îêîí÷àòåëüíûìè, òàê êàê óñëîâèÿ ïðî÷íîñòè âî âñåõ ñòåðæíÿõ áóäóò âûïîëíåíû àâòîìàòè÷åñêè. 3. Îïðåäåëåíèå ãðóçîïîäú¼ìíîñòè. Äëÿ îïðåäåëåíèÿ ãðóçîïîäú¼ìíîñòè çàïèøåì ôîðìóëó | 𝑁𝑖 |≤ [𝜎]𝑖 · 𝐴𝑖 . Èç ýòîãî óñëîâèÿ íóæíî îïðåäåëèòü äîïóñêàåìóþ ñèëó äëÿ êàæäîãî ýëåìåíòà. Ïîëó÷èì ñîâîêóïíîñòü 𝑛 äîïóñêàåìûõ ñèë. Çà äîïóñòèìóþ ñèëó äëÿ âñåé êîíñòðóêöèè ïðèíèìàåòñÿ íàèìåíüøàÿ èç íèõ. 2.6.2 Монтажные напряжения в статически неопределимых системах  ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåìàõ âíóòðåííèå ñèëû ìîãóò âîçíèêàòü äàæå ïðè îòñóòñòâèè âíåøíèõ ñèë. Èçîáðàçèì ñèñòåìó, ðàññìîòðåííóþ â ïðåäûäóùåì ïàðàãðàôå. Ïóñòü âòîðîé ñòåðæåíü èçãîòîâëåí íåñêîëüêî êîðî÷å. Òàê áûâàåò âñåãäà, ò. ê. èçãîòîâèòü äåòàëü àáñîëþòíî òî÷íî íåâîçìîæíî, çäåñü 𝛿 ìîíòàæíàÿ íåòî÷íîñòü (ðèñ. 2.12). Ðèñ. 2.12. Îïðåäåëåíèå ìîíòàæíûõ íàïðÿæåíèé Äëÿ òîãî, ÷òîáû ñîáðàòü ñèñòåìó, íåîáõîäèìî âòîðîé ñòåðæåíü ðàñòÿíóòü, à ïåðâûé ñæàòü. Ïîñëå ñáîðêè â ýëåìåíòàõ ñèñòåìû âîçíèêíóò âíóòðåííèå óñèëèÿ ïðè îòñóòñòâèè âíåøíèõ. Èçîáðàçèì ñèñòåìó ïîñëå ñáîðêè. Óñèëèÿ â ñòåðæíÿõ îïðåäåëÿþòñÿ ìåòîäîì ñå÷åíèé. Íåîáõîäèìî ïîêàçàòü êèíåìàòè÷åñêè âîçìîæíûå íà- ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 26 ïðàâëåíèÿ ñèñòåìû ñèë. Åñëè çàðàíåå èçâåñòíî íàïðàâëåíèå ñèë (êàê â íàøåì ñëó÷àå), òàêîå íàïðàâëåíèå è íóæíî ïîêàçàòü. Äëÿ ðàñ÷¼òîâ íà ïðî÷íîñòü íóæíî çíàòü ñèëû 𝑁1 è 𝑁2 . Ó íàñ ÷åòûðå íåèçâåñòíûõ è òðè óðàâíåíèÿ ñòàòèêè. Ñëåäîâàòåëüíî, çàäà÷à îäèí ðàç ñòàòè÷åñêè íåîïðåäåëèìà. 𝐻𝐴 è 𝑉𝐴 íàñ íå èíòåðåñóþò, ïîýòîìó −𝑁1 · 𝑏 + 𝑁2 · 𝑐 = 0, òî åñòü èç òð¼õ óðàâíåíèé ñòàòèêè ìû èñïîëüçóåì òîëüêî îäíî ýòî ïåðâîå óðàâíåíèå. Óñòàíîâèì çàêîíîìåðíîñòü äåôîðìàöèé ñèñòåìû (ðèñ. 2.13): ãîðèçîíòàëüíûé áðóñ îñòà¼òñÿ ïðÿìûì è ïîñëå ñáîðêè. Èç ïîäîáèÿ äâóõ ïðÿìîóãîëüíûõ òðåóãîëüíèêîâ ìîæíî çàïèñàòü 𝑏 ∆𝑙1 = 𝛿 − ∆𝑙2 𝑐 óðàâíåíèå ñîâìåñòíîñòè äåôîðìàöèé: îíî âûðàæàåò òîò ôàêò, ÷òî ãîðèçîíòàëüíûé áðóñ îñòà¼òñÿ ïðÿìûì. Ðèñ. 2.13. Çàêîíîìåðíîñòü äåôîðìàöèé ïðè ìîíòàæå Ïåðåéä¼ì ê íîðìàëüíûì ñèëàì: 𝑁1 · 𝑙 𝑏 𝐸1 · 𝐴1 = 𝑁2 · 𝑙 𝑐 𝛿− 𝐸2 · 𝐴2 ýòî âòîðîå óðàâíåíèå. Ñòðîãî ãîâîðÿ, â ïîñëåäíåé ôîðìóëå âìåñòî 𝑙 äîëæíî áûòü 𝑙 + ∆𝑙, íî â ñîîòâåòñòâèè c ãèïîòåçîé íåèçìåííîñòè íà÷àëüíûõ ðàçìåðîâ ìû èñïîëüçóåì 𝑙. Ðåøàÿ ñèñòåìó èç äâóõ óðàâíåíèé, íàõîäèì íîðìàëüíûå ñèëû 𝑁𝑙 è 𝑁2 , à çàòåì 𝜎1 è 𝜎2 .  ñòåðæíå 1 îíè áóäóò ñæèìàþùèìè (îòðèöàòåëüíûìè), à â ñòåðæíå 2 ðàñòÿãèâàþùèìè (ïîëîæèòåëüíûìè). ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 27 Âîçíèêàåò âîïðîñ: ïîëåçíû èëè âðåäíû ìîíòàæíûå íàïðÿæåíèÿ? Îíè ïîëåçíû, åñëè â íàèáîëåå íàãðóæåííîì ýëåìåíòå, ñêëàäûâàÿñü ñ íàèáîëüøèìè íàïðÿæåíèÿìè îò âíåøíèõ ñèë, óìåíüøàþò ýòè íàïðÿæåíèÿ. Ýòî ïðîèñõîäèò òîãäà, êîãäà ìîíòàæíûå íàïðÿæåíèÿ è íàèáîëüøèå íàïðÿæåíèÿ îò âíåøíèõ ñèë ðàçëè÷íû ïî çíàêó. Íî îíè ìîãóò áûòü è âðåäíû, åñëè çíàêè ìîíòàæíûõ è íàèáîëüøèõ íàïðÿæåíèé îò âíåøíèõ ñèë ñîâïàäàþò.  ýòîì ñëó÷àå ãðóçîïîäú¼ìíîñòü êîíñòðóêöèè ñíèæàåòñÿ.  íàøåì ñëó÷àå, åñëè âíåøíÿÿ ñèëà íàïðàâëåíà âíèç, òî ìîíòàæíûå íàïðÿæåíèÿ âðåäíû. Åñëè áû ñòåðæåíü 2 áûë èçãîòîâëåí äëèííåå, òî òîãäà ìîíòàæíûå íàïðÿæåíèÿ áûëè áû ïîëåçíû, ò. ê. ñóììàðíûå íàïðÿæåíèÿ â íàèáîëåå íàãðóæåííîì âòîðîì ñòåðæíå áóäóò ìåíüøå. Íà ïðàêòèêå ðàçðàáàòûâàþòñÿ ñïåöèàëüíûå ïðè¼ìû íàâåäåíèÿ ïîëåçíûõ ìîíòàæíûõ íàïðÿæåíèé, íàïðèìåð, ïðåäâàðèòåëüíî íàïðÿæ¼ííûé áåòîí. 2.6.3 Температурные напряжения в статически неопределимых системах Ýòî âòîðîé ïðèìåð, êîãäà â ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåìàõ âîçíèêàþò íàïðÿæåíèÿ è ïðè îòñóòñòâèè âíåøíèõ ñèë. Íàïîìíèì, ÷òî ïðè òåìïåðàòóðå 𝑡1 äëèíà ñòåðæíÿ 𝑙, à ïðè òåìïåðàòóðå 𝑡2 𝑙 + ∆𝑙𝑡 , ãäå ∆𝑙𝑡 = 𝛼 · 𝑙 · (𝑡2 − 𝑡1 ) (ðèñ. 2.14); 𝛼 - êîýôôèöèåíò ëèíåéíîãî òåìïåðàòóðíîãî ðàñøèðåíèÿ ìàòåðèàëà ñòåðæíÿ. Äëÿ ñòàëè 𝛼 = 1, 25 · 10−5 ì/(ì · 𝐾), äëÿ ìåäíûõ ñïëàâîâ 𝛼 = 1, 65 · 10−5 ì/(ì · 𝐾). Ðèñ. 2.14. Òåìïåðàòóðíîå ðàñøèðåíèå ìàòåðèàëà Ðàññìîòðèì ñòàòè÷åñêè íåîïðåäåëèìóþ êîíñòðóêöèþ, â êîòîðîé âîçíèêàþò òåìïåðàòóðíûå íàïðÿæåíèÿ (ðèñ. 2.15, à). Ïðè òåìïåðàòóðå 𝑡1 ñòåðæåíü âñòàâëåí áåç çàçîðà è áåç íàòÿãà â ìàññèâíîå îñíîâàíèå è æ¼ñòêî ñîåäèí¼í ñ íèì. Çàòåì òåìïåðàòóðà ñòåðæíÿ èçìåíèëàñü è ñòàëà 𝑡2 (ðèñ. 2.15, á). Íî ñâÿçè íå äàþò ñòåðæíþ óäëèíÿòüñÿ è â í¼ì âîçíèêíóò òåìïåðàòóðíûå íàïðÿæåíèÿ. Äëÿ îïðåäåëåíèÿ íîðìàëüíûõ ñèë ïðèìåíèì ìåòîä ñå÷åíèé öèëèíäðè÷åñêîé ïîâåðõíîñòüþ (ðèñ. 2.15, á). Èçîáðàçèì âûðåçàííóþ ÷àñòü îò- ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 28 Ðèñ. 2.15. Îïðåäåëåíèå òåìïåðàòóðíûõ íàïðÿæåíèé äåëüíî (ðèñ. 2.15, â). Óðàâíåíèå ñòàòèêè: 𝑁𝐴 − 𝑁𝐵 = 0; ⇒ 𝑁𝐴 = 𝑁𝐵 = 𝑁. Èìååì îäíî óðàâíåíèå ñòàòèêè è äâà íåèçâåñòíûõ, ò. å. êîíñòðóêöèÿ îäèí ðàç ñòàòè÷åñêè íåîïðåäåëèìà. Óñòàíîâèì çàêîíîìåðíîñòü äåôîðìàöèè: ïðè èçìåíåíèè òåìïåðàòóðû äëèíà ñòåðæíÿ íå èçìåíÿåòñÿ, òî åñòü ∆𝑙 = 0, íî ∆𝑙 = ∆𝑙𝑡 + ∆𝑙𝑁 = 0. Ïóñòü ñòåðæåíü ñâîáîäåí è íàãðåò, òîãäà îí óäëèíÿåòñÿ, íî äëÿ òîãî, ÷òîáû ∆𝑙 = 0, íóæíî ïðèëîæèòü ñæèìàþùóþ ñèëó 𝑁 . Ðàñïèøåì ñëàãàåìûå óäëèíåíèÿ ∆𝑙𝑡 = 𝛼 · 𝑙 · (𝑡2 − 𝑡𝑙 ), ∆𝑙𝑁 = 𝑁 ·𝑙 . 𝐸·𝐴 Ïîäñòàâëÿÿ çíà÷åíèÿ óäëèíåíèé â óðàâíåíèå äåôîðìàöèé, ïîëó÷àåì 𝛼 · 𝑙 · (𝑡2 − 𝑡𝑙 ) + 𝑁 ·𝑙 = 0, 𝐸·𝐴 îòêóäà 𝑁 = −𝐸 · 𝐴 · 𝛼 · (𝑡2 − 𝑡𝑙 ). Òåïåðü îïðåäåëÿåì òåìïåðàòóðíûå íà𝑁 ïðÿæåíèÿ 𝜎𝑡 = . 𝐴 𝜎𝑡 = −𝐸 · 𝛼 · (𝑡2 − 𝑡𝑙 ) ýòî ôîðìóëà äëÿ òåìïåðàòóðíûõ íàïðÿæåíèé. Èç ôîðìóëû âèäíî, ÷òî òåìïåðàòóðíûå íàïðÿæåíèÿ íå çàâèñÿò îò äëèíû ñòåðæíÿ. Ïðè íàãðåâå â ñòåðæíå âîçíèêàþò ñæèìàþùèå , à ïðè îõëàæäåíèè ðàñòÿãèâàþùèå íàïðÿæåíèÿ. ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 29 Êàêîé ìîæåò áûòü âåëè÷èíà òåìïåðàòóðíûõ íàïðÿæåíèé? Íàïðèìåð, ðàññìîòðèì òðàìâàéíûé ðåëüñ, êîòîðûé ìîíòèðîâàëè ëåòîì â 30∘ æàðó. Êàêèå æå íàïðÿæåíèÿ áóäóò â í¼ì çèìîé â 30∘ ìîðîç? 𝑡1 = 30∘ ; 𝑡2 = −30∘ . 𝜎𝑡 = −2 · 105 · 1, 25 · 10−5 · (−60) = 150 ÌÏà. Ôàêòè÷åñêè ñîåäèíåíèå ðåëüñîâ íåëüçÿ ñ÷èòàòü àáñîëþòíî æ¼ñòêèì, ïîýòîìó íàïðÿæåíèÿ áóäóò íåñêîëüêî ìåíüøå. Òåìïåðàòóðíûå íàïðÿæåíèÿ ìîãóò áûòü òîëüêî â ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåìàõ.  ñòàòè÷åñêè îïðåäåëèìûõ ñèñòåìàõ îíè íå âîçíèêàþò. 2.6.4 Расчёт статически неопределимых систем по предельным нагрузкам Äëÿ ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåì ïðèìåíÿþòñÿ äâà ìåòîäà ðàñ÷¼òà íà ïðî÷íîñòü: 1) ðàñ÷¼ò ïî äîïóñêàåìûì íàïðÿæåíèÿì; 2) ðàñ÷¼ò ïî ïðåäåëüíûì íàãðóçêàì. Ðàññìîòðèì ðàñ÷¼ò äâóìÿ ìåòîäàìè íà ïðèìåðå (ðèñ. 2.16 ). Ðèñ. 2.16. Ðàñ÷¼ò íà ïðî÷íîñòü ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåì Ïóñòü 𝑐 = 2 · 𝑏 äëÿ òîãî, ÷òîáû ìîæíî áûëî ñîïîñòàâèòü äâà ìåòîäà. Áóäåì ñ÷èòàòü, ÷òî 𝐴1 = 𝐴2 = 𝐴, à ìàòåðèàë ñòåðæíåé îäèíàêîâûé, òî åñòü 𝐸1 = 𝐸2 = 𝐸 , [𝜎]1 = [𝜎]2 = [𝜎]. 1) Ðàñ÷¼ò ïî äîïóñêàåìûì íàïðÿæåíèÿì. Ìû óæå åãî ðàññìàòðèâàëè âî âòîðîì ðàçäåëå äàííîãî ïàðàãðàôà, íî çäåñü áóäåò äðóãîé ïîäõîä. Ðàñ÷¼ò ïî äîïóñêàåìûì íàïðÿæåíèÿì ïðèìåíÿåòñÿ äëÿ êîíñòðóêöèé, â êîòîðûõ îñòàòî÷íûå äåôîðìàöèè íåäîïóñòèìû, íàïðèìåð, ëîïàòêè ãàçîâûõ òóðáèí. Ôîðìóëèðîâêà ìåòîäà: при расчёте по допускаемым напряжениям за опасные принимаются такие внешние силы, при которых хотя бы в ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 30 одном элементе появляются пластические деформации, то есть наибольшие напряжения в системе достигают предела текучести .  ñîîòâåòñòâèè ñ ýòîé ôîðìóëèðîâêîé îïàñíóþ ñèëó îáîçíà÷àåì ÷åðåç 𝐹𝐿 . Ñàìîå áîëüøîå íàïðÿæåíèå âîçíèêàåò â ñòåðæíå 2. Ïðè 𝐹 = 𝐹𝐿 íàïðÿæåíèå 𝜎2 = 𝜎т . Äàëåå íóæíî âûðàçèòü 𝜎2 ÷åðåç 𝐹 . Ðàíåå áûëî ïîëó÷åíî 𝑎 · 𝐹, 𝑁2 = 2 𝑏 𝐸1 · 𝐴1 𝑐+ · 𝑐 𝐸2 · 𝐴2 òîãäà 𝑎 𝑎 𝐹 𝑁2 = · 𝐹 = 0, 4 · · , 𝜎2 = 2 𝑏 𝐴 𝑏 𝐴 ) 𝐴 · (2 · 𝑏 + · 𝐸·𝐴 𝐸·𝐴 2·𝑏 𝑎 𝐹𝐿 𝜎т = 0, 4 · · , 𝑏 𝐴 𝑏 𝐹𝐿 = 2, 5 · · 𝜎т · 𝐴. 𝑎 𝐹𝐿 𝜎т Íî 𝐹 ≤ è [𝜎] = , òîãäà 𝑛т 𝑛т 𝑏 𝜎т · ·𝐴 𝑎 𝑛т è ïåðåõîäÿ ê ïðåäåëüíîìó ñîñòîÿíèþ, ïîëó÷èì 𝐹 ≤ 2, 5 · [𝐹 ] = 2, 5 · 𝑏 · [𝜎] · 𝐴. 𝑎 2) Ðàñ÷¼ò ïî ïðåäåëüíûì íàãðóçêàì Åãî ïðèìåíÿþò äëÿ êîíñòðóêöèé, â êîòîðûõ íåêîòîðûå îñòàòî÷íûå äåôîðìàöèè íå íàðóøàþò íîðìàëüíûå óñëîâèÿ ðàáîòû êîíñòðóêöèè, íàïðèìåð, íàñòåííûé êðîíøòåéí â öåõå, êîòîðûé ñëóæèò ñèëîâîé êîíñòðóêöèåé.  ðàñ÷¼òàõ ïî ïðåäåëüíûì íàãðóçêàì ìàòåðèàë ñ÷èòàåòñÿ èäåàëüíî ïëàñòè÷íûì (ðèñ. 2.17). Èäåàëüíî ïëàñòè÷íûì íàçûâàåòñÿ ìàòåðèàë ñ òàêîé äèàãðàììîé íàïðÿæåíèé (ñïëîøíàÿ ëèíèÿ). Ôàêòè÷åñêàÿ äèàãðàììà ïðîõîäèò ïî ïóíêòèðíîé ëèíèè. Ýòîò ìåòîä ïðèìåíÿåòñÿ äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ. Ôîðìóëèðîâêà ìåòîäà: При расчёте по предельным нагрузкам за опасные (предельные) принимаются такие внешние силы, при которых конструкция в целом начинает течь, т.е. становится изменяемой. Èñõîäÿ èç ýòîãî, íàéä¼ì 𝐹𝐿 . Ïðîñëåäèì çà ðàáîòîé êîíñòðóêöèè ñ ðîñòîì 𝐹 . Íàïðÿæåíèÿ äîñòèãíóò ïðåäåëà òåêó÷åñòè, â ïåðâóþ î÷åðåäü, â ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 31 Ðèñ. 2.17. Äèàãðàììà íàïðÿæåíèé èäåàëüíî ïëàñòè÷íîãî ìàòåðèàëà ñòåðæíå 2. Ïîñëå òîãî, êàê 𝜎2 = 𝜎т , äàëüíåéøèé ðîñò ñèëû áóäåò âîñïðèíèìàòü òîëüêî ñòåðæåíü 1. Íî, òàê áóäåò äî òåõ ïîð, ïîêà íàïðÿæåíèÿ â ñòåðæíå 1 íå äîñòèãíóò ïðåäåëà òåêó÷åñòè. Äàëüíåéøèé ðîñò ñèëû êîíñòðóêöèÿ íå áóäåò âîñïðèíèìàòü, ò. ê. îíà ñòàëà ìåõàíèçìîì. Ýòî è áóäåò ïðåäåëüíîå ñîñòîÿíèå ïðè ðàñ÷¼òå ïî ïðåäåëüíûì íàãðóçêàì, òî åñòü 𝐹 = 𝐹𝐿 òîãäà, êîãäà 𝜎2 = 𝜎1 = 𝜎т (ðèñ. 2.18). Ðèñ. 2.18. Ðàñ÷¼òû íà ïðî÷íîñòü ïî ïðåäåëüíûì íàãðóçêàì Cîñòàâèì óðàâíåíèå ñòàòèêè â ìîìåíò äîñòèæåíèÿ ïðåäåëüíîãî ñîñòîÿíèÿ: 𝜎т · 𝐴 · 𝑏 + 𝜎т · 𝐴 · 2 · 𝑏 − 𝐹𝐿 · 𝑎 = 0. Ýòà cèñòåìà ñòàòè÷åñêè îïðåäåëèìà. Íàéä¼ì 𝐹𝐿 : 𝑏 · 𝜎т · 𝐴 𝑎 îïàñíàÿ ñèëà ïðè ðàñ÷¼òå ïî ïðåäåëüíûì íàãðóçêàì. 𝐹𝐿 𝜎т è [𝜎] = . Ïîñëå ïîäñòàíîâêè è ïðåîáðàçîâàíèé Íî 𝐹 ≤ 𝑛т 𝑛т ïîëó÷èì: 𝑏 [𝐹 ] = 3 · · [𝜎] · 𝐴 𝑎 𝐹𝐿 = 3 · ГЛАВА 2. 32 ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ äîïóñêàåìàÿ ñèëà ïðè ðàñ÷¼òå ïî ïðåäåëüíûì íàãðóçêàì. Ýòà ñèëà áîëüøå, ÷åì ïðè ðàñ÷¼òå ïî äîïóñêàåìûì íàïðÿæåíèÿì. Ðàçëè÷íûå çíà÷åíèÿ äîïóñêàåìûõ ñèë ïîëó÷àþòñÿ òîëüêî äëÿ ñòàòè÷åñêè íåîïðåäåëèìûõ ñèñòåì. Äëÿ ñòàòè÷åñêè îïðåäåëèìûõ ñèñòåì (ðèñ. 2.19), ðåçóëüòàòû áóäóò îäèíàêîâûìè. Ïîêàæåì ýòî. Ðèñ. 2.19. Ñðàâíåíèå ïðåäåëüíûõ íàãðóçîê ïî äîïóñêàåìûì íàïðÿæåíèÿì [𝐹 ] = [𝜎] · 𝐴. ïî ïðåäåëüíûì íàãðóçêàì 𝐹 ≤ [𝐹 ] = 𝐹т ; 𝑛т 𝐹т = 𝜎т · 𝐴; [𝜎] = 𝜎т ; 𝑛т [𝐹 ] = [𝜎] · 𝐴. Ïðè ðàñ÷¼òå ïî ïðåäåëüíûì íàãðóçêàì íå îáÿçàòåëüíî èìåòü óïðóãîå ðåøåíèå ñ òåì, ÷òîáû ðàññìîòðåòü õîä ðîñòà äåôîðìàöèé. Èíîãäà áîëåå óäîáíûì ÿâëÿåòñÿ ðàññìîòðåíèå âñåõ âîçìîæíûõ âàðèàíòîâ ïðåäåëüíûõ ñîñòîÿíèé. Ðàñ÷¼òîì êàæäîé ñõåìû (ñòàòè÷åñêè îïðåäåëèìîé) ìîæíî óñòàíîâèòü ïîðÿäîê âûõîäà ñòåðæíåé çà ïðåäåë òåêó÷åñòè. Ïðèìåð (ðèñ. 2.20). Äàíî 𝐴1 ̸= 𝐴2 ̸= 𝐴3 , 𝜎т1 ̸= 𝜎т2 ̸= 𝜎т3 . Íåîáõîäèìî îïðåäåëèòü [𝐹 ]. Ðèñ. 2.20. Âàðèàíòû ñõåì ïðåäåëüíûõ ñîñòîÿíèé ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 33 Èçîáðàæàåì âîçìîæíûå âàðèàíòû ñõåì ïðåäåëüíûõ ñîñòîÿíèé (ðèñ. 2.20, á-ã) Èç óðàâíåíèé ñòàòèêè äëÿ êàæäîé ñõåìû îïðåäåëÿåì [𝐹 ]𝐼 , [𝐹 ]𝐼𝐼 , [𝐹 ]𝐼𝐼𝐼 . Èç âñåõ ñõåì âåðîÿòíîé áóäåò òà, â êîòîðîé [𝐹 ] áóäåò íàèìåíüøåé. Ïîëó÷åííîå çíà÷åíèå è ÿâëÿåòñÿ èñêîìîé ãðóçîïîäú¼ìíîñòüþ. Òàêèì îáðàçîì, ðàñ÷¼ò ïî ïðåäåëüíûì íàãðóçêàì ïîçâîëÿåò ñïðîåêòèðîâàòü áîëåå ýêîíîìè÷íóþ ñòàòè÷åñêè íåîïðåäåëèìóþ ñèñòåìó. 2.7 Учёт собственного веса в расчётах на прочность Íóæíî ëè ó÷èòûâàòü ñîáñòâåííûé âåñ ïðè ðàñ÷¼òå äåòàëè (ñòåðæíÿ), èñïûòûâàþùåé öåíòðàëüíîå ðàñòÿæåíèå (ñæàòèå)? Ðàññìîòðèì íàèáîëåå òÿæ¼ëûé ñëó÷àé, êîãäà ðàñòÿãèâàþùèå ñèëû è ñèëà âåñà ñîçäàþò íàïðÿæåíèÿ îäíîãî çíàêà (ðèñ. 2.21). Íà÷àëî êîîðäèíàò ïîìåñòèì â òî÷êå ïðèëîæåíèÿ ñèëû 𝐹 . Íàéä¼ì íîðìàëüíóþ ñèëó â ñå÷åíèè 𝑧 ìåòîäîì ñå÷åíèé. Ïîêàæåì ñèëû, äåéñòâóþùèå íà íèæíþþ ÷àñòü: Ðèñ. 2.21. Ðàñ÷¼òû íà ïðî÷íîñòü ñ ó÷¼òîì ñîáñòâåííîãî âåñà 𝑤(𝑧) ñèëà âåñà; 𝑁 (𝑧) íîðìàëüíàÿ ñèëà â äàííîì ñå÷åíèè 𝑧 . 𝑤(𝑧) = 𝛾 · 𝐴 · 𝑧 , ãäå 𝛾 îáú¼ìíûé âåñ (âåñ åäèíèöû îáú¼ìà). Íèæíÿÿ ÷àñòü ïîä äåéñòâèåì âñåõ ñèë íàõîäèòñÿ â ðàâíîâåññèè. Óðàâíåíèå ñòàòèêè: 𝑁 (𝑧) − 𝛾 · 𝐴 · 𝑧 − 𝐹 = 0, îòñþäà 𝑁 (𝑧) = 𝛾 · 𝐴 · 𝑧 + 𝐹. Îïðåäåëÿåì íàïðÿæåíèÿ 𝑁 (𝑧) 𝐹 = + 𝛾 · 𝑧. 𝐴 𝐴 Âèäíî, ÷òî íàïðÿæåíèÿ îò ñå÷åíèÿ ê ñå÷åíèþ èçìåíÿþòñÿ ïî ëèíåéíîìó çàêîíó. 𝜎(𝑧) = ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 34 Èçîáðàçèì ýïþðó íàïðÿæåíèé, ÷òîáû îïðåäåëèòü, â êàêîì ñå÷åíèè äåéñòâóþò íàèáîëüøèå íàïðÿæåíèÿ. Ïîñëå ïîñòðîåíèÿ ýïþðû 𝜎 ìîæíî îòâåòèòü íà âîïðîñ ÷åìó ðàâíî íàèáîëüøåå íàïðÿæåíèå 𝜎наиб = 𝐹 + 𝛾 · 𝑙. 𝐴 Çàïèøåì óñëîâèå ïðî÷íîñòè: 𝜎наиб ≤ [𝜎], 𝐹 + 𝛾 · 𝑙 ≤ [𝜎]. 𝐴 Ïåðåïèøåì åãî â âèäå 𝐹 ≤ [𝜎] − 𝛾 · 𝑙. 𝐴 Ýòî îêîí÷àòåëüíîå óñëîâèå ïðî÷íîñòè ñ ó÷¼òîì ñîáñòâåííîãî âåñà, êîãäà çíàê âíåøíèõ ñèë ñîâïàäàåò ñî çíàêîì ñèëû âåñà. Êîãäà íóæíî ó÷èòûâàòü ñîáñòâåííûé âåñ? Åãî íóæíî ó÷èòûâàòü òîãäà, êîãäà íàèáîëüøåå íàïðÿæåíèå îò âåñà ñðàâíèìî ñ äîïóñêàåìûì íà𝛾·𝑙 ïðÿæåíèåì, òî åñòü åñëè · 100% > 5%. Ýòî ìîæåò áûòü â äâóõ ñëó[𝜎] ÷àÿõ. 1) Ïðè áîëüøîé äëèíå äåòàëè (áðóñà). Ïðèìåð: ñòåðæåíü âûïîëíåí èç ñòàëè äëèíîé 𝑙 = 10 ì, 𝛾 = 78,5 êÍ/ì3 , [𝜎] = 160 ÌÏà. 78, 5 · 103 · 10 𝛾·𝑙 · 100% = · 100% = 0, 491%. [𝜎] 160 · 106 Íåñìîòðÿ íà áîëüøóþ äëèíó, ñîáñòâåííûé âåñ ïðèâîäèò ê èçìåíåíèþ ïðàâîé ÷àñòè ìåíåå ÷åì íà 0, 5%.  ýòîì ñëó÷àå ñîáñòâåííûé âåñ â ðàñ÷¼òàõ íå ó÷èòûâàåòñÿ. 2) Äëÿ ìàòåðèàëîâ, ó êîòîðûõ äîïóñêàåìîå íàïðÿæåíèå ìàëî. Ïðèìåð: êèðïè÷íàÿ êëàäêà (ðèñ. 2.22). Áóäåì ðàññìàòðèâàòü êèðïè÷íûé ñòîëá âûñîòîé 𝑙 = 10 ì, 𝛾 = 18,0 êÍ/ì3 , [𝜎] = 120 ÌÏà (êèðïè÷íàÿ êëàäêà ìîæåò ðàáîòàòü òîëüêî íà ñæàòèå). 𝛾·𝑙 18 · 103 · 10 · 100% = · 100% = 15%. [𝜎] 120 · 106 Ýòî óæå ñóùåñòâåííàÿ âåëè÷èíà è ðàñ÷¼ò íåîáõîäèìî âåñòè ñ ó÷¼òîì âåñà. Ïîýòîìó ïðè ðàñ÷¼òå íà ïðî÷íîñòü êèðïè÷íîé êëàäêè ñîáñòâåííûé âåñ îáÿçàòåëüíî ó÷èòûâàåòñÿ. Ïðè ðàñ÷¼òàõ íà ïðî÷íîñòü â ìàøèíîñòðîåíèè ñèëà âåñà, êàê ïðàâèëî, íå ó÷èòûâàåòñÿ. ГЛАВА 2. ЦЕНТРАЛЬНОЕ РАСТЯЖЕНИЕ И СЖАТИЕ 35 Ðèñ. 2.22. Êèðïè÷íàÿ êëàäêà 2.8 Вопросы для самопроверки ×òî òàêîå ðàñ÷¼òíàÿ ñõåìà? Äàéòå îïðåäåëåíèå ãèïîòåçû ïëîñêèõ ñå÷åíèé. ×òî òàêîå àáñîëþòíîå è îòíîñèòåëüíîå óäëèíåíèå (óêîðî÷åíèå)? Íàçîâèòå îñíîâíûå õàðàêòåðèñòèêè ïëàñòè÷íûõ è õðóïêèõ ìàòåðèàëîâ. Îáúÿñíèòå ôèçè÷åñêèé è ãåîìåòðè÷åñêèé ñìûñë ìîäóëÿ ïðîäîëüíîé óïðóãîñòè. ×òî òàêîå êîýôôèöèåíò Ïóàññîíà, çîíû óïðóãîñòè, îáùåé òåêó÷åñòè, óïðî÷íåíèÿ? ×òî òàêîå ïëîùàäêà òåêó÷åñòè? Êàêîå ÿâëåíèå íàçûâàåòñÿ íàêë¼ïîì? Êàêèå çàäà÷è ðåøàþòñÿ ïðè ðàñ÷¼òàõ íà ïðî÷íîñòü? Êàêèå ñèñòåìû íàçûâàþòñÿ ñòàòè÷åñêè îïðåäåëèìûìè è êàêèå ñòàòè÷åñêè íåîïðåäåëèìûìè? ×òî òàêîå ñòåïåíü ñòàòè÷åñêîé íåîïðåäåëèìîñòè ñèñòåìû? Êàêèì îáðàçîì ðàñêðûâàåòñÿ ñòàòè÷åñêàÿ íåîïðåäåëèìîñòü?  êàêèõ ñëó÷àÿõ ïðîâîäèòñÿ ðàñ÷¼ò ïî äîïóñêàåìûì íàïðÿæåíèÿì è â êàêèõ ïî ïðåäåëüíûì íàãðóçêàì? Êàê îïðåäåëÿåòñÿ ïîòåíöèàëüíàÿ ýíåðãèÿ äåôîðìàöèè ïðè öåíòðàëüíîì ðàñòÿæåíèè è ñæàòèè? Глава 3 Сдвиг 3.1 Основные понятия о сдвиге Áóäåì ðàññìàòðèâàòü êðó÷åíèå òîíêîñòåííîé òðóáêè (ðèñ. 3.1). Òðóáêà çàêðó÷èâàåòñÿ ïàðîé ñèë. Ðèñ. 3.1. Êðó÷åíèå òîíêîñòåííîé òðóáêè Ðàññåêàåì òðóáêó ïëîñêîñòüþ, ïåðïåíäèêóëÿðíîé å¼ îñè. Âåðõíþþ ÷àñòü îòáðàñûâàåì è ðàññìàòðèâàåì íèæíþþ ÷àñòü.  ñå÷åíèè äåéñòâóþò òîëüêî êàñàòåëüíûå íàïðÿæåíèÿ 𝜏 . Íîðìàëüíûõ íàïðÿæåíèé â ñå÷åíèè íå áóäåò. Âûðåæåì ýëåìåíò èç ñòåíêè òðóáêè. Ïóñòü ýòî áóäåò ýëåìåíòàðíûé êóáèê (ýëåìåíò ðàññìàòðèâàåòñÿ â ïðåäåëå, êîãäà äëèíà ð¼áåð ñòðåìèòñÿ ê íóëþ). Ïîêàæåì êóáèê è íàïðÿæåíèÿ, äåéñòâóþùèå íà íåãî. Íà íèæíåé ãðàíè êàñàòåëüíîå íàïðÿæåíèå áóäåò òàêèì æå, êàê è íà âåðõíåé ãðàíè, íî ïðîòèâîïîëîæíîãî íàïðàâëåíèÿ. Íà ïåðåäíåé è çàäíåé ãðàíÿõ íàïðÿæåíèé íåò. Åñëè ïðåäïîëîæèòü, ÷òî íà áîêîâûõ ãðàíÿõ òîæå íåò íàïðÿæåíèé, òî ýëåìåíò íå áóäåò íàõîäèòüñÿ â ðàâíîâåññèè. Ïîýòîìó íà áîêîâûõ ãðàíÿõ äîëæíû áûòü êàñàòåëüíûå íàïðÿæåíèÿ, ñîçäàþùèå ìîìåíò ïðîòèâîïîëîæíîãî íàïðàâëåíèÿ. 36 ГЛАВА 3. СДВИГ 37 Òàêèì îáðàçîì, ìû ïðèøëè ê çàêîíó ïàðíîñòè êàñàòåëüíûõ íàïðÿæåíèé. Èç ðèñóíêà âèäíî: касательные напряжения на двух взаимно перпендикулярных площадках равны по величине и направлены либо оба к ребру, либо оба от ребра. Ïî ñóùåñòâó ýòî çàêîíîìåðíîñòü ñòàòèêè. Напряжённое состояние, при котором по граням четырём элемента действуют только касательные напряжения, называется чистым сдвигом. Áûâàåò ïðîñòî ñäâèã, êîãäà íàðàâíå ñ êàñàòåëüíûìè íàïðÿæåíèÿìè åñòü íåáîëüøèå íîðìàëüíûå íàïðÿæåíèÿ. Íàïðèìåð, çàêë¼ïêà, ãäå íàðàâíå ñ êàñàòåëüíûìè íàïðÿæåíèÿìè åñòü íåáîëüøèå íîðìàëüíûå íàïðÿæåíèÿ. Ïðèìåð (ðèñ. 3.2): åñëè óñëîâèå ∆ << ℎ âûïîëíÿåòñÿ, òî áóäåò ñäâèã, à åñëè ýòî óñëîâèå íå âûïîëíÿåòñÿ êðîìå ñäâèãà áóäåò åø¼ èçãèá. Ðèñ. 3.2. Íàãðóæåíèå, âûçûâàþùåå ñäâèã Ðàññìîòðèì äåôîðìàöèè ïðè ñäâèãå (ðèñ. 3.3). Ðèñ. 3.3. Äåôîðìàöèè ïðè ñäâèãå Ïðè ñäâèãå âûñîòà ýëåìåíòà íå ìåíÿåòñÿ, òàê êàê íåò íîðìàëüíûõ íàïðÿæåíèé. Çäåñü 𝛿 àáñîëþòíûé ñäâèã, íî îí íå ìîæåò ñëóæèòü ìåðîé èíòåíñèâíîñòè ñäâèãà (çàâèñèò îò ðàçìåðîâ ýëåìåíòà), ïîýòîìó ââåä¼ì îòíîñèòåëüíûé ñäâèã. 𝛿 îòíîñèòåëüíûé ñäâèã, ÿâëÿåòñÿ ìåðîé èíòåíñèâíîñòè ñäâèãà, 𝑎 𝛾 óãîë ñäâèãà, ГЛАВА 3. 38 СДВИГ 𝛿 = tg 𝛾 ≈ 𝛾 (â ðàä) òàê êàê ïåðåìåùåíèÿ 𝛿 î÷åíü ìàëû. 𝑎 Ñëåäîâàòåëüíî, îòíîñèòåëüíûé ñäâèã ðàâåí óãëó ñäâèãà, ïîýòîìó â äàëüíåéøåì áóäåì ãîâîðèòü: óãîë ñäâèãà èëè óãëîâàÿ äåôîðìàöèÿ. Êàê ñâÿçàíû ìåæäó ñîáîé 𝜏 è 𝛾 ? Ýòîò âîïðîñ èçó÷àëñÿ îïûòíûì ïóò¼ì, íî åãî ìîæíî ðåøèòü è òåîðåòè÷åñêè, èñõîäÿ èç çàêîíà Ãóêà. Áûëî óñòàíîâëåíî 𝜏 = 𝐺 · 𝛾, ãäå 𝐺 ìîäóëü ñäâèãà èëè ìîäóëü óïðóãîñòè ïðè ñäâèãå (ìîäóëü ïîïåðå÷íîé óïðóãîñòè, ìîäóëü óïðóãîñòè âòîðîãî ðîäà). Ýòî òðåòüÿ óïðóãàÿ ïîñòîÿííàÿ ìàòåðèàëà (𝐸 , 𝜇, 𝐺). Êàêîâû çíà÷åíèÿ 𝐺? Äëÿ ñòàëè 𝐺 = 0, 8 · 105 ÌÏà (â ñðåäíåì). Çàêîí Ãóêà ïðè ñäâèãå: óãîë ñäâèãà ïðîïîðöèîíàëåí êàñàòåëüíûì íàïðÿæåíèÿì. Äàëåå çàïèøåì óñëîâèå ïðî÷íîñòè ïðè ñäâèãå 𝜏наиб ≤ [𝜏 ]. ãäå [𝜏 ] = (0, 5 − 0, 6)[𝜎]. 3.2 Вопросы для самопроверки ×òî òàêîå ÷èñòûé ñäâèã, êàê ôîðìóëèðóåòñÿ çàêîí ïàðíîñòè êàñàòåëüíûõ íàïðÿæåíèé? Íàïèøèòå çàêîí Ãóêà ïðè ñäâèãå.  êàêèõ äåòàëÿõ ÷àùå âñåãî ðåàëèçóåòñÿ ñäâèã? Êàê îïðåäåëÿþòñÿ íàïðÿæåíèÿ ïðè ñäâèãå? ×òî òàêîå ìîäóëü óïðóãîñòè ïðè ñäâèãå è êàê åãî îïðåäåëÿþò? Êàê ôîðìóëèðóåòñÿ çàêîí Ãóêà ïðè ñäâèãå? Êàê ðåøàþòñÿ çàäà÷è ðàñ÷¼òà íà ïðî÷íîñòü ïðè ñäâèãå? Глава 4 Теория напряжённого и деформированного состояния 4.1 Основные сведения о напряжённом состоянии детали в точке Ðàññìîòðèì äåòàëü ïðîèçâîëüíîé ôîðìû, íàãðóæåííóþ ïðîèçâîëüíîé ñàìîóðàâíîâåøåííîé ñèñòåìîé ñèë, è òî÷êó 𝐴 äåòàëè, íàïðÿæåíèÿ â êîòîðîé íàñ èíòåðåñóþò (ðèñ. 4.1, à). ×åðåç òî÷êó 𝐴 ìîæíî ïðîâåñòè áåñêîíå÷íîå ìíîæåñòâî ñå÷åíèé, íàïðÿæåíèÿ íà êîòîðûõ, â îáùåì ñëó÷àå, ðàçëè÷íû. Ñ ïîâîðîòîì ñåêóùåé ïëîñêîñòè íàïðÿæåíèÿ ìåíÿþòñÿ îïðåäåë¼ííûì îáðàçîì. Ðèñ. 4.1. Íàïðÿæ¼ííîå ñîñòîÿíèå äåòàëè â òî÷êå Совокупность напряжений, действующих на бесконечном множестве площадок, проходящих через данную точку нагруженной детали, называют напряжённым состоянием детали в точке. Èññëåäîâàòü íàïðÿæ¼ííîå ñîñòîÿíèå çíà÷èò ïîëó÷èòü çàâèñèìîñòè, ïîçâîëÿþùèå îïðåäåëèòü íàïðÿæåíèÿ íà ëþáîé ïëîùàäêå ïî ìèíèìàëüíûì èñõîäíûì äàííûì.  òåîðèè óïðóãîñòè äîêàçûâàåòñÿ, ÷òî ýòî ìîæíî 39 40 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ñäåëàòü, åñëè èçâåñòíû íàïðÿæåíèÿ íà òð¼õ âçàèìíî ïåðïåíäèêóëÿðíûõ ïëîùàäêàõ. Ñëåäîâàòåëüíî, íàïðÿæ¼ííîå ñîñòîÿíèå äåòàëè â òî÷êå çàäà¼òñÿ íàïðÿæåíèÿìè íà òð¼õ âçàèìíî ïåðïåíäèêóëÿðíûõ ïëîùàäêàõ. Âûáåðåì ïðàâóþ âèíòîâóþ ñèñòåìó êîîðäèíàò è â îêðåñòíîñòè òî÷êè 𝐴 âûðåæåì áåñêîíå÷íî ìàëûé ýëåìåíò, ãðàíè êîòîðîãî ïåðïåíäèêóëÿðíû êîîðäèíàòíûì îñÿì è ïîêàæåì åãî îòäåëüíî (ðèñ. 4.1, á). Ïîêàæåì íàïðÿæåíèÿ íà ãðàíÿõ ýëåìåíòà: 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 íîðìàëüíûå íàïðÿæåíèÿ (𝜎𝑥 ⊥ 𝑦𝑧, ‖ 𝑥); 𝜏𝑥𝑦 , 𝜏𝑦𝑧 , 𝜏𝑧𝑥 , 𝜏𝑦𝑥 , 𝜏𝑧𝑦 , 𝜏𝑥𝑧 - êàñàòåëüíûå íàïðÿæåíèÿ (𝜏𝑥𝑦 êàñàòåëüíîå íàïðÿæåíèå íà ïëîùàäêå, ïåðïåíäèêóëÿðíîé îñè 𝑥 è íàïðàâëåííîå ïàðàëëåëüíî îñè 𝑦 ). Ýëåìåíò äîëæåí íàõîäèòüñÿ â ðàâíîâåñèè, ïîýòîìó íàïðÿæåíèÿ íà ïðîòèâîïîëîæíûõ ãðàíÿõ äîëæíû áûòü òàêèìè æå ïî âåëè÷èíå è ïðîòèâîïîëîæíûìè ïî íàïðàâëåíèþ. Òàêèì îáðàçîì, íà òð¼õ âçàèìíî ïåðïåíäèêóëÿðíûõ ïëîùàäêàõ äåéñòâóþò 9 íàïðÿæåíèé èëè 9 êîìïîíåíò íàïðÿæ¼ííîãî ñîñòîÿíèÿ äåòàëè â òî÷êå. Âûïèøåì èõ â âèäå òåíçîðà íàïðÿæåíèé ⎡ ⎤ 𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧 ⎣𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧 ⎦ . 𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧 Ïî çàêîíó ïàðíîñòè êàñàòåëüíûõ íàïðÿæåíèé: 𝜏𝑥𝑦 = 𝜏𝑦𝑥 , 𝜏𝑦𝑧 = 𝜏𝑧𝑦 , 𝜏𝑧𝑥 = 𝜏𝑥𝑧 , òî åñòü èç 9 êîìïîíåíò îñòàíåòñÿ òîëüêî 6: 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑥 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧 , 𝜏𝑧𝑥 . Çíàÿ ýòè 6 íàïðÿæåíèé, ìîæíî îïðåäåëèòü íàïðÿæåíèÿ íà ëþáîé ïëîùàäêå, ïðîõîäÿùåé ÷åðåç äàííóþ òî÷êó . Åñëè ïëîùàäêó ïîâîðà÷èâàòü, òî íàïðÿæåíèÿ íà íåé ìåíÿþòñÿ, è âñåãäà ìîæíî íàéòè òàêîå ïîëîæåíèå ïëîùàäêè, êîãäà êàñàòåëüíûå íàïðÿæåíèÿ íà íåé ðàâíû íóëþ. Ïëîùàäêè, íà êîòîðûõ êàñàòåëüíûå íàïðÿæåíèÿ ðàâíû íóëþ, íàçûâàþòñÿ ãëàâíûìè, à íàïðÿæåíèÿ, äåéñòâóþùèå íà ýòèõ ïëîùàäêàõ, íàçûâàþòñÿ ãëàâíûìè íàïðÿæåíèÿìè.  