ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ ГЕТЕРОСТРУКТУР Лекция 1 Maxwell’s Equations, Notations and Definitions (in cgs units) Maxwell’s microscopic equations: ∇ × E micro = − ∇ × H micro 1 ∂H micro c ∂t E micro = E micro (r, t ) 1 ∂E micro 4π = + j micro c ∂t c ∇ ⋅ E micro = 4πρ micro ∇ ⋅ H micro = 0 ∂ρ micro + ∇ ⋅ j micro = 0 ∂t The Lorentz force: The microscopic electric field strength: The microscopic magnetic field strength : H micro = H micro (r, t ) The microscopic electric charge density: ρ micro = ∑ qα δ (rα (t ) − r ) α The microscopic electric current density: j micro = ∑ v α (r )qα δ (rα (t ) − r ) α 1 ⎧ ⎫ Fα = qα ⎨E micro (rα , t ) + vα × H micro (rα , t )⎬ c ⎩ ⎭ From microscopic to macroscopic (averaging procedure) The macroscopic electric charge density: ρ (r, t ) + ρ ext (r, t ) ≡ 〈 ρ micro 〉 external charge density The macroscopic electric current density: j(r, t ) + jext (r, t ) ≡ 〈 jmicro 〉 external current density The macroscopic electric field strength: E(r, t ) ≡ 〈 E micro 〉 The magnetic induction: B(r, t ) ≡ 〈 H micro 〉 Maxwell’s macroscopic equations: microscopic: ∇ × E micro 1 ∂H micro =− c ∂t ∇ × H micro = 1 ∂E micro 4π + j micro c ∂t c macroscopic: averaging 1 ∂B c ∂t 1 ∂E 4π ∇×B = ( j + jext ) + c ∂t c ∇×E = − ∇ ⋅ E micro = 4πρ micro ∇ ⋅ E = 4π ( ρ + ρ ext ) ∇ ⋅ H micro = 0 ∇⋅B = 0 ∂ρ micro + ∇ ⋅ j micro = 0 ∂t ∂ρ +∇⋅j = 0 ∂t ∂ρ ext + ∇ ⋅ jext = 0 ∂t ρ ≡ −∇ ⋅ P Polarization and magnetization 1 ∂B c ∂t 1 ∂E 4π ∇×B = + ( j + jext ) c ∂t c ∇ ⋅ E = 4π ( ρ + ρ ext ) ∇×E = − ∇⋅B = 0 ∂ρ +∇⋅j = 0 ∂t ∂ρ ext + ∇ ⋅ jext = 0 ∂t polarization j≡ ∂P + c∇ × M ∂t magnetization ρ ≡ −∇ ⋅ P D ≡ E + 4π P ∇⋅B = 0 ∂ρ ext + ∇ ⋅ jext = 0 ∂t Constitutive equations: displacement H ≡ B − 4π M Constitutive equation: j = j(E, B ) 1 ∂B c ∂t 1 ∂D 4π ∇×H = j ext + c ∂t c ∇ ⋅ D = 4πρ ext ∇×E = − magnetic field strength D=ε E P=βE permittivity electric susceptibility B=μH M=χH permeability magnetic susceptibility On the physical meaning of the P and M fields. 1 1 3 PV ≡ ∫ rρ d r = − ∫ r (∇ ⋅ P) d 3r VV VV 1 1 1 1 ⎧ ∂P ⎫ 3 3 × = × MV ≡ r j d r r c M + ∇ × ⎨ ⎬d r ∫ ∫ V 2c V V 2c V ⎩ ∂t ⎭ (the problem 1) (the problem 2) 1 PV = ∫ P d 3r VV ∂P 3 1 1 1 3 MV = r × d r + M d r ∫ ∫ V 2c V ∂t VV ∂P c∇ × M >> ∂t 1 MV = ∫ M d 3r VV ∂P >> c∇ × M ∂t MV = ∂P 3 1 1 r × d r ∫ ∂t V 2c V Fig.1.1 Maxwell’s macroscopic equations in cgs units: 