òåîðèè óïðóãîñòè äîêàçûâàåòñÿ, ÷òî ïðè ëþáîì íàïðÿæ¼ííîì ñîñòîÿíèè èìååòñÿ êàê ìèíèìóì òðè ãëàâíûõ âçàèìíî ïåðïåíäèêóëÿðíûõ ïëîùàäêè. Ïîêàæåì áåñêîíå÷íî ìàëûé ýëåìåíò, ãðàíè êîòîðîãî ïàðàëëåëüíû ãëàâíûì ïëîùàäêàì (ðèñ. 4.2).  ýòîì ñëó÷àå (åñëè èçâåñòíû ãëàâíûå íàïðÿæåíèÿ è ïîëîæåíèå ãëàâíûõ ïëîùàäîê), íàïðÿæåíèÿ íà ëþáîé ïëîùàäêå ìîæíî îïðåäåëèòü, èìåÿ òðè ãëàâíûõ íàïðÿæåíèÿ 𝜎1 , 𝜎2 , 𝜎3 , ïðè÷¼ì 𝜎1 ≥ 𝜎2 ≥ 𝜎3 , òî åñòü 𝜎1 àëãåáðàè÷åñêè íàèáîëüøåå íàïðÿæåíèå (𝜎1 = 𝜎 наиб ), à 𝜎3 àëãåáðàè÷åñêè íàèìåíüøåå íàïðÿæåíèå (𝜎3 = 𝜎 наим ). 41 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ðèñ. 4.2. Ãëàâíûå íàïðÿæåíèÿ Êàêèå áû ïëîùàäêè, ïðîõîäÿùèå ÷åðåç äàííóþ òî÷êó 𝐴. ìû íå ðàññìàòðèâàëè, íàïðÿæåíèÿ íà íèõ íå ìîãóò áûòü áîëüøå 𝜎1 è ìåíüøå 𝜎3 .  ÷àñòíûõ ñëó÷àÿõ íåêîòîðûå èç ãëàâíûõ íàïðÿæåíèé ìîãóò áûòü ðàâíûìè íóëþ.  ñâÿçè ñ ýòèì ðàçëè÷àþò 3 âèäà íàïðÿæ¼ííûõ ñîñòîÿíèé: Ðèñ. 4.3. Âèäû íàïðÿæ¼ííûõ ñîñòîÿíèé I. Ëèíåéíîå íàïðÿæ¼ííîå ñîñòîÿíèå (ËÍÑ) (ðèñ. 4.3, à): 1) 𝜎1 ̸= 0, 𝜎2 = 𝜎3 = 0 öåíòðàëüíîå ðàñòÿæåíèå; 2) 𝜎1 = 𝜎2 = 0, 𝜎3 ̸= 0 öåíòðàëüíîå ñæàòèå. II. Ïëîñêîå íàïðÿæ¼ííîå ñîñòîÿíèå (ÏÍÑ) (ðèñ. 4.3, á): 1) 𝜎1 ̸= 0, 𝜎2 ̸= 0, 𝜎3 = 0; 2) 𝜎1 ̸= 0, 𝜎2 = 0, 𝜎3 ̸= 0; 3) 𝜎1 = 0, 𝜎2 ̸= 0, 𝜎3 ̸= 0. III. Îáú¼ìíîå íàïðÿæ¼ííîå ñîñòîÿíèå (ÎÍÑ) (ðèñ. 4.3, â): 𝜎1 ̸= 0, 𝜎2 ̸= 0, 𝜎3 ̸= 0. 42 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 4.2 Напряжения на произвольной площадке при линейном напряжённом состоянии Ðàññìîòðèì äåòàëü ïðîèçâîëüíîé ôîðìû ( ðèñ. 4.4, à). Ïóñòü õîòÿ áû â îäíîé òî÷êå 𝐴 ýòîé äåòàëè ðåàëèçóåòñÿ ëèíåéíîå íàïðÿæ¼ííîå ñîñòîÿíèå.  îêðåñòíîñòè ýòîé òî÷êè âûðåæåì áåñêîíå÷íî ìàëûé ýëåìåíò è ïîêàæåì åãî îòäåëüíî. Ðèñ. 4.4. Ëèíåéíîå íàïðÿæ¼ííîå ñîñòîÿíèå Ïðèìåð òàêîãî íàãðóæåíèÿ áðóñ ïðè öåíòðàëüíîì ðàñòÿæåíèè èëè ñæàòèè (ðèñ. 4.4, á). Ïîêàæåì, ÷òî ïðè öåíòðàëüíîì ðàñòÿæåíèè äåéñòâóåò ëèøü îäíî èç ãëàâíûõ íàïðÿæåíèé. Âûðåæåì â îêðåñòíîñòè òî÷êè ýëåìåíò, âåðõíÿÿ è íèæíÿÿ ãðàíè êîòîðîãî ïåðïåíäèêóëÿðíû îñè áðóñà. Íà ýòèõ ãðàíÿõ äåéñòâóåò òîëüêî íîðìàëüíîå íàïðÿæåíèå, êàñàòåëüíûõ íàïðÿæåíèé íåò. Íà áîêîâûõ ãðàíÿõ íåò íè íîðìàëüíûõ, íè êàñàòåëüíûõ íàïðÿæåíèé (ñëîè äðóã íà äðóãà íå äàâÿò), òî åñòü èìååò ìåñòî ëèíåéíîå íàïðÿæ¼ííîå ñîñòîÿíèå. Ðàññìîòðèì ïðîèçâîëüíóþ ïëîùàäêó, ïðîõîäÿùóþ ÷åðåç äàííóþ òî÷êó . Ïîëîæåíèå ýòîé ïëîùàäêè (ðèñ. 4.4, â) îïðåäåëÿåòñÿ íîðìàëüþ 𝑛, òî åñòü óãëîì 𝛼(𝜎 ∧ 𝜎𝛼 ). Ðàññìîòðèì äåéñòâèå âåðõíåé ÷àñòè ýëåìåíòà íà íèæíþþ. Ââ¼äåì ñëåäóþùåå ïðàâèëî çíàêîâ äëÿ óãëà 𝛼: ïðè ïîâîðîòå ïðîòèâ õîäà ÷àñîâîé ñòðåëêè óãîë ïîëîæèòåëüíûé, à ïðè ïîâîðîòå ïî õîäó ÷àñîâîé ñòðåëêè îòðèöàòåëüíûé. Åñëè îáîçíà÷èòü ÷åðåç 𝑑𝐴 ïëîùàäü íèæíåé ãðàíè ýëåìåíòà, òî ïëîùàäü íàêëîííîé ïëîùàäêè áóäåò ðàâíà 𝑑𝐴/𝑐𝑜𝑠𝛼. Ïîêàæåì íîðìàëüíîå 𝜎𝛼 è êàñàòåëüíîå 𝜏𝛼 íàïðÿæåíèÿ, äåéñòâóþùèå íà ïëîùàäêå 𝛼, è âûðàçèì èõ ÷åðåç 𝜎 . Íàïðàâèì îñü 𝑥 ïî íàïðàâëåíèþ 𝜏𝛼 , à îñü 𝑦 𝜎𝛼 è ñîñòàâèì óðàâíåíèÿ ðàâíîâåñèÿ äëÿ íèæíåé ÷àñòè ýëåìåíòà ∑︁ 𝑦 = 𝜎𝛼 𝑑𝐴 − 𝜎𝑑𝐴𝑐𝑜𝑠𝛼 = 0, 𝑐𝑜𝑠𝛼 43 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 𝜎𝛼 = 𝜎𝑐𝑜𝑠2 𝛼; 𝑑𝐴 − 𝜎𝑑𝐴𝑠𝑖𝑛𝛼 = 0, 𝑐𝑜𝑠𝛼 𝜎 𝜏𝛼 = 𝑠𝑖𝑛2𝛼. 2 Òàêèì îáðàçîì, ìû ïîëó÷èëè ôîðìóëû äëÿ îïðåäåëåíèÿ íàïðÿæåíèé íà ïðîèçâîëüíîé ïëîùàäêå ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè. Ïðîàíàëèçèðóåì ïîëó÷åííûå ôîðìóëû. Ôîðìóëà äëÿ íîðìàëüíûõ íàïðÿæåíèé: 𝜎𝛼 =| 𝜎 | _íàèá = 𝜎 ïðè 𝑐𝑜𝑠2 𝛼 = 1 èëè ïðè 𝑐𝑜𝑠𝛼 = ±1; 𝛼 = ±𝜋𝑛, ãäå 𝑛 = 0, ±1, ±2, . . . , òî åñòü ïðè ëþáûõ 𝑛 ïîïàäàåì íà òå æå ãëàâíûå ïëîùàäêè. Ñëåäîâàòåëüíî, íàèáîëüøèå íîðìàëüíûå íàïðÿæåíèÿ äåéñòâóþò íà ãëàâíûõ ïëîùàäêàõ. 𝜎 ïðè Ôîðìóëà äëÿ êàñàòåëüíûõ íàïðÿæåíèé äà¼ò: 𝜏𝛼 =| 𝜏 |наиб = 2 𝜋 𝜋 𝜋 ± 𝜋𝑛 𝛼 = ± 𝑛, ãäå 𝑛 = 0, ±1, ±2, . . . . 𝑠𝑖𝑛2𝛼 = ±1; 2𝛼 = 2 4 2 Ñëåäîâàòåëüíî, êàêîå áû 𝑛 íå áðàëè, âñåãäà áóäåì ïîïàäàòü íà îäíó èç ïëîùàäîê, íàêëîí¼ííûõ ê ãëàâíûì ïëîùàäêàì ïîä óãëîì 45∘ (ðèñ. 4.5). Ñòðîãî ãîâîðÿ, | 𝜏 | наиб äåéñòâóþò ïî êîíè÷åñêîé ïîâåðõíîñòè. ∑︁ 𝑥 = 𝜏𝛼 Ðèñ. 4.5. Íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ 4.3 Напряжения на произвольной площадке при плоском напряжённом состоянии Ðàññìîòðèì ïðîèçâîëüíî íàãðóæåííîå òåëî (ðèñ. 4.6,à). Âûáåðåì òî÷êó , â êîòîðîé èìååò ìåñòî ïëîñêîå íàïðÿæ¼ííîå ñîñòîÿíèå, òî åñòü ýëåìåíò â ýòîé òî÷êå íàãðóæåí ëèøü ïî äâóì ãðàíÿì. Âûðåæåì â îêðåñòíîñòè òî÷êè ýëåìåíò, ãðàíè êîòîðîãî ïàðàëëåëüíû ãëàâíûì ïëîùàäêàì, è ïîêàæåì åãî îòäåëüíî (ðèñ. 4.6, á). 44 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ðèñ. 4.6. Íàïðÿæåíèÿ íà ïðîèçâîëüíûõ ïëîùàäêàõ Èçîáðàçèì ïðîèçâîëüíóþ ïëîùàäêó è íàïðÿæåíèÿ 𝜎𝛼 è 𝜏𝛼 íà íåé, êîòîðûå íàì íåîáõîäèìî îïðåäåëèòü. Îáîçíà÷èì ÷åðåç 𝛼 óãîë ìåæäó íàèáîëüøèì èç ãëàâíûõ íàïðÿæåíèé 𝜎𝐼 è íîðìàëüþ 𝑛 ê ïëîùàäêå, òîãäà óãîë ìåæäó íàïðÿæåíèåì 𝜎𝐼𝐼 è íîðìàëüþ 𝑛 áóäåò ðàâåí 𝛼 + 90∘ .  ñîïðîòèâëåíèè ìàòåðèàëîâ ðàññìàòðèâàþòñÿ ëèíåéíûå ñèñòåìû, ïîýòîìó íàïðÿæåíèÿ (äåôîðìàöèè, ïåðåìåùåíèÿ) îò ãðóïïû ñèë ìîæíî íàéòè êàê ñóììó íàïðÿæåíèé (äåôîðìàöèé, ïåðåìåùåíèé) îò êàæäîé ñèëû â îòäåëüíîñòè (ðèñ. 4.7). Ýòîò ïðèíöèï íàçûâàåòñÿ ïðèíöèïîì íåçàâèñèìîñòè äåéñòâèÿ ñèë èëè ïðèíöèïîì ñóïåðïîçèöèè. Ðèñ. 4.7. Ñóììèðîâàíèå íàïðÿæåíèé Ñëåäîâàòåëüíî, 𝜎𝛼 = 𝜎𝛼𝐼 + 𝜎𝛼𝐼𝐼 , ãäå 𝜎𝛼𝐼 = 𝜎𝐼 cos2 𝛼, 𝜎𝛼𝐼𝐼 = 𝜎𝐼𝐼 cos2 (𝛼 + 90∘ ) = 𝜎𝐼𝐼 sin2 𝛼, òîãäà 𝜎𝛼 = 𝜎𝐼 cos2 𝛼 + 𝜎𝐼𝐼 sin2 𝛼. Àíàëîãè÷íî 𝜏𝛼 = 𝜏𝛼𝐼 +𝜏𝛼𝐼𝐼 , ãäå 𝜏𝛼𝐼 = 𝜎2𝐼 sin 2𝛼, 𝜏𝛼𝐼𝐼 = 𝜎2𝐼𝐼 sin [2(𝛼 + 90∘ )] = − 𝜎2𝐼𝐼 · sin 2𝛼, òîãäà 𝜎𝐼 − 𝜎𝐼𝐼 · sin 2𝛼. 𝜏𝛼 = 2 Òàêèì îáðàçîì, ìû ïîëó÷èëè ôîðìóëû ïðåîáðàçîâàíèÿ íàïðÿæåíèé ïðè ïîâîðîòå îò ãëàâíûõ ïëîùàäîê ïðè ïëîñêîì íàïðÿæ¼ííîì ñîñòîÿíèè. Ïðîàíàëèçóåì ïîëó÷åííûå ôîðìóëû | 𝜏𝛼 |наиб = 𝜎𝐼 − 𝜎𝐼𝐼 , 2 45 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 𝜋 𝜋 ïðè sin 2𝛼 = ±1, îòêóäà 𝛼 = ± + 𝑛. 4 2 Ñëåäîâàòåëüíî, íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ ðàâíû ïîëóñóììå ãëàâíûõ íàïðÿæåíèé è äåéñòâóþò íà ïëîùàäêàõ, ðàâíîíàêëîí¼ííûõ ê ãëàâíûì (ðèñ. 4.8). Ðèñ. 4.8. Ïîëîæåíèå ïëîùàäîê ñ íàèáîëüøèìè êàñàòåëüíûìè íàïðÿæåíèÿìè 4.4 Графический способ определения напряжений при плоском напряжённом состоянии. Круги Мора  ïðåäûäóùåì ïàðàãðàôå áûëè ïîëó÷åíû ôîðìóëû äëÿ îïðåäåëåíèÿ íàïðÿæåíèé íà ïðîèçâîëüíîé ïëîùàäêå ïðè ïëîñêîì íàïðÿæ¼ííîì ñîñòîÿíèè 𝜎𝛼 = 𝜎𝐼 cos2 𝛼 + 𝜎𝐼𝐼 sin2 𝛼; 𝜏𝛼 = 𝜎𝐼 − 𝜎𝐼𝐼 sin 2𝛼. 2 Åñëè â ýòèõ ôîðìóëàõ èñêëþ÷èòü 𝛼, òî ïîëó÷èì çàâèñèìîñòü 𝜏𝛼 = 𝑓 (𝜎𝛼 ), êîòîðàÿ â îñÿõ 𝜎, 𝜏 îòîáðàæàåò îêðóæíîñòü ñ öåíòðîì íà îñè 𝜎 . Î.Õ. Ìîð èñïîëüçîâàë ýòî îáñòîÿòåëüñòâî äëÿ îïðåäåëåíèÿ íàïðÿæåíèé ãðàôè÷åñêèì ñïîñîáîì. Ïðè ýòîì ìîæíî ðåøèòü äâà âèäà çàäà÷. I çàäà÷à (ïðÿìàÿ) Äàíî: 𝜎𝐼 , 𝜎𝐼𝐼 , 𝛼 (ðèñ. 4.9). Òðåáóåòñÿ îïðåäåëèòü: 𝜎𝛼 , 𝜏𝛼 . Èçëîæèì ïîñëåäîâàòåëüíîñòü îïåðàöèé, à çàòåì äîêàæåì, ÷òî îíè ïðàâîìåðíû (ðèñ. 4.10). Ïðîâåä¼ì îñè 𝜎, 𝜏 è îòëîæèì îòðåçêè, ðàâíûå ãëàâíûì íàïðÿæåíèÿì 𝑂𝐴 = 𝜎𝐼 , 𝑂𝐵 = 𝜎𝐼𝐼 . Íà îòðåçêå 𝐵𝐴, êàê íà äèàìåòðå, ïîñòðîèì îêðóæíîñòü ñ öåíòðîì â òî÷êå 𝐶 . Ïîëó÷åííàÿ îêðóæíîñòü íàçûâàåòñÿ êðóãîì Ìîðà èëè êðóãîì íàïðÿæåíèé. Ïðîâ¼äåì èç öåíòðà îêðóæíîñòè 46 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ðèñ. 4.9. Îïðåäåëåíèå íàïðÿæåíèé íà ïðîèçâîëüíîé ïëîùàäêå Ðèñ. 4.10. Ãðàôè÷åñêîå îïðåäåëåíèå íàïðÿæåíèé íà ïðîèçâîëüíîé ïëîùàäêå 𝐶 ðàäèóñ ïîä óãëîì 2𝛼 îò îñè 𝜎 ïðîòèâ õîäà ÷àñîâîé ñòðåëêè (òàê êàê ñ÷èòàåì, ÷òî óãîë 𝛼 ïîëîæèòåëüíûé) è äîêàæåì, ÷òî êîîðäèíàòû ïîëó÷åííîé òî÷êè 𝐷𝛼 ñîîòâåòñòâóþò íàïðÿæåíèÿì íà ïëîùàäêå 𝛼. 𝑂𝐴 + 𝑂𝐵 𝑂𝐴 − 𝑂𝐵 + cos 2𝛼 = 2 2 1 + cos 2𝛼 1 − 𝑐𝑜𝑠2𝛼 = 𝑂𝐴 · + 𝑂𝐵 · = 𝜎𝐼 cos2 𝛼 + 𝜎𝐼𝐼 sin2 𝛼, 2 2 òî åñòü 𝑂𝐾𝛼 = 𝜎𝛼 . 𝑂𝐾𝛼 = 𝑂𝐶 + 𝐶𝐾𝛼 = 𝜎𝐼 − 𝜎𝐼𝐼 · sin 2𝛼, òî åñòü 𝐾𝛼 𝐷𝛼 = 𝜏𝛼 . 2 Èòàê, ìû äîêàçàëè, ÷òî ñ ïîìîùüþ êðóãà Ìîðà ìîæíî îïðåäåëèòü íàïðÿæåíèÿ íà ïðîèçâîëüíîé ïëîùàäêå 𝛼. Ñëåäîâàòåëüíî, çàäà÷à ðåøåíà. Òî÷êó 𝐷𝛼 ìîæíî áûëî íàéòè òàêæå ñ ïîìîùüþ õîðäû, ïðîâåä¼ííîé èç òî÷êè 𝐵 ïîä óãëîì 𝛼 ê îñè 𝜎 . Ãðàôè÷åñêèé ñïîñîá Ìîðà ìåíåå òî÷íûé, ÷åì àíàëèòè÷åñêèé. Îäíàêî, ãðàôè÷åñêàÿ èíòåðïðåòàöèÿ ïëîñêîãî íàïðÿæ¼ííîãî ñîñòîÿíèÿ äåòàëè â òî÷êå ÿâëÿåòñÿ âåñüìà óäîáíîé äëÿ àíàëèçà. Âèäíî, ÷òî: 𝜎𝐼 = 𝜎наиб , 𝐾𝛼 𝐷𝛼 = 𝐶𝐷𝛼 · sin 2𝛼 = 47 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 𝜎𝐼 − 𝜎𝐼𝐼 𝜎𝐼𝐼 = 𝜎наим , | 𝜏𝛼 |наиб = , ïðè÷¼ì, íàèáîëüøèå êàñàòåëüíûå íàïðÿ2 æåíèÿ äåéñòâóþò íà ïëîùàäêàõ, ðàâíîíàêëîí¼ííûõ ê ãëàâíûì ïëîùàäêàì. Òåïåðü íàéä¼ì íà êðóãå Ìîðà òî÷êó, ñîîòâåòñòâóþùóþ ïëîùàäêå 𝛽 , ïåðïåíäèêóëÿðíîé ïëîùàäêå 𝛼, ò.å. 𝛽 = 𝛼 + 90∘ . Ïðîâåä¼ì ðàäèóñ ïîä óãëîì 2𝛽 = 2𝛼 + 180∘ è ïîëó÷èì òî÷êó 𝐷𝛽 (𝜎𝛽 , 𝜏𝛽 = −𝜏𝛼 ). Âàæíûé âûâîä: òî÷êè, ñîîòâåòñòâóþùèå äâóì âçàèìíî ïåðïåíäèêóëÿðíûì ïëîùàäêàì, ëåæàò íà êîíöàõ îäíîãî äèàìåòðà êðóãà Ìîðà. II çàäà÷à (îáðàòíàÿ). Äàíî: 𝜎𝛼 , 𝜏𝛼 , 𝜎𝛽 , 𝜏𝛽 . Òðåáóåòñÿ îïðåäåëèòü:𝜎𝐼 , 𝜎𝐼𝐼 , 𝛼0 (𝜎𝛼∧ 𝜎𝐼 ). Ðèñ. 4.11. Ãëàâíûå ïëîùàäêè è ãëàâíûå íàïðÿæåíèÿ Ýòà çàäà÷à èìååò äëÿ ïðàêòèêè áîëåå âàæíîå çíà÷åíèå, ÷åì ïðÿìàÿ çàäà÷à. Ïðîâîäèì êîîðäèíàòíûå îñè (ðèñ. 4.12) 𝜎, 𝜏 è ñòðîèì â ýòèõ îñÿõ òî÷êè 𝐷𝛼 (𝜎𝛼 , 𝜏𝛼 ) 𝐷𝛽 (𝜎𝛽 , 𝜏𝛽 ). Òàê êàê ýòè òî÷êè ñîîòâåòñòâóþò âçàèìíî ïåðïåíäèêóëÿðíûì ïëîùàäêàì, òî îíè ëåæàò íà êîíöàõ îäíîãî äèàìåòðà êðóãà Ìîðà. Ñîåäèíÿåì ýòè òî÷êè è îïðåäåëÿåì ïîëîæåíèå öåíòðà êðóãà 𝐶 . Èìåÿ öåíòð è äèàìåòð, ìîæíî ïðîâåñòè åäèíñòâåííóþ îêðóæíîñòü. Çàäà÷à ðåøåíà. 𝑂𝐴 = 𝜎𝐼 , 𝑂𝐵 = 𝜎𝐼𝐼 . Ïðîâåä¼ì õîðäó 𝐵𝐷𝛼 è ïîëó÷èì óãîë 𝛼 îò 𝜎𝐼 äî 𝜎𝛼 , à íàì íóæåí óãîë 𝛼0 îò 𝜎𝛼 äî 𝜎𝐼 . Ñëåäîâàòåëüíî, 𝛼0 = −𝛼. Ïðîâîäèì õîðäó 𝐵𝐷𝛼′ , ãäå 𝐷𝛼′ çåðêàëüíîå îòîáðàæåíèå òî÷êè 𝐷𝛼 . Óãîë 𝐴𝐵𝐷𝛼′ è åñòü èñêîìûé óãîë 𝛼0 . Èñïîëüçóÿ êðóã Ìîðà, âûâåäåì àíàëèòè÷åñêèå çàâèñèìîñòè äëÿ îïðåäåëåíèÿ ãëàâíûõ íàïðÿæåíèé: √︀ 𝜎𝐼 = 𝑂𝐴 = 𝑂𝐶 + 𝐶𝐷𝛼 = 𝑂𝐶 + 𝐶𝐾𝛼2 + 𝐾𝛼 𝐷𝛼2 = √︃ 𝜎𝛼 + 𝜎𝛽 𝜎𝛼 − 𝜎𝛽 2 = + ( ) + 𝜏𝛼2 = 2 2 48 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ðèñ. 4.12. Ãðàôè÷åñêîå îïðåäåëåíèå ãëàâíûõ íàïðÿæåíèé 1 = [(𝜎𝛼 + 𝜎𝛽 ) + 2 √︁ (𝜎𝛼 − 𝜎𝛽 )2 + 4 · 𝜏𝛼2 ]. Àíàëîãè÷íî 1 𝜎𝐼𝐼 = 𝑂𝐴 = 𝑂𝐶 − 𝐶𝐷𝛼 = [(𝜎𝛼 + 𝜎𝛽 ) − 2 √︁ (𝜎𝛼 − 𝜎𝛽 )2 + 4 · 𝜏𝛼2 ]; 𝐾𝛼 𝐷𝛼 𝜏𝛼 =− . 𝑂𝐾𝛼 − 𝑂𝐵 𝜎𝛼 − 𝜎𝐼𝐼 ãëàâíûõ íàïðÿæåíèé âîçìîæíû òðè âàðèàíòà: òîãäà 𝜎1 = 𝜎𝐼 , 𝜎2 = 𝜎𝐼𝐼 , 𝜎3 = 0; òîãäà 𝜎1 = 𝜎𝐼 , 𝜎2 = 0, 𝜎3 = 𝜎𝐼𝐼 ; òîãäà 𝜎1 = 0, 𝜎2 = 𝜎𝐼 , 𝜎3 = 𝜎𝐼𝐼 . tg 𝛼0 = − Ïðè îïðåäåëåíèè 1) 𝜎𝐼 > 0, 𝜎𝐼𝐼 > 0, 2) 𝜎𝐼 > 0, 𝜎𝐼𝐼 < 0, 3) 𝜎𝐼 < 0, 𝜎𝐼𝐼 < 0, 4.5 Напряжения на произвольной площадке при объёмном напряжённом состоянии Ðàññìîòðèì äåòàëü ïðîèçâîëüíîé ôîðìû, íàãðóæåííóþ óðàâíîâåøåííîé ñèñòåìîé ñèë, è òî÷êó 𝐴 äåòàëè, â êîòîðîé èìååò ìåñòî îáú¼ìíîå íàïðÿæ¼ííîå ñîñòîÿíèå (ðèñ. 4.13), òî åñòü 𝜎1 ̸= 0, 𝜎2 ̸= 0, 𝜎3 ̸= 0. Ðèñ. 4.13. Íàïðÿæ¼ííîå ñîñòîÿíèå äåòàëè â òî÷êå 49 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Èçîáðàçèì ýëåìåíò îòäåëüíî (ðèñ. 4.14). Ïîêàæåì ïðîèçâîëüíóþ ïëîùàäêó, ïðîõîäÿùóþ ÷åðåç òî÷êó 𝐴. Íîðìàëü 𝑛 ê ïëîùàäêå îáðàçóåò ñ ãëàâíûìè íàïðÿæåíèÿìè óãëû 𝛼1 , 𝛼2 , 𝛼3 . Ïîêàæåì íàïðÿæåíèÿ íà ýòîé ïëîùàäêå 𝜎𝛼 , 𝜏𝛼 . Ðèñ. 4.14. Îïðåäåëåíèå íàïðÿæåíèé íà ïðîèçâîëüíûõ ïëîùàäêàõ ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè Çàäà÷à ñâîäèòñÿ ê ñëåäóþùåé: èçâåñòíû 𝜎1 , 𝜎2 , 𝜎3 , 𝛼1 , 𝛼2 , 𝛼3 . Òðåáóåòñÿ îïðåäåëèòü: 𝜎𝛼 , 𝜏𝛼 . Âîñïîëüçóåìñÿ ïðèíöèïîì ñóïåðïîçèöèè, òî åñòü ïðåäñòàâèì íàïðÿæåíèÿ íà ïðîèçâîëüíîé ïëîùàäêå êàê ñóììó íàïðÿæåíèé îò êàæäîãî ãëàâíîãî íàïðÿæåíèÿ â îòäåëüíîñòè 𝜎𝛼 = 𝜎𝛼1 + 𝜎𝛼2 + 𝜎𝛼3 , ãäå 𝜎𝛼𝑖 = 𝜎𝑖 · cos2 𝛼𝑖 , òîãäà 𝜎𝛼 = 𝜎1 · cos2 𝛼1 + 𝜎2 · cos2 𝛼2 + 𝜎3 · cos2 𝛼3 . Êàñàòåëüíûå íàïðÿæåíèÿ, âûçâàííûå êàæäûì ãëàâíûì íàïðÿæåíèåì, ïî íàïðàâëåíèþ íå ñîâïàäàþò, ïîýòîìó íåîáõîäèìî ðàññìàòðèâàòü âåêòîðíóþ ñóììó 𝜏 𝛼 = 𝜏 𝛼1 + 𝜏 𝛼2 + 𝜏 𝛼3 . Ìîäóëü 𝜏𝛼 ìîæíî îïðåäåëèòü êàê √︀ 𝜏𝛼 = 𝑝2𝛼 − 𝜎𝛼2 , ãäå 𝑝2𝛼 = 𝜎12 · cos2 𝛼1 + 𝜎22 · cos2 𝛼2 + 𝜎32 · cos2 𝛼3 , òîãäà 𝜏𝛼 = √︁ 𝜎12 · cos2 𝛼1 + 𝜎22 · cos2 𝛼2 + 𝜎32 · cos2 𝛼3 − 𝜎𝛼2 . Äëÿ îïðåäåëåíèÿ íàïðàâëåíèÿ 𝜏𝛼 â êàæäîì ñëó÷àå íåîáõîäèìî ðàññìàòðèâàòü êîíêðåòíóþ çàäà÷ó. Ïðèìåð: îïðåäåëèì íàïðÿæåíèÿ íà îêòàýäðè÷åñêîé ïëîùàäêå, òî åñòü íà ïëîùàäêå, ðàâíîíàêëîí¼ííîé ê ãëàâíûì 𝛼1 = 𝛼2 = 𝛼3 = 𝛼 окт Èç ëèíåéíîé àëãåáðû èçâåñòíî, ÷òî cos2 𝛼1 + cos2 𝛼2 + cos2 𝛼3 = 1, 50 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 1 îòêóäà cos2 𝛼 окт = . 3 Ïîñëå ïîäñòàíîâêè è âû÷èñëåíèé ïîëó÷àåì 𝜎 окт = 𝜏 окт 4.6 1 · (𝜎1 + 𝜎2 + 𝜎3 ); 3 √ √︁ 2 = · 𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 − 𝜎2 · 𝜎3 − 𝜎3 · 𝜎1 3 Круги при Мора объёмном напряжённом состоянии Äëÿ îáú¼ìíîãî íàïðÿæ¼ííîãî ñîñòîÿíèÿ ìîæíî òàêæå èçîáðàçèòü êðóã Ìîðà. Èçîáðàçèì ýëåìåíò, èñïûòûâàþùèé îáú¼ìíîå íàïðÿæ¼ííîå ñîñòîÿíèå, ãðàíè êîòîðîãî ÿâëÿþòñÿ ãëàâíûìè ïëîùàäêàìè. Âíà÷àëå ðàññìîòðèì íàêëîííûå ïëîùàäêè, ïàðàëëåëüíûå 𝜎1 , òî åñòü cos 𝛼1 = 0 (ðèñ. 4.15, à). Äëÿ òàêèõ ïëîùàäîê 𝜎𝛼 = 𝜎2 cos2 𝛼2 + 𝜎3 cos2 𝛼3 . Ó÷ò¼ì, ÷òî 𝛼2 + 𝛼3 = 90∘ , òîãäà cos 𝛼3 = sin 𝛼2 è 𝜎𝛼 = 𝜎2 cos2 𝛼2 + 𝜎3 sin2 𝛼2 ýòî èçâåñòíàÿ ôîðìóëà äëÿ ïëîñêîãî íàïðÿæ¼ííîãî ñîñòîÿíèÿ, ãåîìåòðè÷åñêîé èíòåðïðåòàöèåé êîòîðîãî áóäåò êðóã Ìîðà ìåæäó 𝜎2 è 𝜎3 . Àíàëîãè÷íî ðàññìàòðèâàÿ ïëîùàäêè, ïàðàëëåëüíûå 𝜎2 è 𝜎3 , ïîëó÷èì åù¼ äâà êðóãà Ìîðà (ðèñ. 4.15, á). Ðèñ. 4.15. Ãðàôè÷åñêîå îïðåäåëåíèå íàïðÿæåíèé ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè Èòàê, íàêëîííûì ïëîùàäêàì, ïàðàëëåëüíûì îäíîìó èç ãëàâíûõ íàïðÿæåíèé, ñîîòâåòñòâóþò òî÷êè íà îäíîé èç îêðóæíîñòåé. Íî åñòü ïëîùàäêè, íå ïàðàëëåëüíûå íè îäíîìó èç ãëàâíûõ íàïðÿæåíèé. Ýòèì ïëîùàäêàì ñîîòâåòñòâóþò òî÷êè â çàøòðèõîâàííîé îáëàñòè. Áóäåì ðàññìàò- 51 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ðèâàòü òîëüêî âåðõíþþ ÷àñòü, ò.ê. íå îãîâîðåíî íàïðàâëåíèå êàñàòåëüíûõ íàïðÿæåíèé. Ïðîàíàëèçèðóåì ïðåäåëû èçìåíåíèÿ íàïðÿæåíèé: 𝜎наиб = 𝜎1 ; 𝜎наим = 𝜎1 − 𝜎3 . 𝜎3 ; 𝜏наиб = 2 Ñëåäîâàòåëüíî, â ñëó÷àå îáú¼ìíîãî íàïðÿæ¼ííîãî ñîñòîÿíèÿ íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ ðàâíû ïîëóðàçíîñòè êðàéíèõ ãëàâíûõ íàïðÿæåíèé. Óñòàíîâèì ïëîùàäêó, íà êîòîðîé äåéñòâóþò 𝜏наиб ýòî ïëîùàäêà, ïàðàëëåëüíàÿ 𝜎2 è íàêëîí¼ííàÿ ïîä óãëîì 45∘ ê ãëàâíûì íàïðÿæåíèÿì 𝜎1 è 𝜎3 . Òàêèì îáðàçîì, ìû íàó÷èëèñü îïðåäåëÿòü íàïðÿæåíèÿ íà ëþáûõ ïëîùàäêàõ ïðè ëèíåéíîì, ïëîñêîì è îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèÿõ. Îäíàêî, äëÿ ðàñ÷¼òîâ íà ïðî÷íîñòü è æ¼ñòêîñòü ýòîãî åù¼ íå äîñòàòî÷íî. Íåîáõîäèìî óñòàíîâèòü ñâÿçü ìåæäó íàïðÿæåíèÿìè è äåôîðìàöèÿìè, à òàêæå çàïèñàòü óñëîâèÿ ïðî÷íîñòè äëÿ îáú¼ìíîãî íàïðÿæ¼ííîãî ñîñòîÿíèÿ. 4.7 Закон Гука при объёмном напряжённом состоянии Çàêîí Ãóêà óñòàíàâëèâàåò çàâèñèìîñòü ìåæäó íàïðÿæåíèÿìè è äåôîðìàöèÿìè. Ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè ýòà çàâèñèìîñòü áûëà óñòàíîâëåíà ïðè èçó÷åíèè öåíòðàëüíîãî ðàñòÿæåíèÿ è ñæàòèÿ (ðèñ. 4.16): Ðèñ. 4.16. Äåôîðìàöèè ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè 𝜎 çàêîí Ãóêà, 𝐸 𝜎 𝜀 поп = −𝜇 · 𝜀 = −𝜇 · çàêîí Ïóàññîíà. 𝐸 𝜀= 52 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Òåïåðü ðàññìîòðèì ïðîèçâîëüíî íàãðóæåííîå òåëî è òî÷êó , â êîòîðîé èìååò ìåñòî îáú¼ìíîå íàïðÿæ¼ííîå ñîñòîÿíèå (ðèñ. 4.17, à). Âûðåæåì â îêðåñòíîñòè òî÷êè ýëåìåíò, ãðàíè êîòîðîãî ÿâëÿþòñÿ ãëàâíûìè ïëîùàäêàìè è îïðåäåëèì äåôîðìàöèè â íàïðàâëåíèÿõ 1, 2, 3. Ïðèíöèï ñóïåðïîçèöèè ïîçâîëÿåò ïðåäñòàâèòü îáú¼ìíîå íàïðÿæ¼ííîå ñîñòîÿíèå êàê ñóììó òð¼õ ëèíåéíûõ è çàïèñàòü (ðèñ. 4.17, á-ã) Ðèñ. 4.17. Ïðèíöèï ñóïåðïîçèöèè äëÿ âû÷èñëåíèÿ äåôîðìàöèé 𝜀1 = 𝜀𝜎1 1 + 𝜀𝜎1 2 + 𝜀𝜎1 3 = èëè 𝜎2 𝜎3 𝜎1 −𝜇· −𝜇· ; 𝐸 𝐸 𝐸 𝜀1 = 1 · [𝜎1 − 𝜇 · (𝜎2 + 𝜎3 )]; 𝐸 𝜀2 = 1 · [𝜎2 − 𝜇 · (𝜎3 + 𝜎1 )]; 𝐸 1 · [𝜎3 − 𝜇 · (𝜎1 + 𝜎2 )]. 𝐸 Ýòè óðàâíåíèÿ ïðåäñòàâëÿþò ñîáîé îáîáù¼ííûé çàêîí Ãóêà, çàïèñàííûé â ãëàâíûõ îñÿõ. Îòíîñèòåëüíûå ïðîäîëüíûå äåôîðìàöèè 𝜀1 , 𝜀2 , 𝜀3 ïî íàïðàâëåíèþ ãëàâíûõ íàïðÿæåíèé íàçûâàþò ãëàâíûìè äåôîðìàöèÿìè. 𝜀1 ≥ 𝜀2 ≥ 𝜀3 , òàê êàê 𝜎1 ≥ 𝜎2 ≥ 𝜎3 . Êðîìå òîãî 𝜀1 = 𝜀 наиб , 𝜀3 = 𝜀 наим â àëãåáðàè÷åñêîì ñìûñëå. Òåïåðü çàïèøåì çàêîí Ãóêà â ïðîèçâîëüíûõ îñÿõ, äëÿ ÷åãî âûðåæåì â îêðåñòíîñòè òî÷êè ýëåìåíò, ãðàíè êîòîðîãî íå ÿâëÿþòñÿ ãëàâíûìè ïëîùàäêàìè (ðèñ. 4.18). Íà ïëîùàäêàõ äåéñòâóþò 9 êîìïîíåíò íàïðÿæ¼ííîãî ñîñòîÿíèÿ. Íîðìàëüíûå íàïðÿæåíèÿ âûçûâàþò òîëüêî ëèíåéíûå äåôîðìàöèè è íå âëèÿþò íà óãëîâûå. Êàñàòåëüíûå íàïðÿæåíèÿ âûçûâàþò òîëüêî óãëîâûå (ñäâèãîâûå) äåôîðìàöèè è íå âëèÿþò íà ëèíåéíûå. Òîãäà 𝜀3 = 𝜀𝑥 = 1 · [𝜎𝑥 − 𝜇 · (𝜎𝑦 + 𝜎𝑧 )]; 𝐸 𝛾𝑥𝑦 = 𝜏𝑥𝑦 ; 𝐺 53 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ðèñ. 4.18. Íàïðÿæåíèÿ íà ïðîèçâîëüíûõ ïëîùàäêàõ 1 𝜏𝑦𝑧 · [𝜎𝑦 − 𝜇 · (𝜎𝑧 + 𝜎𝑥 )]; 𝛾𝑦𝑧 = ; 𝐸 𝐺 1 𝜏𝑧𝑥 𝜀𝑧 = · [𝜎𝑧 − 𝜇 · (𝜎𝑥 + 𝜎𝑦 )]; 𝛾𝑧𝑥 = , 𝐸 𝐺 ãäå 𝛾𝑥𝑦 èçìåíåíèå ïåðâîíà÷àëüíî ïðÿìîãî óãëà ìåæäó ïðÿìûìè, ïàðàëëåëüíûìè îñÿì x è y. Ïîêàæåì 𝛾𝑥𝑦 , äëÿ ÷åãî ðàññå÷¼ì òåëî ïëîñêîñòüþ, ïàðàëëåëüíîé ïëîñêîñòè 𝑋𝑂𝑌 , äî è ïîñëå íàãðóæåíèÿ (ðèñ. 4.19). 𝜀𝑦 = Ðèñ. 4.19. Ãðàôè÷åñêàÿ èíòåðïðåòàöèÿ óãëà ñäâèãà 4.8 Потенциальная энергия упругой деформации при объёмном напряжённом состоянии Ïîòåíöèàëüíàÿ ýíåðãèÿ óïðóãîé äåôîðìàöèè ïðè öåíòðàëüíîì ðàñòÿæåíèè èëè ñæàòèè, òî åñòü â ñëó÷àå ëèíåéíîãî íàïðÿæ¼ííîãî ñîñòîÿíèÿ, îïðåäåëÿåòñÿ ïî ôîðìóëå 𝑈= ó÷èòûâàÿ, ÷òî ∆𝑙 = 𝐹 ·𝑙 . 𝐸·𝐴 𝐹2 · 𝑙 1 = · 𝐹 · ∆𝑙, 2·𝐸·𝐴 2 54 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Óäåëüíàÿ ïîòåíöèàëüíàÿ ýíåðãèÿ óïðóãîé äåôîðìàöèè, òî åñòü ýíåðãèÿ, íàêîïëåííàÿ â åäèíèå îáú¼ìà, ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè 𝑢0 = . 𝐹2 · 𝑙 𝜎2 𝜎·𝐸·𝜀 𝜎·𝜀 𝑈 = = = = . 𝑉 2·𝐸·𝐴·𝐴·𝑙 2·𝐸 2·𝐸 2 Ñîãëàñíî ïðèíöèïà ñóïåðïîçèöèè, óäåëüíàÿ ïîòåíöèàëüíàÿ ýíåðãèÿ ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè (ðèñ. 4.20) îïðåäåëÿåòñÿ êàê ñóììà ýíåðãèé, íàêàïëèâàåìûõ â åäèíèöå îáú¼ìà ïîä äåéñòâèåì êàæäîãî èç ãëàâíûõ íàïðÿæåíèé 𝜎1 , 𝜎2 , 𝜎3 : Ðèñ. 4.20. Îáú¼ìíîå íàïðÿæ¼ííîå ñîñòîÿíèå 𝑢0 = 𝜎1 · 𝜀1 𝜎2 · 𝜀2 𝜎3 · 𝜀3 1 𝜎1 𝜎2 𝜎3 + + = · [𝜎1 · ( − 𝜇 · − 𝜇 · )+ 2 2 2 2 𝐸 𝐸 𝐸 𝜎2 𝜎3 𝜎1 𝜎3 𝜎1 𝜎2 −𝜇· − 𝜇 · ) + 𝜎3 · ( − 𝜇 · − 𝜇 · )]. 𝐸 𝐸 𝐸 𝐸 𝐸 𝐸 Ïîñëå àëãåáðàè÷åñêèõ ïðåîáðàçîâàíèé ïîëó÷èì +𝜎2 · ( 1 [𝜎 2 + 𝜎22 + 𝜎32 − 2 · 𝜇 · (𝜎1 · 𝜎2 + 𝜎2 · 𝜎3 + 𝜎3 · 𝜎1 )]. 2·𝐸 1 Ïîëíàÿ óäåëüíàÿ ýíåðãèÿ äåôîðìàöèè ìîæåò áûòü ðàçäåëåíà íà äâå ÷àñòè: 1) 𝑢𝑣 ýíåðãèþ èçìåíåíèÿ îáú¼ìà, òî åñòü ýíåðãèþ, íàêàïëèâàåìóþ çà ñ÷¼ò èçìåíåíèÿ îáú¼ìà ýëåìåíòàðíîãî êóáèêà ïðè ñîõðàíåíèè åãî ôîðìû; 2) 𝑢ф ýíåðãèþ èçìåíåíèÿ ôîðìû, òî åñòü ýíåðãèþ, íàêàïëèâàåìóþ çà ñ÷¼ò èçìåíåíèÿ ôîðìû ýëåìåíòàðíîãî êóáèêà è ïðåâðàùåíèÿ åãî â ýëåìåíòàðíûé ïàðàëëåïèïåä. 𝑢0 = 55 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Îïðåäåëèì âåëè÷èíó îáåèõ ñîñòàâëÿþùèõ óäåëüíîé ïîòåíöèàëüíîé ýíåðãèè. Êàê óæå áûëî ñêàçàíî, ïðè îäèíàêîâîé äåôîðìàöèè ð¼áåð ýëåìåíòàðíîãî êóáèêà , òî åñòü ïðè èçìåíåíèè òîëüêî îáú¼ìà, îòíîñèòåëüíîå 𝜎𝑚 𝜃 . Çäåñü 𝜎𝑚 ãèäðîñòàóäëèíåíèå êàæäîãî ðåáðà ðàâíî: 𝜀𝑚 = = 3 3·𝐾 𝜎1 + 𝜎2 + 𝜎3 . Ýòî äàâëåíèå äåéñòâóåò òè÷åñêîå äàâëåíèå, ðàâíîå 𝜎𝑚 = 3 𝐸 íà êàæäóþ ãðàíü ýëåìåíòàðíîãî êóáèêà. 𝐾 = ìîäóëü 3 · (1 − 2 · 𝜇2 ) îáú¼ìíîé äåôîðìàöèè. Ñëåäîâàòåëüíî, ýíåðãèÿ èçìåíåíèÿ îáú¼ìà ðàâíà 𝑢𝑣 = 3 · 𝜎𝑚 · 𝜀𝑚 𝜎2 (𝜎1 + 𝜎2 + 𝜎3 )2 1−2·𝜇 = 𝑚 = = · (𝜎1 + 𝜎2 + 𝜎3 )2 . 2 2·𝐾 18 · 𝐾 6·𝐸 Òîãäà ýíåðãèÿ èçìåíåíèÿ ôîðìû ìîæíî îïðåäåëèòü êàê ðàçíîñòü 𝑢 ф = 𝑢0 − 𝑢𝑣 = 1 [𝜎 2 + 𝜎22 + 𝜎32 − 2 · 𝜇 · (𝜎1 · 𝜎2 + 𝜎2 · 𝜎3 + 𝜎3 · 𝜎1 )]− 2·𝐸 1 1−2·𝜇 · (𝜎1 + 𝜎2 + 𝜎3 )2 . 6·𝐸 Ïðîèçâåäÿ àëãåáðàè÷åñêèå ïðåîáðàçîâàíèÿ, ïîëó÷èì − 𝑢ф = 4.9 1−𝜇 · (𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 + 𝜎2 · 𝜎3 + 𝜎3 · 𝜎1 ). 3·𝐸 Относительное изменение объёма тела Âû÷èñëèì èçìåíåíèå îáú¼ìà ïðÿìîóãîëüíîãî ïàðàëëåïèïåäà ñî ñòîðîíàìè 𝑎, 𝑏, 𝑐 ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè. Ãðàíè ïàðàëëåïèïåäà ÿâëÿþòñÿ ãëàâíûìè ïëîùàäêàìè (ðèñ. 4.21). Äî äåôîðìàöèè åãî îáú¼ì ðàâåí 𝑉 = 𝑎 · 𝑏 · 𝑐. Ðèñ. 4.21. Îïðåäåëåíèå èçìåíåíèÿ îáú¼ìà òåëà 56 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ïîñëå äåôîðìàöèè, âñëåäñòâèå èçìåíåíèÿ äëèíû ð¼áåð, åãî îáú¼ì ñòàíåò: 𝑉1 = (𝑎 + ∆𝑎) · (𝑏 + ∆𝑏) · (𝑐 + ∆𝑐) = 𝑎 · 𝑏 · 𝑐 + 𝑎 · 𝑏 · ∆𝑐+ +𝑏 · 𝑐 · ∆𝑎 + 𝑐 · 𝑎 · ∆𝑏 + 𝑎 · ∆𝑏 · ∆𝑐 + 𝑏 · ∆𝑐 · ∆𝑎 + 𝑐 · ∆𝑎 · ∆𝑏 + ∆𝑎 · ∆𝑏 · ∆𝑐 = ∆𝑎 ∆𝑏 ∆𝑐 + + ) = 𝑉 · (1 + 𝜀1 + 𝜀2 + 𝜀3 ). = 𝑎 · 𝑏 · 𝑐 · (1 + 𝑎 𝑏 𝑐 Ïðè âû÷èñëåíèè 𝑉1 áåñêîíå÷íî ìàëûìè ñëàãàåìûìè âòîðîãî è òðåòüåãî ïîðÿäêà ìàëîñòè ïðåíåáðåãàåì. Îòíîñèòåëüíîå èçìåíåíèå îáú¼ìà: 𝜃= 𝑉1 − 𝑉 = 𝜀1 + 𝜀2 + 𝜀3 . 𝑉 Ïîäñòàâèâ âìåñòî 𝜀1 , 𝜀2 , 𝜀3 èõ çíà÷åíèÿ èç îáîáù¼ííîãî çàêîíà Ãóêà, ïîëó÷èì 1 − 2𝜇2 · (𝜎1 + 𝜎2 + 𝜎3 ). 𝜃= 𝐸 Èç ïîëó÷åííûõ ôîðìóë âèäíî, ÷òî îòíîñèòåëüíîå èçìåíåíèå îáú¼ìà çàâèñèò ëèøü îò ñóììû ãëàâíûõ íàïðÿæåíèé, à íå îò èõ ñîîòíîøåíèÿ. Ïîýòîìó ýëåìåíòàðíûé êóáèê (èëè ïàðàëëåïèïåä) ïîëó÷èò îäíî è òî æå èçìåíåíèå îáú¼ìà íåçàâèñèìî îò òîãî, áóäóò ëè ïî åãî ãðàíÿì äåéñòâîâàòü ðàçëè÷íûå ïî âåëè÷èíå ãëàâíûå íàïðÿæåíèÿ èëè îäèíàêîâûå íàïðÿ𝜎1 + 𝜎2 + 𝜎3 æåíèÿ, ðàâíûå èõ ñðåäíåàðèôìåòè÷åñêîìó çíà÷åíèþ 𝜎𝑚 = 3 ãèäðîñòàòè÷åñêîìó äàâëåíèþ. Ñëåäîâàòåëüíî, 1 − 2𝜇2 𝜃= · 3 · 𝜎𝑚 . 𝐸 𝐸 Îáîçíà÷àÿ = 𝐾 ìîäóëü îáú¼ìíîé äåôîðìàöèè, ïîëó3 · (1 − 2 · 𝜇2 ) 1 ÷èì 𝜃 = · 𝜎𝑚 èëè 𝜎𝑚 = 𝜃 · 𝐾 çàêîí Ãóêà ïðè îáú¼ìíîì íàïðÿæ¼ííîì 𝐾 ñîñòîÿíèè.  ñëó÷àå, åñëè ýëåìåíòàðíûé êóáèê íàõîäèòñÿ ïîä äåéñòâèåì ãèäðîñòàòè÷åñêîãî äàâëåíèÿ, âñå ðåáðà êóáèêà ïîëó÷àò îäèíàêîâóþ äåôîðìà𝜀1 + 𝜀2 + 𝜀3 öèþ 𝜀𝑚 = ñðåäíÿÿ ëèíåéíàÿ äåôîðìàöèÿ 3 𝜃 𝜎𝑚 𝜀𝑚 = = . 3 3·𝐾 Ñðåäíÿÿ ëèíåéíàÿ äåôîðìàöèÿ ïðÿìî ïðîïîðöèîíàëüíà ãèäðîñòàòè÷åñêîìó äàâëåíèþ. 57 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 4.10 Теории предельных напряжённых состояний (теории прочности) Òàê íàçûâàþò òåîðèè, êîòîðûå ïîçâîëÿþò ñîñòàâèòü óñëîâèå ïðî÷íîñòè ïðè ëþáîì íàïðÿæ¼ííîì ñîñòîÿíèè. Óñëîâèå ïðî÷íîñòè ýòî çàâèñèìîñòü ìåæäó êîìïîíåíòàìè íàïðÿæ¼ííîãî ñîñòîÿíèÿ è õàðàêòåðèñòèêàìè ìàòåðèàëà, ïîçâîëÿþùàÿ äàòü çàêëþ÷åíèå î ïðî÷íîñòè äåòàëè (òåëà). Ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè (ðèñ. 4.22) óñëîâèå ïðî÷íîñòè çàïèñûâàåòñÿ â âèäå | 𝜎 | наиб = | 𝑁 | наиб ≤ [𝜎], 𝐴 𝜎𝐿 ; 𝜎𝐿 îïàñíîå èëè ïðåäåëüíîå íàïðÿæåíèå, âûçûâàþùåå 𝑛𝐿 â äåòàëè îïàñíîå ñîñòîÿíèå; 𝑛𝐿 êîýôôèöèåíò çàïàñà ïðî÷íîñòè. Äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ 𝜎𝐿 = 𝜎т , à äëÿ õðóïêèõ 𝜎𝐿 = 𝜎в . ãäå [𝜎] = Ðèñ. 4.22. Ïðî÷íîñòü ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèì Ïðè ëèíåéíîì íàïðÿæ¼ííîì ñîñòîÿíèè îïàñíîå íàïðÿæåíèå ìîæåò áûòü íàéäåíî îïûòíûì ïóò¼ì ïðè èñïûòàíèè îáðàçöîâ íà ðàñòÿæåíèå. Ðàññìîòðèì äàëåå âîïðîñ î òîì, êàê ïðîèçâîäèòü ïðîâåðêó ïðî÷íîñòè â ñëó÷àå îáú¼ìíîãî íàïðÿæåííîãî ñîñòîÿíèÿ, òî åñòü êîãäà âñå òðè ãëàâíûõ íàïðÿæåíèÿ 𝜎1 , 𝜎2 , 𝜎3 îòëè÷íû îò íóëÿ (ðèñ. 4.23).  ýòîì ñëó÷àå îïàñíîå ñîñòîÿíèå ìîæåò íàñòóïèòü ïðè ðàçëè÷íûõ âåëè÷èíàõ ãëàâíûõ íàïðÿæåíèé â çàâèñèìîñòè îò èõ ñîîòíîøåíèÿ, òî åñòü êàæäîìó ñîîòíîøåíèþ 𝜎1 : 𝜎2 : 𝜎3 áóäóò ñîîòâåòñòâîâàòü ñâîè îïàñíûå âåëè÷èíû ãëàâíûõ íàïðÿæåíèé 𝜎1𝐿 , 𝜎2𝐿 , 𝜎3𝐿 . ×òîáû íàéòè îïûòíûì ïóò¼ì îïàñíûå âåëè÷èíû ãëàâíûõ íàïðÿæåíèé, ïðèøëîñü áû îñóùåñòâèòü áåñ÷èñëåííîå ìíîæåñòâî ÷ðåçâû÷àéíî ñëîæíûõ ëàáîðàòîðíûõ èñïûòàíèé ïðè ðàçëè÷íûõ ñîîòíîøåíèÿõ 𝜎1 : 𝜎2 : 𝜎3 , ïðè÷¼ì, íåêîòîðûå èç ýòèõ ñîîòíîøåíèé, âîîáùå íåâîçìîæíî 58 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ðèñ. 4.23. Ïðî÷íîñòü ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèì ïîëó÷èòü íà ñóùåñòâóþùèõ èñïûòàòåëüíûõ ìàøèíàõ. Ïî ýòèì ïðè÷èíàì îïàñíîå ñîñòîÿíèå ìàòåðèàëà ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè óñòàíàâëèâàþò òåîðåòè÷åñêèì ïóò¼ì ïðè ïîìîùè òàê íàçûâàåìûõ òåîðèé ïðî÷íîñòè. Òåîðèåé ïðî÷íîñòè íàçûâàþò ïðåäïîëîæåíèå (ãèïîòåçó) î ïðåèìóùåñòâåííîì âëèÿíèè òîãî èëè èíîãî ôàêòîðà (êðèòåðèÿ) íàïðÿæ¼ííîãî ñîñòîÿíèÿ íà ïðî÷íîñòü ìàòåðèàëà. Öåëü òåîðèé ïðî÷íîñòè çàêëþ÷àåòñÿ â òîì, ÷òîáû, èñõîäÿ èç ðåçóëüòàòîâ ïðîñòîãî îïûòà íà ðàñòÿæåíèå è ñæàòèå, ïîëó÷èòü âîçìîæíîñòü ñóäèòü î ïðî÷íîñòè ìàòåðèàëà ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè. Ê íàñòîÿùåìó âðåìåíè âûäâèíóòû äåñÿòêè, äàæå ñîòíè ðàçëè÷íûõ òåîðèé ïðî÷íîñòè, íî â ðàñ÷¼òíîé ïðàêòèêå, â îñíîâíîì, èñïîëüçóþòñÿ òîëüêî ÷åòûðå. 4.10.1 I теория предельных напряжённых состояний - òåîðèÿ íàèáîëüøèõ íîðìàëüíûõ íàïðÿæåíèé (Ã. Ãàëèëåé, 1638 ã.) Напряжённое состояние детали в точке считается безопасным, если наибольшее по абсолютной величине нормальное напряжение не превышает допустимого для данного материала значения, которое не зависит от типа напряжённого состояния и может быть найдено из любого опыта. Ñëåäîâàòåëüíî, â ýòîì ñëó÷àå ðàñ÷¼ò íåîáõîäèìî âåñòè ïî íàèáîëüøåìó ãëàâíîìó íàïðÿæåíèþ, ò. å. | 𝜎 | наиб ≤ [𝜎]. 𝜎1 ≤ [𝜎] р èëè | 𝜎3 |≤ [𝜎] с . I òåîðèÿ íåïëîõî ñîãëàñóåòñÿ ñ îïûòíûìè äàííûìè ëèøü â ñëó÷àå âñåñòîðîííåãî ðàñòÿæåíèÿ õðóïêèõ ìàòåðèàëîâ. Âî âñåõ îñòàëüíûõ ñëó÷àÿõ å¼ âûâîäû íå ñîãëàñóþòñÿ ñ ðåçóëüòàòàìè ýêñïåðèìåíòàëüíîãî èññëåäîâàíèÿ. Ïîýòîìó ýòà òåîðèÿ â íàñòîÿùåå âðåìÿ ïðàêòè÷åñêè íå ïðèìåíÿåòñÿ. 59 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 4.10.2 II теория предельных напряжённых состояний - òåîðèÿ íàèáîëüøèõ îòíîñèòåëüíûõ äåôîðìàöèé (Ìàðèîòò, 1686 ã). Напряжённое состояние детали в точке считается безопасным, если наибольшая по абсолютной величине относительная линейная деформация не превышает допустимого для данного материала значения, которое не зависит от типа напряжённого состояния и может быть найдено из любого опыта. Ñëåäîâàòåëüíî, â ýòîì ñëó÷àå ðàñ÷¼ò íåîáõîäèìî âåñòè ïî íàèáîëüøåé îòíîñèòåëüíîé äåôîðìàöèè, ò. å | 𝜀 | наиб ≤ [𝜀]. Âûðàæåíèå â ëåâîé ÷àñòè ïîëó÷àåì èç îáîáù¼ííîãî çàêîíà Ãóêà | 𝜀 | наиб = 𝜀1 = 𝐸1 · [𝜎1 − 𝜇 · (𝜎2 + 𝜎3 )]. Äëÿ ïîëó÷åíèÿ âûðàæåíèÿ â ïðàâîé ÷àñòè ðàññìàòðèâàåì èñïûòàíèå îáðàçöà ïðè öåíòðàëüíîì ðàñòÿæåíèè. Òîãäà 𝜎1 = 𝜎, 𝜎2 = 𝜎3 = 0. Ïîäñòà𝜎 âèâ çíà÷åíèÿ ãëàâíûõ íàïðÿæåíèé â óðàâíåíèå, ïîëó÷èì | 𝜀 | наиб ≤ , à 𝐸 [𝜎] ïåðåõîäÿ ê ïðåäåëüíîìó ñîñòîÿíèþ [𝜀] = . 𝐸 Òîãäà óñëîâèå ïðî÷íîñòè ïî II òåîðèè ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé çàïèøåòñÿ â âèäå 𝜎1 − 𝜇 · (𝜎2 + 𝜎3 ) ≤ [𝜎] èëè | 𝜎3 − 𝜇 · (𝜎1 + 𝜎2 ) |≤ [𝜎]. Ïðè ðàñ÷¼òå íà ïðî÷íîñòü äåòàëåé èç õðóïêèõ ìàòåðèàëîâ II-ÿ òåîðèÿ äà¼ò ðåçóëüòàòû, óäîâëåòâîðèòåëüíî ñîãëàñóþùèåñÿ ñ îïûòíûìè äàííûìè. Äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ ýòà òåîðèÿ íå ïðèìåíèìà. Íå ïîäòâåðæäàåòñÿ ýòà òåîðèÿ è ïðè âñåñòîðîííåì ñæàòèè. 4.10.3 III теория предельных напряжённых состояний òåîðèÿ íàèáîëüøèõ êàñàòåëüíûõ íàïðÿæåíèé (Êóëîí, 1773 ã). Напряжённое состояние детали в точке считается безопасным, если наибольшее касательное напряжение не превышает допустимого для данного материала значения, которое не зависит от типа напряжённого состояния и может быть найдено из любого опыта. Ñëåäîâàòåëüíî, â ýòîì ñëó÷àå ðàñ÷¼ò íåîáõîäèìî âåñòè ïî íàèáîëüøèì êàñàòåëüíûì íàïðÿæåíèÿì, òî åñòü 𝜏 наиб ≤ [𝜏 ]. Ðàññìîòðèì âûðàæåíèÿ â ëåâîé è ïðàâîé ÷àñòè ýòîãî íåðàâåíñòâà Ëåâàÿ ÷àñòü (èç êðóãà Ìîðà ïðè îáú¼ìíîì íàïðÿæ¼ííîì ñîñòîÿíèè) 60 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 𝜎1 − 𝜎3 . 2 Äëÿ ïîëó÷åíèÿ âûðàæåíèÿ â ïðàâîé ÷àñòè ðàññìàòðèâàåì èñïûòàíèå îáðàçöà ïðè öåíòðàëüíîì ðàñòÿæåíèè. Òîãäà 𝜎1 = 𝜎, 𝜎2 = 𝜎3 = 0. Ïîä𝜎 ñòàâèâ çíà÷åíèÿ ãëàâíûõ íàïðÿæåíèé â óðàâíåíèå, ïîëó÷èì | 𝜏 | наиб ≤ , 2 [𝜎] à ïåðåõîäÿ ê ïðåäåëüíîìó ñîñòîÿíèþ [𝜏 ] = . Òîãäà óñëîâèå ïðî÷íî2 ñòè ïî III òåîðèè ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé çàïèøåòñÿ â âèäå 𝜏 наиб = 𝜎1 − 𝜎3 ≤ [𝜎]. III òåîðèÿ õîðîøî ñîãëàñóåòñÿ ñ îïûòíûìè äàííûìè äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ, îäèíàêîâî ñîïðîòèâëÿþùèõñÿ ðàñòÿæåíèþ è ñæàòèþ. Äëÿ ìàòåðèàëîâ, ðàçëè÷íî ñîïðîòèâëÿþùèõñÿ ðàñòÿæåíèþ è ñæàòèþ, Ìîð (1882 ã.) ïðåäëîæèë îáîáù¼ííóþ òåîðèþ 𝜎1 − 𝐾 · 𝜎3 ≤ [𝜎], 𝜎р ãäå 𝐾 = тс äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ, 𝜎т 𝜎вр 𝐾 = с äëÿ õðóïêèõ ìàòåðèàëîâ. 𝜎в 4.10.4 IV теория предельных напряжённых состояний òåîðèÿ îêòàýäðè÷åñêèõ êàñàòåëüíûõ íàïðÿæåíèé (ýíåðãåòè÷åñêàÿ òåîðèÿ) (Ãóáåðò, 1904 ã.). Напряжённое состояние детали в точке считается безопасным, если октаэдрическое касательное напряжение не превышает допустимого для данного материала значения, которое не зависит от типа напряжённого состояния и может быть найдено из любого опыта. Ñëåäîâàòåëüíî, â ýòîì ñëó÷àå, ðàñ÷¼ò íåîáõîäèìî âåñòè ïî îêòàýäðè÷åñêèì êàñàòåëüíûì íàïðÿæåíèÿì, òî åñòü 𝜏 окт ≤ [𝜏 ]. Ðàññìîòðèì âûðàæåíèÿ â ëåâîé è ïðàâîé ÷àñòÿõ ýòîãî íåðàâåíñòâà. Ëåâàÿ ÷àñòü √ √︁ 2 · 𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 − 𝜎2 · 𝜎3 − 𝜎3 · 𝜎1 . 𝜏 окт = 3 Äëÿ ïîëó÷åíèÿ âûðàæåíèÿ â ïðàâîé ÷àñòè ðàññìàòðèâàåì èñïûòàíèå îáðàçöà ïðè öåíòðàëüíîì ðàñòÿæåíèè. Òîãäà 𝜎1 = 𝜎, 𝜎2 = 𝜎3 = 0. 61 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Ïîäñòàâèâ çíà÷åíèÿ ãëàâíûõ íàïðÿæåíèé â óðàâíåíèå,√ïîëó÷èì 𝜏 окт ≤ √ 2 2 𝜏 , à ïåðåõîäÿ ê ïðåäåëüíîìó ñîñòîÿíèþ [𝜏 ] окт = [𝜏 ]. 3 3 Òîãäà óñëîâèå ïðî÷íîñòè ïî IV òåîðèè ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé çàïèøåòñÿ â âèäå √︁ 𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 − 𝜎2 · 𝜎3 − 𝜎3 · 𝜎1 ≤ [𝜎]. IV òåîðèÿ õîðîøî ñîãëàñóåòñÿ ñ îïûòíûìè äàííûìè äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ. Ñðàâíèâàÿ ôîðìóëû, óñòàíàâëèâàþùèå óñëîâèÿ ïðî÷íîñòè ïðè ðàçëè÷íûõ òåîðèÿõ ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé, ìîæíî çàìåòèòü, ÷òî â ëåâûõ ÷àñòÿõ íåðàâåíñòâ íàõîäÿòñÿ àëãåáðàè÷åñêèå âûðàæåíèÿ èç ãëàâíûõ íàïðÿæåíèé. Ñëåäîâàòåëüíî, ìîæíî îáîáùèòü âñå òåîðèè è çàïèñàòü 𝜎 экв ≤ [𝜎], ãäå 𝜎 экв𝐼 = 𝜎1 èëè | 𝜎3 |; 𝜎 экв𝐼𝐼 = 𝜎1 − 𝜇 · (𝜎2 + 𝜎3 ) èëè | 𝜎3 − 𝜇 · (𝜎1 + 𝜎2 ) |; 𝜎 экв𝐼𝐼𝐼 = 𝜎1 − 𝜎3 𝜎 экв𝐼𝑉 = √︁ èëè 𝜎1 − 𝐾 · 𝜎3 ; 𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 − 𝜎2 · 𝜎3 − 𝜎3 · 𝜎1 . 𝜎 экв èìååò è ôèçè÷åñêèé ñìûñë ýòî íàïðÿæåíèå â ðàñòÿãèâàåìîì îáðàçöå, íàïðÿæ¼ííîå ñîñòîÿíèå êîòîðîãî ðàâíîîïàñíî çàäàííîìó (ðèñ. 4.24). Ðèñ. 4.24. Ôèçè÷åñêèé ñìûñë ýêâèâàëåíòíîãî íàïðÿæåíèÿ Íàïðÿæ¼ííûå ñîñòîÿíèÿ íàçûâàþò ðàâíîîïàñíûìè, åñëè îíè èìåþò îäèíàêîâûå êîýôôèöèåíòû çàïàñà ïðî÷íîñòè. 62 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ Êîýôôèöèåíò çàïàñà ïðî÷íîñòè ýòî ÷èñëî, ïîêàçûâàþùåå âî ñêîëüêî ðàç íóæíî óâåëè÷èòü êîìïîíåíòû íàïðÿæ¼ííîãî ñîñòîÿíèÿ (𝜎1 , 𝜎2 , 𝜎3 ), ÷òîáû îíî ñòàëî ïðåäåëüíûì. Ïðèìåð: ðàññìîòðèì ðàñ÷¼òû íà ïðî÷íîñòü ïðè ÷èñòîì ñäâèãå (ðèñ. 4.25). Îïðåäåëèì ãëàâíûå íàïðÿæåíèÿ ãðàôè÷åñêèì ñïîñîáîì: 𝜎𝐼 = 𝜏, 𝜎𝐼𝐼 = −𝜏 . Ðèñ. 4.25. Ýêâèâàëåíòíîå íàïðÿæåíèå ïðè ÷èñòîì ñäâèãå 𝜏, Ïåðåõîäÿ ê îáùåé çàïèñè íàïðÿæåíèé 𝜎1 ≥ 𝜎2 ≥ 𝜎3 , ïîëó÷èì 𝜎1 = 𝜎2 = 0, 𝜎3 = −𝜏 . Òîãäà 𝜎 экв𝐼𝐼𝐼 = 𝜎1 − 𝜎3 = 𝜏 − (−𝜏 ) = 2 · 𝜏 ≤ [𝜎] è [𝜎] . ïåðåõîäÿ ê ïðåäåëüíûì âåëè÷èíàì, ïîëó÷èì [𝜏 ]𝐼𝐼𝐼 = 2 √︁ 𝜎 экв𝐼𝑉 = 𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 − 𝜎2 · 𝜎3 − 𝜎3 · 𝜎1 = √︀ √ = 𝜏 2 + (−𝜏 2 ) − (−𝜏 ) · 𝜏 = 3 · 𝜏 [𝜎] è ïåðåõîäÿ ê ïðåäåëüíûì âåëè÷èíàì, ïîëó÷èì [𝜏 ]𝐼𝑉 = √ . 3 Ïðè èçó÷åíèè òåì ¾÷èñòûé ñäâèã¿ è ¾ïîïåðå÷íûé èçãèá¿, ìû èñïîëüçîâàëè çíà÷åíèÿ [𝜏 ] ≈ (0, 5 − 0, 6) · [𝜎]. Òåïåðü ïîíÿòíî, êàê ïîëó÷åíû ýòè çíà÷åíèÿ. Çàêëþ÷åíèå: 1. III è IV òåîðèè èñïîëüçóþòñÿ äëÿ ðàñ÷¼òà äåòàëåé èç ïëàñòè÷íûõ ìàòåðèàëîâ, à ðåçóëüòàòû îíè äàþò ðàçíûå; 2. III òåîðèÿ ìåíåå òî÷íà, òàê êàê íå ó÷èòûâàåò ñðåäíåå ãëàâíîå íàïðÿæåíèå, íî îíà èìååò ïðîñòîé âèä è ïîýòîìó ÷àñòî èñïîëüçóåòñÿ äëÿ ïðîåêòèðîâî÷íûõ (ïðèêèäî÷íûõ) ðàñ÷¼òîâ; 3. IV òåîðèÿ áîëåå òî÷íàÿ, áîëåå æ¼ñòêàÿ, òàê êàê ðàçìåðû äåòàëè, îïðåäåë¼ííûå ïî ýòîé òåîðèè, áóäóò íàèìåíüøèìè.  àâèàñòðîåíèè, â îñíîâíîì, èñïîëüçóåòñÿ IV òåîðèÿ. 63 ГЛАВА 4. ТЕОРИЯ НАПРЯЖЁННОГО И ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 4.11 Вопросы для самопроверки ×òî íàçûâàåòñÿ íàïðÿæ¼ííûì ñîñòîÿíèåì äåòàëè â òî÷êå? Êàêèå âèäû íàïðÿæ¼ííîãî ñîñòîÿíèÿ â òî÷êå Âû çíàåòå? Íàçîâèòå êîìïîíåíòû íàïðÿæ¼ííîãî ñîñòîÿíèÿ â òî÷êå è ñêîëüêî èç íèõ íåçàâèñèìûõ? ×òî íàçûâàåòñÿ ãëàâíûìè îñÿìè íàïðÿæ¼ííîãî ñîñòîÿíèÿ, ãëàâíûìè ïëîùàäêàìè, ãëàâíûìè íàïðÿæåíèÿìè? Íàïèøèòå âûðàæåíèÿ äëÿ ìàêñèìàëüíûõ çíà÷åíèé êàñàòåëüíûõ íàïðÿæåíèé è óêàæèòå ïëîùàäêè èõ äåéñòâèÿ. Êàê îïðåäåëÿåòñÿ çíà÷åíèå ãëàâíûõ íàïðÿæåíèé è ïîëîæåíèå ãëàâíûõ ïëîùàäîê? Êàêèå âû çíàåòå òåîðèè ïðåäåëüíûõ íàïðÿæ¼ííûõ ñîñòîÿíèé (òåîðèè ïðî÷íîñòè)? Äàéòå êðèòè÷åñêèé îáçîð òåîðèé ïðî÷íîñòè. Êàê ðåøàþòñÿ çàäà÷è ðàñ÷¼òà íà ïðî÷íîñòü ïî òåîðèè íàèáîëüøèõ êàñàòåëüíûõ íàïðÿæåíèé, ýíåðãåòè÷åñêîé òåîðèè? Глава 5 Геометрические характеристики поперечного сечения бруса Ýòîò ðàçäåë ãåîìåòðèè èçó÷àåòñÿ â êóðñå ñîïðîòèâëåíèÿ ìàòåðèàëîâ, òàê êàê ãåîìåòðè÷åñêèå õàðàêòåðèñòèêè ó÷àñòâóþò â ôîðìóëàõ ïðè îïðåäåëåíèè íàïðÿæåíèé, ïåðåìåùåíèé, äåôîðìàöèé. 5.1 Основные понятия о геометрических характеристиках Ðàññìîòðèì ïðîèçâîëüíîå ïîïåðå÷íîå ñå÷åíèå áðóñà, ïðîâåä¼ì îñè 𝑥, 𝑦 ñ ïðîèçâîëüíûì íà÷àëîì êîîðäèíàò 𝑂. Âûäåëèì ýëåìåíòàðíóþ ÷àñòü ñå÷åíèÿ 𝑑𝐴 (ðèñ. 5.1).Ðàññìîòðèì ãåîìåòðè÷åñêèå õàðàêòåðèñòèêè ïîïåðå÷íîãî ñå÷åíèÿ áðóñà, íåîáõîäèìûå ïðè èçó÷åíèè ñîïðîòèâëåíèÿ ìàòåðèàëîâ. Ðèñ. 5.1. Ïîïåðå÷íîå ñå÷åíèå áðóñà Ïåðâàÿ ãåîìåòðè÷åñêàÿ õàðàêòåðèñòèêà óæå âñòðå÷àëàñü: 64 ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС 𝐴 = ∫︀ 𝑑𝐴 ïëîùàäü ñå÷åíèÿ, îíà èñïîëüçóåòñÿ ïðè ðàñòÿæåíèè è 𝐴 𝑁 𝑁 ·𝑙 ñæàòèè â òàêèõ ôîðìóëàõ, êàê: 𝜎 = , ∆𝑙 = . 𝐴 𝐸·𝐴 ∫︀ 𝑆𝑥 = 𝑦𝑑𝐴 ñòàòè÷åñêèé ìîìåíò ïëîùàäè ñå÷åíèÿ îòíîñèòåëüíî 𝐴 îñè 𝑥, ∫︀ 𝑆𝑦 = 𝑥𝑑𝐴 ñòàòè÷åñêèé ìîìåíò ïëîùàäè ñå÷åíèÿ îòíîñèòåëüíî 𝐴 îñè 𝑦 . Õàðàêòåðèñòèêè 𝑆𝑥 , 𝑆𝑦 èñïîëüçóþòñÿ â ôîðìóëàõ äëÿ êàñàòåëüíûõ íàïðÿæåíèé ïðè èçãèáå è ïðè íàõîæäåíèè ïîëîæåíèÿ öåíòðà òÿæåñòè ñå÷åíèÿ: 𝑆𝑥 𝑆𝑦 , 𝑦𝑐 = . 𝐴 𝐴 ∫︀ 𝐽𝑥 = 𝑦 2 𝑑𝐴 îñåâîé ìîìåíò èíåðöèè ñå÷åíèÿ îòíîñèòåëüíî îñè 𝑥; 𝐴 ∫︀ 𝐽𝑦 = 𝑥2 𝑑𝐴 îñåâîé ìîìåíò èíåðöèè ñå÷åíèÿ îòíîñèòåëüíî îñè 𝑦 . 𝑥𝑐 = 𝐴 𝐽𝑥 , 𝐽𝑦 > 0, òàê êàê êîîðäèíàòû â êâàäðàòå. Ýòè õàðàêòåðèñòèêè èñïîëüçóþòñÿ â ôîðìóëàõ ïðè èçãèáå. ∫︀ 𝐽𝑥𝑦 = 𝑥·𝑦𝑑𝐴 öåíòðîáåæíûé ìîìåíò èíåðöèè ñå÷åíèÿ îòíîñèòåëüíî 𝐴 îñåé 𝑥, 𝑦 .  çàâèñèìîñòè îò ïîëîæåíèÿ îñåé 𝐽𝑥𝑦 ≶ 0. Ýòî âñïîìîãàòåëüíàÿ õàðàêòåðèñòèêà, îíà â ôîðìóëàõ ñîïðîòèâëåíèÿ ìàòåðèàëîâ íåïîñðåäñòâåííî íå ó÷àñòâóåò, íî ñ å¼ ïîìîùüþ îïðåäåëÿþòñÿ ãëàâíûå ìîìåíòû èíåðöèè ∫︀ñå÷åíèÿ è ïîëîæåíèå ãëàâíûõ îñåé èíåðöèè ñå÷åíèÿ. 𝐽𝑝 = 𝜌2 𝑑𝐴 ïîëÿðíûé ìîìåíò èíåðöèè ñå÷åíèÿ îòíîñèòåëüíî íà𝐴 ÷àëà êîîðäèíàò. Î÷åâèäíî, ÷òî 𝐽𝑝 > 0. Èñïîëüçóåòñÿ â ôîðìóëàõ ïðè êðó÷åíèè. Óñòàíîâèì ñâÿçü ìåæäó∫︀ïîëÿðíûì ìîìåíòàìè èíåðöèè: ∫︀ è2 îñåâûìè 2 2 2 2 2 𝜌 = 𝑥 + 𝑦 , òîãäà 𝐽𝑝 = 𝜌 𝑑𝐴 = (𝑥 + 𝑦 )𝑑𝐴 = 𝐽𝑥 + 𝐽𝑦 , ñëåäîâàòåëüíî, 𝐴 𝐴 𝐽𝑝 = 𝐽𝑥 + 𝐽𝑦 = 𝐽𝑥1 + 𝐽𝑦1 . Ñëåäñòâèå èç ýòîãî ðàâåíñòâà: 𝐽𝑥 + 𝐽𝑦 = 𝐽𝑥1 + 𝐽𝑦1 = 𝑐𝑜𝑛𝑠𝑡. Òàêèì îáðàçîì ïðè ïîâîðîòå îñåé (ðèñ. 5.2) ñóììà îñåâûõ ìîìåíòîâ èíåðöèè íå èçìåíÿåòñÿ. Èíà÷å: ñóììà îñåâûõ ìîìåíòîâ èíåðöèè ÿâëÿåòñÿ èíâàðèàíòîì. ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Ðèñ. 5.2. Ïîïåðå÷íîå ñå÷åíèå îáðàçöà 5.2 5.2.1 Моменты инерции элементарых сечений Прямоугольник Ïðîâåä¼ì öåíòðàëüíûå îñè 𝑥, 𝑦 , 𝐶 öåíòð òÿæåñòè ñå÷åíèÿ (ðèñ. 5.3). Ðèñ. 5.3. Ïðÿìîóãîëüíèê 𝑑𝐴 = 𝑏 · 𝑑𝑦, 𝐽𝑥 = ∫︀ 𝐴 Àíàëîãè÷íî íàõîäèì 𝐽𝑦 : ℎ/2 ∫︀ 𝑏 · 𝑦3 𝑦 𝑑𝐴 = 𝑦 𝑏 · 𝑑𝑦 = 3 −ℎ/2 2 2 ]︂ℎ/2 = −ℎ/2 𝑏 · ℎ3 . 12 ℎ · 𝑏3 𝑏 · ℎ3 , 𝐽𝑦 = . 12 12 Çàìåòèì, ÷òî 𝐽𝑥 íå èçìåíèòñÿ, åñëè ïåðåìåñòèòü âñå ïîëîñêè 𝑑𝐴 = 𝑏 · 𝑑𝑦 ïàðàëëåëüíî îñè 𝑥. Òàêèì îáðàçîì ìîìåíò èíåðöèè ïàðàëëåëîãðàììà îòíîñèòåëüíî öåíòðàëüíîé îñè , ïàðàëëåëüíîé îñíîâàíèþ, ðàâåí: 𝐽𝑥 = 𝐽𝑥 = 5.2.2 𝑏 · ℎ3 . 12 Круг Ïðîâåä¼ì öåíòðàëüíûå îñè 𝑥, 𝑦 , 𝐶 öåíòð òÿæåñòè êðóãà (ðèñ. 5.4). ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Ðèñ. 5.4. Êðóã Âû÷èñëèì 𝐽𝑝 îòíîñèòåëüíî öåíòðà êðóãà. Âûäåëèì ýëåìåíòàðíóþ ïîëîñêó â âèäå êîëüöà òîëùèíîé 𝑑𝜌. ∫︁ 𝑑𝐴 = 2·𝜋·𝜌𝑑𝜌, 𝐽𝑝 = 𝐴 ]︂𝑅 ∫︁𝑅 𝜋 · 𝑅4 𝜋 · 𝜌4 𝜋 · 𝐷4 3 = 𝜌 𝑑𝐴 = 2·𝜋· 𝜌 𝑑𝜌 = = . 2 0 2 32 2 0 𝜋 · 𝐷4 𝐽𝑝 = . 32 Íî 𝐽𝑝 = 𝐽𝑥 + 𝐽𝑦 .  ñèëó ñèììåòðèè 𝐽𝑥 = 𝐽𝑦 , ñëåäîâàòåëüíî 𝐽𝑥 = 𝐽𝑦 = 5.2.3 𝐽𝑝 𝜋 · 𝐷4 = . 2 64 Кольцо Ïðîâåä¼ì öåíòðàëüíûå îñè 𝑥, 𝑦 , 𝐶 öåíòð òÿæåñòè êîëüöà (ðèñ. 5.5) Ðèñ. 5.5. Êîëüöî  ýòîì ñëó÷àå ìîìåíò èíåðöèè êîëüöà ðàâåí ðàçíîñòè ìîìåíòîâ èíåðöèè áîëüøîãî êðóãà ñ äèàìåòðîì 𝐷 è ìàëîãî ñ äèàìåòðîì 𝑑. Îáîçíà÷èì 𝛼 = 𝑑/𝐷, òîãäà ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС 𝐽𝑝 = 5.2.4 𝜋 · 𝐷4 (1 − 𝛼4 ), 32 𝐽 𝑥 = 𝐽𝑦 = 𝐽𝑝 𝜋 · 𝐷4 = (1 − 𝛼4 ). 2 64 Треугольник Ïðîâåä¼ì îñü 𝑥, ïðîõîäÿùóþ ÷åðåç îñíîâàíèå òðåóãîëüíèêà (ðèñ. 5.6) Ðèñ. 5.6. Òðåóãîëüíèê Îïðåäåëèì ìîìåíò èíåðöèè îòíîñèòåëüíî îñè , ïðîõîäÿùèé ÷åðåç îñíîâàíèå òðåóãîëüíèêà. 𝑏(𝑦) 𝑏 · (ℎ − 𝑦) 𝑏 , îòñþäà 𝑏(𝑦) = , òîãäà Èç ïîäîáèÿ òðåóãîëüíèêîâ = ℎ ℎ−𝑦 ℎ ∫︀ℎ 𝑏 ℎ4 ℎ4 𝑏 · ℎ3 𝑏 ∫︀ℎ 2 𝑦 · (ℎ − 𝑦) 𝑑𝑦 = ( − ) = . 𝐽𝑥 = 𝑦 2 · 𝑏(𝑦) 𝑑𝑦 = ℎ0 ℎ 3 4 12 0 Çàìåòèì, ÷òî ìîìåíòû èíåðöèè òðåóãîëüíèêîâ ñ îäèíàêîâûìè îñíîâàíèÿìè è âûñîòàìè îòíîñèòåëüíî îñè , ïðîõîäÿùèé ÷åðåç îñíîâàíèå, ðàâíû ìåæäó ñîáîé. 5.2.5 Прокатные профили Äëÿ ïðîêàòíûõ ïðîôèëåé (äâóòàâð, øâåëëåð, óãîëîê) çíà÷åíèÿ ìîìåíòîâ èíåðöèè ïðèâåäåíû â òàáëèöàõ ÃÎÑÒà. 5.3 Зависимость между моментами инерции относительно параллельных осей, одни из которых центральные Öåíòðàëüíûå îñè ýòî îñè, ïðîõîäÿùèå ÷åðåç öåíòð òÿæåñòè ïîïåðå÷íîãî ñå÷åíèÿ: 𝑥, 𝑦 öåíòðàëüíûå îñè; 𝑥1 , 𝑦1 ïðîèçâîëüíûå îñè, ïà- ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС ðàëëåëüíûå öåíòðàëüíûì îñÿì 𝑥, 𝑦 . Âûäåëèì ýëåìåíòàðíóþ ïëîùàäêó 𝑑𝐴. Ïîêàæåì å¼ êîîðäèíàòû â äâóõ ñèñòåìàõ îñåé: 𝑥1 = 𝑥+𝑎, 𝑦1 = 𝑦 +𝑏, ãäå 𝑎, 𝑏 êîîðäèíàòû öåíòðà òÿæåñòè ñå÷åíèÿ â îñÿõ 𝑥1 , 𝑦1 (ðèñ. 5.7). Òîãäà Ðèñ. 5.7. Ïîïåðå÷íîå ñå÷åíèå áðóñà ∫︁ 𝐽𝑥1 = 𝑦12 𝐴 ∫︀ ∫︁ 𝑑𝐴 = 2 ∫︁ (𝑦+𝑏) 𝑑𝐴 = 𝐴 ∫︁ 2 𝑦 𝑑𝐴+2·𝑏 𝐴 𝑦 𝑑𝐴+𝑏 𝐴 2 ∫︁ 𝑑𝐴 = 𝐽𝑥 +𝑏2 ·𝐴, 𝐴 𝑦 𝑑𝐴 = 𝑆𝑥 = 0, ñòàòè÷åñêèé ìîìåíò ïëîùàäè ñå÷åíèÿ îòíîñèòåëüíî 𝐴 öåíòðàëüíîé îñè . Àíàëîãè÷íî íàõîäèòñÿ 𝐽𝑦1 , ñëåäîâàòåëüíî 𝐽𝑥1 = 𝐽𝑥 + 𝑏2 · 𝐴; 𝐽𝑦1 = 𝐽𝑦 + 𝑎2 · 𝐴. Òàêèì îáðàçîì, осевой момент инерции относительно любой оси равен моменту инерции относительно параллельной ей центральной оси плюс произведение площади сечения на квадрат расстояния между осями. Ñëåäñòâèå: åñëè ðàññìàòðèâàòü ìíîæåñòâî ïàðàëëåëüíûõ îñåé, òî íàèìåíüøèì áóäåò ìîìåíò èíåðöèè îòíîñèòåëüíî öåíòðàëüíîé îñè. Öåíòðîáåæíûé ìîìåíò èíåðöèè ñå÷åíèÿ ∫︁ ∫︁ 𝐽𝑥1 𝑦1 = 𝑥1 · 𝑦1 𝑑𝐴 = (𝑥 + 𝑎) · (𝑦 + 𝑏) 𝑑𝐴 = 𝐴 ∫︁ 𝑥 · 𝑦 𝑑𝐴 + 𝑏 = 𝐴 𝐴 ∫︁ ∫︁ 𝑥 𝑑𝐴 + 𝑎 · 𝑏 · 𝐴 = 𝐽𝑥𝑦 + 𝑎 · 𝑏 · 𝐴. 𝑦 𝑑𝐴 + 𝑎 𝐴 𝐴 Ñëåäîâàòåëüíî, центробежный момент инерции относительно произвольных осей равен центробежному моменту инерции относительно параллельных им и также направленных центральных осей плюс произведение площади сечения на координаты центра тяжести в той системе осей, к которой осуществлён переход. ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС 5.4 Главные оси инерции и главные моменты инерции сечения Èçîáðàçèì ïîïåðå÷íîå ñå÷åíèå áðóñà è ïðîèçâîëüíûå îñè 𝑥, 𝑦 . Âûäåëèì ýëåìåíòàðíóþ ïëîùàäêó 𝑑𝐴 (ðèñ. 5.8, à) ñ êîîðäèíàòàìè 𝑥, 𝑦 . Ðèñ. 5.8. Ñõåìà ïîâîðîòà êîîðäèíàòíûõ îñåé Ïîâåðí¼ì îñè íà 90∘ , íàïðèìåð, ïðîòèâ ÷àñîâîé ñòðåëêè (ðèñ. 5.8, á). Çàïèøåì çàâèñèìîñòü ìåæäó êîîðäèíàòàìè 𝑥1 = −𝑥; 𝑦1 = 𝑦 . Âû÷èñëèì öåíòðîáåæíûå ìîìåíòû èíåðöèè ñå÷åíèÿ â îñÿõ 𝑥, 𝑦 è 𝑥1 , 𝑦1 ,: ∫︁ ∫︁ 𝑥 · 𝑦 𝑑𝐴; 𝐽𝑥𝑦 = 𝐴 ∫︁ 𝑥1 · 𝑦1 𝑑𝐴 = 𝐽𝑥1 𝑦1 = 𝐴 𝑦 · (−𝑥) 𝑑𝐴 = −𝐽𝑥𝑦 . 𝐴 Ñëåäîâàòåëüíî, ïðè ïîâîðîòå îñåé íà 90∘ öåíòðîáåæíûé ìîìåíò èíåðöèè ñå÷åíèÿ ìåíÿåò çíàê íà îáðàòíûé. Ïðåäñòàâèì ãðàôè÷åñêè èçìåíåíèå öåíòðîáåæíîãî ìîìåíòà èíåðöèè â çàâèñèìîñòè îò óãëà 𝛼 (ðèñ. 5.9). Ýòà ôóíêöèÿ íåïðåðûâíàÿ (ðàçðûâîâ íåò). Åñëè ïîâåðíóòü îñè íà óãîë 𝛼0 , òî ïîïàä¼ì íà îñè, îòíîñèòåëüíî êîòîðûõ 𝐽𝑥𝑦 = 0. Ðèñ. 5.9. Ãðàôèê èçìåíåíèÿ 𝐽𝑥𝑦 ïðè ïîâîðîòå îñåé Èòàê, äëÿ ëþáîãî íà÷àëà êîîðäèíàò èìååòñÿ õîòÿ áû îäíà ïàðà îñåé, îòíîñèòåëüíî êîòîðûõ öåíòðîáåæíûé ìîìåíò èíåðöèè ñå÷åíèÿ ðàâåí íóëþ. ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Оси, относительно которых центробежный момент инерции равен нулю, называются главными осями инерции сечения, а моменты инерции относительно этих осей – главными моментами инерции сечения (ðèñ. 5.10). Ðèñ. 5.10. Ãëàâíûå îñè Îáîçíà÷èì ÷åðåç 𝑥0 , 𝑦0 ãëàâíûå îñè; 𝐽𝑥0 , 𝐽𝑦0 ãëàâíûå ìîìåíòû èíåðöèè ñå÷åíèÿ, ïðè÷¼ì 𝐽𝑥0 ≥ 𝐽𝑦0 . Äëÿ êàæäîãî íà÷àëà êîîðäèíàò ñâîè ãëàâíûå îñè. Êàêîå çíà÷åíèå èìåþò ãëàâíûå îñè? Îêàçûâàåòñÿ, ÷òî â ãëàâíûõ îñÿõ ôîðìóëû äëÿ èçãèáà ÿâëÿþòñÿ íàèáîëåå ïðîñòûìè. Êàê îòûñêàòü ïîëîæåíèå ãëàâíûõ îñåé? Ðàññìîòðèì ñå÷åíèå, èìåþùåå îñü ñèììåòðèè (ðèñ. 5.11). Åñëè ñå÷åíèå èìååò îñü ñèììåòðèè 𝑦 , òî îíà ÿâëÿåòñÿ îäíîé èç ãëàâíûõ îñåé. Äðóãàÿ ãëàâíàÿ îñü ïåðïåíäèêóëÿðíà åé. Äîêàæåì ýòî, äëÿ ÷åãî âûäåëèì ýëåìåíòàðíûå ïëîùàäêè 𝑑𝐴1 = 𝑑𝐴2 , ñèììåòðè÷íûå îòíîñèòåëüíî îñè 𝑦 , è âû÷èñëèì öåíòðîáåæíûé ìîìåíò èíåðöèè ñå÷åíèÿ: 𝑥1 = −𝑥2 ; 𝑦1 = 𝑦2 ; 𝐴1 = 𝐴2 , Ðèñ. 5.11. Îïðåäåëåíèå ïîëîæåíèÿ ãëàâíîé îñè äëÿ ñèììåòðè÷íîãî ñå÷åíèÿ ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС 𝐴2 𝐴1 𝐴 𝑥 · 𝑦 𝑑𝐴2 = 0, (−𝑥) · 𝑦 𝑑𝐴1 + 𝑥 · 𝑦 𝑑𝐴 = 𝐽𝑥𝑦 = ∫︁ ∫︁ ∫︁ ÷òî è òðåáîâàëîñü äîêàçàòü. 5.5 Зависимость между моментами инерции сечения при повороте от главных осей Èçîáðàçèì ïðîèçâîëüíîå ñå÷åíèå, ëþáîå íà÷àëî êîîðäèíàò è ïîêàæåì ãëàâíûå îñè 𝑥0 , 𝑦0 . 𝐽𝑥0 𝑦0 = 0 (ðèñ. 5.12). Ðèñ. 5.12. Îïðåäåëåíèå ìîìåíòîâ èíåðöèè ïðè ïîâîðîòå îò ãëàâíûõ îñåé Èçâåñòíû 𝐽𝑥0 , 𝐽𝑦0 . Íåîáõîäèìî îïðåäåëèòü 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑥𝑦 . Ïîëîæåíèå îñåé 𝑥, 𝑦 îïðåäåëÿåò óãîë 𝛼 (íà ðèñóíêå ïîêàçàí ïîëîæèòåëüíûé óãîë). Âûäåëèì ýëåìåíò ñå÷åíèÿ 𝑑𝐴. Óñòàíîâèì ñâÿçü ìåæäó êîîðäèíàòàìè 𝑥 = 𝑥0 · 𝑐𝑜𝑠𝛼 + 𝑦0 · 𝑠𝑖𝑛𝛼; 𝑦 = 𝑦0 · 𝑐𝑜𝑠𝛼 − 𝑥0 · 𝑠𝑖𝑛𝛼. Íàéäåì ìîìåíòû èíåðöèè îòíîñèòåëüíî îñåé 𝑥, 𝑦 : ∫︁ ∫︁ 2 𝐴 2 ∫︁ (𝑦0 · 𝑐𝑜𝑠𝛼 − 𝑥0 · 𝑠𝑖𝑛𝛼) 𝑑𝐴 = 𝑐𝑜𝑠 𝛼 · 𝑦 𝑑𝐴 = 𝐽𝑥 = 2 𝐴 𝑦02 𝑑𝐴− 𝐴 ∫︁ −2 · 𝑐𝑜𝑠𝛼 · 𝑠𝑖𝑛𝛼 2 ∫︁ 𝑥0 · 𝑦0 𝑑𝐴 + 𝑠𝑖𝑛 𝛼 · 𝐴 𝑥20 𝑑𝐴 = 𝐴 = 𝑐𝑜𝑠2 𝛼 · 𝐽𝑥0 + 𝑠𝑖𝑛2 𝛼 · 𝐽𝑦0 , òàê êàê 𝐽𝑥0 𝑦0 = ∫︀ 𝐴 𝑥0 · 𝑦0 𝑑𝐴 = 0. Àíàëîãè÷íî ïîëó÷àåì 𝐽𝑦 , 𝐽𝑥𝑦 . ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Òàêèì îáðàçîì 𝐽𝑥 = 𝐽𝑥0 · 𝑐𝑜𝑠2 𝛼 + 𝐽𝑦0 · 𝑠𝑖𝑛2 𝛼, 𝐽𝑦 = 𝐽𝑦0 · 𝑐𝑜𝑠2 𝛼 + 𝐽𝑥0 · 𝑠𝑖𝑛2 𝛼, 𝐽𝑥 − 𝐽𝑦0 · 𝑠𝑖𝑛2𝛼 𝐽𝑥𝑦 = 0 2 ôîðìóëû ïîâîðîòà îò ãëàâíûõ îñåé; ýòè ôîðìóëû àíàëîãè÷íû ôîðìóëàì ïîâîðîòà îò ãëàâíûõ ïëîùàäîê â òåîðèè íàïðÿæ¼ííîãî è äåôîðìèðîâàííîãî ñîñòîÿíèÿ. Ïîñëåäíÿÿ ôîðìóëà îòâå÷àåò íà âîïðîñ: ñêîëüêî æå ãëàâíûõ îñåé èìååò ñå÷åíèå? Îäíè ãëàâíûå îñè åñòü è îíè ïîêàçàíû íà ðèñóíêå. Åñëè åñòü äðóãèå ãëàâíûå îñè, òî ïðè ïîâîðîòå ê íèì 𝐽𝑥𝑦 îáðàòèòñÿ â íîëü. 𝐽𝑥 − 𝐽𝑦0 · 𝑠𝑖𝑛2𝛼 = 0. Çäåñü ìîæåò áûòü äâà ñëó÷àÿ: Åñëè 𝐽𝑥𝑦 = 0, òî 0 2 1) 𝐽𝑥0 ̸= 𝐽𝑦0 , òîãäà 𝑠𝑖𝑛2𝛼 = 0, îòñþäà 2𝛼 = 𝜋 · 𝑛, ãäå 𝑛 âñå ïîëî𝜋 æèòåëüíûå è îòðèöàòåëüíûå öåëûå ÷èñëà è íîëü. Òîãäà 𝛼 = · 𝑛, ò.å. 2 áåñêîíå÷íîå ìíîæåñòâî êîðíåé. Åñëè îñè áóäåì ïîâîðà÷èâàòü íà óãîë, 𝜋 êðàòíûé , òî áóäåì ïîïàäàòü íà ïðåæíèå îñè, ïðàâäà èçìåíÿòñÿ íà2 ïðàâëåíèÿ îñåé, ÷òî â äàííîì ñëó÷àå çíà÷åíèÿ íå èìååò. Òàêèì îáðàçîì, èìååòñÿ îäíà ïàðà ãëàâíûõ îñåé. 2) 𝐽𝑥0 = 𝐽𝑦0 .  ýòîì ñëó÷àå ïðîèçâåäåíèå îáðàùàåòñÿ â íîëü ïðè ëþáîì 𝛼 è ëþáûå îñè ãëàâíûå, ò.å. èìååòñÿ áåñêîíå÷íîå ìíîæåñòâî ãëàâíûõ îñåé. Èç ôîðìóë, ïðèâåä¼ííûõ âûøå, ïîëó÷èì â ýòîì ñëó÷àå: 𝐽𝑥 + 𝐽𝑦 = 𝐽𝑥0 + 𝐽𝑦0 . Ïðèìåðû òàêèõ ñå÷åíèé (ðèñ. 5.13): Ðèñ. 5.13. Ñå÷åíèÿ, èìåþùèå áåñêîíå÷íîå ìíîæåñòâî ãëàâíûõ îñåé à) êðóãëîå, íî òîëüêî òîãäà, êîãäà íà÷àëî êîîðäèíàò íàõîäèòñÿ â öåíòðå òÿæåñòè ñå÷åíèÿ 𝐶 ; á) êâàäðàòíîå ñå÷åíèå íà÷àëî êîîðäèíàò íàõîäèòñÿ â öåíòðå òÿæåñòè ñå÷åíèÿ 𝐶 , 𝐽𝑥0 = 𝐽𝑦0 , ñëåäîâàòåëüíî ëþáûå îñè ãëàâíûå. ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС 5.6 Определение главных моментов и положения главных осей инерции сечения Òàêàÿ çàäà÷à ðåøàåòñÿ ïðè ðàñ÷¼òå áðóñà íà èçãèá. Âûøå áûëî ðàññìîòðåíî ðåøåíèå ïðbìåíèòåëüíî ê ñèììåòðè÷íîìó ñå÷åíèþ, à òåïåðü ïðèâåä¼ì ðåøåíèå äëÿ ïðîèçâîëüíîãî ñå÷åíèÿ (ðèñ. 5.14). Ðèñ. 5.14. Îïðåäåëåíèå ãëàâíûõ ìîìåíòîâ èíåðöèè è ïîëîæåíèÿ ãëàâíûõ îñåé Èçâåñòíû 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑥𝑦 . Ýòè õàðàêòåðèñòèêè ìîæíî îïðåäåëèòü ÷èñëåííûì ìåòîäîì, ðàçáèâ ñå÷åíèå íà îòäåëüíûå ÷àñòè, èëè ðàçáèâ ñëîæíîå ñå÷åíèå íà ïðîñòûå ñîñòàâëÿþùèå. Òðåáóåòñÿ îïðåäåëèòü 𝐽𝑥0 , 𝐽𝑦0 , 𝛼0 (𝑥0 ∧ 𝑥0 ). Ðàññìîòðèì ïðîèçâîëüíîå ñå÷åíèå è ïðîèçâîëüíûå îñè 𝑥, 𝑦 . Ãëàâíûå îñè, êîòîðûå ñëåäóåò íàéòè, ïîêàæåì øòðèõîâîé ëèíèåé. Äëÿ ðåøåíèÿ ïîñòàâëåííîé çàäà÷è âîñïîëüçóåìñÿ ìàòåìàòè÷åñêîé àíàëîãèåé ñ ôîðìóëîé äëÿ íàïðÿæåíèé. Çàïèøåì âíà÷àëå ôîðìóëû, ÷òîáû ïîêàçàòü, ÷òî àíàëîãèÿ ñóùåñòâóåò. Íàïðÿæåíèÿ: Ìîìåíò èíåðöèè ñå÷åíèÿ: 𝜎𝛼 = 𝜎𝐼 ·cos2 𝛼+𝜎𝐼𝐼 ·sin2 𝛼, 𝜎𝛽 = 𝜎𝐼𝐼 · cos2 𝛼 + 𝜎𝐼 · sin2 𝛼, 𝛽 = 90∘ +𝛼, 𝐽𝑥 = 𝐽𝑥0 ·cos2 𝛼+𝐽𝑦0 ·sin2 𝛼 , 𝐽𝑦 = 𝐽𝑦0 · cos2 𝛼 + 𝐽𝑥0 · sin2 𝛼 , 𝐽𝑥 − 𝐽𝑦0 𝜎𝐼 − 𝜎𝐼𝐼 · sin 2𝛼, 𝐽𝑥𝑦 = 0 · sin 2𝛼 . 2 2 Ñðàâíèâàåì ýòè ôîðìóëû îíè àíàëîãè÷íû. Èç ôîðìóë äëÿ íàïðÿæåíèé ìîæíî ïîëó÷èòü ôîðìóëû äëÿ ìîìåíòîâ èíåðöèè, åñëè çàìåíèòü: 𝜎𝛼 íà 𝐽𝑥 , 𝜎𝛽 íà 𝐽𝑦 , 𝜏𝛼 íà 𝐽𝑥𝑦 , 𝜎𝐼 íà 𝐽𝑥0 , 𝜎𝐼𝐼 íà 𝐽𝑦0 . Ïî àíàëîãèè ïîëó÷èì ñëåäóþùèå ôîðìóëû: √︁ 1 2 ], 𝐽𝑥0 = 𝐽наиб = [(𝐽𝑥 + 𝐽𝑦 ) + (𝐽𝑥 − 𝐽𝑦 )2 + 4 · 𝐽𝑥𝑦 2 𝜏𝛼 = ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС √︁ 1 2 ], 𝐽𝑦0 = 𝐽наим = [(𝐽𝑥 + 𝐽𝑦 ) − (𝐽𝑥 − 𝐽𝑦 )2 + 4 · 𝐽𝑥𝑦 2 𝐽𝑥𝑦 2𝐽𝑥𝑦 tg 𝛼0 = − èëè tg 2𝛼0 = − . 𝐽𝑥 − 𝐽𝑦0 𝐽𝑥 − 𝐽𝑦0 Òàêèì îáðàçîì ïîñòàâëåííàÿ çàäà÷à ðåøåíà. Èç ïîëó÷åííûõ ôîðìóë ñëåäóåò çàìå÷àòåëüíîå ñâîéñòâî ãëàâíûõ ìîìåíòîâ èíåðöèè: îäèí èç íèõ ÿâëÿåòñÿ íàèáîëüøèì, à äðóãîé íàèìåíüøèì, åñëè ðàññìàòðèâàòü ìíîæåñòâî îñåé, ïðîõîäÿùèõ ÷åðåç çàäàííîå íà÷àëî êîîðäèíàò (â àðèôìåòè÷åñêîì ñìûñëå). 5.7 Исследование моментов инерции графическим способом Òàê êàê ìåæäó íàïðÿæåíèÿìè è ìîìåíòàìè èíåðöèè ñóùåñòâóåò àíàëîãèÿ, òî äëÿ îïðåäåëåíèÿ ìîìåíòîâ èíåðöèè ìîæíî èñïîëüçîâàòü êðóãè Ìîðà. Ðàññìîòðèì ðåøåíèå îáðàòíîé çàäà÷è. Äîêàçàòåëüñòâî ïðàâîìî÷íîñòè äåéñòâèé ìîæíî ïðîâåñòè àíàëîãè÷íî îïðåäåëåíèþ íàïðÿæåíèé. Èçâåñòíî: 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑥𝑦 . Íóæíî îïðåäåëèòü 𝐽𝑥0 , 𝐽𝑦0 , 𝛼0 (𝑥∧ 𝑥0 ). Èçîáðàçèì ãîðèçîíòàëüíóþ 𝐽𝑥 , 𝐽𝑦 è âåðòèêàëüíóþ 𝐽𝑥𝑦 îñè. Íåîáõîäèìî îáðàòèòü âíèìàíèå íà òî, ÷òî îñü 𝐽𝑥 , 𝐽𝑦 íå èìååò îòðèöàòåëüíûõ çíà÷åíèé. Ïîêàæåì ïðîèçâîëüíîå ñå÷åíèå ñ îñÿìè 𝑥, 𝑦 (ðèñ. 5.15). Ðèñ. 5.15. Êðóã Ìîðà äëÿ îïðåäåëåíèÿ ìîìåíòîâ èíåðöèè Ñòðîèì òî÷êè 𝐷𝑥 (𝐽𝑥 , 𝐽𝑥𝑦 ) è 𝐷𝑦 (𝐽𝑦 , −𝐽𝑥𝑦 ). ×åòâ¼ðòîé âåëè÷èíû â ìîìåíòàõ èíåðöèè íåò, íî ó÷ò¼ì, ÷òî 𝜏𝛽 = −𝜏𝛼 . Ïóñòü 𝐽𝑥 > 𝐽𝑦 ; ýòî óñëîâèå íåîáÿçàòåëüíî, íî äëÿ âûáðàííîãî ñå÷åíèÿ ýòî òàê.  ðàññìàòðèâàåìîì ñëó÷àå òàêæå 𝐽𝑥𝑦 > 0. Äàëåå ñîåäèíÿåì òî÷êè 𝐷𝑥 , 𝐷𝑦 è ïîëó÷àåì öåíòð îêðóæíîñòè 𝐶 . Çíàÿ öåíòð è ðàäèóñ 𝐶𝐷𝑥 = 𝐶𝐷𝑦 ïðîâîäèì êðóã Ìîðà äëÿ ìîìåíòîâ èíåðöèè è îïðåäåëÿåì 𝐽𝑥граф = 𝑂𝐴, 0 𝐽𝑦граф = 𝑂𝐵. 0 ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Äàëåå íóæíî îïðåäåëèòü óãîë 𝛼0 . Ñòðîèì òî÷êó 𝐷𝑥′ , ñèììåòðè÷íóþ òî÷êå 𝐷𝑥 îòíîñèòåëüíî îñè àáñöèññ. Èç òî÷êè 𝐵 ÷åðåç òî÷êó 𝐷𝑥′ ïðîâîäèì ëó÷ . Ýòî è åñòü íàïðàâëåíèå îñè 𝑥0 , îòíîñèòåëüíî êîòîðîé ìîìåíò èíåðöèè áóäåò íàèáîëüøèì. Ïðÿìóþ çàäà÷ó ïðîðàáîòàòü ñàìîñòîÿòåëüíî. Äàíî 𝐽𝑥0 , 𝐽𝑦0 , 𝛼(𝑥0 ∧ 𝑥). Òðåáóåòñÿ îïðåäåëèòü 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑥𝑦 . 5.8 Эллипс инерции Ââåä¼ì íîâîå ïîíÿòèå ïîíÿòèå î ðàäèóñå èíåðöèè ñå÷åíèÿ. Èçîáðàçèì ïðîèçâîëüíîå ñå÷åíèå è ëþáóþ îñü 𝜈 (ðèñ. 5.16). Ðèñ. 5.16. Îïðåäåëåíèå ðàäèóñà èíåðöèè îòíîñèòåëüíî ïðîèçâîëüíîé îñè √︂ 𝑖𝜈 = 𝐽𝜈 − ðàäèóñ èíåðöèè ñå÷åíèÿ îòíîñèòåëíî îñè 𝜈. 𝐴 Îòñþäà 𝐽𝜈 = 𝑖2𝜈 · 𝐴. Ýòà ôîðìóëà äëÿ îïðåäåëåíèÿ 𝐽𝜈 íå èñïîëüçóåòñÿ, íî ðÿä ôîðìóë ñîïðîòèâëåíèÿ ìàòåðèàëîâ, ãäå ñîêðàùàåòñÿ ïëîùàäü, ìîæíî çàïèñàòü ïðîùå. Çàïèøåì √︂ √︂ 𝐽𝑥0 𝐽𝑦0 𝑖 𝑥0 = , 𝑖𝑦0 = 𝐴 𝐴 ãëàâíûå ðàäèóñû èíåðöèè ñå÷åíèÿ èëè ðàäèóñû èíåðöèè ñå÷åíèÿ îòíîñèòåëíî ãëàâíûõ îñåé. Ýëëèïñîì èíåðöèè íàçûâàåòñÿ ýëëèïñ, èìåþùèé ñëåäóþùåå óðàâíåíèå â ãëàâíûõ îñÿõ (ðèñ. 5.17): 𝑥20 𝑦02 + = 1. 𝑖2𝑦0 𝑖2𝑥0 . ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Ðèñ. 5.17. Ýëëèïñ èíåðöèè Ïîëóîñÿìè ýëëèïñà èíåðöèè ÿâëÿþòñÿ ãëàâíûå ðàäèóñû èíåðöèè ñå÷åíèÿ, íî îíè ïîìåíÿëèñü ìåñòàìè. Èçîáðàçèì ýëëèïñ èíåðöèè äëÿ çàäàííîãî ñå÷åíèÿ. Îá îäíîì ñâîéñòâå ýëëèïñà èíåðöèè. Ïðîâåä¼ì ïðîèçâîëüíóþ îñü 𝜈 è êàñàòåëüíóþ ê ýëëèïñó èíåðöèè, ïàðàëëåëüíóþ îñè 𝜈 . Îêàçûâàåòñÿ, ÷òî ðàññòîÿíèå ìåæäó êàñàòåëüíîé è îñüþ 𝜈 åñòü ðàäèóñ èíåðöèè îòíîñèòåëüíî îñè 𝜈 , òîãäà 𝐽𝜈 = 𝑖2𝜈 · 𝐴. Ïðè ðåøåíèè ïðàêòè÷åñêèõ çàäà÷ ýòèì ñïîñîáîì îïðåäåëåíèÿ ìîìåíòîâ èíåðöèè íå ïîëüçóþòñÿ, òàê êàê îí ïðèáëèæ¼ííûé. Äëÿ ýòîãî íóæíî ïîñòðîèòü ýëëèïñ èíåðöèè è çàìåðèòü 𝑖𝜈 . Îäíàêî ýëëèïñ èíåðöèè ïðèìåíÿþò äëÿ ïðèáëèæ¼ííîãî êîíòðîëÿ ðåçóëüòàòîâ îïðåäåëåíèÿ ãëàâíûõ öåíòðàëüíûõ ìîìåíòîâ èíåðöèè ñå÷åíèÿ è ïîëîæåíèÿ ãëàâíûõ öåíòðàëüíûõ îñåé. Ïîêàæåì ýòî íà ïðèìåðå ïîïåðå÷íîãî ñå÷åíèÿ â âèäå 𝑍 -îáðàçíîãî ïðîôèëÿ. 1) Ýëëèïñ äîëæåí áûòü âûòÿíóò âäîëü ñå÷åíèÿ (ðèñ. 5.18). Ðèñ. 5.18. Íàïðàâëåíèå ýëëèïñà èíåðöèè ñå÷åíèÿ Ïî÷åìó ýòî òàê? Ïîòîìó, ÷òî îäíà èç ãëàâíûõ îñåé äîëæíà áûòü ðàñïîëîæåíà âäîëü ñå÷åíèÿ, òîëüêî â ýòîì ñëó÷àå 𝐽𝑥𝑦 = 0. 2) Ýëëèïñ èíåðöèè íå ìîæåò áûòü áîëüøå ñå÷åíèÿ.  îäíó ñòîðîíó îí ìîæåò âûéòè çà êîíòóð ñå÷åíèÿ, òîãäà â äðóãóþ íåò. Ýëëèïñ èíåðöèè òàêæå íå ìîæåò áûòü íàìíîãî ìåíüøå ñå÷åíèÿ 5.19). ∫︀ (ðèñ. 2 Ïî÷åìó ýòî òàê? Ñ îäíîé ñòîðîíû 𝐽𝑥0 = 𝑦0 𝑑𝐴, à ñ äðóãîé 𝐽𝑥0 = 𝐴 ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Ðèñ. 5.19. Ðàçìåðû ýëëèïñà èíåðöèè ñå÷åíèÿ 𝑖2𝑥0 · 𝐴. Ñëåäîâàòåëüíî 𝑖𝑥0 ñðåäíåêâàäðàòè÷íàÿ âåëè÷èíà èç îðäèíàò ñå÷åíèÿ, òîãäà 𝑖𝑥0 <| 𝑦0 |наиб , ïîýòîìó â îáå ñòîðîíû ýëëèïñ èíåðöèè íå ìîæåò âûõîäèòü çà ñå÷åíèå. Ðàäèóñ èíåðöèè 𝑖𝑥0 íå ìîæåò òàêæå áûòü çíà÷èòåëüíî ìåíüøå ñðåäíåêâàäðàòè÷íîé âåëè÷èíû 𝑦0 . 5.9 Определение моментов инерции сложных сечений Äîâîëüíî ÷àñòî äåòàëè, èñïûòûâàþùèå èçãèá, èìåþò ñëîæíîå ïîïåðå÷íîå ñå÷åíèå. ×òîáû ðàññ÷èòàòü áðóñ íà èçãèá, íóæíî çíàòü ïîëîæåíèå ãëàâíûõ öåíòðàëüíûõ îñåé è ãëàâíûå öåíòðàëüíûå ìîìåíòû èíåðöèè ñå÷åíèÿ. Ðàññìîòðèì ïðîèçâîëüíîå ñå÷åíèå, êîòîðîå ðàçáèâàåì íà ïðîñòûå, îïðåäåëÿåì ïëîùàäè è ìîìåíòû èíåðöèè ñîñòàâíûõ ÷àñòåé îòíîñèòåëüíî ñîáñòâåííûõ öåíòðàëüíûõ îñåé (𝐴𝑖 , 𝐽𝑥𝑖 𝑖 , 𝐽𝑦𝑖𝑖 , 𝐽𝑥𝑖 𝑖 𝑦𝑖 ) (ðèñ. 5.20). Ðèñ. 5.20. Îïðåäåëåíèå ìîìåíòîâ èíåðöèè ñëîæíûõ ñå÷åíèé Ïî ôîðìóëå Âàðèíüîíà îïðåäåëÿåì ïîëîæåíèå öåíòðà òÿæåñòè âñåãî ñå÷åíèÿ îòíîñèòåëüíî ïðîèçâîëüíûõ îñåé 𝑢, 𝑣 ∑︀ 𝑖 ∑︀ 𝑖 𝑣 · 𝐴𝑖 𝑢𝑐 · 𝐴𝑖 𝑢𝑐 = ∑︀ 𝑖 , 𝑣𝑐 = ∑︀𝑐 𝑖 , 𝐴 𝐴 ãäå 𝑢𝑖𝑐 , 𝑣𝑐𝑖 - êîîðäèíàòû öåíòðîâ òÿæåñòè ñîñòàâíûõ ÷àñòåé. Äàëåå ïðîâîäèì öåíòðàëüíûå îñè 𝑥, 𝑦 , èõ íóæíî íàïðàâèòü ïàðàëëåëüíî âûáðàííûì îñÿì äëÿ ñîñòàâíûõ ÷àñòåé. ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Îïðåäåëÿåì ìîìåíòû èíåðöèè âñåãî ñå÷åíèÿ îòíîñèòåëüíî öåíòðàëüíûõ îñåé 𝑥, 𝑦 ∫︁ ∑︁ ∫︁ ∑︁ 2 𝐽𝑥 = 𝑦 𝑑𝐴 = 𝑦 2 𝑑𝐴 = 𝐽𝑥𝑖 , 𝐴 𝐴𝑖 íî 𝐽𝑥𝑖 = 𝐽𝑥𝑖 𝑖 + 𝑏2𝑖 · 𝐴𝑖 ôîðìóëà ïåðåõîäà îò öåíòðàëüíûõ îñåé. Èñïîëüçóÿ òàêèå æå ôîðìóëû äëÿ äðóãèõ ìîìåíòîâ èíåðöèè, ïîëó÷èì ∑︁ 𝐽𝑥 = (𝐽𝑥𝑖 𝑖 + 𝑏2𝑖 · 𝐴𝑖 ), ∑︁ 𝐽𝑦 = (𝐽𝑦𝑖𝑖 + 𝑎2𝑖 · 𝐴𝑖 ), ∑︁ 𝐽𝑥𝑦 = (𝐽𝑥𝑖 𝑖 𝑦𝑖 + 𝑎𝑖 · 𝑏𝑖 · 𝐴𝑖 ). Çäåñü 𝑏𝑖 ðàññòîÿíèÿ ìåæäó îñÿìè 𝑥 è 𝑥𝑖 , à 𝑎𝑖 ìåæäó îñÿìè 𝑦 è 𝑦𝑖 . Äàëåå, çíàÿ ìîìåíòû èíåðöèè ñå÷åíèÿ îòíîñèòåëüíî öåíòðàëüíûõ îñåé 𝑥, 𝑦 , îïðåäåëÿåì ãëàâíûå öåíòðàëüíûå ìîìåíòû èíåðöèè è ïîëîæåíèå ãëàâíûõ öåíòðàëüíûõ îñåé √︁ 1 2 ], 𝐽𝑥0 = [(𝐽𝑥 + 𝐽𝑦 ) + (𝐽𝑥 − 𝐽𝑦 )2 + 4 · 𝐽𝑥𝑦 2 √︁ 1 2 ], 𝐽𝑦0 = [(𝐽𝑥 + 𝐽𝑦 ) − (𝐽𝑥 − 𝐽𝑦 )2 + 4 · 𝐽𝑥𝑦 2 𝐽𝑥𝑦 . tg 𝛼0 = − 𝐽𝑥 − 𝐽𝑦0 Çíàÿ ýòè õàðàêòåðèñòèêè ñå÷åíèÿ, ìîæíî îïðåäåëèòü íàïðÿæåíèÿ è ïåðåìåùåíèÿ áàëêè ïðè èçãèáå. Ïðèìåð: îïðåäåëèòü çíà÷åíèå è çíàê óãëà ïîâîðîòà â çàâèñèìîñòè îò ïîëîæåíèÿ íåðàâíîïîëî÷íîãî óãîëêà Çàäàíî: 𝐽𝑥 , 𝐽𝑦 , 𝐽𝑦0 (â òàáëèöàõ ÃÎÑÒà 𝐽𝑢𝑚𝑖𝑛 , 𝛼т (ðèñ. 5.21, 1). Íåîáõîäèìî îïðåäåëèòü 𝐽𝑥𝑦 , 𝛼0 (𝑥∧ 𝑥0 ). 𝐽𝑥 − 𝐽𝑦0 sin 2𝛼; 𝐽𝑥0 = 𝐽𝑥 +𝐽𝑦 −𝐽𝑦0 . Èñïîëüçóÿ ôîðìóëû 𝐽𝑥𝑦 = 0 2 ∧ îïðåäåëÿåì çíà÷åíèå è çíàê óãëà 𝛼0 (𝑥 𝑥0 ). Ðåøåíèÿ ïîêàçàíû íà ðèñóíêå 5.21, 2-8. 5.10 Вопросы для самопроверки ×òî òàêîå îñåâîé, öåíòðîáåæíûé è ïîëÿðíûé ìîìåíòû èíåðöèè? Êàêàÿ ñóùåñòâóåò ñâÿçü ìåæäó îñåâûìè è ïîëÿðíûì ìîìåíòàìè èíåðöèè? Îñíîâíîå ñâîéñòâî ñòàòè÷åñêîãî ìîìåíòà ïëîùàäè ñå÷åíèÿ. Ôîðìóëû ГЛАВА 5. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНОГО СЕЧЕНИЯ БРУС Ðèñ. 5.21. Îïðåäåëåíèå âåëè÷èíû è çíàêà óãëà ïîâîðîòà äëÿ îïðåäåëåíèÿ êîîðäèíàò öåíòðà òÿæåñòè ñå÷åíèÿ. Êàê îïðåäåëÿþòñÿ çíàêè ñòàòè÷åñêèõ ìîìåíòîâ è öåíòðîáåæíîãî ìîìåíòà èíåðöèè? Ôîðìóëà ïàðàëëåëüíîãî ïåðåíîñà îñåé. Îòíîñèòåëüíî êàêîé îñè îñåâîé ìîìåíò èíåðöèè ñå÷åíèÿ äîñòèãàåò íàèìåíüøåãî çíà÷åíèÿ? Êàêèå îñè íàçûâàþòñÿ ãëàâíûìè, à êàêèå öåíòðàëüíûìè? Óêàæèòå îñíîâíîå ñâîéñòâî âñåõ ìîìåíòîâ èíåðöèè ñå÷åíèÿ. Êàê îïðåäåëÿþòñÿ ãëàâíûå ìîìåíòû èíåðöèè ñå÷åíèÿ (àíàëèòè÷åñêè è ãðàôè÷åñêè)? Êàê èçìåíÿþòñÿ çíà÷åíèÿ ìîìåíòîâ èíåðöèè ïðàâèëüíûõ ôèãóð (íàïðèìåð, êâàäðàò, êðóã è ò.ä.) îòíîñèòåëüíî âçàèìíî ïåðïåíäèêóëÿðíûõ öåíòðàëüíûõ îñåé ïðè ïîâîðîòå íà ïðîèçâîëüíûé óãîë? Глава 6 Изгиб 6.1 Основные понятия об изгибе. Расчётная схема балки Áóäåì ïîêà ðàññìàòðèâûòü ïðÿìûå áðóñüÿ ïîñòîÿííîãî ïîïåðå÷íîãî ñå÷åíèÿ, íî çàòåì áóäåì ðàññìàòðèâàòü è êðèâîëèíåéíûå áðóñüÿ. Ðàññìîòðèì áðóñ, ïîïåðå÷íîå ñå÷åíèå êîòîðîãî èìååò âåðòèêàëüíóþ îñü ñèììåòðèè, ñëåäîâàòåëüíî, îñè 𝑥, 𝑦 ÿâëÿþòñÿ ãëàâíûìè öåíòðàëüíûìè îñÿìè èíåðöèè åãî ïîïåðå÷íîãî ñå÷åíèÿ (ðèñ. 6.1). Ðèñ. 6.1. Áðóñ, èñïûòûâàþùèé èçãèá Ââåä¼ì íîâîå ïîíÿòèå ïîíÿòèå î ãëàâíîé ïëîñêîñòè æ¼ñòêîñòè áðóñà. Главной плоскостью жёсткости бруса называется плоскость, проходящая через ось бруса и одну из главных центральных осей его поперечного сечения. Îäíà èç ãëàâíûõ ïëîñêîñòåé æ¼ñòêîñòè ïëîñêîñòü íàèáîëüøåé æ¼ñòêîñòè ýòî ïëîñêîñòü, ïåðïåíäèêóëÿðíàÿ îñè 𝑥. Äðóãàÿ ãëàâíàÿ ïëîñêîñòü ïëîñêîñòü íàèìåíüøåé æ¼ñòêîñòè ýòî ïëîñêîñòü, ïåðïåíäèêóëÿðíàÿ îñè 𝑦 . Âñå îñòàëüíûå îñåâûå ïëîñêîñòè ïî æ¼ñòêîñòè çàíèìàþò 81 ГЛАВА 6. ИЗГИБ 82 ïðîìåæóòî÷íûå ïîëîæåíèÿ. Íàïîìíèì, ÷òî ÷åì ìåíüøå äåôîðìàöèè è ïåðåìåùåíèÿ, òåì áîëüøå æ¼ñòêîñòü. Брус испытывает плоский (прямой) изгиб, если он нагружен силами, перпендикулярными его оси, и парами сил, плоскость действия которых совпадает с одной из главных плоскостей жёсткости бруса. Âñå âíåøíèå ñèëû ëåæàò â ïëîñêîñòè 𝑧𝑐𝑦 è ïåðïåíäèêóëÿðíû îñè 𝑧 . Åñëè ñèëû íå ïåðïåíäèêóëÿðíû îñè áðóñà, òî áóäåò èçãèá ñ ðàñòÿæåíèåì èëè ñæàòèåì, õîòÿ ñèëû è áóäóò ëåæàòü â ãëàâíîé ïëîñêîñòè æ¼ñòêîñòè áðóñà. Áðóñ, èñïûòûâàþùèé èçãèá, íàçûâàåòñÿ áàëêîé. Ïðè èññëåäîâàíèè äåòàëåé â ñîïðîòèâëåíèè ìàòåðèàëîâ âìåñòî áàëêè ðàññìàòðèâàþò ðàñ÷¼òíóþ ñõåìó, ãäå ïîêàçûâàåòñÿ òîëüêî îñòü áàëêè. Ôàêòè÷åñêèå îïîðû çàìåíÿþòñÿ ðàñ÷¼òíûìè ñâÿçÿìè (ðàñ÷¼òíûìè îïîðàìè). Ðàññìîòðèì ÷åòûðå òèïà ñõåìàòèçèðîâàííûõ îïîð: 1) Øàðíèðíî-ïîäâèæíàÿ îïîðà (ðèñ. 6.2). Ïðèìåíÿåòñÿ â êîíñòðóêöèè ìîñòà. Îñîáåííîñòü ýòîãî óñòðîéñòâà â òîì, ÷òî ïîïåðå÷íîå ñå÷åíèå ïîä îïîðîé ìîæåò ñâîáîäíî ïîâîðà÷èâàòüñÿ è ïåðåìåùàòüñÿ ãîðèçîíòàëüíî, à âåðòèêàëüíî ïåðåìåùàòüñÿ íå ìîæåò. Òàêèì îáðàçîì, èç òð¼õ ñòåïåðåé ñâîáîäû øàðíèðíî-ïîäâèæíàÿ îïîðà èìååò òîëüêî äâå ñòåïåíè ñâîáîäû, à ðåàêöèÿ îäíà 𝑅. Ðèñ. 6.2. Øàðíèðíî-ïîäâèæíàÿ îïîðà 2) Øàðíèðíî-íåïîäâèæíàÿ îïîðà (ðèñ. 6.3). Ó ïîïåðå÷íîãî ñå÷åíèÿ ïîä îïîðîé îòîáðàíû äâå ñòåïåíè ñâîáîäû. Ýòà îïîðà äà¼ò äâå ðåàêöèè 𝑉 è 𝐻. Ðèñ. 6.3. Øàðíèðíî-íåïîäâèæíàÿ îïîðà 3) Ïîäâèæíî-çàùåìë¼ííûé êîíåö (ðèñ. 6.4). Áàëêà âñòàâëÿåòñÿ â îòâåðñòèå áåç çàçîðà è íàòÿãà è ìîæåò ïåðåìåùàòüñÿ ãîðèçîíòàëüíî. Ýòî ГЛАВА 6. ИЗГИБ 83 îïîðíîå óñòðîéñòâî îòáèðàåò äâå ñòåïåíè ñâîáîäû.  ñîîòâåòñòâèè ñ ýòèì, â îïîðå âîçíèêàþò âåðòèêàëüíàÿ ñèëà 𝑉 è ïàðà ñèë (ìîìåíò) 𝑀 . Ðèñ. 6.4. Ïîäæâèæíî-çàùåìë¼ííûé êîíåö 4) Íåïîæâèæíî-çàùåìë¼ííûé êîíåö (çàäåëêà) (ðèñ. 6.5). Ó ñå÷åíèÿ ïîä îïîðîé îòîáðàíû òðè ñòåïåíè ñâîáîäû.  ñîîòâåòñòâèè ñ ýòèì, â îïîðå âîçíèêàþò òðè ðåàêöèè 𝐻 , 𝑉 , 𝑀 . Ðèñ. 6.5. Íåïîäâèæíî-çàùåìë¼ííûé êîíåö Åñòü è äðóãèå îïîðû, êîòîðûå âñòðå÷àþòñÿ ðåæå, íàïðèìåð, øàðíèðíîíåïîäâèæíàÿ îïîðà ñ ïîäàòëèâîñòüþ (ðèñ. 6.6). Ðèñ. 6.6. Øàðíèðíî-íåïîäâèæíàÿ îïîðà ñ ïîäàòëèâîñòüþ Êàê îò ðåàëüíîé äåòàëè ïåðåéòè ê ðàñ÷¼òíîé ñõåìå ýòî ïîäðîáíî ðàññìàòðèâàåòñÿ â êóðñå "Äåòàëè ìàøèí"è â äðóãèõ ñïåöèàëüíûõ äèñöèïëèíàõ. Ïðèâåä¼ì ïðèìåð: âàë âðàùåíèÿ ñ ïîäøèïíèêîì ñêîëüæåíèÿ. Îêàçûâàåòñÿ, çàçîðà â ïîäøèïíèêàõ äîñòàòî÷íî, ÷òîáû â ðàñ÷¼òíûõ ñõåìàõ èñïîëüçîâàòü øàðíèðíî-ïîäâèæíóþ îïîðó (ðèñ. 6.7). Áàëêè áûâàþò ëèáî ñòàòè÷åñêè îïðåäåëèìûìè, ëèáî ñòàòè÷åñêè íåîïðåäåëèìûìè. Áàëêà íà äâóõ îïîðàõ (ðèñ. 6.8): ðåàêöèé îïîð 3, ñòàòèêà äà¼ò òðè óðàâíåíèÿ, ñëåäîâàòåëüíî, ýòî ñòàòè÷åñêè îïðåäåëèìàÿ áàëêà. Ðàññòîÿíèå ìåæäó îïîðàìè íàçûâàåòñÿ ïðîë¼òîì áàëêè. ГЛАВА 6. 84 ИЗГИБ Ðèñ. 6.7. Ïîäøèïíèê ñêîëüæåíèÿ Ðèñ. 6.8. Äâóõîïîðíàÿ áàëêà Íà ðèóíêå 6.9 èçîáðàæåíà áàëêà íåïîäâèæíî-çàùåìë¼ííûì êîíöîì. Ýòî ñòàòè÷åñêè îïðåäåëèìàÿ áàëêà. Òàêóþ ðàñ÷¼òíóþ ñõåìó íàçûâàþò êîíñîëüþ (íàïðèìåð, êðûëî ñàìîë¼òà). Ðèñ. 6.9. Êîíñîëüíàÿ áàëêà Íà ðèóíêå 6.10 èçîáðàæåíà íåðàçðåçíàÿ áàëêà. Îíà ïåðåêðûâàåò íåñêîëüêî ïðîë¼òîâ íå ïðåðûâàÿñü. Ó ýòîé áàëêè ïÿòü íåèçâåñòíûõ ðåàêöèé, à ñòàòèêà äà¼ò òðè óðàâíåíèÿ ñëåäîâàòåëüíî, ýòà áàëêà äâà ðàçà ñòàòè÷åñêè íåîïðåäåëèìà.  íåðàçðåçíûõ áàëêàõ ñòåïåíü ñòàòè÷åñêîé íåîïðåäåëèìîñòè ðàâíà ÷èñëó ïðîìåæóòî÷íûõ îïîð. Ïîëó÷àåòñÿ òàê, ÷òî óðàâíåíèé ñòàòèêè õâàòàåò òîëüêî íà äâå êðàéíèõ îïîðû. 6.2 Поперечная сила и изгибающий момент Ïîïåðå÷íàÿ ñèëà è èçãèáàþùèé ìîìåíò ýòî ñîâîêóïíèñòü âíóòðåííèõ ñèë â ïîïåðå÷íîì ñå÷åíèè áàëêè, ñ êîòîðûìè îäíà ÷àñòü áàëêè äåéñòâóåò íà äðóãóþ. Èçîáðàçèì áàëêó (ðèñ. 6.11), èñïûòûâàþùóþ ïëîñêèé èçãèá. Íà ðèñóíêå ïîêàçàíû êàê àêòèâíûå òàê è ðåàêòèâíûå ñèëû. Çäåñü 𝑞 èíòåíñèâíîñòü ðàñïðåäåë¼ííîé íàãðóçêè. ГЛАВА 6. 85 ИЗГИБ Ðèñ. 6.10. Íåðàçðåçíàÿ áàëêà Ðèñ. 6.11. Îïðåäåëåíèå âíóòðåííèõ ñèë â áàëêå Áóäåì ðàññìàòðèâàòü âíóðòåííèå ñèëû, äåéñòâóþùèå â ïîïåðå÷íîì ñå÷åíèè áàëêè. Ïðîâîäèì ñå÷åíèå 𝑎 − 𝑎, ïåðïåíäèêóëÿðíîå îñè áàëêè. Âíà÷àëå îòáðîñèì ïðàâóþ ÷àñòü, èçîáðàçèì ëåâóþ è ïîêàæåì, êàê îíà íàãðóæåíà. Çàòåì èçîáðàçèì íàãðóæåíèå ïðàâîé ÷àñòè. Ïðèâåä¼ì ñèëû ê öåíòðó òÿæåñòè ñå÷åíèÿ áóäóò äåéñòâîâàòü òîëüêî ïîïåðå÷íàÿ ñèëà 𝑄 è èçãèáàþùèé ìîìåíò 𝑀 . Áóäåò ëè íîðìàëüíàÿ ñèëà 𝑁 ? Íåò, ò. ê. íåò âíåøíèõ ñèë, êîòîðûå äàþò ïðîåêöèþ íà îñü áðóñà. Íà ðèñóíêå èçîáðàæåíû ïîëîæèòåëüíûå íàïðàâëåíèÿ ïîïåðå÷íîé ñèëû è èçãèáàþùåãî ìîìåíòà. Êàê âû÷èñëèòü ñóììó âíóòðåííèõ ñèë â ïîïåðå÷íîì ñå÷åíèè áàëêè? Âîñïîëüçóåìñÿ óðàâíåíèÿìè ñòàòèêè äëÿ ðàññìàòðèâàåìîé ÷àñòè áàëêè: ∑︁ ∑︁ ∑︁ 𝑦= 𝐹𝑦 − 𝑄 = 0, ⇒ 𝑄 = 𝐹𝑦 . лев. внеш. сил ∑︁ 𝑀𝑐 = ∑︁ 𝑀𝑐 лев. внеш. сил + 𝑀 = 0, лев. внеш. сил ⇒ 𝑀 =− ∑︁ 𝑀𝑐 лев. внеш. сил . Çäåñü ïðèâåäåíû óðàâíåíèÿ äëÿ ëåâîé ÷àñòè áàëêè, òàêèå æå ðåçóëüòàòû ïîëó÷àþòñÿ ïðè ðàññìîòðåíèè ðàâíîâåñèÿ ïðàâîé ÷àñòè. Ïîïåðå÷íàÿ ñèëà â êàêîì-ëèáî ïîïåðå÷íîì ñå÷åíèè ÷èñëåííî ðàâíà ñóììå ïðîåêöèé íà ïëîñêîñòü ýòîãî ñå÷åíèÿ âñåõ âíåøíèõ ñèë, äåéñòâóþùèõ ïî îäíó ñòîðîíó îò äàííîãî ñå÷åíèÿ. ГЛАВА 6. ИЗГИБ 86 Ïðàâèëî çíàêîâ (ðèñ. 6.12): åñëè âíåøíÿÿ ñèëà ñòðåìèòñÿ ñäâèíóòü ðàññìàòðèâàåìóþ ÷àñòü áàëêè ïî ÷àñîâîé ñòðåëêå, òî ïîïåðå÷íàÿ ñèëà ïîëîæèòåëüíà, è íàîáîðîò. Ðèñ. 6.12. Ïðàâèëàî çíàêîâ äëÿ ïîïåðå÷íîé ñèëû Èçãèáàþùèé ìîìåíò â êàêîì-ëèáî ïîïåðå÷íîì ñå÷åíèè ÷èñëåííî ðàâåí ñóììå ìîìåíòîâ îòíîñòèåëüíî öåíòðà òÿæåñòè ýòîãî ñå÷åíèÿ âñåõ âíåøíèõ ñèë, äåéñòâóþùèõ ïî îäíó ñòîðîíó îò äàííîãî ñå÷åíèÿ. Ïðàâèëî çíàêîâ (ðèñ. 6.13): åñëè âíåøíÿÿ ñèëà ñòðåìèòñÿ èçãèáàòü ðàññìàòðèâàåìóþ ÷àñòü áàëêè âûïóêëîñòüþ âíèç, òî èçãèáàþùèé ìîìåíò ïîëîæèòåëåí, à åñëè âûïóêëîñòüþ ââåðõ òî îòðèöàòåëåí. Ðèñ. 6.13. Ïðàâèëà çíàêîâ äëÿ èçãèáàþùåãî ìîìåíòà Ðàññìîòðèì ïðèìåðû (ðèñ. 6.14): Ðèñ. 6.14. Ïðèìåðû îïðåäåëåíèÿ çíàêîâ âíóòðåííèõ ñèë 6.3 Дифференциальные зависимости между 𝑞, 𝑄 и 𝑀 𝑞 èíòåíñèâíîñòü ðàñïðåäåë¼ííîé íàãðóçêè ñèëà, ïðèõîäÿùàÿñÿ íà åäèíèöó äëèíû áàëêè. ГЛАВА 6. ИЗГИБ 87 ∆𝐹 ñðåäÐàññìîòðèì ìàëûé ó÷àñòîê áàëêè äëèíîé ∆𝑧, 𝑞 = lim Δ𝑧→0 ∆𝑧 íÿÿ èíòåíñèâíîñòü ðàñïðåäåë¼ííîé íàãðóçêè. Èíòíñèâíîñòü ñ÷èòàåòñÿ àëãåáðàè÷åñêîé âåëè÷èíîé: åñëè ñèëà íàïðàâëåíà ââåðõ, òî 𝑞 > 0. Åñëè âíèç, òî 𝑞 < 0. Èçîáðàçèì áàëêó (ðèñ. 6.15). Âûðåæåì ýëåìåíò äëèíîé 𝑑𝑧 , íà êîòîðîé ñ÷èòàåì 𝑞 = 𝑐𝑜𝑛𝑠𝑡. Èçîáðàçèì ýëåìåíò îòäåëüíî è ïîêàæåì ñèëû, äåéñòâóþùèå íà íåãî. Ñëåâà äåéñòâóþò ïîïåðå÷íàÿ ñèëà 𝑄 è èçãèáàþùèé ìîìåíò 𝑀 .  ïðàâîì ñå÷åíèè îíè ïîëó÷àþò ïðèðàùåíèÿ 𝑄 + 𝑑𝑄, 𝑀 + 𝑑𝑀 . Íà ðèñóíêå ïîêàçàíû ïîëîæèòåëüíûå íàïðàâëåíèÿ âíóòðåííèõ ñèë. Ðèñ. 6.15. Íàãðóæåíèå áåñêîíå÷íî ìàëîãî ýëåìåíòà Ñîñòàâëÿåì óðàâíåíèÿ ðàâíîâåñèÿ ïðåäñòàâëåííîãî ýëåìåíòà è, ïðåíåáðåãàÿ áåñêîíå÷íî ìàëûìè âòîðîãî ïîðÿäêà, ïîëó÷èì: ∑︁ 𝑑𝑄 𝑦 = 𝑄 + 𝑞 · 𝑑𝑧 − 𝑄 − 𝑑𝑄 = 0, ⇒ =𝑞 𝑑𝑧 ïðîèçâîäíàÿ îò ïîïåðå÷íîé ñèëû ðàâíà èíòåíñèâíîñòè ðàñïðåäåë¼ííîé íàãðóçêè. ∑︁ 𝑑𝑀 = 𝑄. 𝑀𝑜 = −𝑀 + 𝑄 · 𝑑𝑧 − 𝑞 · 𝑑𝑧 · 𝑑𝑧/2 + 𝑀 + 𝑑𝑀 = 0, ⇒ 𝑑𝑧 Ïîëó÷èì òðåòüå ñîîòíîøåíèå, ïðîäèôôåðåíöèðîâàâ ïîñëåäíåå óðàâíåíèå 𝑑2 𝑀 𝑑𝑄 𝑑2 𝑀 = , ⇒ = 𝑞. 