1 ∂B(r, t ) c ∂t 1 ∂D(r, t ) 4π ∇ × H(r , t ) = + jext (r, t ) c ∂t c ∇ × E(r, t ) = − ∂ρ ext (r, t ) + ∇i j ext (r, t ) = 0 ∂t ∂ρ (r, t ) + ∇i j ( r , t ) = 0 ∂t ∇iD(r, t ) = 4πρ ext (r, t ) ∇i B ( r , t ) = 0 , D(r, t ) ≡ E(r, t ) + 4π P(r, t ) PV ≡ 1 3 r ρ d r ∫ VV H(r, t ) ≡ B(r, t ) − 4π M(r, t ) MV ≡ 1 1 3 r × j d r ∫ V 2c V D = L̂ε E B = L̂μ H The inhomogeneous wave equations in the cgs units take the form: 1 ∂ 2E(r, t ) 4π ∂ ∇ × ∇ × E(r, t ) + 2 = − j tot (r, t ); 2 c ∂t c ∂t 1 ∂ 2B(r, t ) 4π ∇ × ∇ × B (r , t ) + 2 = ∇ × j tot (r, t ); 2 c ∂t c j tot (r, t ) = PV ≡ ∂ P( r , t ) + c∇ × M(r, t ) + j ext (r, t ) ∂t 1 3 r ρ d r ∫ VV MV ≡ 1 1 3 r × j d r ∫ V 2c V Maxwell’s Equations, Notations and Definitions (in SI units) Maxwell’s microscopic equations: ∂ B (r , t ) ∂t ∂ D(r , t ) ∇ × H(r , t ) = + j ext (r, t ) ∂t ∇ × E(r, t ) = − ∇iD(r, t ) = ρ ext (r, t ) H(r, t ) = μ0−1B(r, t ) − M(r, t ) MV ≡ 1 1 3 r × j d r ∫ V 2c V The electric constant: ε 0 = 8.85 ⋅ 10−12 [As / Vm] ∇i B ( r , t ) = 0 H ( r , t ) = μ B (r , t ) − M (r , t ) −1 0 ∂ ρ ext (r, t ) + ∇i j ext (r, t ) = 0 ∂t j (r , t ) = D(r, t ) = ε 0 E(r, t ) + P(r, t ) ∂ P( r , t ) + ∇ × M (r , t ) ∂t The Lorentz force: The magnetic constant: μ0 = 4 ⋅ 10−7 [Vs / Am] ε 0 ⋅ μ0 = 1 / c 2 ∂ ρ ( r , t ) + ∇i j ( r , t ) = 0 ∂t F(rα , t ) = qα ⋅ [ E(rα , t ) + vα × B(rα , t )] MV ≡ ⎧∂ P 1 ⎫ 3 11 11 11 1 1 ∂P 3 3 3 j d r r M d r r d r M d r r × = × + ∇ × = × + ⎨ ⎬ ∫ ∫ ∫ ∫ V 2V V 2 V ⎩ ∂ t μ0 V 2V V μ0 V ∂t ⎭ 1 ∂ 2E ∂ ∇ × ∇ × E + 2 2 = − μ0 j tot ; c ∂t ∂t MV = 1 1 ∂P 3 1 r× d r + ∫ M d 3r ∫ V 2c V ∂t VV 1 ∂ 2B ∇ × ∇ × B + 2 2 = μ0∇ × j tot ; c ∂t 1 ∂2H 1 ∇×∇× H + 2 = − c ∂ t2 μ0 j tot = ⎡ 1 ∂ 2M ⎤ + ∇ × ∇ × M ⎢ c2 ∂ t 2 ⎥ + ∇ × j tot ; ⎣ ⎦ ∂P 1 + ∇ × M + j ext ; ∂ t μ0 Maxwell’s macroscopic equations in cgs units: 1 ∂B(r, t ) ∇ × E(r, t ) = − c ∂t ∇ × B(r , t ) = , 1 ∂D(r, t ) 4π + jext (r, t ) c c ∂t ∇ ⋅ D(r, t ) = 4πρ ext (r, t ) ∇ ⋅ B(r , t ) = 0 D(r, t ) ≡ E(r, t ) + 4π P(r, t ) D = L̂ε E Spatial and frequency dispersion t Di (r, t ) = ∫ dt ' ∫ d 3r ' εˆij (r, r ' ; t , t ' ) E j (r ' , t ' ) −∞ If a medium is spatially homogeneous and uniform in time εˆij (r, r ' ; t , t ' ) = εˆij (r − r ' ; t − t ' ) For a complex valued monochromatic plane wave E j (r ' , t ' ) = E j (ω , k ) exp[i ( k ⋅ r '−ω t ' )] one obtains t Di (r, t ) = ∫ dt ' ∫ d 3r ' εˆij (r − r ' ; t − t ' ) E j (ω , k ) exp[i ( k ⋅ r '−ω t ' )] = −∞ t = ∫ dt ' ∫ d 3r ' εˆij (r − r ' ; t − t ' ) E j (ω , k ) exp{− i[( k ⋅ (r − r ' ) − ω (t − t ' )]}exp[i ( k ⋅ r − ω t )] = −∞ ⎛∞ ⎞ = ⎜ ∫ dτ ∫ d 3R εˆij ( R;τ ) exp{− i[( k ⋅ R − ωτ ]}⎟ E j (ω , k ) ⋅ exp[i ( k ⋅ r − ω t )] = ⎝0 ⎠ = Di (ω , k ) ⋅ exp[i ( k ⋅ r − ω t )] So, Di (r, t ) = Di (ω , k ) ⋅ exp[i ( k ⋅ r − ω t )] where Di (ω , k ) = ε ij (ω , k ) E j (ω , k ) ∞ with ε ij (ω, k ) ≡ ∫ dτ ∫ d 3R εˆij (R;τ ) exp[− i ( k ⋅ R − ωτ )] 0 General properties of ε ij (ω , k ) ∞ ε (ω, k ) = ∫ dτ ∫ d 3R εˆij ( R;τ ) exp[i ( k * ⋅ R − ω *τ )] = ε ij ( −ω * ,−k * ) * ij 0 According to the kinetic coefficient symmetry principle εˆij (r, r ' ; t , t ' ) = εˆij (r ' , r; t , t ' ) which yields for the ε ij (ω , k ) = ε ji (ω ,− k ) (ω, k ) space: If, due to some symmetry properties (for instance, inversion symmetry), ε ij (ω , k ) = ε ij (ω ,− k ) the medium is called non-gyrotropic. On the other hand, from the kinetic coefficient symmetry, ε ij (ω ,− k ) = ε ji (ω , k ) So, for non-gyrotropic media ε ij (ω , k ) = ε ji (ω , k ) Linear response and Kramers-Kronig relations. In the case of an isotropic medium: ε ij (ω , k ) = ε (ω , k )δ ij ∞ ε (ω, k ) = ∫ dτ ∫ d 3R εˆ( R;τ ) exp[− i ( k ⋅ R − ωτ )] 0 At ω = ω '+iω" : ∞ ε (ω, k ) = ∫ dτ ∫ d 3R εˆ( R;τ ) exp[− i ( k ⋅ R − ω 'τ )]⋅ exp( −ω" ) 0 I (ω , k ) = ε ( z, k ) − 1 ∫C z − ω dz z = ω '+iω" Fig.1.2 ε (ω ' , k ) − 1 dω ' = 0 ω '−ω −∞ +∞ I (ω, k ) = −iπ [ε (ω , k ) − 1] + P ∫ ε (ω, k ) − 1 = − ε (ω ' , k ) − 1 dω ' = 0 π −∞ ω '−ω i +∞ P∫ ε (ω, k ) = ε ' (ω, k ) + iε " (ω, k ) ε " (ω ' , k ) ε ' (ω, k ) − 1 = P ∫ dω ' π −∞ ω '−ω 1 ε " (ω, k ) = − +∞ ε ' (ω ' , k ) − 1 dω ' π −∞ ω '−ω 1 +∞ P∫ Taking into account the general relation ε ij* (ω, k ) = ε ij ( −ω * ,−k * ) we have for an isotropic medium ε * (ω , k ) = ε ( −ω * ,−k * ) On the other hand, from the kinetic coefficient symmetry principle, ε (ω , k ) = ε (ω ,− k ) So, for the real frequency ω and real wave vector k , the following relations are valid: ε * (ω , k ) = ε ( −ω ,−k ) and ε (ω , k ) = ε (ω ,− k ) ε * (ω , k ) = ε ( −ω , k ) which gives ε ' (ω, k ) − iε " (ω, k ) = ε ' ( −ω, k ) + iε " ( −ω, k ) ε ' (ω, k ) = ε ' ( −ω, k ) ε " (ω, k ) = −ε " ( −ω, k ) ε '(ω , k ) − 1 = ε "(ω , k ) = − 2 π 2ω π +∞ P∫ 0 +∞ P∫ 0 ω '⋅ ε "(ω ', k ) dω ' 2 2 ω' −ω ε '(ω ', k ) − 1 dω ' ω '2 − ω 2