𝑑𝑧 2 𝑑𝑧 𝑑𝑧 2  òàêîì âèäå ýòè ñîîòíîøåíèÿ ñïðàâåäëèâû ëèøü â ñëó÷àå, êîãäà îñü 𝑧 íàïðàâëåíà ñëåâà íàïðàâî (ýòî ó÷òåíî íà ðèñóíêàõ ïðèðàùåíèÿ ñëåâà íàïðàâî). Åñëè îñü 𝑧 íàïðàâèòü ñïðàâà íàëåâî, òî ìîæíî ïîâòîðèòü âûâîäû, íî ìîæíî âìåñòî 𝑧 â ñîîòíîøåíèÿõ ïîäñòàâèòü −𝑧 è ïîëó÷èòü: 𝑑𝑄 𝑑𝑀 𝑑2 𝑀 = −𝑞; = −𝑄; = 𝑞. 𝑑𝑧 𝑑𝑧 𝑑𝑧 2 Íåîáõîäèìî èìåòü â âèäó, ÷òî 𝑞 âåëè÷èíà àëãåáðàè÷åñêàÿ. Åñëè îñü 𝑦 íàïðàâëåíà âíèç, òî âî âñåõ ñîîòíîøåíèÿõ íóæíî èçìåíèòü çíàê ïåðåä 𝑞 íà îáðàòíûé. ГЛАВА 6. 6.4 88 ИЗГИБ Равнодействующая распределённой нагрузки и её положение Èçîáðàçèì ó÷àñòîê áàëêè, íà êîòîðîì äåéñòâóåò ðàñïðåäåë¼ííàÿ íàãðóçêà (ðèñ. 6.16). Ïîêàæåì ðàâíîäåéñòâóþùóþ ðàñïðåäåë¼ííîé íàãðóçêè íà ó÷àñòêå îò 𝑎 äî 𝑏. Ãðàôèê èçìåíåíèÿ èíòåíñèâíîñòè 𝑞 = 𝑞(𝑧) íàçûâàåòñÿ ãðóçîâîé ëèíèåé (íàçâàíèå ïðèøëî îò ñòðîèòåëåé), ïëîùàäü ïîä ãðóçîâîé ëèíèåé ãðóçîâîé ïëîùàäüþ. Ðèñ. 6.16. Ðàâíîäåéñòâóþùàÿ ðàñïðåäåë¼ííîé íàãðóçêè 𝐹𝑎𝑏 = ∫︀𝑏 𝑞(𝑧) 𝑑𝑧 = 𝜔𝑎𝑏 ãåîìåòðè÷åñêèé ñìûñë ðàâíîäåéñòâóþùåé 𝑎 ïëîùàäü ïîä ãðóçîâîé ëèíèåé. ∫︁𝑏 𝐹𝑎𝑏 · 𝑧𝐹 = 𝑧𝐹 · ∫︁𝑏 𝑧 · 𝑞(𝑧) 𝑑𝑧, 𝑞(𝑧) 𝑑𝑧 = 𝑎 𝑎 Ìîìåíò ðàâíîäåéñòâóþùåé 𝐹𝑎𝑏 · 𝑧𝐹 ðàâåí ñóììå ìîìåíòîâ ýëåìåíòàðíûõ ñèë, îòêóäà ∫︀𝑏 𝑧 · 𝑞(𝑧) 𝑑𝑧 𝑎 𝑧𝐹 = 𝑏 ∫︀ 𝑞(𝑧) 𝑑𝑧 𝑎 ýòî ôîðìóëà Âàðèíüîíà äëÿ îïðåäåëåíèÿ ïîëîæåíèÿ öåíòðà òÿæåñòè ãðóçîâîé ïëîùàäè, ò. å. 𝑧𝐹 = 𝑧 ц. т. (ãðóçîâîé ïëîùàäè). Òàêèì îáðàçîì, ðàâíîäåéñòâóþùàÿ ðàñïðåäåë¼ííîé íàãðóçêè ðàâíà ãðóçîâîé ïëîùàäè è ïðîõîäèò ÷åðåç å¼ öåíòð òÿæåñòè. ГЛАВА 6. 6.5 ИЗГИБ 89 Построение эпюр поперечных сил 𝑄 и изгибающих моментов 𝑀 Ýïþðà ýòî ãðàôèê èçìåíåíèÿ âíóòðåííèõ ñèë âäîëü îñè áàëêè. Ýïþðû ñòðîÿòñÿ, ÷òîáû: 1) íàéòè íàèáîëåå îïàñíîå ñå÷åíèå è ïðîèçâåñòè ðàñ÷¼ò íà ïðî÷íîñòü; 2) âû÷èñëèòü ïåðåìåùåíèÿ (ãðàôî-àíàëèòè÷åñêèé ìåòîä). Ïðåæäå âñåãî íåîáõîäèìî çíàòü âñå ñèëû, äåéñòâóþùèå íà áàëêó: â çàäàííîé áàëêå (ðèñ. 6.17) ýòî 𝐹, 𝐻𝐴 , 𝑉𝐴 , 𝑉𝐵 . Ðèñ. 6.17. Ïîñòðîåíèå ýïþð 𝑄 è 𝑀 1. Âû÷èñëåíèå ðåàêöèé îïîð ñ ïîìîùüþ óðàâíåíèé ñòàòèêè. Íóæíî óðàâíåíèÿ ñîñòàâèòü òàê, ÷òîáû íåèçâåñòíûå ðàçäåëèëèñü. ∑︀ 𝑏 𝑀𝐵 = −𝑉𝐴 · 𝑙 + 𝐹 · 𝑏 = 0, ⇒ 𝑉𝐴 = · 𝐹 ; 𝑙 ∑︀ 𝑎 𝑀𝐴 = 𝑉𝐵 · 𝑙 − 𝐹 · 𝑎 = 0, ⇒ 𝑉𝐵 = · 𝐹 ; 𝑙 ∑︀ 𝑧 = 𝐻𝐴 = 0. Íóæíî îáðàòèòü âíèìàíèå, ÷òî äëÿ áàëîê ñ ïðÿìîé îñüþ, âñåãäà, 𝐻𝐴 = 0. ∑︀ 𝑎 𝑏 Ïðîâåðêà: 𝑧 = 𝑉𝐴 −𝐹 +𝑉𝐵 = ·𝐹 −𝐹 + ·𝐹 = 0. Ýòî ñâèäåòåëüñòâó𝑙 𝑙 åò î òîì, ÷òî ðåàêöèè îïîð íàéäåíû âåðíî. Äîâîëüíî ÷àñòî âû÷èñëåíèÿ âåäóòñÿ ïðèáëèæ¼ííî.  ýòîì ñëó÷àå, íóæíî ñëîæèòü îòäåëüíî ïîëîæèòåëüíûå è îòðèöàòåëüíûå ñëàãàåìûå è ðàçíèöó ñðàâíèòü ñ îäíîé èç ýòèõ ñóìì (ëó÷øå, ñ ìèíèìåëüíîé èç íèõ). 2. Îïðåäåëåíèå ïîïåðå÷íûõ ñèë. Äëÿ äàííîé áàëêè íåâîçìîæíî âûðàçèòü ïîïåðå÷íóþ ñèëó ñ ïîìîùüþ îäíîé ôóíêöèè, ïîýòîìó áàëêó ðàçáèâàåì íà ó÷àñòêè 1 è 2. ГЛАВА 6. 90 ИЗГИБ 𝑏 𝑄1 = 𝑉𝐴 = · 𝐹 = 𝑐𝑜𝑛𝑠𝑡, çíàê ïîëîæèòåëüíûé, ò. ê. âíåøíÿÿ ñèëà 𝑙 ïîâîðà÷èâàåò áàëêó ïî õîäó ÷àñîâîé ñòðåëêè. 𝑎 𝑄2 = −𝑉𝐵 = − · 𝐹 = 𝑐𝑜𝑛𝑠𝑡, çíàê îòðèöàòåëüíûé, ò. ê. âíåøíÿÿ ñèëà 𝑙 ïîâîðà÷èâàåò áàëêó ïðîòèâ õîäà ÷àñîâîé ñòðåëêè. Îáðàùàåì âíèìàíèå íà îäíó îñîáåííîñòü, êîòîðàÿ âîçíèêàåò ïðè ïîñòðîåíèè ýïþð îò ñîñðåäîòî÷åííûõ ñèë (ðèñ. 6.18). Íóæíî îòâåòèòü íà âîïðîñ, ÷åìó ðàâíà ïîïåðå÷íàÿ ñèëà â ñå÷åíèè ïîä ñîñðåäîòî÷åííîé ñè𝑏 𝑎 ëîé? · 𝐹 èëè · 𝐹 çäåñü ïðîòèâîðå÷èå, ò. ê. â îäíîì è òîì æå ñå÷åíèè 𝑙 𝑙 äåéñòâóþò äâå ïîïåðå÷íûå ñèëû. Íà ñàìîì äåëå, ñèëà äåéñòâóåò íå â òî÷êå, à íà íåêîòîðîé ìàëîé ïëîùàäêå. Òîãäà, â êàæäîì ñå÷åíèè äåéñòâóåò òîëüêî îäíà ïîïåðå÷íàÿ ñèëà, íèêàêîãî ïðîòèâîðå÷èÿ íåò. Ïîñêîëüêó äëèíà ýòîé ïëîùàäêè íåñîèçìåðèìî ìàëà ïî ñðàâíåíèþ ñ äëèíîé áàëêè, â ðàñ÷¼òíûõ ñõåìàõ èçîáðàæàåòñÿ ñêà÷îê ñèëû. Ðèñ. 6.18. Õàðàêòåð ïðèëîæåíèÿ ñîñðåäîòî÷åííîé ñèëû 2. Îïðåäåëåíèå èçãèáàþùèõ ìîìåíòîâ. 𝐹 ·𝑏 𝑀1 = 𝑉𝐴 ·𝑧1 = ·𝑧1 , çíàê ïîëîæèòåëüíûé, ò. ê. âíåøíÿÿ ñèëà èçãè𝑙 áàåò áàëêó âûïóêëîñòüþ âíèç. 𝑀1 èçãèáàþùèé ìîìåíò â ëþáîì ñå÷åíèè ïåðâîãî ó÷àñòêà. Âûðàæåíèå äëÿ 𝑀1 ëèíåéíàÿ ôóíêöèÿ. Äëÿ ïîñòðîåíèÿ ýþðû ○ äîñòàòî÷íî îïðåäåëèòü äâå òî÷êè (íà ãðàíèöàõ ó÷àñòêà). 𝐹 ·𝑎·𝑏 . Ïðè 𝑧1 = 0, 𝑀1 = 0; 𝑧1 = 𝑎, 𝑀1 = 𝑙 Àíàëîãè÷íî, ïî ïðàâûì ñèëàì, âû÷èñëÿåì 𝑀2 𝐹 ·𝑎 𝑀2 = 𝐵 · 𝑧2 = · 𝑧2 òîæå ëèíåéíàÿ ôóíêöèÿ. 𝑙 𝐹 ·𝑎·𝑏 Ïðè 𝑧2 = 0, 𝑀2 = 0; 𝑧2 = 𝑏, 𝑀2 = . 𝑙 Îáðàùàåì âíèìàíèå, ÷òî â ñå÷åíèè íà ãðàíèöå ó÷àñòêîâ çíà÷åíèÿ èçãèáàþùèõ ìîìåíòîâ ðàâíû. Ñòðîèì ýïþðó ○. Èç ýïþð 𝑄 è 𝑀 âèäíî, ÷òî íàèáîëåå îïàñíûì ÿâëÿåòñÿ ñå÷åíèå ïîä ñèëîé 𝐹 , ò. ê. çäåñü è íàèáîëüøàÿ (ïî àáñîëþòíîé âåëè÷èíå) ïîïåðå÷íàÿ ñèëà è íàèáîëüøèé èçãèáàþùèé ìîìåíò. M M ГЛАВА 6. 6.6 91 ИЗГИБ Контроль правильности построения эпюр 𝑄и𝑀 1. Åñëè ïî äëèíå ó÷àñòêà: 𝑑𝑄 = 0, òî ýïþðà ○ = 𝑐𝑜𝑛𝑠𝑡, à ýïþðà ○ îãðàíè÷åíà à) 𝑞 = 0, ò. å. 𝑑𝑧 íàêëîííîé ïðÿìîé; 𝑑𝑄 á) 𝑞 = 𝑐𝑜𝑛𝑠𝑡, ò. å. = 𝑐𝑜𝑛𝑠𝑡, òî ýïþðà ○ íàêëîííàÿ ïðÿìàÿ, à 𝑑𝑧 ýïþðà ○ êðèâàÿ âòîðîãî ïîðÿäêà; 𝑑𝑄 ̸= 𝑐𝑜𝑛𝑠𝑡, òî ýïþðà ○ êðèâàÿ 𝑛-ãî ïîðÿäêà, à â) 𝑞 ̸= 𝑐𝑜𝑛𝑠𝑡, ò. å. 𝑑𝑧 ýïþðà ○ êðèâàÿ 𝑛 + 1-ãî ïîðÿäêà. 2. Âûïóêëîñòü ýïþðû ○ íàïðàâëåíà â ñòîðîíó , ïðîòèâîïîëîæíóþ 𝑑2 𝑀 íàïðàâëåíèþ ðàñïðåäåë¼ííîé íàãðóçêè, òàê êàê 𝑞 = ,. 𝑑𝑧 2 à) 𝑞 < 0 âûïóêëîñòü ýïþðû ○ ââåðõ (êðèâàÿ âûïóêëà); á) 𝑞 > 0 âûïóêëîñòü ýïþðû ○ âíèç (êðèâàÿ âîãíóòà). 𝑑𝑀 ) òàíãåíñ, 3. Êàæäàÿ îðäèíàòà ýïþðû ïîïåðå÷íûõ ñèë (𝑄 = 𝑑𝑧 îáðàçóåìîãî ñ îñüþ 𝑧 , óãëà íàêëîíà êàñàòåëüíîé ê ýïþðå 𝑀 â ñîîòâåòñòâóþùåé òî÷êå. Åñëè, èäÿ ïî ëåâûì ñèëàì, íà íåêîòîðîì ó÷àñòêå áàëêè: à) 𝑄 > 0, òî åñòü tg 𝛼 > 0, òî 𝑀 âîçðàñòàåò; á) 𝑄 < 0, òî åñòü tg 𝛼 < 0, òî 𝑀 óáûâàåò; â) 𝑄 ïðîõîäèò ÷åðåç íîëü, ìåíÿÿ çíàê ñ ïëþñà íà ìèíóñ, òî 𝑀 = 𝑀𝑚𝑎𝑥 ; 𝑄 ïðîõîäèò ÷åðåç íîëü, ìåíÿÿ çíàê ñ ìèíóñà íà ïëþñ, òî 𝑀 = 𝑀𝑚𝑖𝑛 . ã) 𝑄 = 0, òî åñòü tg 𝛼 = 0, òî 𝑀 = 𝑐𝑜𝑛𝑠𝑡. 4.  ñå÷åíèè ïîä ñîñðåäîòî÷åííîé ñèëîé íà ýïþðå 𝑄 ñêà÷îê âåëè÷èíó ñèëû, à íà ýïþðå ○ èçëîì. 5. Íà êîíöåâîé øàðíèðíîé îïîðå ○ ðàâíà ðåàêöèè ýòîé îïîðû ñ ñîîòâåòñòâóþùèì çíàêîì, à 𝑀 = 0, åñëè â îïîðíîì ñå÷åíèè íå ïðèëîæåíà ñîñðåäîòî÷åííàÿ ïàðà ñèë. 6. Íà ñâîáîäíîì êîíöå áàëêè (êîíñîëè) 𝑀 = 0, åñëè íåò ñîñðåäîòî÷åííîé ïàðû ñèë, è 𝑄 = 0, åñëè íåò ñîñðåäîòî÷åííîé ñèëû. 7.  çàùåìëåíèè 𝑄 è 𝑀 ñîîòâåòñòâåííî ðàâíû îïîðíîé ðåàêöèè è îïîðíîìó ìîìåíòó. 8.  ñå÷åíèè, ãäå ïðèëîæåíà ñîñðåäîòî÷åííàÿ ïàðà ñèë, íà ýïþðå ○ ñêà÷îê íà âåëè÷èíó ìîìåíòà ýòîé ïàðû, à íà íà ýïþðå ○ ýòî íå îòðàæàåòñÿ. Q M Q M Q M M M M M Q Q M ГЛАВА 6. 6.7 ИЗГИБ 92 Напряжения в балке при изгибе Èçîáðàçèì áàëêó (ðèñ. 6.19). Íà ðèñóíêå ïîêàçàíû àêòèâíûå è ðåàêòèâíûå ñèëû. Ïîñëå òîãî, êàê ðåàêöèè íàéäåíû, îïîðû ìîæíî íå èçîáðàæàòü. Ðàññìîòðèì ëþáîå ñå÷åíèå 𝑎 − 𝑎. Âûäåëèì ïëîùàäêó 𝑑𝐴 íà íåé äåéñòâóþò è íîðìàëüíûå, è êàñàòåëüíûå íàïðÿæåíèÿ.  ýëåìåíòàðíîé òåîðèè èçãèáà êàñàòåëüíûå íàïðÿæåíèÿ ñ÷èòàþòñÿ ïàðàëëåëüíûìè ïëîñêîñòè èçãèáà ýòî íå ñîâñåì òî÷íî, ýòî äîïóùåíèå. Ðèñ. 6.19. Îïðåäåëåíèå íàïðÿæåíèé â áàëêå Åñëè ïðîñóììèðîâàòü êàñàòåëüíûå íàïðÿæåíèÿ ïî âñåé ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ, ìû ïîëó÷àåì ïîïåðå÷íóþ ñèëó â äàííîì ñå÷åíèè. Àíàëîãè÷íî, ñóììà íîðìàëüíûõ íàïðÿæåíèé ïî âñåé ïëîùàäè ñå÷åíèÿ äà¼ò èçãèáàþùèé ìîìåíò. Ñëåäîâàòåëüíî, êàñàòåëüíûå íàïðÿæåíèÿ çàâèñÿò òîëüêî îò ïîïåðå÷íîé ñèëû 𝜏 = 𝜏 (𝑄), à íîðìàëüíûå íàïðÿæåíèÿ òîëüêî îò èçãèáàþùåãî ìîìåíòà 𝜎 = 𝜎(𝑀 ). 6.7.1 Нормальные напряжения в балке при изгибе Ðàçëè÷àþò äâà âèäà èçãèáà: ÷èñòûé è ïîïåðå÷íûé. Åñëè íà íåêîòîðîì ó÷àñòêå áàëêè ïîïåðå÷íàÿ ñèëà ðàâíà íóëþ, à èçãèáàþùèé ìîìåíò ïîñòîÿíåí, òî íà ýòîì ó÷àñòêå áàëêà èñïûòûâàåò ÷èñòûé èçãèá (÷èñòûé, ò. ê. èçãèá íå îñëîæí¼í ñäâèãîì). Åñëè ïîïåðå÷íàÿ ñèëà íå ðàâíà íóëþ, òî ýòî ñëó÷àé ïîïåðå÷íîãî èçãèáà. Ïðèìåð: ðàññìîòðèì áàëêó (ðèñ. 6.20), î÷åâèäíî, ÷òî äëÿ íå¼ 𝑉𝐴 = 𝑉𝐵 = 𝐹 . Íà ñðåäíåì ó÷àñòêå ïîïåðå÷íàÿ ñèëà ðàâíà íóëþ, ñëåäîâàòåëüíî, 𝑑𝑀 = 𝑄 = 0, òî áàëêà èñïûòûâàåò ÷èñòûé èçãèá. Ïî÷åìó? Òàê êàê 𝑑𝑧 𝑀 = 𝑐𝑜𝑛𝑠𝑡. Áóäåì îïðåäåëÿòü íîðìàëüíûå íàïðÿæåíèÿ ïðè ÷èñòîì èçãèáå. Äâóìÿ ïîïåðå÷íûìè ñå÷åíèÿìè а – а è б – б âûðåæåì êîíå÷íûé ó÷àñòîê áàëêè è èçîáðàçèì åãî îòäåëüíî (ðèñ. 6.21). Îáîçíà÷èì ÷åðåç 𝑥, 𝑦 ãëàâíûå öåíòðàëüíûå îñè èíåðöèè â ïðàâîì ñå÷åíèè. Èíäåêñû ïðè îáîçíà÷åíèè îñåé îïóùåíû, òàê êàê, â äàëüíåéøåì, âñåãäà áóäåì ðàññìàòðèâàòü ГЛАВА 6. ИЗГИБ 93 Ðèñ. 6.20. Èçãèá ÷èñòûé è ïîïåðå÷íûé òîëüêî ãëàâíûå öåíòðàëüíûå îñè. Îñü 𝑦 íàïðàâëåíà âíèç, ÷òîáû ñîãëàñîâàòü çíàêè èçãèáàþùèõ ìîìåíòîâ, êîîðäèíàò ðàññìàòðèâàåìîé òî÷êè è íàïðÿæåíèé. Ðèñ. 6.21. ×àñòü áàëêè ïðè ÷èñòîì èçãèáå Âûäåëèì â ïðàâîì ñå÷åíèè ýëåìåíòàðíóþ ïëîùàäêó 𝑑𝐴 (âûáðàíà â ïåðâîì êâàäðàíòå), 𝑥, 𝑦 êîîðäèíàòû ýòîé ïëîùàäêè. Ïîêàæåì íàïðÿæåíèÿ íà ïëîùàäêå: 𝜏 = 0, 𝜎 = 𝜎(𝑥, 𝑦) ïðåäñòîèò îïðåäåëèòü.  ëåâîì ñå÷åíèè ñóììà âíóòðåííèõ ñèë ñâîäèòñÿ òîëüêî ê ïàðå ñèë 𝑀 . Ñîñòàâèì óðàâíåíèÿ ðàâíîâåñèÿ ó÷àñòêà áàëêè: ∑︀ 𝑥 = 0 ≡ 0 òîæäåñòâî; ∑︀ ∑︀ 𝑦 = ∫︀0 ≡ 0 òîæäåñòâî; 𝑧 = 𝜎 𝑑𝐴 = 0 ýòî óæå íå òîæäåñòâî, à íåîáõîäèìàÿ ôîðìóëà; 𝐴 ∫︀ ∑︀ 𝑀𝑥 = 𝑦 · 𝜎 𝑑𝐴 − 𝑀 = 0; 𝐴 ∫︀ ∑︀ 𝑀𝑦 = − 𝑥 · 𝜎 𝑑𝐴 = 0 çíàê ìèíóñ, ò. ê. 𝜎 âðàùàåò ðàññìàòðèâàå𝐴 ìóþ ÷àñòü ïî õîäó ÷àñîâîé ñòðåëêè, åñëè ñìîòðåòü ñî ñòîðîíû ïîëîæèòåëüíîãî íàïðàâëåíèÿ îñè 𝑦 ; ∑︀ 𝑀𝑧 = 0 ≡ 0 òîæäåñòâî. Èç ýòèõ øåñòè óðàâíåíèé òðè îáðàòèëèñü â òîæäåñòâî. Çàïèøåì ëèøü ГЛАВА 6. 94 ИЗГИБ òå óðàâíåíèÿ, êîòîðûå ìîãóò áûòü èñïîëüçîâàíû äëÿ âûâîäà: ∫︁ 𝜎 𝑑𝐴 = 0, (1) 𝐴 ∫︁ 𝑦 · 𝜎 𝑑𝐴 = 𝑀, (2) 𝐴 ∫︁ 𝑥 · 𝜎 𝑑𝐴 = 0. (3) 𝐴 Èìååì òðè óðàâíåíèÿ ñòàòèêè, ýòî èíòåãðàëüíûå óðàâíåíèÿ. Îêàçûâàåòñÿ, ÷òî ýòè òðè óðàâíåíèÿ èìåþò áåñêîíå÷íîå ìíîæåñòâî ðåøåíèé. Ñëåäîâàòåëüíî, òîëüêî ñ ïîìîùüþ óðàâíåíèé ñòàòèêè íåëüçÿ îïðåäåëèòü íîðìàëüíûå íàïðÿæåíèÿ ïðè èçãèáå, òî åñòü ýòî ñòàòè÷åñêè íåîïðåäåëèìàÿ çàäà÷à. Íåîáõîäèìî ïîëó÷èòü äîïîëíèòåëüíûå óðàâíåíèÿ, âûðàæàþùèå çàêîíîìåðíîñòü äåôîðìàöèè ïðè èçãèáå. Çàêîíîìåðíîñòè äåôîðìàöèé èçó÷àëèñü ýêñïåðèìåíòàëüíî è òåîðåòè÷åñêèì ïóò¼ì. Ðàññìîòðèì áàëêó ïðÿìîóãîëüíîãî ñå÷åíèÿ (êîíå÷íî ïðè ÷èñòîì èçãèáå) (ðèñ. 6.22). Ðèñ. 6.22. Çàêîíîìåðíîñòè äåôîðìàöèè áàëêè Çàêîíîìåðíîñòè äåôîðìàöèé: 1. Ïîïåðå÷íûå ñå÷åíèÿ, ïëîñêèå äî íàãðóæåíèÿ, îñòàþòñÿ ïëîñêèìè è ïîñëå íàãðóæåíèÿ. Îíè îñòàþòñÿ ïåðïåíäèêóëÿðíûìè ê ïëîñêîñòè èçãèáà è èçîãíóòîé îñè áàëêè. 2. Âåðõíèå âîëîêíà áóäóò ñæàòû, à íèæíèå ðàñòÿíóòû. Åñòåñòâåííî, ãäå-òî ìåæäó íèìè íàõîäèòñÿ ñëîé, íå ïðåòåðïåâàþùèé äåôîðìàöèé. Ýòî òàê íàçûâàåìûé íåéòðàëüíûé ñëîé öèëèíäðè÷åñêàÿ ïîâåðõíîñòü, ïåðïåíäèêóëÿðíàÿ ïëîñêîñòè èçãèáà. ГЛАВА 6. 95 ИЗГИБ Ëèíèÿ ïåðåñå÷åíèÿ íåéòðàëüíîãî ñëîÿ ñ ïîïåðå÷íûì ñå÷åíèåì íàçûâàåòñÿ íåéòðàëüíîé îñüþ èëè íåéòðàëüíîé ëèíèåé ïîïåðå÷íîãî ñå÷åíèÿ. 3.  ñæàòîé çîíå ïîïåðå÷íîå ñå÷åíèå óâåëè÷èâàåò ñâîè ðàçìåðû, à â ðàñòÿíóòîé óìåíüøàåò. Òàêîå ÿâëåíèå ìû íàáëþäàëè ïðè öåíòðàëüíîì ðàñòÿæåíèè è ñæàòèè (ýôôåêò Ïóàññîíà). Ïîýòîìó ìîæíî ïðåäïîëîæèòü, ÷òî ïðè ÷èñòîì èçãèáå èìååò ìåñòî ëèíåéíîå íàïðÿæ¼ííîå ñîñòîÿíèå ïðîäîëüíûå âîëîêíà äðóã íà äðóãà íå íàäàâëèâàþò. Ïðèñòóïèì ê ñîñòàâëåíèþ äîïîëíèòåëüíîãî óðàâíåíèÿ (ðèñ. 6.23). Èçîáðàçèì ýëåìåíò äëèíîé 𝑑𝑧 äî íàãðóæåíèÿ è ïîñëå íàãðóæåíèÿ. Çäåñü 𝑚𝑛 ëþáîå âîëîêíî; 𝑒 ðàññòîÿíèå ìåæäó íåéòðàëüíûì ñëîåì è îñüþ áàëêè; òî÷êà 𝐾 öåíòð êðèâèçíû èçîãíóòîé îñè áàëêè; 𝜌 ðàäèóñ êðèâèçíû íåéòðàëüíîãî ñëîÿ; ∆𝛼 óãîë ìåæäó ñå÷åíèÿìè. Ðèñ. 6.23. Ñîñòàâëåíèå óðàâíåíèÿ ñîâìåñòíîñòè äåôîðìàöèé Âû÷èñëèì îòíîñèòåëüíîå óäëèíåíèå âîëîêíà 𝑚𝑛 𝑙𝑚𝑛 = 𝑑𝑧 = 𝜌 · ∆𝛼; 𝑙𝑚′ 𝑛′ = (𝜌 + 𝑒 + 𝑦) · ∆𝛼; ∆𝑙𝑚𝑛 = 𝑙𝑚′ 𝑛′ − 𝑙𝑚𝑛 = (𝜌 + 𝑒 + 𝑦) · ∆𝛼 − 𝜌 · ∆𝛼 = (𝑒 + 𝑦) · ∆𝛼; 𝑒+𝑦 ∆𝑙𝑚𝑛 = . 𝑙𝑚𝑛 𝜌 Äàëåå ïî çàêîíó Ãóêà îïðåäåëèì íàïðÿæåíèå 𝜎 = 𝐸 · 𝜀𝑚𝑛 𝜀𝑚𝑛 = 𝜎= 𝐸 · (𝑒 + 𝑦) 𝜌 (4) ýòî íåäîñòàþùåå óðàâíåíèå, îíî âûðàæååò çàêîíîìåðíîñòü äåôîðìàöèé, òî åñòü ñå÷åíèå îñòà¼òñÿ ïëîñêèì è âîëîêíà èñïûòûâàþò ëèíåéíîå íàïðÿæ¼ííîå ñîñòîÿíèå. Ïîäñòàâèì (4) â óðàâíåíèå (1) ∫︀ ∫︀ 𝐸 ∫︀ 𝐸 (𝑒 + 𝑦) 𝑑𝐴 = 0, íî ̸= 0, òîãäà 𝑒 𝑑𝐴 + 𝑦 𝑑𝐴 = 𝑒 · 𝐴 + 𝑆𝑥 = 0. 𝜌𝐴 𝜌 𝐴 𝐴 Çäåñü 𝑆𝑥 = 0 ñòàòè÷åñêèé ìîìåíò ïëîùàäè ñå÷åíèÿ îòíîñèòåëüíî öåíòðàëüíîé îñè, 𝐴 ̸= 0, ñëåäîâàòåëüíî 𝑒 = 0 è íåéòðàëüíûé ñëîé ïðîõîäèò ГЛАВА 6. 96 ИЗГИБ ÷åðåç îñü áàëêè. Òîãäà óðàâíåíèå (4) ïðèìåò âèä 𝜎= 𝐸 · 𝑦. 𝜌 (4′ ) Ïîäñòàâèì (4′ ) â (3) 𝐸 ∫︀ 𝐸 𝑥 · 𝑦 𝑑𝐴 = · 𝐽𝑥𝑦 = 0, òàê êàê îñè 𝑥, 𝑦 ãëàâíûå îñè èíåðöèè 𝜌𝐴 𝜌 ïîïåðå÷íîãî ñå÷åíèÿ, òî åñòü óñëîâèå (3) âûïîëíÿåòñÿ. Òåïåðü ïîäñòàâèì (4′ ) â (2) ∫︀ 𝐸 ∫︀ 2 𝑦 𝑑𝐴 = 𝑀, íî 𝑦 2 𝑑𝐴 = 𝐽𝑥 , òîãäà 𝜌𝐴 𝐴 𝑀 1 = 𝜌 𝐸 · 𝐽𝑥 (5) ýòî ïðîìåæóòî÷íàÿ, íî î÷åíü âàæíàÿ ôîðìóëà ôîðìóëà äëÿ êðèâèçíû èçîãíóòîé îñè áàëêè. Çäåñü 𝐸 · 𝐽𝑥 æ¼ñòêîñòü áàëêè ïðè èçãèáå. Ïîäñòàâèì âûðàæåíèå (5) â (4′ ) è ïîëó÷èì 𝜎= 𝑀 ·𝑦 𝐽𝑥 (6) ôîðìóëà äëÿ íîðìàëüíûõ íàïðÿæåíèé ïðè ÷èñòîì èçãèáå. Ýòó ôîðìóëó ìîæíî ïðèìåíÿòü è ïðè ïîïåðå÷íîì èçãèáå. Äëÿ ñëó÷àÿ 𝑄 = 𝑐𝑜𝑛𝑠𝑡 ôîðìóëà äëÿ 𝜎 òî÷íà, à äëÿ 𝑄 ̸= 𝑐𝑜𝑛𝑠𝑡 ôîðìóëà äà¼ò ïîãðåøíîñòü ïîðÿäêà ℎ/𝑙, ãäå ℎ âûñîòà ñå÷åíèÿ, 𝑙 äëèíà áàëêè, ñëåäîâàòåëüíî, äëÿ äëèííûõ áàëîê îøèáêà ìàëà. Èç ôîðìóëû (6) âèäíî, ÷òî íîðìàëüíûå íàïðÿæåíèÿ ïî øèðèíå ñå÷åíèÿ íå ìåíÿþòñÿ, îíè èçìåíÿþòñÿ òîëüêî ïî âûñîòå ñå÷åíèÿ ïî ëèíåéíîìó çàêîíó. Èçîáðàçèì ýïþðó íîðìàëüíûõ íàïðÿæåíèé ïî âûñîòå ñå÷åíèÿ (ðèñ. 6.24). Ðèñ. 6.24. Ýïþðà íîðìàëüíûõ íàïðÿæåíèé ïî âûñîòå ñå÷åíèÿ Ñëåäóåò îáðàòèòü âíèìàíèå íà òî, ÷òî âèä ýïþðû íîðìàëüíûõ íàïðÿæåíèé íå çàâèñèò îò ôîðìû ïîïåðå÷íîãî ñå÷åíèÿ. ГЛАВА 6. 6.7.2 ИЗГИБ 97 Касательные напряжения в балке при изгибе. Формула Журавского Èçîáðàçèì áàëêó, èñïûòûâàþùóþ ïîïåðå÷íûé èçãèá (ðèñ. 6.25). Òðåìÿ ïëîñêîñòÿìè âûðåæåì çàøòðèõîâàííûé ýëåìåíò è èçîáðàçèì åãî îòäåëüíî. Ïîêàæåì íàïðÿæåíèÿ â òî÷êå, ëåæàùåé íà ðåáðå. Çäåñü åñòü è íîðìàëüíûå 𝜎 è êàñàòåëüíûå 𝜏 íàïðÿæåíèÿ. Íàïðàâëåíèå êàñàòåëüíûõ íàïðÿæåíèé ïîêàæåì â ñîîòâåòñòâèè ñ ïîëîæèòåëüíîé ïîïåðå÷íîé ñèëîé. Ðèñ. 6.25. Íàïðÿæåíèÿ â áàëêå ïðè ïîïåðå÷íîì èçãèáå  ýëåìåíòàðíîé òåîðèè èçãèáà ñ÷èòàåòñÿ, ÷òî, âî-ïåðâûõ, êàñàòåëüíûå íàïðÿæåíèÿ ïî øèðèíå ñå÷åíèÿ íå èçìåíÿþòñÿ è, âî-âòîðûõ, ÷òî êàñàòåëüíûå íàïðÿæåíèÿ â ñå÷åíèè èìåþò òîëüêî âåðòèêàëüíóþ ñîñòàâëÿþùóþ, ïàðàëëåëüíóþ ïëîñêîñòè èçãèáà 𝜏 = 𝜏 (𝑦, 𝑧). Ýòè äîïóùåíèÿ íå ÿâëÿþòñÿ òî÷íûìè.  òî÷êå 𝐵 , íî â ïðîäîëüíîì ñå÷åíèè, äåéñòâóþò òàêèå æå êàñàòåëüíûå íàïðÿæåíèÿ â ñîîòâåòñòâèè ñ çàêîíîì ïàðíîñòè êàñàòåëüíûõ íàïðÿæåíèé. Íîðìàëüíûõ íàïðÿæåíèé â ïðîäîëüíîì ñå÷åíèè íåò, òàê êàê äàâëåíèåì ìåæäó ñëîÿìè ìîæíî ïðåíåáðå÷ü. Åñëè ðàññìàòðèâàòü âòîðîé òîðåö ýëåìåíòà, òî òàì òîæå áóäóò è íîðìàëüíûå è êàñàòåëüíûå íàïðÿæåíèÿ. Ïîêàæåì ýëåìåíò åù¼ ðàç, íî ïî ãðàíÿì ïîêàæåì ðàâíîäåéñòâóþùèå ñèë (ðèñ. 6.26). Ñèëû ïðèâîäÿòñÿ ê ðàâíîäåéñòâóþùèì òàê, ÷òîáû ãëàâíûé ìîìåíò áûë ðàâåí íóëþ. Âåðõíÿÿ ãðàíü áåñêîíå÷íî ìàëà, ïîýòîìó ðàâíîäåéñòâóþùàÿ ðàâíà 𝑑𝑇 . Áàëêà íàõîäèòñÿ â ðàâíîâåññèè, ïîýòîìó è ýëåìåíò ∑︀ äîëæåí íàõîäèòüñÿ â ðàâíîâåñèè, òîãäà 𝑧 = −𝑁 −𝑑𝑇 +𝑁 +𝑑𝑁 = 0, îòñþäà 𝑑𝑇 = 𝑑𝑁. Äàëåå 𝑑𝑇 è 𝑑𝑁 íóæíî âûðàçèòü ÷åðåç íàïðÿæåíèÿ. 𝑑𝑇 = 𝜏 · 𝑏(𝑦) · 𝑑𝑧 îáðàùàåì âíèìàíèå, ÷òî êàñàòåëüíûå íàïðÿæåíèÿ áåðóòñÿ ñ ãîðèçîíòàëüíîé ãðàíè. Íàéä¼ì íîðìàëüíóþ ñèëó 𝑁 , äåéñòâóþùóþ íà ïëîùàäè îòñå÷¼ííîé ÷àñòè ГЛАВА 6. 98 ИЗГИБ Ðèñ. 6.26. Ðàâíîäåéñòâóþùèå âíóòðåííèõ ñèë 𝑁 = ∫︀ 𝐴отс 𝜎 𝑑𝐴, ãäå 𝜎 · 𝑑𝐴 ýëåìåíòàðíàÿ ñèëà, îòñå÷¼ííîé ÷àñòè ñå÷åíèÿ. Íî 𝜎 = 𝐴 отс ïëîùàäü 𝑀 ∫︀ 𝑀 · 𝑦 , òîãäà 𝑁 = 𝑦 𝑑𝐴 = 𝐽𝑥 𝐽𝑥 𝐴 отс ∫︀ 𝑀 · 𝑆𝑥отс , ãäå 𝑆𝑥отс = 𝑦 𝑑𝐴 . Ïðîäèôôåðåíöèðóåì âûðàæåíèå äëÿ 𝐽𝑥 𝐴отс 𝑁 è íàéä¼ì 𝑑𝑁 𝑑𝑀 · 𝑆𝑥отс 𝑑𝑁 = . 𝐽𝑥 Òåïåðü ïîäñòàâèì çíà÷åíèÿ 𝑑𝑇 è 𝑑𝑁 â óðàâíåíèå ðàâíîâåññèÿ 𝑑𝑀 · 𝑆𝑥отс 𝑑𝑀 𝜏 · 𝑏(𝑦) · 𝑑𝑧 = , ó÷ò¼ì, ÷òî = 𝑄, è ïîëó÷èì 𝐽𝑥 𝑑𝑧 𝜏= 𝑄 · 𝑆𝑥отс 𝐽𝑥 · 𝑏(𝑦) ôîðìóëà Æóðàâñêîãî äëÿ êàñàòåëüíûõ íàïðÿæåíèé â ïîïåðå÷íîì ñå÷åíèè áàëêè. Òàêèå æå íàïðÿæåíèÿ áóäóò äåéñòâîâàòü è â ïðîäîëüíîì ñå÷åíèè.  ôîðìóëå Æóðàâñêîãî: 𝑄 ïîïåðå÷íàÿ ñèëà â òîì ñå÷åíèè, â êîòîðîì îïðåäåëÿþòñÿ êàñàòåëüíûå íàïðÿæåíèÿ; 𝑆𝑥отс ñòàòè÷åñêèé ìîìåíò ÷àñòè ñå÷åíèÿ, ðàñïîëîæåííîãî âûøå èëè íèæå òî÷êè, â êîòîðîé îïðåäåëÿåòñÿ 𝜏 , îòíîñèòåëüíî íåéòðàëüíîé îñè ñå÷åíèÿ; 𝐽𝑥 ìîìåíò èíåðöèè âñåãî ñå÷åíèÿ îòíîñèòåëüíî íåéòðàëüíîé îñè; 𝑏(𝑦) øèðèíà ñå÷åíèÿ íà óðîâíå òî÷êè, â êîòîðîé îïðåäåëÿåòñÿ 𝜏 . Ïðèíÿòî âû÷èñëÿòü êàñàòåëüíûå íàïðÿæåíèÿ ïî àáñîëþòíîé âåëè÷èíå, òî åñòü â ôîðìóëå èñïîëüçóåòñÿ àáñîëþòíàÿ âåëè÷èíà 𝑄 è 𝑆𝑥отс , à íàïðàâëåíèå 𝜏 ñîâïàäàåò ñ íàïðàâëåíèåì ïîïåðå÷íîé ñèëû. Äîêàæåì, ÷òî ïðè âû÷èñëåíèè 𝑆𝑥отс ìîæíî áðàòü è âåðõíþþ, è íèæíþþ ÷àñòè ñå÷åíèÿ (ðèñ. 6.27). 𝑆𝑥 = 𝑆𝑥в + 𝑆𝑥н = 0 ⇒ 𝑆𝑥в = −𝑆𝑥н ⇒ | 𝑆𝑥в |=| 𝑆𝑥н |. ГЛАВА 6. ИЗГИБ 99 Ðèñ. 6.27. Ñòàòè÷åñêèå ìîìåíòû âåðõíåé è íèæíåé ÷àñòåé ñå÷åíèÿ Ïðèìåðû: 1. Êàñàòåëüíûå íàïðÿæåíèÿ â áàëêå ïðÿìîóãîëüíîãî ïîïåðå÷íîãî ñå÷åíèÿ (ðèñ. 6.28). Ðèñ. 6.28. Ïðÿìîóãîëüíîå ñå÷åíèå Îïðåäåëèì âåëè÷èíû, âõîäÿùèå â ôîðìóëó Æóðàâñêîãî. ℎ 1 ℎ 𝑏 ℎ2 𝑏 · ℎ2 2·𝑦 2 𝑆𝑥отс = 𝑏 · ( − 𝑦) · · ( + 𝑦) = · ( − 𝑦 2 ) = · [1 − ( ) ], 2 2 2 2 4 8 ℎ 3 𝑏·ℎ 𝐽𝑥 = , 𝑏(𝑦) = 𝑏. Ïîäñòàâèì ýòè çíà÷åíèÿ â ôîðìóëó Æóðàâ12 ñêîãî, ïðîèçâåä¼ì ñîêðàùåíèÿ è ó÷èòûâàÿ, ÷òî 𝑏 · ℎ = 𝐴, ïîëó÷èì 𝜏= 𝑄 · 𝑏 · ℎ2 2·𝑦 2 3·𝑄 2·𝑦 2 ) ]= · [1 − ( )] · [1 − ( 2 𝑏·ℎ ℎ 2·𝐴 ℎ 8· ·𝑏 12 ôîðìóëà äëÿ êàñàòåëüíûõ íàïðÿæåíèé ïðè èçãèáå â áàëêå ïðÿìîóãîëüíîãî ïîïåðå÷íîãî ñå÷åíèÿ. Èçîáðàçèì ýïþðó êàñàòåëüíûõ íàïðÿæåíèé ïî âûñîòå ñå÷åíèÿ (ðèñ. ℎ 6.29). Èç ïîëó÷åííîé ôîðìóëû âèäíî, ÷òî ïðè 𝑦 = ± 𝜏 = 0. Ýòî 2 ГЛАВА 6. ИЗГИБ 100 Ðèñ. 6.29. Ðàñïðåäåëåíèå êàñàòåëüíûõ íàïðÿæåíèé ïî âûñîòå ïðÿìîóãîëüíîãî ñå÷åíèÿ ìîæíî óñòàíîâèòü è áåç ôîðìóëû, ïî çàêîíó ïàðíîñòè êàñàòåëüíûõ íàïðÿæåíèé, òàê êàê âíåøíèå ïîâåðõíîñòè íå íàãðóæåíû. Íåîáõîäèìî îáðàòèòü âíèìàíèå íà òî, ÷òî êàñàòåëüíûå íàïðÿæåíèÿ ïî âûñîòå ðàñïðåäåëåíû íåðàâíîìåðíî. Íàèáîëüøèå êàñàòåëüíûå íàïðÿ3·𝑄 . æåíèÿ äåéñòâóþò â òî÷êàõ íà íåéòðàëüíîé îñè è ðàâíû 𝜏 наиб = 2·𝐴 2. Êàñàòåëüíûå íàïðÿæåíèÿ â áàëêå êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ (áåç âûâîäà) (ðèñ. 6.30). Ðèñ. 6.30. Ðàñïðåäåëåíèå êàñàòåëüíûõ íàïðÿæåíèé ïî âûñîòå êðóãëîãî ñå÷åíèÿ 4·𝑄 ýòî ìåíüøå, ÷åì â ïðÿìîóãîëüíîì ñå ýòîì ñëó÷àå 𝜏 наиб = 3·𝐴 ÷åíèè. 3. Êàñàòåëüíûå íàïðÿæåíèÿ â áàëêå äâóòàâðîâîãî ñå÷åíèÿ (ðèñ. 6.31). Ïîñòðîèì ýïþðó êàñàòåëüíûõ íàïðÿæåíèé ïî âûñîòå ñå÷åíèÿ áåç ÷èñåë, ðàññóæäàÿ ïî ôîðìóëå Æóðàâñêîãî. Ïóñòü òî÷êà, â êîòîðîé îïðåäåëÿåòñÿ 𝜏 , ïåðåìåùàåòñÿ îò âåðõíèõ âîëîêîí ê íèæíèì.  ïðåäåëàõ ïîëêè áûñòðî âîçðàñòàåò ñòàòè÷åñêèé ìîìåíò 𝑆𝑥отс è ïðàêòè÷åñêè íå ìåíÿåòñÿ øèðèíà ñå÷åíèÿ 𝑏(𝑦). Ïî âûñîòå ñòåíêè ìåäëåííî âîçðàñòàåò (äî íåéòðàëüíîé îñè) 𝑆𝑥отс è íå ìåíÿåòñÿ 𝑏(𝑦), à íà ãðàíèöå ïîëêè ñî ñòåíêîé ГЛАВА 6. ИЗГИБ 101 Ðèñ. 6.31. Ðàñïðåäåëåíèå êàñàòåëüíûõ íàïðÿæåíèé ïî âûñîòå äâóòàâðà ðåçêî óìåíüøàåòñÿ 𝑏(𝑦) (íà ýïþðå 𝜏 ñêà÷îê). Íèæå íåéòðàëüíîé îñè ýïþðà ñèììåòðè÷íà ñ âåðõíåé ÷àñòüþ. Íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ è â ýòîì ñëó÷àå äåéñòâóþò â òî÷êàõ íà íåéòðàëüíîé îñè. Âûâîäû: 1. Íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ äëÿ ñèììåòðè÷íûõ ñå÷åíèé äåéñòâóþò â òî÷êàõ íà íåéòðàëüíîé îñè. 2. Âèä ýïþðû êàñàòåëüíûõ íàïðÿæåíèé ñóùåñòâåííî çàâèñèò îò ôîðìû ïîïåðå÷íîãî ñå÷åíèÿ, â òî âðåìÿ êàê âèä ýïþðû íîðìàëüíûõ íàïðÿæåíèé íå çàâèñÿò îò ôîðìû ñå÷åíèÿ. 6.8 Расчёт балок на прочность по допускаемым напряжениям Ïðè ðàñ÷¼òå áàëîê ïî äîïóñêàåìûì íàïðÿæåíèÿì çà îïàñíîå ïðèíèìàåòñÿ òàêîå ñîñòîÿíèå ïðè êîòîðîì ýêâèâàëåíòíûå íàïðÿæåíèÿ äîñòèãàþò ïðåäåëà òåêó÷åñòè 𝜎т . Ýòîò ñïîñîá ðàñ÷¼òà ïðèìåíÿåòñÿ äëÿ áàëîê, â êîòîðûõ îñòàòî÷íûå äåôîðìàöèè íåäîïóñòèìû. Âûáèðàåì â ïðîèçâîëüíîì ñå÷åíèè áàëêè (ðèñ. 6.32) ïðîèçâîëüíóþ òî÷êó 𝐴, â êîòîðîé áóäåì îöåíèâàòü ïðî÷íîñòü (â äàëüíåéøåì áóäåì îöåíèâàòü ïðî÷íîñòü â îïàñíîì ñå÷åíèè).  ïîïåðå÷íîì ñå÷åíèè äåéñòâóþò ïîïåðå÷íàÿ ñèëà 𝑄 è èçãèáàþùèé ìîìåíò 𝑀 ïóñòü äëÿ îïðåäåë¼ííîñòè îíè áóäóò ïîëîæèòåëüíûìè. 𝑄 · 𝑆𝑥отс 𝑀 · 𝑦, 𝜏 = îïðåäåëÿåì íàïðÿæåíèÿ è Ïî ôîðìóëàì 𝜎 = 𝐽𝑥 𝐽𝑥 · 𝑏(𝑦) ñòðîèì èõ ýïþðû. Òåïåðü, â îêðåñòíîñòè òî÷êè 𝐴 âûðåæåì ýëåìåíò è ïîêàæåì íàïðÿæåíèÿ ïî ãðàíÿì (ðèñ. 6.33). Íà âåðõíåé è íèæíåé ïëîùàäêàõ íîðìàëüíûõ íàïðÿæåíèé íåò, äåéñòâóþò òîëüêî êàñàòåëüíûå íàïðÿæåíèÿ. Íà áîêîâûõ ãðàíÿõ äåéñòâóþò è íîðìàëüíûå, è êàñàòåëüíûå íàïðÿæåíèÿ. Ýëåìåíò èñïûòûâàåò ïëîñêîå íàïðÿæ¼ííîå ñîñòîÿíèå: 𝜎𝛼 = 𝜎, 𝜏𝛼 = 𝜏, 𝜎𝛽 = 0, 𝜏𝛽 = −𝜏 . ГЛАВА 6. ИЗГИБ 102 Ðèñ. 6.32. Ðàñ÷¼ò íà ïðî÷íîñòü â ïðîèçâîëüíîé òî÷êå Ðèñ. 6.33. Íàïðÿæ¼ííîå ñîñòîÿíèå äåòàëè â òî÷êå Äëÿ ñîñòàâëåíèÿ óñëîâèÿ ïðî÷íîñòè íåîáõîäèìî íàéòè ãëàâíûå íàïðÿæåíèÿ √︁ √ 1 1 𝜎𝐼,𝐼𝐼 = · [(𝜎𝛼 + 𝜎𝛽 ) ± (𝜎𝛼 − 𝜎𝛽 )2 + 4 · 𝜏𝛼 2 ] = · (𝜎 ± 𝜎 2 + 4 · 𝜏 2 ). 2 2 √ √ 1 1 𝜎𝐼𝐼 = · (𝜎 − 𝜎 2 + 4 · 𝜏 2 ). Òîãäà 𝜎𝐼 = · (𝜎 + 𝜎 2 + 4 · 𝜏 2 ), 2 2 Òàê êàê 𝜎𝐼 ≥ 0 è 𝜎𝐼𝐼 ≤ 0, ïðèñâîèì ãëàâíûåì íàïðÿæåíèÿì àðàá√ 1 1 ñêèå èíäåêñû 𝜎1 = · (𝜎 + 𝜎 2 + 4 · 𝜏 2 ), 𝜎2 = 0, 𝜎3 = · (𝜎 − 2 2 √ 𝜎 2 + 4 · 𝜏 2 ). Äàëåå ñëåäóåò âîñïîëüçîâàòüñÿ ïîäõîäÿùåé òåîðèåé ïðî÷íîñòè. Áàëêè îáû÷íî èçãîòàâëèâàþòñÿ èç ñòàëåé, èç àëþìèíèåâûõ èëè ìàãíèåâûõ ñïëàâîâ, òî åñòü èç ïëàñòè÷íûõ ìàòåðèàëîâ, ïîýòîìó âîñïîëüçóåìñÿ IV-é òåîðèåé ïðî÷íîñòè. √︁ 𝜎экв𝐼𝑉 ≤ [𝜎], 𝜎экв𝐼𝑉 = 𝜎12 + 𝜎22 + 𝜎32 − 𝜎1 · 𝜎2 − 𝜎2 · 𝜎3 − 𝜎3 · 𝜎1 . √ Ïîäñòàâèâ çíà÷åíèÿ ãëàâíûõ íàïðÿæåíèé, ïîëó÷èì 𝜎экв𝐼𝑉 = 𝜎 2 + 3 · 𝜏 2 . Ýòà ôîðìóëà ïðèìåíèìà íå òîëüêî äëÿ ïîëîæèòåëüíûõ 𝑄 è 𝑀 , íî è äëÿ ГЛАВА 6. 103 ИЗГИБ √ îòðèöàòåëüíûõ. Òîãäà 𝜎 2 + 3 · 𝜏 2 ≤ [𝜎] óñëîâèå ïðî÷íîñòè äëÿ ïðîèçâîëüíîé òî÷êè áàëêè ïî ñïîñîáó äîïóñêàåìûõ íàïðÿæåíèé. ×òîáû ïðîâåðèòü ïðî÷íîñòü âñåé áàëêè, íóæíî âçÿòü îïàñíóþ òî÷êó наиб íàèáîëåå îïàñíîãî ñå÷åíèÿ, ò. å. äëÿ âñåé áàëêè 𝜎экв ≤ [𝜎]. 𝐼𝑉 наиб Êàê íàéòè 𝜎экв𝐼𝑉 ? Íóæíî èññëåäîâàòü 𝜎экв𝐼𝑉 = 𝑓 (𝑦, 𝑧) íà ýêñòðåìóì. Ñíà÷àëà èññëåäîâàòü ïî êîíòóðó ñå÷åíèÿ, çàòåì âíóòðè, íàéòè âñå ýêñòðåìóìû, à çàòåì âûáðàòü íàèáîëüøåå ïî àáñîëþòíîé âåëè÷èíå çíà÷åíèå. Îïûò ðàñ÷¼òîâ, íàêîïëåííûõ ê íàñòîÿùåìó âðåìåíè, ïîêàçûâàåò, ÷òî íàèáîëüøèå ýêâèâàëåíòíûå íàïðÿæåíèÿ ìîãóò áûòü â îäíîé èç ñëåäóþùèõ òî÷åê: 1. òî÷êà ñ íàèáîëüøèì ïî àáñîëþòíîé âåëè÷èíå íîðìàëüíûì íàïðÿæåíèåì; 2. òî÷êà ñ íàèáîëüøèì êàñàòåëüíûì íàïðÿæåíèåì â ïîïåðå÷íîì ñå÷åíèè; 3. òî÷êà â ìåñòå ðåçêîãî èçìåíåíèÿ øèðèíû ïîïåðå÷íîãî ñå÷åíèÿ â ñå÷åíèè ñ áîëüøèìè çíà÷åíèÿìè ïîïåðå÷íûõ ñèë è èçãèáàþùèõ ìîìåíòîâ. Ðàññìîòðèì ïîäðîáíåå ýòè òî÷êè. Ïåðâàÿ îïàñíàÿ òî÷êà (ïî÷òè âñåãäà îíà è áûâàåò ñàìîé îïàñíîé)(ðèñ. 6.34). Ðèñ. 6.34. Ïåðâàÿ îïàñíàÿ òî÷êà Íàèáîëüøèå ïî àáñîëþòíîé âåëè÷èíå íîðìàëüíûå íàïðÿæåíèÿ âîçíèêàþò â íàèáîëåå óäàë¼ííîé îò íåéòðàëüíîé îñè òî÷êå ñå÷åíèÿ, ãäå | 𝑀 |наиб äåéñòâóåò | 𝑀 |наиб , è ðàâíû | 𝜎 |наиб = · | 𝑦 |наиб . 𝐽𝑥 Áóäåì ïðèìåíÿòü óñëîâèå ïðî÷íîñòè: | 𝜎 |=| 𝜎 |наиб , 𝜏 = 0, òîãäà 𝐽𝑥 наиб 𝜎экв =| 𝜎 |наиб ≤ [𝜎]. Íî = 𝑊𝑥 , òîãäà óñëîâèå ïðî÷íîñòè â 𝐼𝑉 | 𝑦 |наиб ГЛАВА 6. 104 ИЗГИБ ïåðâîé îïàñíîé òî÷êå çàïèøåòñÿ â âèäå | 𝑀 |наиб ≤ [𝜎]. 𝑊𝑥 Òàêèì îáðàçîì, ïåðâàÿ îïàñíàÿ òî÷êà íàõîäèòñÿ â ñå÷åíèè ñ íàèáîëüøèì ïî àáñîëþòíîé âåëè÷èíå èçãèáàþùèì ìîìåíòîì â íàèáîëåå óäàë¼ííîé îò íåéòðàëüíîé îñè òî÷êå. Âòîðàÿ îïàñíàÿ òî÷êà (ðèñ. 6.35). Ðèñ. 6.35. Âòîðàÿ îïàñíàÿ òî÷êà Ýòî òî÷êà ñ íàèáîëüøèìè êàñàòåëüíûìè íàïðÿæåíèÿìè. Âûÿñíèì, ãäå îíà íàõîäèòñÿ. Ïî ôîðìóëå Æóðàâñêîãî 𝜏= 𝑄 · 𝑆𝑥отс , 𝐽𝑥 · 𝑏(𝑦) òîãäà 𝜏наиб = | 𝑄 |наиб 𝑆𝑥отс ·( )наиб . 𝐽𝑥 𝑏(𝑦) Íàèáîëüøåå çíà÷åíèå êàñàòåëüíûõ íàïðÿæåíèé áóäåò òîãäà, êîãäà âûðàæåíèå â êðóãëîé ñêîáêå áóäåò íàèáîëüøèì, òî åñòü íà íåéòðàëüíîé îñè (í.î.). | 𝑄 |наиб 𝑆𝑥отс )н.о. . 𝜏наиб = ·( 𝐽𝑥 𝑏(𝑦) Òàêèì îáðàçîì, âòîðàÿ îïàñíàÿ òî÷êà íàõîäèòñÿ íà íåéòðàëüíîé îñè â ñå÷åíèè ñ íàèáîëüøåé ïî àáñîëþòíîé âåëè÷èíå ïîïåðå÷íîé ñèëîé. Çàïèøåì óñëîâèå ïðî÷íîñòè äëÿ ýòîé òî÷êè. Äëÿ íå¼: 𝜎 = 0, 𝜏 = 𝜏наиб , √ √ [𝜎] òîãäà 𝜎экв𝐼𝑉 = 𝜎 2 + 3 · 𝜏 2 = 3 · 𝜏наиб . Íî [𝜏 ]𝐼𝑉 = √ . Ñëåäîâàòåëüíî, 3 | 𝑄 |наиб 𝑆𝑥отс ·( )н.о. ≤ [𝜏 ]𝐼𝑉 𝐽𝑥 𝑏(𝑦) óñëîâèå ïðî÷íîñòè âî âòîðîé îïàñíîé òî÷êå. ГЛАВА 6. 105 ИЗГИБ Ðèñ. 6.36. Òðåòüÿ îïàñíàÿ òî÷êà Ýòà òî÷êà áûâàåò íàèáîëåå îïàñíîé òîëüêî äëÿ êîðîòêèõ áàëîê. Òðåòüÿ îïàñíàÿ òî÷êà (ðèñ. 6.36). Ýòà òî÷êà íàõîäèòñÿ â ìåñòå ðåçêîãî èçìåíåíèÿ øèðèíû ñå÷åíèÿ. Òàêîå íàáëþäàåòñÿ, íàïðèìåð, ó äâóòàâðîâûõ áàëîê √︀ 2 + 3 · 𝜏 2 ≤ [𝜎] 𝜎экв𝐼𝑉 = 𝜎оп оп óñëîâèå ïðî÷íîñòè â òðåòüåé îïàñíîé òî÷êå. Ýòó òî÷êó íóæíî ðàññìàòðèâàòü â òîì ñå÷åíèè, ãäå ïîäêîðåííîå âûðàæåíèå áóäåò íàèáîëüøèì.  ðÿäå ñëó÷àåâ ýòî ïðîñòî, êîãäà | 𝑄 | íàèá è | 𝑀 | íàèá íàõîäÿòñÿ â îäíîì ñå÷åíèè, òîãäà èìåííî â ýòîì ñå÷åíèè ñëåäóåò ïðîâåðÿòü òðåòüþ îïàñíóþ òî÷êó. Íî, îáû÷íî | 𝑄 | íàèá è | 𝑀 | íàèá íàõîäÿòñÿ â ðàçíûõ ñå÷åíèÿõ, ïîýòîìó,ó÷èòûâàÿ, ÷òî â äëèííûõ áàëêàõ ãëàâíóþ ðîëü èãðàþò íîðìàëüíûå íàïðÿæåíèÿ, ýòó ïðîâåðêó (òî åñòü ïðîâåðêó òðåòüåé îïàñíîé òî÷êè) äåëàþò â ñå÷åíèè ñ íàèáîëüøèì èçãèáàþùèì ìîìåíòîì. Ýòà òî÷êà îêàçûâàåòñÿ íàèáîëåå îïàñíîé âåñüìà ðåäêî. 6.9 Рациональная форма поперечного сечения балки Ðàññìîòðèì äâà ñëó÷àÿ: Ïåðâûé ñëó÷àé, êîãäà ìàòåðèàë áàëêè îäèíàêîâî ñîïðîòèâëÿåòñÿ ðàñòÿæåíèþ è ñæàòèþ.  îòûñêàíèè íàèáîëåå ðàöèîíàëüíîé ôîðìû ñå÷åíèÿ áóäåì îòïðàâëÿòüñÿ îò ïðÿìîóãîëüíîãî ñå÷åíèÿ. Êàñàòåëüíûå íàïðÿæåíèÿ ìàëû è çäåñü èõ ó÷èòûâàòü íå áóäåì (ðèñ. 6.37). ГЛАВА 6. ИЗГИБ 106 Ðèñ. 6.37. Ðàöèîíàëüíàÿ ôîðìà ïîïåðå÷íîãî ñå÷åíèÿ áàëêè Èç ýïþðû íîðìàëüíûõ íàïðÿæåíèé âèäíî, ÷òî ïîëíîñòüþ âîçìîæíîñòè ìàòåðèàëà áàëêè èñïîëüçóþòñÿ òîëüêî â íàèáîëåå óäàë¼ííûõ îò íåéòðàëüíîé îñè òî÷êàõ ñå÷åíèÿ, òî åñòü â âåðõíåé è íèæíåé òî÷êàõ.  äðóãèõ òî÷êàõ ñå÷åíèÿ âîçìîæíîñòè ìàòåðèàëà íåäîèñïîëüçóþòñÿ, îñîáåííî ñèëüíî â îáëàñòè íåéòðàëüíîé îñè. Íåîáõîäèìî ïåðåðàñïðåäåëèòü ìàòåðèàë â îáëàñòü íàèáîëüøèõ íàïðÿæåíèé, òîãäà ãðóçîïîäú¼ìíîñòü áàëêè óâåëè÷èòñÿ (çà ñ÷¼ò óâåëè÷åíèÿ 𝐽𝑥 è, ñîîòâåòñòâåííî, 𝑊𝑥 ). Îäíàêî î÷åíü âûñîêèå áàëêè ïðèìåíÿòü íåëüçÿ, ò. ê. ìîæåò áûòü ïîòåðÿ óñòîé÷èâîñòè. Èòàê, íàèáîëåå ýêîíîìè÷íîé ôîðìîé ïîïåðå÷íîãî ñå÷åíèÿ äëÿ áàëîê, èçãîòîâëåííûõ èç ìàòåðèàëà, îäèíàêîâî ñîïðîòèâëÿþùåãîñÿ è ðàñòÿæåíèþ, è ñæàòèþ, ÿâëÿåòñÿ äâóòàâð. Èçãèáàþùèé ìîìåíò áîëüøåé ÷àñòüþ âîñïðèíèìàåòñÿ ïîëêàìè, òàê êàê çíà÷èòåëüíûå íîðìàëüíûå óñèëèÿ ïðèõîäÿòñÿ íà ïîëêè, à ïîïåðå÷íàÿ ñèëà âîñïðèíèìàåòñÿ ñòåíêîé. Âòîðîé ñëó÷àé, êîãäà ìàòåðèàë áàëêè íåîäèíàêîâî ñîïðîòèâëÿåòñÿ ðàñòÿæåíèþ è ñæàòèþ, òî åñòü [𝜎]сж > [𝜎]р . Êàêàÿ ôîðìà ïîïåðå÷íîãî ñå÷åíèÿ íàèáîëåå ýêîíîìè÷íà â ýòîì ñëó÷àå? Î÷åâèäíî, íàèáîëåå ýêîíîìè÷íàÿ ôîðìà òàêàÿ, ïðè êîòîðîé íàïðÿæåíèÿ â êðàéíèõ âîëîêíàõ áóäóò ðàâíû äîïóñêàåìûì íàïðÿæåíèÿì. Ïîñòðîèì âíà÷àëå ýïþðó íîðìàëüíûõ íàïðÿæåíèé (ðèñ. 6.38). Äàëåå, ïî ýïþðå ïîñòðîèì ñå÷åíèå, äëÿ êîòîðîãî ýòà ýïþðà áóäåò ñïðàâåäëèâà. Ñå÷åíèå äîëæíî èìåòü òàêóþ ôîðìó, ÷òîáû åãî öåíòð òÿæåñòè áûë ñìåù¼í ïî îñè 𝑦 . Ýòîãî ìîæíî äîñòè÷ü, ïðèìåíÿÿ òàâðîâîå ñå÷åíèå, íî, ïðè ýòîì íåîáõîäèìî, ÷òîáû ïîëêà òàâðà èñïûòûâàëà ðàñòÿæåíèå. Ïðèìåíèìû è äâóòàâðû, íî ðàçíîïîëûå, îäíàêî îíè ñëîæíåå â èçãîòîâëåíèè. ГЛАВА 6. 107 ИЗГИБ Ðèñ. 6.38. Ðàöèîíàëíàÿ ôîðìà ïîïåðå÷íîãî ñå÷åíèÿ áàëêè äëÿ ñëó÷àÿ, êîãäà [𝜎]с > [𝜎]р 6.10 6.10.1 Перемещения балок при изгибе Прогиб и поворот поперечного сечения балки Ðàññìîòðèì êîíñîëüíóþ áàëêó, íàãðóæåííóþ ñîñðåäîòî÷åííîé ñèëîé. Îñü 𝑦 íàïðàâèì ââåðõ, ò. ê. íåîáõîäèìî ïîëó÷èòü îñíîâíûå ôîðìóëû ñî çíàêîì "ïëþñ"(ðèñ. 6.39). Ðèñ. 6.39. Ïåðåìåùåíèÿ â áàëêå Ñòðîãî ãîâîðÿ, ñèëó 𝐹 íóæíî ïðèëîæèòü ê èçîãíóòîé áàëêå. Ãîðèçîíòàëüíûå ïåðåìåùåíèÿ íàìíîãî ìåíüøå âåðòèêàëüíûõ, ïîýòîìó èõ íå ðàññìàòðèâàåì. Ïåðåìåùåíèÿ áàëêè: 𝑦 ïðîãèá áàëêè â ðàññìàòðèâàåìîì ñå÷åíèè ýòî âåðòèêàëüíîå ïåðåìåùåíèå öåíòðà òÿæåñòè ïîïåðå÷íîãî ñå÷åíèÿ; ïîñëå èçãèáà ïîïåðå÷íîå ñå÷åíèå îñòà¼òñÿ ïëîñêèì è ïåðïåíäèêóëÿðíûì îñè áàëêè; 𝜃 óãîë ïîâîðîòà ïîïåðå÷íîãî ñå÷åíèÿ áàëêè èëè ïîâîðîò ïîïåðå÷íîãî ñå÷åíèÿ. Çíàÿ 𝑦 è 𝜃, ìîæíî îïðåäåëèòü ïîëîæåíèå ëþáîé òî÷êè áàëêè. Ïóñòü 𝑦(𝑧) óðàâíåíèå èçîãíóòîé îñè áàëêè èëè óðàâíåíèå óïðóãîé ëèíèè áàë- ГЛАВА 6. 108 ИЗГИБ êè. Ïîêàæåì óãîë 𝜃(𝑧), íà êîòîðûé ïîâåðí¼òñÿ äàííîå ñå÷åíèå áàëêè. Äàëåå óãîë, îáðàçîâàííûé êàñàòåëüíîé ê èçîãíóòîé îñè è ãîðèçîíòàëüþ, òî𝑑𝑦 = tg 𝜃, íî tg 𝜃 ≈ 𝜃, æå ðàâåí óãëó 𝜃(𝑧) (ðèñ. 6.40). Ñëåäîâàòåëüíî, 𝑑𝑧 òàê êàê óãîë 𝜃 âåñüìà ìàë. Äåôîðìàöèè áàëêè âåñüìà ìàëû äàæå ïðè íàïðÿæåíèÿõ, ðàâíûõ äîïóñêàåìûì, ïîýòîìó Ðèñ. 6.40. Ñâÿçü ìåæäó óãëîì ïîâîðîòà è ïðîèçâîäíîé 𝜃= 𝑑𝑦 . 𝑑𝑧 𝑑𝑦 > 0 (ñëó÷àé, ïîêàçàííûé íà 𝑑𝑧 ðèñóíêå 6.40), òî ñå÷åíèå ïîâîðà÷èâàåòñÿ ïðîòèâ ÷àñîâîé ñòðåëêè. À åñëè 𝜃 < 0, òî ïî õîäó ÷àñîâîé ñòðåëêè. Ýòî ïðàâèëî ñïðàâåäëèâî äëÿ ñëó÷àÿ, êîãäà îñü 𝑧 íàïðàâëåíà ñëåâà íàïðàâî. Åñëè èçìåíèòü íàïðàâëåíèå îñè 𝑧 , òî èçìåíèòñÿ è ïðàâèëî çíàêîâ íà ïðîòèâîïîëîæíîå. Ïðàâèëî çíàêîâ äëÿ ïðîãèáîâ: åñëè 𝑦 > 0, òî ïðîãèá ïðîèñõîäèò ââåðõ, à åñëè 𝑦 < 0, òî ïðîãèá ïðîèñõîäèò âíèç. Çíàê ïðîãèáà íå çàâèñèò îò íàïðàâëåíèÿ îñè 𝑦 . Ïðàâèëî çíàêîâ äëÿ 𝜃: åñëè 𝜃 > 0, òîãäà 6.10.2 Дифференциальное уравнение изогнутой оси балки Çàïèøåì ôîðìóëó äëÿ êðèâèçíû áàëêè, êîòîðàÿ áûëà ïîëó÷åíà ïðè âûâîäå ôîðìóëû äëÿ íîðìàëüíûõ íàïðÿæåíèé 1 𝑀 = . 𝜌 𝐸 · 𝐽𝑥 (1) Ýòà ôîðìóëà ïîëó÷åíà äëÿ ÷èñòîãî èçãèáà, êîãäà îòñóòñòâóåò ïîïåðå÷íàÿ ñèëà. ×òî ìîæåò èçìåíèòü 𝑄? Îíà íåñêîëüêî èçìåíÿåò ïðîãèáû è, ГЛАВА 6. 109 ИЗГИБ ñëåäîâàòåëüíî, êðèâèçíó, íî ïîïðàâêà, êîòîðóþ âíîñèò ïîïåðå÷íàÿ ñèëà, íåâåëèêà è åþ ïðåíåáðåãàþò. Ïîýòîìó ôîðìóëó (1) ìîæíî ïðèìåíÿòü è ïðè ïîïåðå÷íîì èçãèáå. Îíà ÿâëÿåòñÿ ïðàêòè÷åñêè òî÷íîé (òåîðåòè÷åñêè íåò). Ðàññìîòðèì ëþáîå ñå÷åíèå áàëêè 𝑧 è ýëåìåíò äëèíîé 𝑑𝑆 . Èç àëãåáðû èçâåñòíî, ÷òî ýëåìåíò 𝑑𝑆 ìîæíî ñ÷èòàòü ýëåìåíòîì îêðóæíîñòè. 𝐾 öåíòð êðèâèçíû èçîãíóòîé îñè áàëêè â ñå÷åíèè 𝑧 . Ñ ïîìîùüþ ôîðìóëû (1) êðèâèçíà âûðàæàåòñÿ ÷åðåç âíåøíèå ñèëû, óïðóãèå ñâîéñòâà ìàòåðèàëà, ðàçìåðû è ôîðìó ïîïåðå÷íîãî ñå÷åíèÿ áàëêè (ðèñ. 6.41). Ðèñ. 6.41. Ïåðåìåùåíèÿ â êîíñîëüíîé áàëêå Êðèâèçíó ìîæíî âûðàçèòü è ÷åðåç óðàâíåíèå èçîãíóòîé îñè áàëêè. Èç àëãåáðû èçâåñòíî 𝑦 ′′ 1 = 3 . 𝜌 [1 + (𝑦 ′ )2 ] 2 (2) ×òîáû ïðèðàâíÿòü ïðàâûå ÷àñòè ôîðìóë (1) è (2),íåîáõîäèìî âûÿñíèòü, áóäóò ëè îíè ñ îäèíàêîâûì çíàêîì. 1 Ôîðìóëà (1): áàëêà èçãèáàåòñÿ âûïóêëîñòüþ âíèç, ïîýòîìó > 0, òàê 𝜌 1 ′′ êàê 𝑀 > 0; ôîðìóëà (2): > 0, òàê êàê 𝑦 > 0, òî åñòü ýòè ôîðìóëû 𝜌 äàþò êðèâèçíó ñ îäèíàêîâûì çíàêîì. Òåïåðü ìîæíî ïðèðàâíÿòü ïðàâûå ÷àñòè ôîðìóë 𝑦 ′′ 𝑀 3 = 𝐸·𝐽 [1 + (𝑦 ′ )2 ] 2 ïîëíîå äèôôåðåíöèàëüíîå óðàâíåíèå èçîãíóòîé îñè áàëêè. Çäåñü èñêëþ÷¼í èíäåêñ ó 𝐽 , ò. ê. â äàëüíåéøåì áóäåì ñ÷èòàòü, ÷òî 𝐽 ýòî ìîìåíò èíåðöèè ñå÷åíèÿ îòíîñèòåëüíî íåéòðàëüíîé îñè, à èíäåêñ ïèñàòü íå áóäåì. ГЛАВА 6. 110 ИЗГИБ Ýòî íåëèíåéíîå äèôôåðåíöèàëüíîå óðàâíåíèå, êîòîðîå ìîæíî ðåøèòü íà êîìïüþòåðå. Îäíàêî, â ýòîì íåò íåîáõîäèìîñòè, òàê êàê óðàâíåíèå ìîæíî óïðîñòèòü. Ïîñêîëüêó 𝑦 ′ = 𝜃 << 1, à (𝑦 ′ )2 <<< 1, òî ìîæíî çàïèñàòü 1−(𝑦 ′ )2 ≈ 1. Óìíîæèì îáå ÷àñòè ðàâåíñòâà íà 𝐸 · 𝐽 è ïîëó÷èì 𝐸 · 𝐽 · 𝑦 ′′ = 𝑀 (𝑧) îáëåã÷¼ííîå äèôôåðåíöèàëüíîå óðàâíåíèå èçîãíóòîé îñè áàëêè (íå ïðèáëèæ¼ííîå). Ýòî óæå ïðîñòîå óðàâíåíèå, êîòîðîå ëåãêî ðåøàåòñÿ. Ïðîèíòåãðèðóåì ýòî óðàâíåíèå ∫︁ ′ 𝐸 · 𝐽 · 𝑦 = 𝐸 · 𝐽 · 𝜃 = 𝑀 (𝑧) 𝑑𝑧 + 𝐶 óðàâíåíèå äëÿ óãëîâ ïîâîðîòà ñå÷åíèé. Ïðîèíòåãðèðóåì óðàâíåíèå åù¼ ðàç ∫︁ ∫︁ 𝐸·𝐽 ·𝑦 = 𝑑𝑧 𝑀 (𝑧) 𝑑𝑧 + 𝐶 · 𝑧 + 𝐷 óðàâíåíèå äëÿ ïðîãèáîâ.  ýòèõ óðàâíåíèÿõ 𝐶 è 𝐷 ïîñòîÿííûå èíòåãðèðîâàíèÿ, îïðåäåëÿåìûå èç ãðàíè÷íûõ óñëîâèé. Ðàçìåðíîñòè: 𝐶 ïðîèçâåäåíèå ñèëû íà äëèíó â êâàäðàòå, 𝐷 ïðîèçâåäåíèå ñèëû íà äëèíó â êóáå. Çàìå÷àíèå: Ïîëó÷åííûå ôîðìóëû äëÿ 𝜃 è 𝑦 ñïðàâåäëèâû ïðè (𝑦 ′ )2 << 1. Ïî íèì íåëüçÿ îïðåäåëÿòü ïåðåìåùåíèÿ ãèáêèõ áàëîê çäåñü íóæíî èñïîëüçîâàòü ïîëíîå äèôôåðåíöèàëüíîå óðàâíåíèå èçîãíóòîé îñè áàëêè. Ïðèìåð (ðèñ. 6.42). Äëÿ çàäàííîé áàëêè îïðåäåëèòü ïðîãèá è óãîë ïîâîðîòà ñå÷åíèÿ â êîíöåâîì ñå÷åíèè êîíñîëè 𝐴. Ðèñ. 6.42. Îïðåäåëåíèå ïåðåìåùåíèé 𝑀 = 𝐹 · (𝑙 − 𝑧), òîãäà 𝐸 · 𝐽 · 𝑦 ′′ = 𝐹 · (𝑙 − 𝑧), ГЛАВА 6. 111 ИЗГИБ 𝑧2 𝐸 · 𝐽 · 𝑦 = 𝐹 · (𝑙 · 𝑧 − ) + 𝐶, 2 3 2 𝑧 𝑙·𝑧 − ) + 𝐶 · 𝑧 + 𝐷. 𝐸·𝐽 ·𝑦 =𝐹 ·( 2 6 Èç ãðàíè÷íûõ óñëîâèé îïðåäåëÿåì ïîñòîÿííûå èíòåãðèðîâàíèÿ: 1) ïðè 𝑧 = 0 𝜃=0 ⇒ 𝐶 = 0; 2)ïðè 𝑧 = 0 𝑦=0 ⇒ 𝐷 = 0. Òîãäà ′ 𝜃= 𝐹 𝑧2 · (𝑙 · 𝑧 − ), 𝐸·𝐽 2 ïðè 𝑧 = 𝑙 𝜃𝐴 = 𝐹 · 𝑙2 . 2·𝐸·𝐽 Çíàê ïëþñ ñëåäîâàòåëüíî ïîâîðîò ñå÷åíèÿ ïðîèñõîäèò ïðîòèâ ÷àñîâîé ñòðåëêè. 𝑦= 𝐹 𝑙 · 𝑧2 𝑧3 ·( − ), 𝐸·𝐽 2 6 ïðè 𝑧 = 𝑙 𝑦𝐴 = 𝐹 · 𝑙3 . 3·𝐸·𝐽 Çíàê ïëþñ ñëåäîâàòåëüíî ïðîãèá ïðîèñõîäèò ââåðõ. Êîíêðåòèçèðóåì ýòîò ïðèìåð: äëÿ çàäàííîé ñòàëüíîé áàëêè ïîäîáðàòü äâóòàâðîâîå ñå÷åíèå è îïðåäåëèòü ïðîãèá è óãîë ïîâîðîòà ñå÷åíèÿ 𝐴, åñëè 𝐹 = 20 êÍ, 𝑙 = 2 ì, [𝜎] = 160 ÌÏà, 𝐸 = 2 · 105 ÌÏà. Íàèáîëåå îïàñíûì ÿâëÿåòñÿ ñå÷åíèå 𝐵 (çàäåëêà) | 𝑀 |наиб = 𝐹 · 𝑙 = 20 · 2 = 40 êÍì. 40 · 103 | 𝑀 |наиб = = 2, 5 · 10−4 ì3 = 250ñì3 . 𝑊𝑥 ≥ [𝜎] 160 · 106 Âûáèðàåì äâóòàâð 22à: 𝑊𝑥 = 254ñì3 , 𝐽𝑥 = 2790ñì4 . Òåïåðü îïðåäåëÿåì ïåðåìåùåíèÿ 𝜃𝐴 = 𝐹 · 𝑙2 20 · 103 · 22 = = 7, 168 · 10−3 ðàä = 0, 411∘ . 2·𝐸·𝐽 2 · 2 · 1011 · 2790 · 10−8 𝑦𝐴 = 𝐹 · 𝑙3 20 · 103 · 23 = = 7, 168 · 10−3 ì = 7, 168 ìì. 11 −8 3·𝐸·𝐽 3 · 2 · 10 · 2790 · 10 Èç äàííîãî ïðèìåðà âèäíî, ÷òî (𝑦 ′ )2 = (7, 168 · 10−3 )2 = 5, 135 · 10−5 <<< 1. ГЛАВА 6. 6.11 112 ИЗГИБ Балки переменного сечения Äî ñèõ ïîð ìû ðàññìàòðèâàëè áàëêè ïîñòîÿííîãî ñå÷åíèÿ, îäíàêî ïî êîíñòðóêòèâíûì ñîîáðàæåíèÿì èëè ñ öåëüþ óìåíüøåíèÿ âåñà äåòàëè ìàøèí ÷àñòî èçãîòàâëèâàþò ïåðåìåííîãî ñå÷åíèÿ. Óñëîâíî áàëêè ïåðåìåííîãî ñå÷åíèÿ ìîæíî ðàçäåëèòm íà òðè ãðóïïû. 1. Áàëêè, èìåþùèå ìåñòíûå èçìåíåíèÿ ôîðìû è ðàçìåðîâ, íàïðèìåð, îòâåðñòèÿ , ãàëòåëè (ðèñ. 6.43). Ðèñ. 6.43. Áàëêè ñ ìåñòíûìè èçìåíåíèÿìè ôîðìû è ðàçìåðîâ Îòâåðñòèÿ , ãàëòåëè, âûòî÷êè âûçûâàþò êîíöåíòðàöèþ íàïðÿæåíèé, ïîýòîìó ïðè ðàñ÷¼òå íà ïðî÷íîñòü áàëîê ñ êîíöåíòðàòîðàìè ôîðìóëû äëÿ áàëîê ïîñòîÿííîãî ñå÷åíèÿ íå ïðèìåíèìû (íóæíî ó÷èòûâàòü êîíöåíòðàöèþ íàïðÿæåíèé). Êîíöåíòðàöèÿ íàïðÿæåíèé èìååò ìåñòíûé õàðàêòåð, ïîýòîìó ïðè îïðåäåëåíèè ïåðåìåùåíèé îíà íå ó÷èòûâàåòñÿ. 2. Ñòóïåí÷àòûå áàëêè (ðèñ. 6.44). Ðèñ. 6.44. Ñòóïåí÷àòàÿ áàëêà  ÷àñòÿõ ñîïðÿæ¼ííûõ ó÷àñòêîâ ñ ðàçëè÷íûìè ðàçìåðàìè òàêæå âîçíèêàåò êîíöåíòðàöèÿ íàïðÿæåíèé, êîòîðóþ íóæíî ó÷èòûâàòü ïðè ðàñ÷¼òå íà ïðî÷íîñòü. Ïðè îïðåäåëåíèè ïåðåìåùåíèé ðàñ÷¼òû âåäóòñÿ ïî ó÷àñòêàì. 3) Áàëêè ñ ïëàâíî èçìåíÿþùèìèñÿ ðàçìåðàìè (ôîðìîé) (ðèñ. 6.45). Ðèñ. 6.45. Áàëêà ñ ïëàâíî èçìåíÿþùèìèñÿ ðàçìåðàìè ГЛАВА 6. 113 ИЗГИБ Ïðè ðàñ÷¼òå íà ïðî÷íîñòü áàëîê ñ ïëàâíî èçìåíÿþùèìèñÿ ðàçìåðàìè ñå÷åíèåÿ ìîæíî ïîëüçîâàòüñÿ ôîðìóëàìè äëÿ áàëîê ïîñòîÿííîãî ñå÷åíèÿ, ïðåäâàðèòåëüíî îïðåäåëèâ íàèáîëåå îïàñíîå ñå÷åíèå ñå÷åíèå, â êîòîðé âîçíèêàþò | 𝜎 |наиб . Äëÿ ýòîãî ñîñòàâëÿåòñÿ ôóíêöèÿ | 𝜎 | наиб = 𝑓 (𝑧) è èùåòñÿ å¼ ýêñòðåìóì. Ïðè îïðåäåëåíèè ïåðåìåùåíèé äëÿ âñåõ áàëîê ìîæíî ïîëüçîâàòüñÿ ôîðìóëàìè äëÿ áàëîê ïîñòîÿííîãî ñå÷åíèÿ, òîëüêî çäåñü áóäåò 𝐽 = 𝐽(𝑧) 𝐸 · 𝐽(𝑧) · 𝑦 ′′ = 𝑀 (𝑧), ∫︁ 𝑀 (𝑧) 1 ′ 𝑑𝑧 + 𝐶, 𝑦 =𝜃= 𝐸 𝐽(𝑧) ∫︁ ∫︁ 𝑀 (𝑧) 1 𝑑𝑧 + 𝐶 · 𝑧 + 𝐷. 𝑦= 𝑑𝑧 𝐸 𝐽(𝑧) Ïîñòîÿííûå èíòåãðèðîâàíèÿ 𝐶 è 𝐷 íàõîäÿòñÿ èç ãðàíè÷íûõ óñëîâèé. 6.12 Балки равного сопротивления Ðàññìîòðèì áàëêó íà äâóõ îïîðàõ, íàãðóæåííóþ ñèëîé (ðèñ. 6.46, à) è ïîñòðîèì ýïþðó âíóòðåííèõ ñèë (ðèñ. 6.46, á-â). Êàê íàçíà÷àåòñÿ | 𝑀 |наиб ïîïåðå÷íîå ñå÷åíèå äëÿ áàëîê ïîñòîÿííîãî ñå÷åíèÿ? 𝑊𝑥 ≥ .  [𝜎] òàêîé áàëêå ïîëíîñòüþ íàãðóæåíî òîëüêî îäíî ñå÷åíèå 𝐵 , â êîòîðîì | 𝜎 |наиб = [𝜎]. Âî âñåõ äðóãèõ ñå÷åíèÿõ áàëêà íåäîãðóæåíà. Íàïðàøèâàåòñÿ âûâîä: óìåíüøèòü ðàçìåðû ñå÷åíèÿ òàê, ÷òîáû âî âñåõ ñå÷åíèÿõ áûëî | 𝜎 |наиб = [𝜎], òîãäà ïîëó÷èì áàëêó ðàâíîãî ñîïðîòèâëåíèÿ. Áàëêîé ðàâíîãî ñîïðîòèâëåíèÿ íàçûâàåòñÿ òàêàÿ áàëêà, â êàæäîì ñå÷åíèè êîòîðîé íàèáîëüøåå íàïðÿæåíèå ðàâíî äîïóñêàåìîìó. Äëÿ áàëêè, ïîêàçàííîé íà ðèñóíêå, âûÿñíèì, êàê áóäåò èçìåíÿòüñÿ å¼ ïîïåðå÷íîå ñå÷åíèå, åñëè îíà áóäåò áàëêîé ðàâíîãî ñîïðîòèâëåíèÿ. 𝑀 (𝑧) 𝑀 (𝑧)  áàëêå ðàâíîãî ñîïðîòèâëåíèÿ = [𝜎] èëè 𝑊 (𝑧) = . 𝑊 (𝑧) [𝜎] Äëÿ îïðåäåë¼ííîñòè áóäåì ðàññìàòðèâàòü áàëêó êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ ñ äèàìåòðîì 𝑑(𝑧) √︃ 𝑊 (𝑧) = 𝜋 · 𝑑3 (𝑧) 32 𝑑(𝑧) = 3 32 · 𝑀 (𝑧) . 𝜋 · [𝜎] 𝐹 ·𝑏 𝐹 ·𝑎 Êîíêðåòèçèðóåì äëÿ ó÷àñòêîâ 𝑀1 (𝑧) = · 𝑧1 ; 𝑀2 (𝑧) = · 𝑧2 , òî𝑙 √︂ √︂ 𝑙 32 · 𝐹 · 𝑏 · 𝑧1 32 · 𝐹 · 𝑎 · 𝑧2 ãäà 𝑑1 (𝑧) = 3 ; 𝑑2 (𝑧) = 3 òàê èçìåíÿþòñÿ 𝜋 · 𝑙 · [𝜎] 𝜋 · 𝑙 · [𝜎] ГЛАВА 6. ИЗГИБ 114 Ðèñ. 6.46. Áàëêà ðàâíîãî ñîïðîòèâëåíèÿ äèàìåòðû ñå÷åíèé â áàëêå, òî åñòü èçåíÿþòñÿ ïî çàêîíó 𝑧 1/3 . Èçîáðàçèì áàëêó (ðèñ. 6.46, ã). Ñ ïðèáëèæåíèåì ê îïîðàì 𝑑 → 0, íî âîçëå îïîð èìåþòñÿ êàñàòåëüíûå íàïðÿæåíèÿ îò ïîïåðå÷íîé ñèëû è îíè ñòàíîâÿòñÿ îïàñíûìè. Äèàìåòð áàëêè ó îïîð íóæíî ïîäáèðàòü èç óñëîâèÿ ïðî÷íîñòè ïî êàñàòåëüíûì 4 𝑄 16 𝑄 4 𝑄 · . Îòêóäà íàïðÿæåíèÿì: 𝜏наиб ≤ [𝜏 ], íî 𝜏наиб = · = · 2 = 3 𝐴 3 𝜋·𝑑 3 𝜋 · 𝑑2 4 √︂ 16 · 𝑄 𝑑= ýòî äëÿ ó÷àñòêîâ áàëêè, ïðèëåãàþùèõ ê îïîðàì. 3 · 𝜋 · [𝜏 ] Íà ïðàêèòêå áàëêó èçãîòàâëèâàþò ñòóïåí÷àòîé (ðèñ. 6.46, ä). 6.13 Вопросы для самопроверки Êàêîé èçãèá íàçûâàåòñÿ ïðÿìûì ÷èñòûì, ïðÿìûì ïîïåðå÷íûì? ×òî òàêîå íåéòðàëüíûé ñëîé, ñèëîâàÿ ïëîñêîñòü, íåéòðàëüíàÿ ëèíèÿ (îñü), ñèëîâàÿ ëèíèÿ (îñü)? Êàê âçàèìíî ðàñïîëîæåíû ñèëîâàÿ è íåéòðàëüíàÿ ëèíèè ïðè ïðÿìîì èçãèáå? Êàê èçìåíÿþòñÿ íîðìàëüíûå è êàñàòåëüíûå íàïðÿæåíèÿ ïî ñå÷åíèþ â íàïðàâëåíèè ñèëîâîé è íåéòðàëüíîé îñåé ïðè ïðÿìîì ïîïåðå÷íîì èçãèáå áàëêè?  êàêèõ òî÷êàõ ïîïåðå÷íîãî ñå÷åíèÿ áàëêè âîçíèêàþò íàèáîëüøèå íîðìàëüíûå íàïðÿæåíèÿ? Êàêèå ïðè¼ìû èñïîëüçóþò ïðè èíòåãðèðîâàíèè? Êàê ðåøàþòñÿ îñíîâíûå çàäà÷è ðàñ÷¼òà íà ïðî÷íîñòü ïðè ïëîñêîì èçãèáå? Глава 7 Кручение Ýòî ÷åòâ¼ðòàÿ è ïîñëåäíÿÿ ïðîñòàÿ äåôîðìàöèÿ, êîòîðàÿ èçó÷àåòñÿ â ñîïðîòèâëåíèè ìàòåðèàëîâ.  ïåðâîé ÷àñòè òåìû ðàññìîòðèì êðó÷åíèå áðóñüåâ êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ. 7.1 Основные понятия о кручении. Крутящий момент Áóäåì ðàññìàòðèâàòü áðóñüÿ ïîñòîÿííîãî êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ ñ ïðÿìîé îñüþ (ðèñ. 7.2). Ðèñ. 7.1. Áðóñ, ðàáîòàþùèé íà êðó÷åíèå Брусья испытывают деформацию кручения, если они нагружены парами сил в плоскостях, перпендикулярных оси бруса. Èçîáðàçèì áðóñ, èñïûòûâàþùèé êðó÷åíèå. Åñëè áðóñ íàõîäèòñÿ â ïîêîå èëè âðàùàåòñÿ ñ ïîñòîÿííîé óãëîâîé ñêîðîñòüþ, òî ñóììà ìîìåíòîâ ∑︀ ïàð ñèë îòíîñèòåëüíî îñè áðóñà ðàâíà íóëþ: 𝑀𝑖 = 0. Брусья, испытывающие деформацию кручения, называются валами. Âûÿñíèì, â ïåðâóþ î÷åðåäü, ñóììó âíóòðåííèõ ñèë â ïîïåðå÷íîì ñå÷åíèè âàëà. Ýòè âíóòðåííèå ñèëû ïðèâîäÿòñÿ òîëüêî ê ïàðå ñèë. 115 ГЛАВА 7. КРУЧЕНИЕ 116 Пара сил, с которой одна часть вала действует на другую, называется è îáîçíà÷àåòñÿ ÷åðåç 𝑀к . Òàêèì îáðàçîì, êðóòÿùèé ìîìåíò åñòü âíóòðåííÿÿ ñèëà. Êàê îïðåäåëèòü êðóòÿùèé ìîìåíò â ëþáîì ïîïåðå÷íîì ñå÷åíèè âàëà? Íà ðèñóíêå 7.2 ïîêàçàíî íàãðóæåíèå âàëà èç óñëîâèÿ, ÷òî ñìîòðèì íà âàë ñëåâà íàïðàâî. Ïðèìåíèì ìåòîä ñå÷åíèé ïëîñêîñòüþ ïåðïåíäèêóëÿðíîé îñè âàëà, è ïîêàæåì ñèëû, äåéñòâóþùèå îòäåëüíî íà ëåâóþ ÷àñòü è îòäåëüíî íà ïðàâóþ ÷àñòü. 𝑀( ) êðóòÿùèé ìîìåíò. Íà ðèñóíêå ïîêàçàíû ïîëîæèòåëüíûå íàïðàâëåíèÿ êðóòÿùåãî ìîìåíòà. Ðàññìîòðèì ðàâíîâåñèå îòäåëüíûõ ÷àñòåé. крутящим моментом Ðèñ. 7.2. Îïðåäåëåíèå êðóòÿùèõ ìîìåíòîâ Ðàâíîâåñèå ëåâîé ÷àñòè: ∑︀ ∑︀ ∑︀ 𝑀лев − 𝑀к = 0, 𝑀к = 𝑀лев ; â äàííîì ñëó÷àå 𝑀лев = 𝑀1 − 𝑀2 .) Ðàâíîâåñèå ïðàâîé ÷àñòè ∑︀ ∑︀ ∑︀ 𝑀к + 𝑀прав = 0, 𝑀к = − 𝑀прав ; â äàííîì ñëó÷àå 𝑀прав = −𝑀3 + 𝑀4 .) Ñëåäîâàòåëüíî, êðóòÿùèé ìîìåíò ìîæíî âû÷èñëÿòü êàê ïî ëåâûì, òàê è ïî ïðàâûì ñèëàì (ðèñ. 7.2). Крутящий момент в каком-либо поперечном сечении вала численно равен сумме моментов относительно оси вала внешних пар сил, действующих по одну сторону от данного сечения. Î çíàêå êðóòÿùåãî ìîìåíòà (ðèñ. 7.3): ñìîòðèì íà îñòàâøóþñÿ ÷àñòü âàëà ñî ñòîðîíû âíåøíåé íîðìàëè 𝑛 ê ñå÷åíèþ. Åñëè ïðè ýòîì êðóòÿùèé ìîìåíò äåéñòâóåò ïðîòèâ ÷àñîâîé ñòðåëêè, òî îí ñ÷èòàåòñÿ ïîëîæèòåëüíûì, à åñëè ïî ÷àñîâîé ñòðåëêå òî îòðèöàòåëüíûì. ГЛАВА 7. КРУЧЕНИЕ 117 Ðèñ. 7.3. Ïðàâèëî çíàêîâ äëÿ êðóòÿùåãî ìîìåíòà Ïîñòðîèì ýïþðó êðóòÿùåãî ìîìåíòà ýòî ãðàôèê èçìåíåíèÿ êðóòÿùåãî ìîìåíòà ïî äëèíå âàëà (ðèñ. 7.4). Ðèñ. 7.4. Ýïþðà êðóòÿùåãî ìîìåíòà Ýïþðà 𝑀к ñòðîèòñÿ äëÿ òîãî, ÷òîáû îïðåäåëèòü | 𝑀 к | наиб , òî åñòü íàèáîëåå îïàñíîå ñå÷åíèå âàëà. 7.1.1 Вычисление моментов, передаваемых на вал, по мощности и числу оборотов Èçîáðàçèì ó÷àñòîê âàëà, ê êîòîðîìó ïðèëîæåíà âíåøíÿÿ ïàðà ñèë 𝑀 . ×òîáû ïðîèçâåñòè ðàñ÷¼òû íà ïðî÷íîñòü, íåîáõîäèìî çíàòü 𝑀 , îäíàêî íà ïðàêòèêå ÷àùå èçâåñòíû òîëüêî ìîùíîñòü 𝑊 è ÷èñëî îáîðîòîâ 𝑚 (â îá/ñåê) (ðèñ. 7.5). Ìîæíî çàïèñàòü 𝑊 = 𝑀 · 𝜔, ãäå 𝜔 óãëîâàÿ ñêîðîñòü, 𝜔 = 2 · 𝜋 · 𝑚, 𝑊 = 𝑀 · 2 · 𝜋 · 𝑚. Ðàçðåøèì çàâèñèìîñòü îòíîñèòåëüíî 𝑀 𝑊 𝑀= ôîðìóëà äëÿ ìîìåíòà âíåøíåé ïàðû ñèë. 2·𝜋·𝑚  èíæåíåðíîé ïðàêòèêå ýòà ôîðìóëà êîíêðåòèçèðóåòñÿ. 1. Ïóñòü ìîùíîñòü 𝐾 çàäàíà â êÂò. (âàë ïðèâîäèòñÿ â äâèæåíèå ýëåêòðîäâèãàòåëåì), à ñêîðîñòü âðàùåíèÿ âàëà 𝑛 â îá/ìèí; 𝑀 íåîáõîäèìî ГЛАВА 7. 118 КРУЧЕНИЕ Ðèñ. 7.5. Âàë ñ ïðèëîæåííîé âíåøíåé ïàðîé ñèë 𝑀 ïîëó÷èòü â Íì. 𝐾 𝑛 = 954, 9 · 𝑛 . 2·𝜋· 60  äàííîé ôîðìóëå 𝐾 â êÂò, 𝑛 â îá/ìèí, 𝑀 â Íì. 1) Ïóñòü ìîùíîñòü 𝑁 çàäàíà â ë. ñ., à ñêîðîñòü âðàùåíèÿ âàëà 𝑛 â îá/ìèí, ìîìåíò íóæíî ïîëó÷èòü â Í · ì. Âíà÷àëå ïåðåâåä¼ì çàäàííûå ïàðàìåòðû â îäíó ñèñòåìó (1 ë. ñ. = 73,55 Í · ì). 𝑊 = 73, 55 · 𝑁 Í · 𝑛 ì/ñåê, 𝑚 = îá/ñåê. Ïîäñòàâèì ýòè çíà÷åíèÿ â îáùóþ ôîðìóëó: 60 𝑀= 𝑀= 𝐾 73, 55 · 𝑁 𝑁 𝑛 = 702, 4 · 𝑛 . 2·𝜋· 60 Ýòî èíæåíåðíàÿ ôîðìóëà, â íåé 𝑁 ë. ñ., 𝑛 îá/ìèí, à 𝑀 Íì. 7.2 Напряжения круглого вала при кручении и расчёт на прочность Èçîáðàçèì âàë äî íàãðóæåíèÿ (ðèñ. 7.6, à). Ïóñòü íèæíèì êîíöîì îí çàùåìë¼í. Âûáåðåì ñèñòåìó êîîðäèíàò, îñü 𝑧 íàïðàâèì ïî îñè âàëà. Âûðåæåì ýëåìåíò âàëà äâóìÿ ïîïåðå÷íûìè ñå÷åíèÿìè, îäíî íà ðàññòîÿíèè 𝑧 îò íà÷àëà êîîðäèíàò, âòîðîå íà 𝑑𝑧 îò ïåðâîãî è äâóìÿ îñåâûìè ïëîñêîñòÿìè, ìåæäó êîòîðûìè ìàëûé óãîë 𝑑𝛼. Ïîêàæåì âàë è ýëåìåíò ïîñëå íàãðóæåíèÿ (ðèñ. 7.6, á).  ëþáîì ñå÷åíèè âàëà êðóòÿùèé ìîìåíò 𝑀к = 𝑀 (ðèñ. 7.6). Çàäà÷à îïðåäåëåíèÿ íàïðÿæåíèé ñòàòè÷åñêè íåîïðåäåëèìà. Íóæíî çàïèñàòü óðàâíåíèÿ ñòàòèêè è äîïîëíèòü èõ óðàâíåíèÿìè ñîâìåñòíîñòè äåôîðìàöèé. Èçìåíèì ïîðÿäîê. Ñíà÷àëà ñîñòàâèì óðàâíåíèÿ ñîâìåñòíîñòè äåôîðìàöèé. Çàêîíîìåðíîñòè äåôîðìàöèé èçó÷àëèñü ñíà÷àëà îïûòíûì ïóò¼ì, à çàòåì è òåîðåòè÷åñêèì. Óñòàíîâëåíî. ГЛАВА 7. КРУЧЕНИЕ 119 Ðèñ. 7.6. Çàêîíîìåðíîñòü äåôîðìàöèè âàëà 1. Ïîïåðå÷íûå ñå÷åíèÿ ïîñëå íàãðóæåíèÿ îñòàþòñÿ ïëîñêèìè è ïåðïåíäèêóëÿðíûìè îñè âàëà, ò.å. âûïîëíÿåòñÿ ãèïîòåçà ïëîñêèõ ñå÷åíèé. 2. Ðàññòîÿíèÿ ìåæäó ëþáûìè ïîïåðå÷íûìè ñå÷åíèÿìè âàëà ïîñëå íàãðóæåíèÿ íå èçìåíÿþòñÿ, ò.å. 𝜀𝑧 = 0. 3. Äèàìåòð âàëà è âåëè÷èíà óãëà 𝑑𝛼 íå èçìåíÿþòñÿ, ðàäèóñû íå èñêðèâëÿþòñÿ, òî åñòü ïîïåðå÷íûå ñå÷åíèÿ â ñâîåé ïëîñêîñòè íå äåôîðìèðóþòñÿ îíè ëèøü ïîâîðà÷èâàþòñÿ êàê æ¼ñòêèå äèñêè, îòñþäà 𝜀𝑥 = 𝜀𝑦 = 𝛾𝑥𝑦 = 0. Èç ðàâåíñòâà íóëþ âûøåóêàçàííûõ ëèíåéíûõ è óãëîâûõ äåôîðìàöèé, ñîãäàñíî çàêîíó Ãóêà, ñëåäóåò, ÷òî 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = 𝜏𝑥𝑦 = 0. Ýòè çàâèñèìîñòè âûðàæàþò çàêîíîìåðíîñòè äåôîðìàöèè ïðè êðó÷åíèè. Èçîáðàçèì ýëåìåíò â ñîñòîÿíèè äî íàãðóæåíèÿ (ïóíêòèðíûå ëèíèè) è ïîñëå íàãðóæåíèÿ (ñïëîøíûå ëèíèè). Íà ïðîèçâîëüíîì ðàññòîÿíèè 𝜌 îò îñè 𝑧 ðàññìîòðèì äåôîðìàöèè ýëåìåíòà: 𝛿 àáñîëþòíûé ñäâèã; 𝑑𝜙 ýëåìåíòàðíûé óãîë ïîâîðîòà ñå÷åíèÿ: 𝑑𝜙 = 𝜙𝑧+𝑑𝑧 − 𝜙𝑧 ; 𝛾 óãîë, íà êîòîðûé ïîâåðí¼òñÿ ïðÿìàÿ, ïàðàëëåëüíàÿ îñè, òî åñòü ýòî óãîë ñäâèãà (ðèñ. 7.7). Ðèñ. 7.7. Äåôîðìàöèè ýëåìåíòà âàëà ГЛАВА 7. 120 КРУЧЕНИЕ Èç âåðõíåãî òðåóãîëüíèêà: 𝛿 = 𝜌 · 𝑑𝜙, èç âåðòèêàëüíîãî òðåóãîëüíèêà: 𝛿 = 𝛾 · 𝑑𝑧 , îòñþäà 𝛾 · 𝑑𝑧 = 𝜌 · 𝑑𝜙, òîãäà 𝛾 =𝜌· 𝑑𝜙 . 𝑑𝑧 Ýòà ôîðìóëà âûðàæàåò çàêîíîìåðíîñòè äåôîðìàöèè ïðè êðó÷åíèè. Òåïåðü âûðàçèì ýòó çàêîíîìåðíîñòü â íàïðÿæåíèÿõ, äëÿ ýòîãî íóæíî çíàòü íàïðÿæ¼ííîå ñîñòîÿíèå ýëåìåíòà. Ïîêàæåì åù¼ ðàç ýëåìåíò è íàïðÿæåíèÿ, äåéñòâóþùèå ïî åãî ãðàíÿì, (îíè áûëè ðàññìîòðåíû ïðè èçó÷åíèè òåìû "Ñäâèã"). Ïî ÷åòûð¼ì ãðàíÿì ýëåìåíòà äåéñòâóþò òîëüêî êàñàòåëüíûå íàïðÿæåíèÿ ýòî ÷èñòûé ñäâèã (ðèñ. 7.8). Ñëåäîâàòåëüíî, ïðè êðó÷åíèè âàëà êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ â ëþáîé åãî òî÷êå ðåàëèçóåòñÿ ÷èñòûé ñäâèã. Ðèñ. 7.8. Íàïðÿæ¼ííîå ñîñòîÿíèå âàëà Ïðè ÷èñòîì ñäâèãå 𝜏 = 𝐺 · 𝛾 , ïîýòîìó 𝜏 =𝐺·𝜌· 𝑑𝜙 𝑑𝑧 ýòî óðàâíåíèå ñîâìåñòíîñòè äåôîðìàöèé â íàïðÿæåíèÿõ. Òåïåðü ñîñòàâèì óðàâíåíèÿ ðàâíîâåñèÿ (ñòàòèêè). Ïîêàæåì ïîïåðå÷íîå ñå÷åíèå âàëà, êðóòÿùèé ìîìåíò 𝑀к > 0. Ïîêàæåì ýëåìåíòàðíóþ ÷àñòü ñå÷åíèÿ 𝑑𝐴 è íàïðÿæåíèå 𝜏 , äåéñòâóþùåå â íåé (ðèñ. 7.9). Ñîñòàâèì óðàâíåíèå ðàâíîâåñèÿ ∫︁ ∑︁ 𝑀𝑧 = 𝜌 · 𝜏 𝑑𝐴 = 𝑀к . 𝐴 Ðåøàÿ ñîâìåñòíî óðàâíåíèå ñîâìåñòíîñòè äåôîðìàöèé è óðàâíåíèå ðàâíîâåñèÿ, ïîëó÷èì ∫︁ 𝑑𝜙 · 𝜌2 𝑑𝐴 = 𝑀к . 𝐺· 𝑑𝑧 𝐴 ГЛАВА 7. 121 КРУЧЕНИЕ Ðèñ. 7.9. Ïîïåðå÷íîå ñå÷åíèå âàëà 𝑑𝜙 Âåëè÷èíû 𝐺 è âûíîñèì çà çíàê èíòåãðàëà, òàê êàê îíè íå çàâèñÿò îò 𝑑𝑧 ðàäèóñà.  ýòîé ôîðìóëå èíòåãðàë ïðåäñòàâëÿåò ñîáîé ïîëÿðíûé ìîìåíò 𝜋 · 𝐷4 èíåðöèè ïîïåðå÷íîãî ñå÷åíèÿ âàëà: 𝐽𝑝 = . Òîãäà 32 𝜃= 𝑀к 𝑑𝜙 = , 𝑑𝑧 𝐺 · 𝐽𝑝 ãäå 𝜃 îòíîñèòåëüíûé óãîë çàêðó÷èâàíèÿ, òî åñòü óãîë çàêðó÷èâàíèÿ âàëà äëèíîé, ðàâíîé åäèíèöå. ×åì áîëüøå ïîëÿðíûé ìîìåíò èíåðöèè, òåì ìåíüøå îòíîñèòåëüíûé óãîë çàêðó÷èâàíèÿ 𝜃, òî åñòü òåì æ¼ñò÷å âàë, ïîýòîìó ïðîèçâåäåíèå 𝐺·𝐽𝑝 íàçûâàåòñÿ æ¼ñòêîñòüþ âàëà ïðè êðó÷åíèè. 𝑀к 𝑑𝜙 â ôîðìóëó (1), òîãäà 𝜏 = 𝐺 · 𝜌 · . Ñîêðàòèâ 𝐺, Ïîäñòàâèì 𝑑𝑧 𝐺 · 𝐽𝑝 ïîëó÷èì îêîí÷àòåëüíóþ ôîðìóëó äëÿ êàñàòåëüíûõ íàïðÿæåíèé ïðè êðó÷åíèè 𝑀к 𝜏= · 𝜌. 𝐽𝑝 Èçîáðàçèì ýïþðó êàñàòåëüíûõ íàïðÿæåíèé íà ëþáîì ðàäèóñå (ðèñ. 7.10). Âèäíî, ÷òî íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ äåéñòâóþò íà ïî𝐽𝑝 𝑀к · 𝜌 наиб , íî = 𝑊𝑝 ìîìåíò âåðõíîñòè âàëà è ðàâíû 𝜏 наиб = 𝐽𝑝 𝜌 наиб ñîïðîòèâëåíèÿ âàëà êðó÷åíèþ, òîãäà 𝜏 наиб = 𝑀к , 𝑊𝑝 𝜋 · 𝐷3 ãäå äëÿ êðóãëîãî ñå÷åíèÿ 𝑊𝑝 = . 16 Ïåðåõîäèì ê ðàñ÷¼òó íà ïðî÷íîñòü. Óñëîâèå ïðî÷íîñòè ïðè êðó÷åíèè ïî ëþáîé òåîðèè 𝜏 наиб ≤ [𝜏 ]. Ïî IV òåîðèè, êîòîðàÿ íàáîëåå òî÷íà äëÿ ГЛАВА 7. 122 КРУЧЕНИЕ Ðèñ. 7.10. Ðàñïðåäåëåíèå êàñàòåëüíûõ íàïðÿæåíèé äåòàëåé èç ïëàñòè÷íûõ ìàòåðèàëîâ, ñâÿçü ìåæäó äîïóñêàåìûìè íàïðÿ[𝜎] æåíèÿìè: [𝜏 ] = √ . 3 Ïîäñòàâèì â óñëîâèå ïðî÷íîñòè çíà÷åíèå 𝜏 наиб â íàèáîëåå îïàñíîì ñå÷åíèè | 𝑀к | наиб ≤ [𝜏 ]. 𝑊𝑝 Ýòî óñëîâèå ïðî÷íîñòè ïðè êðó÷åíèè äëÿ âñåãî âàëà. Çäåñü | 𝑀к | наиб áåð¼òñÿ ñ ýïþðû êðóòÿùåãî ìîìåíòà. Ïî ýòîìó óñëîâèþ ïðîâåðÿåòñÿ ïðî÷íîñòü âàëà (ïåðâàÿ çàäà÷à). Âòîðàÿ çàäà÷à íàçíà÷åíèå ðàçìåðîâ ïîïåðå÷íîãî ñå÷åíèÿ ðåøàåòñÿ òàê √︃ | 𝑀к | наиб 16· | 𝑀к | наиб , èëè 𝐷≥ 3 . 𝑊𝑝 ≥ [𝜏 ] 𝜋 · [𝜏 ] Òðåòüÿ çàäà÷à îïðåäåëåíèå ãðóçîïîäú¼ìíîñòè | 𝑀к | наиб ≤ [𝜏 ] · 𝑊𝑝 . Ïî ýòîé ôîðìóëå îïðåäåëÿåòñÿ íàèáîëüøèé êðóòÿùèé ìîìåíò, à çíàÿ | 𝑀к | наиб , ìîæíî íàéòè äîïóñêàåìûå âíåøíèå ïàðû ñèë. Íåñêîëüêî ñëîâ î íàèáîëåå ýêîíîìè÷íîì ñå÷åíèè âàëà. Ïîêàæåì ýïþðó íàïðÿæåíèé â âàëå ñïëîøíîãî ñå÷åíèÿ. Çäåñü âîçìîæíîñòè ìàòåðèàëà ïîëíîñòüþ èñïîëüçóåòñÿ òîëüêî íà ïîâåðõíîñòè âàëà. Îñòàëüíîé ìàòåðèàë íåäîãðóæåí, îñîáåííî ó îñè. Ïîýòîìó íåîáõîäèìî óáðàòü ìàòåðèàë îò îñè. Ïîëó÷èì (ðèñ. 7.11) ïóñòîòåëûé âàë. Ó ïóñòîòåëîãî âàëà âåñü ìàòåðèàë ðàáîòàåò ïðè íàïðÿæåíèÿõ, áëèçêèõ ê äîïóñêàåìîìó. Ïðèìåíåíèå ïóñòîòåëîãî âàëà ïðèâîäèò ê óâåëè÷åíèþ åãî ãðóçîïîäú¼ìíîñòè ïðè òîé æå ïëîùàäè ïîïåðå÷íîãî ñå÷åíèÿ. ГЛАВА 7. 123 КРУЧЕНИЕ Ðèñ. 7.11. Âûáîð íàèáîëåå ýêîíîìè÷íîãî ñå÷åíèÿ âàëà Íî, åñëè ñòåíêà âàëà î÷åíü òîíêàÿ, òî ìîæåò áûòü ìåñòíàÿ ïîòåðÿ óñòîé÷èâîñòè. Ïîêàæåì, ÷òî ïðè êðó÷åíèè èìåþòñÿ ñæèìàþùèå íàïðÿæåíèÿ, êîòîðûå ìîãóò ïðèâåñòè ê ïîòåðå óñòîé÷èâîñòè òîíêîñòåííãî âàëà.  ëþáîé òî÷êå âàëà (êðóãëîãî) ÷èñòûé ñäâèã. Ãëàâíûå íàïðÿæåíèÿ äåéñòâóþò íà ïëîùàäêàõ, ïîâ¼ðíóòûõ íà óãîë 45∘ , è ñæèìàþùåå ãëàâíîå íàïðÿæåíèå 𝜎3 = −𝜏 (ðèñ. 7.12). Ðèñ. 7.12. Ñæèìàþùèå íàïðÿæåíèÿ Íàïîìíèì ôîðìóëó ìîìåíòà ñîïðîòèâëåíèÿ êðó÷åíèþ äëÿ ïóñòîòå𝜋 · 𝐷3 𝑑4 ëîãî âàëà 𝑊𝑝 = · (1 − 4 ). 16 𝐷 7.3 Перемещения при кручении круглого вала Ïåðåìåùåíèÿ âàëà âïîëíå îïðåäåëåíû, åñëè èçâåñòåí óãîë ïîâîðîòà ïîïåðå÷íîãî ñå÷åíèÿ âàëà, ò.ê. ïîïåðå÷íûå ñå÷åíèÿ âàëà ïîâîðà÷èâàþòñÿ êàê æ¼ñòêèå äèñêè. Èçîáðàçèì âàë, íàãðóæåííûé âíåøíèìè ïàðàìè ñèë (ðèñ. 7.13). Áóäåì ðàññìàòðèâàòü óãîë 𝜙𝑎𝑏 òàê îáîçíà÷àåòñÿ óãîë çàêðó÷èâàíèÿ âàëà íà ó÷àñòêå 𝑎𝑏. 𝜙𝑎𝑏 ýòî óãîë, íà êîòîðûé ñå÷åíèå 𝑏 ïîâåðí¼òñÿ îòíîñèòåëüíî ñå÷åíèÿ 𝑎, ãäå 𝑎 è 𝑏 ïðîèçâîëüíûå ñå÷åíèÿ. Êàê îïðåäåëèòü 𝜙𝑎𝑏 ?  ïðåäûäóùåì ïàðàãðàôå áûëî ïîëó÷åíî: 𝑑𝜙 𝑀к = , 𝑑𝑧 𝐺 · 𝐽𝑝 ⇒ 𝑑𝜙 = 𝑀к · 𝑑𝑧. 𝐺 · 𝐽𝑝 ГЛАВА 7. 124 КРУЧЕНИЕ Ðèñ. 7.13. Ïåðåìåùåíèÿ âàëà Çäåñü 𝑑𝜙 óãîë çàêðó÷èâàíèÿ âàëà íà ýëåìåíòàðíîì ó÷àñòêå 𝑑𝑧 . ×òîáû ïîëó÷èòü óãîë çàêðó÷èâàíèÿ âàëà íà ó÷àñòêå 𝑎𝑏, ïðîñóììèðóåì óãëû çàêðó÷èâàíèÿ ýëåìåíòàðíûõ ó÷àñòêîâ ∫︁ 𝑏 𝑀к · 𝑑𝑧. 𝜙𝑎𝑏 = 𝑎 𝐺 · 𝐽𝑝 Ýòî îáùàÿ ôîðìóëà äëÿ îïðåäåëåíèÿ óãëà çàêðó÷èâàíèÿ âàëà íà ó÷àñòêå 𝑎𝑏. Òåïåðü îïðåäåëèì óãîë çàêðó÷èâàíèÿ âñåãî âàëà ∫︁ 𝑙 𝑀к 𝜙𝑙 = · 𝑑𝑧 0 𝐺 · 𝐽𝑝 óãîë, íà êîòîðûé îäíî òîðöåâîå ñå÷åíèå ïîâåðí¼òñÿ îòíîñèòåëüíî äðóãîãî. Åñëè êðóòÿùèé ìîìåíò íà êàæäîì ó÷àñòêå ïîñòîÿíåí è âàë ïîñòîÿííîãî ïîïåðå÷íîãî ñå÷åíèÿ, òî 𝜙𝑙 = ∑︁ 𝑀к(𝑖) · 𝑙(𝑖) 𝐺 · 𝐽𝑝 . Åñëè, â ÷àñòíîì ñëó÷àå ïî âñåé äëèíå âàëà 𝑀к = 𝑐𝑜𝑛𝑠𝑡, òî 𝜙= 𝑀к · 𝑙 𝐺 · 𝐽𝑝 óãîë çàêðó÷èâàíèÿ âàëà ïðè ïîñòîÿííîì êðóòÿùåì ìîìåíòå. Î çíàêå. Óãîë çàêðó÷èâàíèÿ 𝜙 âàëà ìîæåò áûòü êàê ïîëîæèòåëüíûì, òàê è îòðèöàòåëüíûì. Èç ôîðìóëû âèäíî, ÷òî çíàê 𝜙 ñîâïàäàåò ñî çíàêîì êðóòÿùåãî ìîìåíòà. ГЛАВА 7. КРУЧЕНИЕ 125 1) Åñëè ïðè ðàñ÷¼òå ïî ôîðìóëàì ïîëó÷èëîñü 𝜙 > 0, òî ýòî îçíà÷àåò, ÷òî îäíî ñå÷åíèå ïîâåðíóëîñü îòíîñèòåëüíî âòîðîãî ñå÷åíèÿ ïðîòèâ õîäà ÷àñîâîé ñòðåëêè, åñëè ñìîòðåòü ñî ñòîðîíû ïåðâîãî ñå÷åíèÿ. 2) Åñëè 𝜙 < 0, òî ïîâîðîò ïðîèñõîäèò ïî ÷àñîâîé ñòðåëêå. 7.4 Расчёт винтовых цилиндрических пружин с небольшим углом подъёма витка Òî÷íûé ðàñ÷¼ò íà ïðî÷íîñòü âèíòîâûõ ïðóæèí äîñòàòî÷íî ñëîæåí, ò.ê. ïðîâîëîêà âèíòîâîé ïðóæèíû îäíîâðåìåííî ìîæåò èñïûòûâàòü ðàñòÿæåíèå (ñæàòèå), êðó÷åíèå, ñäâèã è èçãèá. Âèíòîâàÿ ïðóæèíà ìîæåò ðàññìàòðèâàòüñÿ êàê ïðîñòðàíñòâåííî èçîãíóòûé áðóñ, îñü êîòîðîãî ïðåäñòàâëÿåò ñîáîé âèíòîâóþ ëèíèþ. ż ôîðìà îïðåäåëÿåòñÿ ñðåäíèì äèàìåòðîì âèòêà 𝐷, ÷èñëîì âèòêîâ 𝑛 è óãëîì ïîäúåìà 𝛼. Ïîäú¼ì âèòêà ìîæíî õàðàêòåðèçîâàòü òàêæå øàãîì ïðóæèíû 𝑆 . 𝑆 = 𝜋 · 𝐷 · tg 𝛼. Äëÿ âñåõ âñòðå÷àþùèõñÿ íà ïðàêòèêå ïðóæèí øàã 𝑆 íàìíîãî ìåíüøå äëèíû îêðóæíîñòè 𝜋 · 𝐷, ñëåäîâàòåëüíî, óãîë ïîäú¼ìà 𝛼 ìîæåò ðàññìàòðèâàòüñÿ êàê âåëè÷èíà ìàëàÿ. Îáû÷íî 𝛼 < 5∘ . Ïóñòü öèëèíäðè÷åñêàÿ âèíòîâàÿ ïðóæèíà ñî ñðåäíèì äèàìåòðîì âèòêîâ 𝐷, èìåþùàÿ 𝑛 âèòêîâ, óãîë ïîäúåìà 𝛼 è äèàìåòð 𝑑 ïîïåðå÷íîãî ñå÷åíèÿ ïðîâîëîêè, ðàñòÿãèâàåòñÿ ñèëàìè 𝐹 , ïðèëîæåííûìè âäîëü îñè ïðóæèíû (ðèñ. 7.14). Ðèñ. 7.14. Âèíòîâàÿ ïðóæèíà Èñïîëüçóÿ ìåòîä ñå÷åíèé, ðàññìîòðèì ðàâíîâåñèå âåðõíåé ÷àñòè ïðóæèíû (ðèñ. 7.15, à). Äåéñòâèå îòáðîøåííîé ÷àñòè çàìåíèì ïîïåðå÷íîé ГЛАВА 7. 126 КРУЧЕНИЕ ñèëîé 𝑄 = 𝐹 è êðóòÿùèì ìîìåíòîì 𝑀к = 𝐹 · 𝐷/2.  ñèëó ìàëîñòè óãëà íàêëîíà âèòêîâ 𝛼 íîðìàëüíîé ñèëîé è èçãèáàþùèì ìîìåíòîì ìîæíî ïðåíåáðå÷ü, òîãäà â ïîïåðå÷íîì ñå÷åíèè âèòêà áóäóò äåéñòâîâàòü òîëmêî 𝑄 4·𝐹 = äâå ãðóïïû êàñàòåëüíûõ íàïðÿæåíèé: îò ñðåçà 𝜏 𝐼 = (ðèñ. 𝐴 𝜋 · 𝑑2 𝑀к 8·𝐹 ·𝐷 7.15, á) è îò êðó÷åíèÿ 𝜏 𝐼𝐼 = = (ðèñ. 7.15, â) . 𝑊𝑝 𝜋 · 𝑑3 Ðèñ. 7.15. Íàïðÿæåíèÿ â ïîïåðå÷íîì ñå÷åíèè ïðóæèíû Êàê âèäíî èç ðàñïðåäåëåíèÿ íàïðÿæåíèé, â òî÷êå  ïîïåðå÷íîãî ñå÷åíèÿ âèòêà íà âíóòðåííåé ñòîðîíå ïðóæèíû êàñàòåëüíûå íàïðÿæåíèÿ 𝐼𝐼 ñîâïàäàþò ïî íàïðàâëåíèþ, ïîýòîìó 𝜏 𝐼 è 𝜏𝑚𝑎𝑥 𝐼𝐼 𝜏𝑚𝑎𝑥 = 𝜏 𝐼 + 𝜏𝑚𝑎𝑥 = 4·𝐹 8·𝐹 ·𝐷 4·𝐹 ·𝐷 2·𝐷 + = · (1 + ) 𝜋 · 𝑑2 𝜋 · 𝑑3 𝜋 · 𝑑2 𝑑 . Íà âíóòðåííåé è íàðóæíîé ïîâåðõíîñòz[ âèòêà ðàäèóñû êðèâèçíû ðàçëè÷íû, ïîýòîìó èñïîëüçóþò áîëåå òî÷íóþ ôîðìóëó äëÿ íàèáîëüøèõ êàñàòåëüíûõ íàïðÿæåíèé 𝜏𝑚𝑎𝑥 = 8 · 𝐹 · 𝐷 4 · 𝑚 − 1 0, 615 ·( + ), 𝜋 · 𝑑3 4·𝑚−4 𝑚 ãäå 𝑚 = 𝐷/𝑑. Äëÿ ïðóæèí áîëüøîãî äèàìåòðà èç òîíêîé ïðîâîëîêè 𝐷/𝑑 >> 1, 𝐼𝐼 ïîýòîìó êàñàòåëüíûå íàïðÿæåíèÿ îò êðó÷åíèÿ 𝜏𝑚𝑎𝑥 çíà÷èòåëüíî áîëüøå 𝐼 íàïðÿæåíèé îò ñðåçà 𝜏 , êîòîðûå ìîæíî íå ó÷èòûâàòü, òîãäà 𝜏𝑚𝑎𝑥 = 8·𝐹 ·𝐷 . 𝜋 · 𝑑3 Ïðè òàêîì óïðîùåíèè ëåãêî âû÷èñëèòü ïåðåìåùåíèå îñè ïðóæèíû (îñàäêó), êîòîðàÿ îáîçíà÷àåòñÿ ÷åðåç 𝜆. Âûðåæåì èç ïðóæèíû ýëåìåíò äëèíîé 𝑑𝑆 (ðèñ. 7.16). Ïîñëå íàãðóæåíèÿ âòîðîå ñå÷åíèå ïîâîðà÷èâàåòñÿ ГЛАВА 7. 127 КРУЧЕНИЕ Ðèñ. 7.16. Ïåðåìåùåíèÿ â öèëèíäðè÷åñêîé ïðóæèíå îòíîñòèòåëüíî ïåðâîãî íà óãîë 𝑑𝜙, ãäå 𝑑𝜙 = 𝑅· 𝑀к· 𝑑𝑆 , òîãäà 𝑑𝜆 = 𝑅 · 𝑑𝜙 = 𝐺 · 𝐽𝑝 𝑀к· 𝑑𝑆 . 𝐺 · 𝐽𝑝 Ïðîñóììèðóåì îñàäêó ïî âñåé äëèíå ñòåðæíÿ ïðóæèíû ∫︁ 𝑙 𝜆= 0 ãäå 𝑙 = ∫︀𝑙 𝑀к · 𝑑𝑆 𝑑𝜆 = 𝑅 · 𝐺 · 𝐽𝑝 ∫︁ 𝑙 𝑑𝑆 = 𝑅 · 𝑀к· 𝑙 , 𝐺 · 𝐽𝑝 0 𝑑𝑆 ïîëíàÿ äëèíà ñòåðæíÿ ïðóæèíû. Ïðåíåáðåãàÿ íàêëîíîì 0 âèòêîâ ê ãîðèçîíòàëè ïîëó÷èì 𝑙 = 2 · 𝜋 · 𝑅 · 𝑛, ãäå 𝑛 êîëè÷åñòâî âèòêîâ. 𝜋 · 𝑟4 Ó÷ò¼ì, ÷òî 𝑀к = 𝐹 · 𝑅, 𝐽𝑝 = . 2 Ïîäñòàâèâ ïîëó÷åííûå ñîîòíîøåíèÿ â âûðàæåíèå äëÿ 𝜆, ïîëó÷èì 4𝐹 𝑅3 𝑛 8𝐹 𝐷3 𝑛 𝐹 ·𝑅·2·𝜋·𝑅·𝑛·2 = = . 𝐺 · 𝜋 · 𝑟4 𝐺𝑟4 𝐺𝑑4 Òåïåðü îá óñëîâèè æ¼ñòêîñòè ïðóæèíû: 𝜆 ≤ [𝜆], ãäå [𝜆] äîïóñêàåìîå çíà÷åíèå îñàäêè, ñëåäîâàòåëüíî 𝜆=𝑅· 8𝐹 𝐷3 𝑛 ≤ [𝜆] 𝐺𝑑4 óñëîâèè æ¼ñòêîñòè ïðóæèíû. 7.5 Кручение брусьев некруглого сечения Ïðè êðó÷åíèè áðóñüåâ íåêðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ ãèïîòåçà ïëîñêèõ ñå÷åíèé íå ïðèìåíèìà, òàê êàê ïðè çàêðó÷èâàíèè ïðîèñõîäèò äåïëàíàöèÿ (èñêðèâëåíèå) ñå÷åíèÿ.  ñâÿçè ñ ýòèì ìåòîäàìè ñîïðîòèâëåíèÿ ìàòåðèàëîâ íàïðÿæåíèÿ îïðåäåëèòü íåâîçìîæíî. Ìåòîäàìè òåîðèè ГЛАВА 7. КРУЧЕНИЕ 128 óïðóãîñòè äëÿ áðóñüåâ ïðÿìîóãîëüíîãî ñå÷åíèÿ ïîëó÷åíû ñëåäóþùèå çàâèñèìîñòè (ðèñ. 7.18). Ðèñ. 7.17. Êðó÷åíèå ïðÿìîóãîëüíîãî áðóñà 𝑀к 𝑀к · 𝑙 ′ , 𝜙= , 𝜏max = 𝜂 · 𝜏max , 𝑊к 𝐺 · 𝐽к ãäå 𝜏max íàïðÿæåíèå, äåéñòâóþùåå íà ïîâåðõíîñòè áðóñà ïîñåðåäèíå áî́ëüøåé ñòîðîíû ïðÿìîóãîëüíèêà; ′ 𝜏max íàïðÿæåíèå, äåéñòâóþùåå íà ïîâåðõíîñòè áðóñà ïîñåðåäèíå ìǻíüøåé ñòîðîíû ïðÿìîóãîëüíèêà; 𝑊к = 𝛼 · 𝑎 · 𝑏2 ãåîìåòðè÷åñêèé ôàêòîð ïðî÷íîñòè (óñëîâíûé ìîìåíò ñîïðîòèâëåíèÿ ñå÷åíèÿ êðó÷åíèþ); 𝐽к = 𝛽 · 𝑎 · 𝑏3 ãåîìåòðè÷åñêèé ôàêòîð æ¼ñòêîñòè (óñëîâíûé ìîìåíò èíåðöèè ñå÷åíèÿ ïðè êðó÷åíèè). Çíà÷åíèÿ êîýôôèöèåíòîâ 𝛼, 𝛽, 𝜂 â çàâèñèìîñòè îò ñîîòíîøåíèÿ ðàçìåðîâ ïðÿìîóãîëüíèêà 𝑎/𝑏 ïðèâåäåíû â òàáëèöå a/b 1 1,5 2 3 4 6 8 10 ∞ 𝛼 0,208 0,213 0,246 0,285 0,282 0,299 0,307 0,313 0,333 𝛽 0,141 0,196 0,229 0,263 0,281 0,299 0,307 0,313 0,333 𝜂 1,000 0,859 0,795 0,753 0,745 0,743 0,742 0,742 0,742 𝜏max = 7.6 Кручение тонкостенных брусьев (свободное кручение) Êðó÷åíèå áðóñüåâ íåêðóãëîãî ñå÷åíèÿ ìîæåò áûòü ñâîáîäíûì èëè ñòåñí¼ííûì. Ïðè ñâîáîäíîì êðó÷åíèè íåò ïðåïÿòñòâèé ê èñêðèâëåíèþ ïîïåðå÷íûõ ñå÷åíèé. Áðóñ áóäåò èñïûòûâàòü ñâîáîäíîå êðó÷åíèå, åñëè ГЛАВА 7. 129 КРУЧЕНИЕ ïî åãî äëèíå êðóòÿùèé ìîìåíò è ðàçìåðû ïîïåðå÷íîãî ñå÷åíèÿ íå ìåíÿþòñÿ, à òàêæå íåò çàùåìëåíèÿ. Õàðàêòåðíîé îñîáåííîñòüþ òîíêîñòåííûõ áðóñüåâ ÿâëÿåòñÿ òî, ÷òî òîëùèíà (𝛿) çíà÷èòåëüíî ìåíüøå äëèíû (𝑆 ) êîíòóðà ñå÷åíèÿ (𝑆 > 10 · 𝛿). Òîíêîñòåííûå áðóñüÿ ðàçäåëÿþòñÿ íà áðóñüÿ ñ çàìêíóòûì è îòêðûòûì ïðîôèëåì. Ó áðóñüåâ ñ îòêðûòûì ïðîôèëåì ñðåäíÿÿ ëèíèÿ ïîïåðå÷íîãî ñå÷åíèÿ ÿâëÿåòñÿ íåçàìêíóòîé êðèâîé(ðèñ. 7.18). Ðèñ. 7.18. Òîíêîñòåííûå áðóñüÿ îòêðûòîãî ïðîôèëÿ Ó áðóñüåâ ñ çàìêíóòûì ïðîôèëåì ñðåäíÿÿ ëèíèÿ ïîïåðå÷íîãî ñå÷åíèÿ çàìêíóòàÿ êðèâàÿ (ðèñ. 7.19). Ðèñ. 7.19. Òîíêîñòåííûå áðóñüÿ ñ çàìêíóòûì ïðîôèëåì 7.6.1 Свободное кручение тонкостенных брусьев с открытым профилем Íàïðÿæåíèÿ â áðóñüÿõ ñ îòêðûòûì ïðîôèëåì ñèëüíî íå èçìåíÿòñÿ, åñëè åãî ðàñïðÿìèòü. Òîãäà ìîæíî èñïîëüçîâàòü ðàñ÷¼òíûå ôîðìóëû äëÿ ïðÿìîóãîëüíîãî ñå÷åíèÿ ñ áîëüøèì ñîîòíîøåíèåì ñòîðîí (𝑆 > 10·𝛿), äëÿ êîòîðûõ 𝛼 = 𝛽 = 1/3 (ðèñ. 7.20) 𝑊к = , 1 · 𝑆 · 𝛿2, 3 𝐽к = 1 · 𝑆 · 𝛿3 3 ГЛАВА 7. 130 КРУЧЕНИЕ Ðèñ. 7.20. Êðó÷åíèå òîíêîñòåííîãî áðóñà ïðÿìîóãîëüíîãî ñå÷åíèÿ 𝜙= 7.6.2 𝑀к · 𝑙 , 𝐺 · 𝐽к 𝜏𝑚𝑎𝑥 = 𝑀к 1 · 𝑆 · 𝛿2 3 · 𝛿 𝑀к = · 𝛿. 𝛿 𝐽к Общий случай свободного кручения тонкостенного бруса с открытым профилем Åñëè ñå÷åíèå áðóñà íåëüçÿ ðàçâåðíóòü â ïðÿìîóãîëüíèê (ðèñ. 7.21), òî ìîìåíò 𝑀к ðàññìàòðèâàåòñÿ êàê ñóììà ìîìåíòîâ, äåéñòâóþùèõ â îò∑︀ äåëüíûõ ýëåìåíòàõ ñå÷åíèÿ ïîñòîÿííîé òîëùèíû: 𝑀к = 𝑀к𝑖 . Óãëû çàêðó÷èâàíèÿ âñåõ ýëåìåíòîâ îäèíàêîâû 𝜙𝑖 = 𝜙 . Íî 𝜙 = ∑︀ 𝐺 · 𝜙𝑖 1 ∑︀ 𝐺 · 𝜙𝑖 1 𝑀к𝑖 · 𝑙 , îòêóäà 𝑀к𝑖 = · ·𝑆𝑖 ·𝛿𝑖3 èëè 𝑀к = 𝑀к𝑖 = · · ·𝑆𝑖 ·𝛿𝑖3 . 𝐺 · 𝐽к𝑖 𝑙 3 𝑙 3 Ðèñ. 7.21. Îáùèé ñëó÷àé òîíêîñòåííîãî áðóñà ñ îòêðûòûì ïðîôèëåì Òîãäà 𝜙= 𝑀к · 𝑙 , 1 ∑︀ 3 𝐺 · · 𝑆𝑖 · 𝛿𝑖 3 ГЛАВА 7. 131 КРУЧЕНИЕ 1 ∑︀ ·𝑆 · 𝛿 3 . 3 𝑀к 𝑀к𝑖 Òàê êàê 𝜙𝑖 = 𝜙, òî = . 𝐽к 𝐽к𝑖 ãäå 𝐽к = 𝑀к𝑖 𝑀к · 𝛿𝑖 . · 𝛿𝑖 = 𝐽к𝑖 𝐽к Èç ïîëó÷åííîé ôîðìóëû âèäíî, ÷òî íàèáîëüøèå íàïðÿæåíèÿ äåéñòâóþò â ýëåìåíòå ñ íàèáîëüøåé òîëùèíîé 𝛿наиб , òîãäà Èç ïðåäûäóùåãî ïàðàãðàôà 𝜏𝑚𝑎𝑥 = 𝜏наиб = 7.6.3 𝑀к · 𝛿наиб . 𝐽к Свободное кручение тонкостенных брусьев с замкнутым профилем  ñâÿçè ñ ìàëîé òîëùèíîé ïðîôèëÿ ìîæíî ñäåëàòü ñëåäóþùèå äîïóùåíèÿ (ðèñ. 7.22): Ðèñ. 7.22. Êðó÷åíèå òîíêîñòåííîãî áðóñà ñ çàìêíóòûì ïðîôèëåì 1) êàñàòåëüíûå íàïðÿæåíèÿ ïî òîëùèíå ñå÷åíèÿ íå èçìåíÿþòñÿ; 2) íàïðàâëåíèå êàñàòåëüíûõ íàïðÿæåíèé ïàðàëëåëüíî êàñàòåëüíîé ê ñðåäèííîé ëèíèè ñå÷åíèÿ. ∑︀ 𝜏 · 𝛿 ïîòîê êàñàòåëüíûõ íàïðÿæåíèé, òîãäà 𝑧 = 𝜏1 · 𝛿1 · ∆𝑧 = 𝜏2 · 𝛿2 · ∆𝑧, îòñþäà 𝜏1 · 𝛿1 = 𝜏2 · 𝛿2 = 𝜏 · 𝛿 = 𝑐𝑜𝑛𝑠𝑡. Ñëåäîâàòåëüíî, ïîòîê êàñàòåëüíûõ íàïðÿæåíèé ïî äëèíå ñðåäèííîé ëèíèè íå ìåíÿåòñÿ. Ðàññìîòðèì â ïîïåðå÷íîì ñå÷åíèè çàìêíóòîãî êîíòóðà ýëåìåíòàðíûé ó÷àñòîê äëèíîé 𝑑𝑆 (ðèñ. 7.23) ∮︁ ∮︁ 𝑀к = 𝜏 · 𝛿 · 𝑑𝑆 · ℎ(𝑆) = 𝜏 · 𝛿 · ℎ(𝑆) · 𝑑𝑆, 𝑆 𝑆 íî ℎ(𝑆) · 𝑑𝑆 = 2 · 𝑑𝐴* , ãäå 𝑑𝐴* ïëîùàäü çàøòðèõîâàííîãî òðåóãîëüíèêà, ГЛАВА 7. 132 КРУЧЕНИЕ Ðèñ. 7.23. Îïðåäåëåíèå êàñàòåëüíûõ íàïðÿæåíèé îñíîâàíèåì êîòîðîãî ÿâëÿåòñÿ äóãà ñðåäèííîé ëèíèè 𝑑𝑆 . Ñëåäîâàòåëüíî ∮︀ 𝑀к ℎ(𝑆) · 𝑑𝑆 = 2 · 𝐴* . Òîãäà 𝑀к = 𝜏 · 𝛿 · 2 · 𝐴* , îòêóäà 𝜏 = . 2 · 𝐴* · 𝛿 𝑆 Íàèáîëüøèå êàñàòåëüíûå íàïðÿæåíèÿ äåéñòâóþò â òî÷êàõ ñå÷åíèÿ ñ íàèìåíüøåé òîëùèíîé ñòåíêè 𝜏наиб = 𝑀к , 2 · 𝐴* · 𝛿наим ãäå 𝑊к = 2 · 𝐴* · 𝛿наим óñëîâíûé ìîìåíò ñîïðîòèâëåíèÿ ñå÷åíèÿ êðó÷åíèþ. Óãëîâîå ïåðåìåùåíèå îïðåäåëèì èç ýíåðãåòè÷åñêèõ óñëîâèé: 𝑈 = 𝐴𝐹 (ðèñ. 7.24): Ðèñ. 7.24. Îïðåäåëåíèå ïåðåìåùåíèé áðóñà 1 𝐴𝐹 = · 𝑀к · 𝜙 ðàáîòà âíåøíèõ ñèë. 2 Ýíåðãèÿ äåôîðìàöèè 𝑈 ìîæåò áûòü îïðåäåëåíà ÷åðåç óäåëüíóþ ýíåð𝜏2 ãèþ äåôîðìàöèè 𝑢0 = . 2·𝐺 ГЛАВА 7. 133 КРУЧЕНИЕ Âûäåëèì â òîíêîñòåííîì áðóñå ýëåìåíò 𝑑𝑉 = 𝛿 · 𝑑𝑆 · 𝑙, òîãäà ∮︁ ∮︁ ∮︁ 𝜏2 𝛿 (𝜏 · 𝛿)2 · 𝑙 𝑑𝑆 𝑈 = 𝑢0 · 𝑑𝑉 = · 𝛿 · 𝑑𝑆 · 𝑙 · = = 2·𝐺 𝛿 2·𝐺 𝛿 𝑉 𝑉 (︂ = 𝑀к 2 · 𝐴* )︂2 𝑆 𝑙 · 2·𝐺 ∮︁ 𝑑𝑆 𝑀к2 · 𝑙 = 𝛿 2 · (2 · 𝐴* )2 · 𝐺 𝑆 ∮︁ 𝑑𝑆 . 𝛿 𝑆 Òîãäà 1 𝑀к2 · 𝑙 · 𝑀к · 𝜙 = 2 2 · (2 · 𝐴* )2 · 𝐺 ∮︁ 𝑑𝑆 , 𝛿 𝑆 îòêóäà 𝜙= 𝑀к · 𝑙 𝑀к · 𝑙 , * 2 = (2 · 𝐴 ) 𝐺 · 𝐽к 𝐺 · ∮︀ 𝑑𝑆 𝑆 𝛿 (2 · 𝐴* )2 ∮︀ 𝑑𝑆 óñëîâíûé ìîìåíò èíåðöèè ñå÷åíèÿ ïðè êðó÷åíèè 𝑆 𝛿 òîíêîñòåííîãî ñòåðæíÿ ñ çàìêíóòûì ïðîôèëåì. ãäå 𝐽к = 7.7 Вопросы для самопроверки ×òî íàçûâàåòñÿ êðóòÿùèì ìîìåíòîì? Êàê îí îïðåäåëÿåòñÿ, åãî ðàçìåðíîñòü? ×òî òàêîå ÷èñòûé ñäâèã, êàê ôîðìóëèðóåòñÿ çàêîí ïàðíîñòè êàñàòåëüíûõ íàïðÿæåíèé? Íàïèøèòå çàêîí Ãóêà ïðè ñäâèãå. Êàê íàéòè êàñàòåëüíîå íàïðÿæåíèå â ïðîèçâîëüíîé òî÷êå áðóñà êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ? Ïîêàæèòå çàêîíîìåðíîñòü ðàñïðåäåëåíèÿ êàñàòåëüíîãî íàïðÿæåíèÿ â áðóñå êðóãëîãî ïîïåðå÷íîãî ñå÷åíèÿ. ×òî òàêîå ïîëÿðíûé ìîìåíò èíåðöèè ñå÷åíèÿ, ìîìåíò ñîïðîòèâëåíèÿ êðó÷åíèþ? ×åìó îíè ðàâíû äëÿ êðóãëîãî è êîëüöåâîãî ñå÷åíèé è èõ ðàçìåðíîñòü? Êàê îïðåäåëÿåòñÿ óãîë çàêðó÷èâàíèÿ áðóñà? Êàê ðåøàþòñÿ îñíîâíûå çàäà÷è ðàñ÷¼òà íà ïðî÷íîñòü ïðè êðó÷åíèè? Глава 8 Устойчивость сжатых стержней 8.1 Потеря устойчивости сжатым стержнем. Формула Эйлера для критической силы Ðàññìîòðèì ñæàòûé ñòåðæåíü ñ øàðíèðíûì çàêðåïëåíèåì. Áóäåì ñ÷èòàòü, ÷òî øàðíèðû øàðîâûå, ò. å. âî âñåõ ïëîñêîñòÿõ çàêðåïëåíèå îäèíàêîâî (ðèñ. 8.1). Ðèñ. 8.1. Ïîòåðÿ óñòîé÷èâîñòè ñæàòûì ñòåðæíåì Íà ñòåðæåíü äåéñòâóåò ñæèìàþùàÿ ñèëà 𝐹 .  íèæíåé îïîðå âîçíèêàåò ñèëà ðåàêöèè 𝑅𝐵 = 𝐹 . 𝐹 Óñëîâèå ïðî÷íîñòè äëÿ ñòåðæíÿ äîëæíî áûòü ≤ [𝜎], à ìåæäó òåì, 𝐴 ïðè äîñòàòî÷íî áîëüøîé äëèíå 𝑙 ðàçðóøåíèå ñòåðæíÿ ïðîèñõîäèò è ïðè 𝐹 < [𝜎]. 𝐴 134 ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 135 Ïðîèñõîäèò ýòî ñëåäóþùèì îáðàçîì: ñ ðîñòîì ñèëû 𝐹 ñòåðæåíü ñíà÷àëà îñòà¼òñÿ ïðÿìîëèíåéíûì, îäíàêî, ïðè íåêîòîðîì çíà÷åíèè ñèëû 𝐹 = 𝐹кр , ñòåðæåíü âäðóã âûïó÷èâàåòñÿ (ïóíêòèðíûå ëèíèè), ò. å. âîçíèêàþò ïðîãèáû, ñîèçìåðèìûå ñ äëèíîé ñòåðæíÿ. Ïðè ýòîì, ê íàïðÿæå𝑀 𝐹 äîáàâëÿþòñÿ íàïðÿæåíèÿ îò èçãèáà è âîò, õîòÿ íèÿì îò ñæàòèÿ 𝐴 𝑊 𝐹 < [𝜎], íî ñóììàðíîå íàïðÿæåíèå äîñòèãàåò ïðåäåëà ïðî÷íîñòè ìà𝐴 òåðèàëà è ñòåðæåíü ðàçðóøàåòñÿ. Ñòåðæåíü ìîæåò è íå ðàçðóøèòüñÿ, íî âûïó÷èòñÿ è îñòàíåòñÿ â âûïó÷åííîì ñîñòîÿíèè. ßâëåíèå âûïó÷èâàíèÿ â êîíñòðóêöèÿõ íå äîïóñòèìî, ò. ê. íàðóøàåòñÿ íîðìàëüíûå óñëîâèÿ ðàáîòû âñåé êîíñòðóêöèè. Îïèñàííîå ÿâëåíèå âûïó÷èâàíèÿ íàçûâàåòñÿ ïîòåðåé óñòîé÷èâîñòè ñæàòûì ñòåðæíåì. Сила, при которой происходит потеря устойчивости, называется критической силой è îáîçíà÷àåòñÿ ÷åðåç 𝐹кр . Îïèñàííîå ÿâëåíèå ñ ïîçèöèé òåîðèè óñòîé÷èâîñòè îáúÿñíÿåòñÿ ñëåäóþùèì îáðàçîì: ïðè 𝐹 < 𝐹кр óñòîé÷èâîé ÿâëÿåòñÿ ïðÿìîëèíåéíàÿ ôîðìà ñòåðæíÿ. Ýòî îçíà÷àåò, ÷òî åñëè âûâåñòè ñòåðæåíü èç ïîëîæåíèÿ ðàâíîâåñèÿ, à çàòåì îñâîáîäèòü, îí âåðí¼òñÿ â óñòîé÷èâóþ (ïðÿìîëèíåéíóþ) ôîðìó. Ïðè 𝐹 > 𝐹кр ïðÿìîëèíåéíàÿ ôîðìà ñòàíîâèòñÿ íåóñòîé÷èâîé, à óñòîé÷èâîé ñòàíîâèòñÿ êðèâîëèíåéíàÿ ôîðìà. Íî, íà ïðàêòèêå, òîë÷êà (âîçìóùåíèÿ) äåëàòü íå íóæíî, ò. ê. ñòåðæåíü íå èäåàëüíî ïðÿìîé è ñèëû ïðèëîæåíû íå òî÷íî ïî îñè ñòåðæíÿ, ïîýòîìó ïðè 𝐹 = 𝐹кр îí ñàì âûïó÷èâàåòñÿ. Ïðè ðàñ÷¼òå ñæàòûõ ñòåðæíåé íåîáõîäèìî ðàññìàòðèâàòü äâà óñëîâèÿ: 𝐹 ≤ [𝜎] óñëîâèå ïðî÷íîñòè; 1) 𝐴 𝐹кр 𝐹 𝐹кр 𝐹кр 2) 𝐹 ≤ ïðåîáðàçóåì ≤ , íî = 𝜎кр 𝑛кр 𝐴 𝐴 · 𝑛кр 𝐴 êðèòè÷åñêîå íàïðÿæåíèå, ïðè êîòîðîé ñòåðæåíü òåðÿåò óñòîé÷èâîñòü, 𝜎кр = [𝜎]кр äîïóñêàåìîå íàïðÿæåíèå íà óñòîé÷èâîñòü èëè äîïóñêàåìîå 𝑛кр 𝐹 íàïðÿæåíèå íà ïðîäîëüíûé èçãèá. Òîãäà ≤ [𝜎]кр óñëîâèå óñòîé÷èâî𝐴 ñòè. Òàêèì îáðàçîì, ÷òîáû ðàáîòà ñæàòîãî ñòåðæíÿ áûëà áåçîïàñíîé, äîëæíû áûòü âûïîëíåíû äâà óñëîâèÿ. Äëÿ êîðîòêèõ ñòåðæíåé îïðåäåëÿþùèì ÿâëÿåòñÿ ïåðâîå óñëîâèå, à äëÿ äëèííûõ âòîðîå. ×òîáû íå ðàññìàòðèâàòü ãðàíèöó ìåæäó íèìè, íåîáõîäèìî ïîëüçîâàòüñÿ îáîèìè óñëîâèÿìè. ×òîáû âîñïîëüçîâàòüñÿ óñëîâèåì óñòîé÷èâîñòè, íóæíî çíàòü êðèòè÷åñêóþ ñèëó. Êàê å¼ íàéòè? Ïåðâûå ðåçóëüòàòû â ýòîé îáëàñòè áûëè ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 136 ïîëó÷åíû â ñåðåäèíå XVIII âåêà Ë. Ýéëåðîì â ïåðèîä åãî ðàáîòû â Ïåòåðáóðãñêîé àêàäåìèè íàóê (ðèñ. 8.2). Ðèñ. 8.2. Ðåøåíèå çàäà÷è Ýéëåðà Ýéëåð ðàññìàòðèâàë ñòåðæåíü äëèíîé 𝑙 ñ øàðíèðíî-çàêðåïë¼ííûìè êîíöàìè. Ñèëà 𝐹 íàñòîëüêî áîëüøàÿ, ÷òî îíà óäåðæèâàåò ñòåðæåíü â èñêðèâë¼ííîì ñîñòîÿíèè, òî åñòü îíà äîñòèãëà 𝐹кр . Îòìåòèì ïðîãèá ñòåðæíÿ 𝑦 â ïðîèçâîëüíîì ñå÷åíèè 𝑧 . Ñòåðæåíü èçîãíóò è íàõîäèòñÿ â óïðóãîì ñîñòîÿíèè, ïîýòîìó âîñïîëüçóåìñÿ äèôôåðåíöèàëüíûì óðàâíåíèåì èçîãíóòîé îñè áàëêè. Îáðàùàåì âíèìàíèå, ÷òî ìû âîñïîëüçóåìñÿ îáëåã÷¼ííûì äèôôåðåíöèàëüíûì óðàâíåíèåì, ïîýòîìó ðàññìàòðèâàåì òîëüêî íà÷àëî ïîòåðè óñòîé÷èâîñòè. 𝐸 · 𝐽 · 𝑦 ′′ = 𝑀 , ãäå 𝑀 = −𝐹кр · 𝑦 . Çíàê "ìèíóñ òàê êàê èçãèáàþùèé ìîìåíò îòðèöàòåëüíûé, òîãäà 𝐸 · 𝐽 · 𝑦 ′′ = −𝐹кр · 𝑦 , ïðåîáðàçóåì 𝑦 ′′ + 𝑘 2 · 𝑦 = 0, 𝐹кр . ãäå 𝑘 2 = 𝐸·𝐽 Ìû ïîëó÷èëè ëèíåéíîå îäíîðîäíîå äèôôåðåíöèàëüíîå óðàâíåíèå ñ ïîñòîÿííûìè êîýôôèöèåíòàìè. Äëÿ ðåøåíèÿ ýòîãî óðàâíåíèÿ íóæíî íàïèñàòü õàðàêòåðèñòè÷åñêîå óðàâíåíèå è íàéòè åãî êîðíè. Ðåøåíèå ýòîãî óðàâíåíèÿ èùåì â òðèãîíîìåòðè÷åñêèõ ôóíêöèÿõ: 𝑦 = 𝐴 · sin 𝑘𝑧 + 𝐵 · cos 𝑘𝑧 . Îïðåäåëèì ïîñòîÿííûå èíòåãðèðîâàíèÿ èç ãðàíè÷íûõ óñëîâèé: 1) ïðè 𝑧 = 0 𝑦 = 0, îòñþäà 𝐵 = 0 è 𝑦 = 𝐴 · sin 𝑘𝑧; 2) ïðè 𝑧 = 𝑙 𝑦 = 0, òîãäà 𝐴 · sin 𝑘𝑙 = 0. Íî 𝐴 ̸= 0. Åñëè ïðåäïîëîæèòü, ÷òî 𝐴 = 0, òî âñå ïðîãèáû áóäóò ðàâíû íóëþ, ò. å. âûïó÷èâàíèÿ íå áóäåò. Òàêèì îáðàçîì, sin 𝑘𝑙 = 0 ⇒ 𝑘𝑙 = 𝜋·𝑛, (𝑛 = 0; ±1; ±2; . . . ); 𝐹кр 𝜋2 𝜋2 = 𝑛2 · 2 , òîãäà 𝑘 2 = 𝑛2 · 2 ; ïîäñòàâèì âìåñòî 𝑘 2 ⇒ 𝑙 𝐸·𝐽 𝑙 2 𝜋 ·𝐸·𝐽 𝐹кр = 𝑛2 · , 𝑙2 òî åñòü èìååò ìåñòî öåëûé ðÿä êðèòè÷åñêèõ ñèë: ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 137 (0) 𝐹кр = 0 íóëåâîãî ïîðÿäêà; 2 𝜋 ·𝐸·𝐽 (1) 𝑛 = 1, 𝐹кр = ïåðâîãî ïîðÿäêà; 𝑙2 2 4·𝜋 ·𝐸·𝐽 (2) 𝑛 = 2, 𝐹кр = âòîðîãî ïîðÿäêà è ò.ä. 𝑙2 Çäåñü 𝐸 ìîäóëü ïðîäîëüíîé óïðóãîñòè ìàòåðèàëà ñòåðæíÿ, 𝐽 ìîìåíò èíåðöèè ïîïåðå÷íîãî ñå÷åíèÿ ñòåðæíÿ. Èç ôîðìóë âèäíî, ÷òî âûïó÷èâàíèå ïðîèçîéä¼ò, ïðåæäå âñåãî, â ïëîñîñòè íàèìåíüøåé æ¼ñòêîñòè. Èç ýòîãî ðÿäà êðèòè÷åñêèõ ñèë áóäåò èìåòü ìåñòî òîëüêî íàèìåíüøàÿ (0) êðèòè÷åñêàÿ ñèëà. 𝐹кр çíà÷åíèÿ íå èìååò, ïîýòîìó 𝑛 = 0, 𝜋 2 · 𝐸 · 𝐽наим 𝑙2 ôîðìóëà Ýéëåðà äëÿ êðèòè÷åñêîé ñèëû. À êàêèå áóäóò ïåðåìåùåíèÿ ïîñëå âûïó÷èâàíèÿ? 𝐹кр = 𝜋 𝑦 = 𝐴 · sin 𝑧 𝑙 óðàâíåíèå èçîãíóòîé îñè ñòåðæíÿ ïîëîâèíà âîëíû ñèíóñîèäû. ×åìó ðàâíî íàèáîëüøåå îòêëîíåíèå 𝐴? Íà ýòîò âîïðîñ îòâåòèòü íå ïðåäñòàâëÿåòñÿ âîçìîæíûì, òàê êàê èñïîëüçîâàíû âñå ãðàíè÷íûå óñëîâèÿ. Ýòî ðàñïëàòà çà ëèíåàðèçàöèþ äèôôåðåíöèàëüíîãî óðàâíåíèÿ èçîãíóòîé îñè ñòåðæíÿ. ×òîáû íàéòè ïðîãèáû, íóæíî èñïîëüçîâàòü ïîëíîå äèôôåðåíöèàëüíîå óðàâíåíèå. Ïðèâåä¼ì ãðàôèê çàâèñèìîìòè ìàêñèìàëüíûõ ïåðåìåùåíèé â çàâèñèìîñòè îò ñèëû, ïîëó÷åííûé â òî÷íîì ðåøåíèè (Â.È. Ôåîäîñüåâ)(ðèñ. 8.3). Ðèñ. 8.3. Ïåðåìåùåíèÿ ñæàòîãî ñòåðæíÿ 𝐹кр Êðèòè÷åñêîå íàïðÿæåíèå 𝜎кр = íàïðÿæåíèå, ïðè êîòîðîì íà𝐴 áëþäàåòñÿ âûïó÷èâàíèå. Ïîäñòàâèì â ýòó ôîðìóëó çíà÷åíèå êðèòè÷åñêîé ñèëû è ó÷ò¼ì, ÷òî 𝑙 𝐽наим = 𝑖2наим . Îáîçíà÷èì = 𝜆 ãèáêîñòü ñòåðæíÿ è ïîëó÷èì 𝐴 𝑖наим ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 138 𝜋 2 · 𝐸 · 𝐽наим 𝜋2 · 𝐸 = . 𝑙2 · 𝐴 𝜆2 ×åì áîëüøå ãèáêîñòü, òåì ìåíüøå êðèòè÷åñêîå íàïðÿæåíèå, òåì ìåíüøèì óñèëèåì ìîæíî âûâåñòè ñòåðæåíü èç ïîëîæåíèÿ ðàâíîâåñèÿ. 𝜎кр = 𝜋2 · 𝐸 𝜆2 ôîðìóëà Ýéëåðà äëÿ êðèòè÷åñêîãî íàïðÿæåíèÿ. 𝜎кр = 8.2 Влияние способа закрепления стержня на критическую силу Ðàññìîòðèì íåñêîëüêî ñëó÷àåâ çàêðåïëåíèÿ ñòåðæíÿ. 1) Øàðíèðíûé ñëó÷àé çàêðåïëåíèÿ íàçûâàåòñÿ îñíîâíûì èëè ñëó÷àåì Ýéëåðà (ñì. ðèñ. 8.1). 𝐹кр = 𝜋 2 · 𝐸 · 𝐽наим . 𝑙2 2) Ñòåðæåíü æ¼ñòêî çàùåìë¼í îäíèì êîíöîì (ðèñ. 8.4). Ðèñ. 8.4. Ñòåðæåíü ñ çàùåìë¼ííûì êîíöîì Êàêîé áóäåò ôîðìóëà äëÿ êðèòè÷åñêîé ñèëû â ýòîì ñëó÷àå? Íóæíî âçÿòü äèôôåðåíöèàëüíîå óðàâíåíèå è óäîâëåòâîðèòü íîâûì ãðàíè÷íûì óñëîâèÿì. Îäíàêî, åñòü äðóãîé ïóòü: ïðîäîëæèâ ñòåðæåíü âíèç íà 𝑙, âèäèì, ÷òî ôîðìóëó Ýéëåðà ìîæíî ïðèìåíèòü äëÿ ñòåðæíÿ äëèíîé 2𝑙, òîãäà 𝐹кр = 𝜋 2 · 𝐸 · 𝐽наим . (2 · 𝑙)2 ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 139 Çäåñü 𝐹кр â ÷åòûðå ðàçà ìåíüøå, ÷åì â îñíîâíîì ñëó÷àå, ñëåäîâàòåëüíî è ãðóçîïîäú¼ìíîñòü ñòåðæíÿ â ÷åòûðå ðàçà ìåíüøå, òî åñòü ýòî î÷åíü íåâûãîäíûé ñëó÷àé çàêðåïëåíèÿ. 3) Ñòåðæåíü ñ ïîäâèæíî è íåïîäâèæíî çàùåìë¼ííûìè êîíöàìè (ðèñ. 8.5). Ðèñ. 8.5. Ñòåðæåíü ñ ïîäâèæíî è íåïîäâèæíî çàùåìë¼ííûìè êîíöàìè Êàê íàéòè 𝐹кр â ýòîì ñëó÷àå? Ìîæíî âçÿòü äèôôåðåíöèàëüíîå óðàâíåíèå è óäîâëåòâîðèòü íîâûì ãðàíè÷íûì óñëîâèÿì. Íî ìîæíî âîñïîëüçîâàòüñÿ îäíèì ðåçóëüòàòîì, ñëåäóþùèì èç ðåøåíèÿ Ýéëåðà. Îòìåòèì íà èçîãíóòîé îñè ñòåðæíÿ äâå òî÷êè ïåðåãèáà.  ýòèõ òî÷êàõ êðèâèçíà ðàâíà íóëþ, ñëåäîâàòåëüíî, è èçãèáàþùèé ìîìåíò ðàâåí íóëþ, 𝑀 1 . òàê êàê = 𝜌 𝐸·𝐽  òî÷êàõ ïåðåãèáà ñâÿçü, ñ ïîìîùüþ êîòîðîé ïåðåäà¼òñÿ èçãèáàþùèé ìîìåíò, íå èñïîëüçóåòñÿ, ñëåäîâàòåëüíî, â ýòèõ òî÷êàõ ìîæíî ïîñòàâèòü èäåàëüíûå øàðíèðû íè÷åãî íå èçìåíèòñÿ. Âèäíî, ÷òî ÷àñòü ðàññìàòðèâàåìîãî ñòåðæíÿ äëèíîé 𝑙/2 íàõîäèòñÿ â òàêèõ æå óñëîâèÿõ, êàê è â ñëó÷àå Ýéëåðà, òîãäà 𝐹кр = 𝜋 2 · 𝐸 · 𝐽наим . (0, 5 · 𝑙)2 Çäåñü 𝐹кр â ÷åòûðå ðàçà áîëüøå, ÷åì â îñíîâíîì ñëó÷àå, òî åñòü ýòî î÷åíü âûãîäíîå óñëîâèå çàêðåïëåíèÿ, ñóùåñòâåííî áîëåå ýêîíîìè÷íîå, íî ôîðìóëà áóäåò ñïðàâåäëèâà, åñëè ïî êîíöàì àáñîëþòíî æ¼ñòêîå çàêðåïëåíèå, à òàê áûâàåò äàëåêî íå âñåãäà. Êàê ïðàâèëî, çàêðåïëåíèå áûâàåò ïîäàòëèâûì, ïîýòîìó ôîðìóëîé Ýéëåðà ñëåäóåò ïîëüçîâàòüñÿ îñòîðîæíî. 4) Ñòåðæåíü ñ çàùåìë¼ííûì è øàðíèðíûì êîíöàìè (ðèñ. 8.6). Åñëè ðåøàòü ýòó çàäà÷ó ïîäðîáíî, òî îêàæåòñÿ, ÷òî òî÷êà ïåðåãèáà íàõîäèòñÿ íà ðàññòîÿíèè 0, 7 · 𝑙 îò øàðíèðíîé îïîðû. ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 140 Ðèñ. 8.6. Ñòåðæåíü ñ çàùåìë¼ííûì è øàðíèðíûì êîíöàìè Ðàññìàòðèâàÿ ýòîò ñëó÷àé àíàëîãè÷íî ïðåäûäóùåìó, ïîëó÷èì 𝐹кр 𝜋 2 · 𝐸 · 𝐽наим , = (0, 7 · 𝑙)2 òî åñòü 𝐹кр â ýòîì ñëó÷àå â äâà ðàçà áîëüøå, ÷åì ïðè øàðíèðíîì çàêðåïëåíèè. Àíàëèçèðóÿ ïîëó÷åííûå çàâèñèìîñòè, ðóññêèé èíæåíåð Ô.Ñ. ßñèíñêèé ïðåäëîæèë îáùóþ ôîðìóëó äëÿ ëþáîãî ñëó÷àÿ çàêðåïëåíèÿ 𝐹кр = 𝜋 2 · 𝐸 · 𝐽наим (𝜇 · 𝑙)2 ôîðìóëà ßñèíñêîãî. Çäåñü 𝜇 êîýôôèöèåíò ïðèâåäåíèÿ äëèíû, óêàçûâàþùèé, íà êàêîé äëèíå äàííîãî ñòåðæíÿ ðåàëèçóåòñÿ ñõåìà Ýéëåðà, 𝜇 · 𝑙 ïðèâåä¼ííàÿ äëèíà. Òîãäà: 1) äâà øàðíèðíî çàêðåïë¼ííûõ êîíöà 𝜇 = 1; 2) îäèí çàùåìë¼ííûé êîíåö 𝜇 = 2; 3) äâà çàùåìë¼ííûõ êîíöà 𝜇 = 0,5; 4) çàùåìë¼ííûé è øàðíèðíûé êîíöû 𝜇 = 0,7. Ôîðìóëà ßñèíñêîãî øèðîêî ïðèìåíÿåòñÿ äëÿ ðàñ÷¼òà êðèòè÷åñêèõ ñèë.  ñïðàâî÷íèêàõ ïðèâîäÿòñÿ çíà÷åíèÿ 𝜇 äëÿ ðàçëè÷íûõ ñïîñîáîâ çàêðåïëåíèÿ, ïðîìåæóòî÷íûõ îïîð, ñòåðæíåé ïåðåìåííîãî ñå÷åíèÿ è ò.ä. ГЛАВА 8. 8.3 УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 141 Пределы применимости формулы Эйлера. Полный график критических напряжений 𝜋2 · 𝐸 Çàïèøåì ôîðìóëó Ýéëåðà äëÿ êðèòè÷åñêèõ íàïðÿæåíèé: 𝜎кр = , 𝜆2 𝜇·𝑙 . ãäå 𝜆 = 𝑖 min Ýòó ôîðìóëó øèðîêî ïðèìåíÿëè ìîñòîñòðîèòåëè, íî áûâàëè ñëó÷àè, êîãäà âñ¼ - òàêè ñòåðæíè âûõîäèëè èç ñòðîÿ è ìîñòû ðàçðóøàëèñü. Òîãäà ôîðìóëó Ýéëåðà îòáðîñèëè, çàìåíèâ ìàññîé ýìïèðè÷åñêèõ ôîðìóë. Çàòåì ôîðìóëà Ýéëåðà áûëà ðåàáèëèòèðîâàíà. Îêàçàëîñü, ÷òî ó íåé åñòü ïðåäåëû ïðèìåíèìîñòè. Ïðè âûâîäå ôîðìóëû Ýéëåðà èñïîëüçîâàëîñü îáëåã÷¼ííîå äèôôåðåíöèàëüíîå óðàâíåíèå èçîãíóòîé îñè áàëêè 𝐸 · 𝐽 · 𝑦 ′′ = 𝑀 (𝑧), êîòîðîå ñïðàâåäëèâî òîëüêî äëÿ ëèíåéíî óïðóãèõ ñèñòåì, òî åñòü êîãäà ñïðàâåäëèâ çàêîí Ãóêà (𝜎 ≤ 𝜎п ). Ñëåäîâàòåëüíî, óñëîâèå ïðèìåíèìîñòè ôîðìóëû Ýéëåðà: 𝜎кр ≤ 𝜎п 𝜋2 · 𝐸 ≤ 𝜎п . Ðàçðåøèì îòíîñèòåëüíî 𝜆 èëè 𝜆2 √︃ 𝜋2 · 𝐸 𝜆≥ = 𝜆пред , 𝜎п ôîðìóëó Ýéëåðà ìîæíî ïðèìåíÿòü òîëüêî äëÿ äîñòàòî÷íî äëèííûõ ñòåðæíåé, ó êîòîðûõ 𝜆 ≥ 𝜆пред . Êàêèå æå ýòî ñòåðæíè? Ðàññìîòðèì √︂ ïðèìåð ñòåðæåíü èç ñòàëè 20: 𝜎п = 200 ÌÏà, 𝜆пред = √︂ 2 𝜋 ·𝐸 𝜋 2 · 2 · 105 = = 100. Èòàê äëÿ ñæàòîãî ñòåðæíÿ èç ñòàëè 20 𝜎п 200 ôîðìóëó Ýéëåðà ìîæíî ïðèìåíÿòü, åñëè 𝜆 ≥ 100. Êîíêðåòèçèðóåì ïóñòü øàðíèðíî îï¼ðòûé √︂ èìååò êðóãëîå √︂ ñòåðæåíü 𝐽𝑚𝑖𝑛 𝜋 · 𝑑4 · 4 𝑑 = ïîïåðå÷íîå ñå÷åíèå.  ýòîì ñëó÷àå 𝑖𝑚𝑖𝑛 = = ; 𝐴 64 · 𝜋 · 𝑑2 4 𝜇·𝑙 4·𝑙 𝜆 = = ≥ 100, îòñþäà 𝑙 ≥ 25 · 𝑑 òîëüêî â ýòîì ñëó÷àå äëÿ 𝑖𝑚𝑖𝑛 𝑑 ñòåðæíåé èç ñòàëè 20 ìîæíî ïðèìåíÿòü ôîðìóëó Ýéëåðà (ðèñ. 8.7). Äëÿ äåòàëåé ìàøèí ýòî óñëîâèå âûïîëíÿåòñÿ ðåäêî, ÷àùå îêàçûâàåò𝜋2 · 𝐸 ñÿ 𝜆 < 𝜆пред , òîãäà 𝜎кр < , ïîýòîìó áûëè ñëó÷àè ðàçðóøåíèÿ. 𝜆2 Ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé Ñ òî÷êè çðåíèÿ ïîòåðè óñòîé÷èâîñòè âñå ñæàòûå ñòåðæíè äåëÿòñÿ íà òðè ãðóïïû: ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 142 Ðèñ. 8.7. Ñòåðæåíü êðóãëîãî ñå÷åíèÿ ñ øàðíèðíûìè îïîðàìè 1 ãðóïïà. Ñòåðæíè áîëüøîé ãèáêîñòè Ê íèì îòíîñÿòñÿ ñòåðæíè, äëÿ êîòîðûõ 𝜆 ≥ 𝜆пред . Ïðè ñæàòèè îíè âûïó÷èâàþòñÿ, òåðÿþò óñòîé÷èâîñòü è êðèòè÷åñêîå íàïðÿæåíèå âû÷èñ𝜋2 · 𝐸 ëÿåòñÿ ïî ôîðìóëå Ýéëåðà: 𝜎кр = . Äëÿ ñòåðæíåé èç ñòàëè 20 ýòî 𝜆2 ñòåðæíè ó êîòîðûõ 𝜆 ≥ 100. 2 ãðóïïà. Ñòåðæíè ñðåäíåé ãèáêîñòè. Ê íèì îòíîñÿòñÿ ñòåðæíè, äëÿ êîòîðûõ 𝜆гр ≤ 𝜆 < 𝜆пред , ãäå 𝜆гр íèæíÿÿ ãðàíèöà ñòåðæíåé ñðåäíåé ãèáêîñòè, çàâèñÿùàÿ îò ìàòåðèàëà ñòåðæíÿ. Äëÿ ñòåðæíåé èç ñòàëè 20 𝜆гр = 40. Ñòåðæíè ñðåäíåé ãèáêîñòè âûïó÷èâàþòñÿ äîñòàòî÷íî áîëüøèìè ñè𝜋2 · 𝐸 , òàê êàê ïîòåðÿ óñòîé÷èâîñòè ïðîèñõîäèò ïðè ëàìè, íî 𝜎кр < 𝜆2 óïðóãî-ïëàñòè÷åñêîì èçãèáå (â êðàéíèõ âîëîêíàõ ïðîèñõîäÿò ïëàñòè÷åñêèå äåôîðìàöèè). ×àùå âñåãî 𝜆гр è 𝜎кр îïðåäåëÿþòñÿ îïûòíûì ïóò¼ì, íî â ïîñëåäíåå âðåìÿ ïîÿâèëèñü è àíàëèòè÷åñêèå ìåòîäû. 3 ãðóïïà. Ñòåðæíè ìàëîé ãèáêîñòè Ê íèì îòíîñÿòñÿ ñòåðæíè, äëÿ êîòîðûõ 𝜆 < 𝜆гр . Äëÿ ñòåðæíåé èç ñòàëè 20 ýòî ñòåðæíè, äëÿ êîòîðûõ 𝜆 < 40. Ïðè ñæàòèè ñòåðæíÿ âûïó÷èâàíèÿ íå íàáëþäàåòñÿ, íî ïðè íàïðÿæåíèÿõ, ðàâíûõ ïðåäåëó òåêó÷åñòè (ïëàñòè÷íûå ìàòåðèàëû) èëè ïðåäåëó ïðî÷íîñòè (õðóïêèå ìàòåðèàëû) íàáëþäàþòñÿ ÿâëåíèÿ, ôîðìàëüíî ïîõîæèå íà ïîòåðþ óñòîé÷èâîñòè âíåçàïíîå íàðàñòàíèå äåôîðìàöèé.  ýòîì ñëó÷àå 𝜎кр = 𝜎т èëè 𝜎кр = 𝜎в , õîòÿ íèêàêîãî âûïó÷èâàíèÿ è íå ïðîèñõîäèò. Ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé ðàññìîòðèì íà ïðèìåðå ñòåðæíåé èç ñòàëè 20, ó êîòîðîé 𝜎п = 200 ÌÏà, 𝜎т = 240 ÌÏà, ãðàíèöà ñòåðæíåé ìàëîé ãèáêîñòè 𝜆 = 40, ãðàíèöà ñòåðæíåé ñðåäíåé ãèáêîñòè 𝜆 = 100 (ðèñ. 8.8). Äëÿ ñòåðæíåé ñ ãèáêîñòüþ 100 𝜎кр = 200 ÌÏà. Ñ ðîñòîì ãèáêîñòè êðèòè÷åñêîå íàïðÿæåíèå óìåíüøàåòñÿ. Äëÿ ñòåðæíåé ìàëîé ãèáêîñòè 𝜎кр = 𝜎т = 240 ÌÏà. Äëÿ ñòåðæíåé ñðåäíåé ãèáêîñòè çàâèñèìîñòü êðèòè÷åñêîãî íàïðÿæåíèÿ îò ãèáêîñòè îïðåäåëÿþòñÿ ýêñïåðèìåíòàëüíî èëè òåîðåòè÷åñêè (Â.È. Ôåîäîñüåâ). Ãðàôèê çàâèñèìîñòè ïî÷òè ïðÿìàÿ. ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 143 Ðèñ. 8.8. Ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé äëÿ ñòåðæíåé èç ñòàëè 20 Ýòîò ãðàôèê äëÿ âñåãî äèàïàçîíà ñòåðæíåé íàçûâàåòñÿ ïîëíûì ãðàôèêîì êðèòè÷åñêèõ íàïðÿæåíèé. Åñëè çíà÷åíèå êðèòè÷åñêîãî íàïðÿæåíèÿ (𝜎кр ) âçÿòî ñ ïîëíîãî ãðàôèêà, òî çäåñü ó÷èòûâàåòñÿ íå òîëüêî ïîòåðÿ óñòîé÷èâîñòè êàê òàêîâàÿ, íî è îïàñíûå ñîñòîÿíèÿ äëÿ ñòåðæíÿ ëþáîé äëèíû. Ïîýòîìó, åñëè ïðè 𝜎кр , 𝜎кр âçÿòî ñ ïîëíîãî ãðàôèêà, òî ðàñ÷¼ò íóæâû÷èñëåíèè [𝜎]кр = 𝑛кр 𝐹 íî ïðîâåñòè òîëüêî ïî óñòîé÷èâîñòè: ≤ [𝜎]кр , à ïðîñòîå ñæàòèå óæå 𝐴 ó÷òåíî. Íåîáõîäèìî ñäåëàòü îãîâîðêó: ñêàçàííîå ñïðàâåäëèâî äëÿ ñòåðæíåé áåç ìåñòíûõ îñëàáëåíèé. 8.4 Расчёт сжатых стержней с помощью коэффициента снижения основного допускаемого напряжения Ýòî ïðàêòè÷åñêèé ìåòîä ðàñ÷¼òà. 𝜎𝐿 Âñïîìíèì. Äîïóñêàåìîå íàïðÿæåíèå íà ñæàòèå (îñíîâíîå): [𝜎]𝑐 = , 𝑛𝐿 ãäå 𝜎𝐿 = 𝜎т äëÿ ïëàñòè÷íûõ ìàòåðèàëîâ, 𝜎𝐿 = 𝜎в äëÿ õðóïêèõ ìàòåðèàëîâ. 𝜎кр Äîïóñêàåìîå íàïðÿæåíèå íà óñòîé÷èâîñòü: [𝜎]кр = . 𝑛кр Îáðàùàåì âíèìàíèå, ÷òî 𝑛кр > 𝑛т , ò. ê. ïîòåðÿ óñòîé÷èâîñòè ÿâëÿåòñÿ áîëåå ñëîæíîé äåôîðìàöèåé, ÷åì ñæàòèå, è ôîðìóëû ñîïðîòèâëåíèÿ ìàòåðèàëîâ çäåñü ìåíåå òî÷íû. Äëÿ ñòåðæíåé èç ïëàñòè÷íûõ ìàòåðèàëîâ 𝑛кр = 23 (𝑛т = 1,5). Äëÿ ñòåðæíåé èç õðóïêèõ ìàòåðèàëîâ 𝑛кр = ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 144 5, ò. ê. ó õðóïêèõ ìàòåðèàëîâ ïëàñòè÷åñêèõ äåôîðìàöèé ïðàêòè÷åñêè íå áûâàåò è, åñëè äîñòèãíóòî ïðåäåëüíîå ñîñòîÿíèå, òî ñòåðæåíü ñðàçó ðàçðóøàåòñÿ, à ó ïëàñòè÷íûõ ìàòåðèàëîâ ðàçðóøåíèå ïðîèñõîäèò ïðè çíà÷èòåëüíûõ ïëàñòè÷åñêèõ äåôîðìàöèÿõ. Ðàññìîòðèì îòíîøåíèå äîïóñêàåìûõ íàïðÿæåíèé [𝜎]кр = 𝜙; [𝜎]𝑐 [𝜎]кр = 𝜙 · [𝜎]𝑐 .  ñîîòâåòñòâèè ñ ýòîé ôîðìóëîé êîýôôèöèåíò 𝜙 íàçûâàåòñÿ êîýôôèöèåíòîì ñíèæåíèÿ îñíîâíîãî äîïóñêàåìîãî íàïðÿæåíèÿ. Îí ïîêàçûâàåò, êàê íóæíî ñíèçèòü îñíîâíîå äîïóñêàåìîå íàïðÿæåíèå, ÷òîáû ïîëó÷èòü äîïóñêàåìîå íàïðÿæåíèå íà óñòîé÷èâîñòü. 0 ≤ 𝜙 ≤ 1. Äëÿ î÷åíü äëèííûõ ñòåðæíåé 𝜙 → 0, à äëÿ âåñüìà êîðîòêèõ 𝜙 → 1. Äåéñòâèòåëüíî, åñëè ñòåðæåíü êîðîòêèé, òî çà ïðåäåëüíîå íàïðÿæåíèå ïðèíèìàåòñÿ ïðåäåë òåêó÷åñòè è ïîýòîìó 𝜙 = 1. Îò ÷åãî çàâèñèò 𝜙? Ïîäñòàâèì â ôîðìóëó äëÿ 𝜙 çíà÷åíèÿ äîïóñêàåìûõ íàïðÿæåíèé 𝜙= 𝜎кр 𝑛𝐿 · ; 𝜎𝐿 𝑛кр 𝜙 = 𝜙(ìàòåðèàë, 𝜆). Íàïðÿæåíèå 𝜎кр çàâèñèò îò ãèáêîñòè ñòåðæíÿ (ïî ãðàôèêó) è ìàòåðèàëà, ïðåäåëüíîå íàïðÿæåíèå 𝜎𝐿 è êîýôôèöèåíòû çàïàñà 𝑛кр è 𝑛т îò ìàòåðèàëà, òî åñòü 𝜙 çàâèñèò îò ãèáêîñòè è ìàòåðèàëà ñòåðæíÿ.  ñïðàâî÷íèêàõ ïðèâîäÿòñÿ òàáëèöû è ãðàôèêè çàâèñèìîñòè 𝜙 îò ãèáêîñòè è ìàòåðèàëà. Êàê ðåøàþòñÿ çàäà÷è ðàñ÷¼òà íà ïðî÷íîñòü ñ ó÷¼òîì ïîëó÷åííîé ôîðìóëû? 1. Ïðîâåðêà ïðî÷íîñòè. Ïðåæäå ÷åì ðåøàòü çàäà÷ó, ïîêàæåì ñòåðæåíü ñ ìåñòíûì îñëàáëåíèåì (ðèñ. 8.9). 𝐹 Òåïåðü áóäåì ðåøàòü çàäà÷ó ≤ 𝜙 · [𝜎]𝑐 åñëè íåò îñëàáëåíèÿ. 𝐴бр Åñëè åñòü îñëàáëåíèå, òî íóæíî ïðîâåðèòü åù¼ íà ñæàòèå â îñëàáëåííîì 𝐹 ñå÷åíèè ≤ [𝜎]𝑐 . 𝐴нетто Íåîáõîäèìî ïîä÷åðêíóòü, ÷òî ïðè ïðîâåðêå íà óñòîé÷èâîñòü ìåñòíîå îñëàáëåíèå íå ó÷èòûâàåòñÿ, òàê êàê îíî ïðàêòè÷åñêè íå âëèÿåò íà óñòîé÷èâîñòü ñòåðæíÿ. Ýòî âèäíî èç äèôôåðåíöèàëüíîãî óðàâíåíèÿ èçîãíóòîé îñè áàëêè: 𝐸 · 𝐽 · 𝑦 ′′ = 𝑀 , òàê êàê ìåñòíîå îñëàáëåíèå íàõîäèòñÿ íà íåáîëüøîé äëèíå, ïîýòîìó ïðè èíòåãðèðîâàíèè èçìåíåíèé ïðàêòè÷åñêè íå áóäåò. Íî îñëàáëåííîå ñå÷åíèå íóæíî ïðîâåðèòü íà ñæàòèå. ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 145 Ðèñ. 8.9. Ñòåðæåíü ñ ìåñòíûì îñëàáëåíèåì 2.Íàçíà÷åíèå ïîïåðå÷íîãî ñå÷åíèÿ ñæàòîãî ñòåðæíÿ. Ðàçðåøèì óñëîâèå óñòîé÷èâîñòè îòíîñèòåëüíî 𝐴бр 𝐴бр ≥ 𝐹 . 𝜙 · [𝜎]𝑐 Íà ïåðâûé âçãëÿä âñ¼ ïðîñòî, îäíàêî ýòî íå òàê. Êîýôôèöèåíò 𝜙 çàâèñèò îò 𝜆, à 𝜆 îò 𝑖𝑚𝑖𝑛 , â ñâîþ î÷åðåäü 𝑖𝑚𝑖𝑛 çàâèñèò îò ïëîùàäè ñå÷åíèÿ. Òàê ÷òî â ÿâíîì âèäå îòíîñèòåëüíî ïëîùàäè ýòî íåðàâåíñòâî íå ðàçðåøåíî, òàê êàê 𝜙 â çàâèñèìîñòè îò ïëîùàäè â àíàëèòè÷åñêîì âèäå íå ïðåäñòàâëÿåòñÿ (òîëüêî â ãðàôè÷åñêîì èëè òàáëè÷íîì âèäå), ïîýòîìó ïðè ðåøåíèè ïîëüçóþòñÿ ìåòîäîì ïîïûòîê. Äëÿ ïåðâîé ïîïûòêè èñïîëüçóåì ñðåäíåå çíà÷åíèå 𝜙 = 0,5 è èç óñëî𝐹 (1) , çàòåì âûÿñíèì, âèÿ óñòîé÷èâîñòè îïðåäåëèì ïëîùàäü 𝐴бр = 0, 5 · [𝜎]𝑐 âûïîëíÿåòñÿ ëè óñëîâèå óñòîé÷èâîñòè ïðè òàêîé ïëîùàäè? (1) (1) Íàõîäèì 𝐴бр ⇒ 𝑖𝑚𝑖𝑛 ⇒ 𝜆(1) ⇒ 𝜙(1) . Çäåñü 𝜙(1) äåéñòâèòåëüíîå çíà÷åíèå êîýôôèöèåíòà â ïåðâîé ïîïûòêå. 𝐹 Çàòåì ïðîâåðÿåì, âûïîëíÿåòñÿ ëè óñëîâèå óñòîé÷èâîñòè (1) ≤ 𝜙(1) · [𝜎]𝑐 . 𝐴бр Êàê ïðàâèëî îíî íå âûïîëíÿåòñÿ, ïîýòîìó äåëàåòñÿ âòîðàÿ ïîïûòêà. (Íóæíî ñòðåìèòüñÿ ê òîìó, ÷òîáû äåéñòâèòåëüíûå íàïðÿæåíèÿ ñðàâíÿëèñü ñ äîïóñêàåìûìè). (2) (2) Íàõîäèì 𝐴бр ⇒ 𝑖𝑚𝑖𝑛 ⇒ 𝜆(2) ⇒ 𝜙(2) è âíîâü îáðàùàåìñÿ ê óñëîâèþ 𝐹 óñòîé÷èâîñòè: (2) ≤ 𝜙(2) · [𝜎]𝑐 è òàê äàëåå äî òåõ ïîð, ïîêà óñëîâèå 𝐴бр óñòîé÷èâîñòè íå âûïîëíèòñÿ, òî åñòü ïîêà ðàçíèöà ìåæäó ïðàâîé è ëåâîé ÷àñòÿìè óñëîâèÿ óñòîé÷èâîñòè íå áóäåò ìåíåå 13%. Äîïóñòèì, ÷òî â (𝑛) ïîñëåäíåé ïîïûòêå ïîëó÷åíî çíà÷åíèå 𝐴бр , óäîâëåòâîëÿþùåå óñëîâèþ óñòîé÷èâîñòè. Îáû÷íî, ïîïûòîê áûâàåò íå áîëåå òð¼õ. ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 146 Åñëè ñòåðæåíü èìååò ìåñòíîå îñëàáëåíèå, òî íóæíî ïðîâåðèòü íà 𝐹 îáû÷íîå ñæàòèå â îñëàáëåííîì ñå÷åíèè: (𝑛) ≤ [𝜎]𝑐 , åñëè óñëîâèå 𝐴нетто âûïîëíÿåòñÿ, òî ðàñ÷¼ò îêîí÷åí. Åñëè æå íå âûïîëíÿåòñÿ, òî íóæíî íàçíà÷èòü ïëîùàäü èç ýòîãî óñëîâèÿ. Çäåñü ïëîùàäü 𝐴нетто ïðåäñòàâëåíà â ÿâíîì âèäå. 3. Îïðåäåëåíèå ãðóçîïîäú¼ìíîñòè. Ðàçðåøèì óñëîâèå óñòîé÷èâîñòè îòíîñòèåëüíî 𝐹 𝐹 ≤ 𝜙 · [𝜎]𝑐 · 𝐴бр , 𝐹 ≤ [𝜎]𝑐 · 𝐴нетто . Âñ¼, ÷òî â ïðàâîé ÷àñòè , èçâåñòíî, ïîýòîìó íåîáõîäèìî âû÷èñëèòü çíà÷åíèÿ ñèëû è âçÿòü ìǻíüøåå çíà÷åíèå, òîãäà áóäóò âûïîëíåíû óñëîâèÿ óñòîé÷èâîñòè è ïðî÷íîñòè. 8.5 Выбор формы поперечного сечения и материала сжатого стержня на основании экономических соображений Âíà÷àëå î âûáîðå ôîðìû. Çàäà÷ó ïîñòàâèì òàêèì îáðàçîì: ïëîùàäü ïîïåðå÷íîãî ñå÷åíèÿ ïîñòîÿííà. Òðåáóåòñÿ âûÿñíèòü, ïðè êàêîé ôîðìå ïîïåðå÷íîãî ñå÷åíèÿ êðèòè÷åñêàÿ ñèëà áóäåò íàèáîëüøåé? Èëè èíà÷å ïðè êàêîé ôîðìå ïîïåðå÷íîãî ñå÷åíèÿ ãðóçîïîäú¼ìíîñòü áóäåò íàèáîëüøåé? ×òîáû ðåøèòü ýòó çàäà÷ó, âñïîìíèì ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé (ðèñ. 8.10). Âèäèì, ÷òî êðèòè÷åñêîå íàïðÿæåíèå âîçðàñòàåò ïðè óìåíüøåíèè ãèáêîñòè, ò. å. íóæíî ïðèäàòü ïîïåðå÷íîìó ñå÷åíèþ òàêóþ ôîðìó, ÷òîáû ãèá𝜇·𝑙 , îòñþäà âèäíî, ÷òî íóæíî êîñòü áûëà êàê ìîæíî ìåíüøå, íî 𝜆 = 𝑖𝑚𝑖𝑛 √︂ 𝐽𝑚𝑖𝑛 óâåëè÷èâàòü ìèíèìàëüíûé ðàäèóñ èíåðöèè 𝑖𝑚𝑖𝑛 = , îòêóäà ñëåäó𝐴 åò, ÷òî íóæíî óâåëè÷èâàòü íàèìåíüøèé èç ìîìåíòîâ èíåðöèè ñå÷åíèÿ. Ñàìûé ëó÷øèé ñëó÷àé òîãäà, êîãäà 𝐽𝑚𝑖𝑛 = 𝐽𝑚𝑎𝑥 , òî åñòü ãëàâíûå öåíòðàëüíûå ìîìåíòû èíåðöèè äîëæíû áûòü îäèíàêîâûìè. ×òîáû ìîìåíòû èíåðöèè áûëè áîëüøå, íåîáõîäèìî ðàñïîëîæèòü ïëîùàäü ñå÷åíèÿ êàê ìîæíî äàëüøå ∫︀îò íà÷àëà êîîðäèíàò, ÷òî âèäíî èç ôîðìóëû äëÿ ìîìåíòà èíåðöèè 𝐽𝑥0 = 𝑦02 𝑑𝐴. 𝐴 Ýòèì óñëîâèÿì (ïåðâîå óñëîâèå óâåëè÷åíèå 𝐽𝑚𝑖𝑛 . âòîðîå 𝐽𝑚𝑖𝑛 = 𝐽𝑚𝑎𝑥 ) óäîâëåòâîðÿåò êîëüöåâîå ñå÷åíèå íàèáîëåå ýêîíîìè÷íîå ñå÷åíèå. ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 147 Ðèñ. 8.10. Ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé Îäíàêî óâëåêàòüñÿ ðàçíîñîì ïëîùàäè íåëüçÿ, ò. ê. ó òîíêîñòåííîé òðóáû ìîæåò ïðîèçîéòè ìåñòíàÿ ïîòåðÿ óñòîé÷èâîñòè çàäîëãî äî âûïó÷èâàíèÿ âñåãî ñòåðæíÿ. ×òîáû èçáåæàòü òàêîé ïîòåðè óñòîé÷èâîñòè, ïðèìåíÿþò êîëüöåâûå äèàôðàãìû (ð¼áðà æ¼ñòêîñòè) (ðèñ. 8.11). Ðèñ. 8.11. Ðàöèîíàëüíàÿ ôîðìà ïîïåðå÷íîãî ñå÷åíèÿ Î âûáîðå ìàòåðèàëà. Çäåñü íåîáõîäèìî ðàññìîòðåòü ðàçäåëüíî ñòåðæíè áîëüøîé ãèáêîñòè, ñòåðæíè ñðåäíåé è ìàëîé ãèáêîñòè. 1 Ñòåðæíè áîëüøîé ãèáêîñòè. 𝜋2 · 𝐸 . ÁóÊðèòè÷åñêîå íàïðÿæåíèå îïðåäåëÿåòñÿ ïî ôîðìóëå 𝜎кр = 𝜆2 äåì ðàññìàòðèâàòü íå âñå ìàòåðèàëû, à òîëüêî ñïëàâû íà îäíîé îñíîâå, íàïðèìåð, ñòàëè.  ñîîòâåòñòâèè ñ ôîðìóëîé ìàòåðèàë âëèÿåò íà óñòîé÷èâîñòü òîëüêî ÷åðåç ìîäóëü ïðîäîëüíîé óïðóãîñòè 𝐸 , à â ïðåäåëàõ îäíîãî ñïëàâà 𝐸 ïðàêòè÷åñêè íå èçìåíÿåòñÿ. Êàêèì ìàòåðèàëàì, â ýòîì ñëó÷àå, îòäàòü ïðåäïî÷òåíèå? Íàèáîëåå äåø¼âûì, íèçêîïðî÷íûì. Ïåðåõîä ê âûñîêîïðî÷íûì ìàòåðèàëàì íå îáåñïå÷èâàåò óâåëè÷åíèå êðèòè÷åñêîãî íàïðÿæåíèÿ, òàê êàê ìîäóëü óïðóãîñòè íå èçìåíÿåòñÿ. 2 Ñòåðæíè ñðåäíåé è ìàëîé ãèáêîñòè Çäåñü êðèòè÷åñêîå íàïðÿæåíèå çàâèñèò îò ïðåäåëà òåêó÷åñòè ìàòåðèàëà. ×åì âûøå ïðåäåë òåêó÷åñòè, òåì áîëüøå êðèòè÷åñêîå íàïðÿæåíèå, ïîýòîìó äëÿ ñòåðæíåé ñðåäíåé è ìàëîé ãèáêîñòè îïðàâäàíî ïðèìåíåíèå âûñîêîïðî÷íûõ ìàòåðèàëîâ, òàê êàê îíè èìåþò áîëåå âûñîêèå çíà÷åíèÿ ГЛАВА 8. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 148 ïðåäåëà òåêó÷åñòè.  çàêëþ÷åíèè. Óñòîé÷èâîñòü òåðÿþò íå òîëüêî ñæàòûå ñòåðæíè, íî è áàëêè ïðè èçãèáå.  áàëêàõ ñ óçêèì ïîïåðå÷íûì ñå÷åíèåì ïîòåðÿ óñòîé÷èâîñòè ïðîèñõîäèò â èçãèáíî-êðóòèëüíîé ôîðìå (ðèñ. 8.12). Ðèñ. 8.12. Ïîòåðÿ óñòîé÷èâîñòè áàëêè ñ óçêèì ïîïåðå÷íûì ñå÷åíèåì Óñòîé÷èâîñòü òåðÿþò òàêæå ñæàòûå òîíêîñòåííûå îáîëî÷êè. Íàïðèìåð, îáøèâêà êðûëà, ôþçåëÿæ ñàìîë¼òà ïîòåðÿëè áû óñòîé÷èâîñòü, åñëè áû îíè íå ïîäêðåïëÿëèñü ñòðèíãåðàìè, íåðâþðàìè, øïàíãîóòàìè. 8.6 Вопросы для самопроверки  ÷¼ì ñóòü ÿâëåíèÿ ïîòåðè óñòîé÷èâîñòè ñæàòîãî ñòåðæíÿ? ×òî òàêîå êðèòè÷åñêàÿ ñèëà è ïî êàêîé ôîðìóëå îíà îïðåäåëÿåòñÿ? Óêàæèòå ïðåäåëû ïðèìåíèìîñòè ôîðìóëû Ýéëåðà. ×òî òàêîå ãèáêîñòü ñòåðæíÿ? Êàê îïðåäåëÿåòñÿ êðèòè÷åñêîå íàïðÿæåíèå äëÿ ñòåðæíåé áîëüøîé, ñðåäíåé è ìàëîé ãèáêîñòè? Êàêîé âèä èìååò ïîëíûé ãðàôèê êðèòè÷åñêèõ íàïðÿæåíèé? Êàê âëèÿþò óñëîâèÿ çàêðåïëåíèÿ ñòåðæíÿ íà çíà÷åíèå êðèòè÷åñêîé ñèëû? Êàê ïðîèçâîäèòñÿ ïðîâåðêà ñòåðæíÿ íà óñòîé÷èâîñòü ñ ïîìîùüþ êîýôôèöèåíòà ñíèæåíèÿ îñíîâíîãî äîïóñêàåìîãî íàïðÿæåíèÿ?