ИНСТИТУТ УПРАВЛЕНИЯ, БИЗНЕСА И ПРАВА УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ЕН.Ф.01 «Математика» (индекс) (наименование) СПЕЦИАЛЬНОСТЬ(И) ПРИКЛАДНАЯ ИНФОРМАТИКА (В УПРАВЛЕНИИ) 080801.65 (шифр) (наименование) СПЕЦИАЛИЗАЦИЯ(И) IT-менеджмент (шифр) (наименование) ОБРАЗОВАТЕЛЬНЫЙ ПРОЕКТ Управления и информационных технологий КАФЕДРА «Информационные технологии» (код) (наименование) Ростов-на-Дону 2010 2 Автор рабочей программы Гурниковская Р.Ю (подпись) (Ф.И.О.) РАБОЧАЯ ПРОГРАММА СОСТАВЛЕНА НА ОСНОВАНИИ: 1. Государственного образовательного стандарта высшего профессионального образования 14.03.2000г (дата утверждения) 2. Типовой программы (дата утверждения) 3. Учебного плана ___01.07.2010 (дата утверждения) РАБОЧАЯ ПРОГРАММА ОБСУЖДАЛАСЬ И СОГЛАСОВАНА КАФЕДРОЙ: «Информационные технологии» (наименование) Строцев А.А. (подпись зав. каф) Протокол заседания кафедры № 1 от 30.08.2010 УМС по экономике и управлению (наименование) Протокол УМС № 1 Киянова Л.Д. (подпись председателя УМС) от …31.08.2010 (Ф.И.О.) (Ф.И.О.) 3 СОДЕРЖАНИЕ 1. Рабочая программа: 1.1 Цели и задачи изучения дисциплины 1.2 Требования к уровню освоению программы 1.3 Аудиторная работа 1.4 Самостоятельная работа 1.5 Темы курсовых работ и учебных проектов 1.6 Учебно-методическое обеспечение дисциплины 1.7 Информационное обеспечение дисциплины 2. Конспекты лекций 3. Практические занятия 3.1 Содержание практических работ 3.2 Содержание лабораторных работ 4. Самостоятельная работа студентов 4.1. Содержание самостоятельной работы 5. Контрольные работы 5.1 Методические рекомендации по выполнению и оформлению контрольных работ 5.2 Перечень рекомендуемой литературы 5.3 Темы (варианты) контрольных работ 6. Учебные проекты 6.1. Тематика учебных проектов 6.2. Методические рекомендации по выполнению, указания к оформлению 6.3. Перечень рекомендуемой литературы 7. Контроль 6.1. Тестовые задания 8. Контактная информация преподавателя 4 1. Рабочая программа 1.1.Цели и задачи дисциплины Цель преподавания дисциплины «Математика» состоит в приобретении студентами знаний по одной из дисциплин, являющейся фундаментом для дальнейшего обучения по естественнонаучному и информационному циклам. При изучении математики студенты должны не только приобрести навыки проведения аналитических расчетов, но и научиться безошибочно проводить логические рассуждения, без которых нельзя успешно заниматься ни научными исследованиями, ни практической деятельностью. Студенты также должны получить знания и представления об основных подходах к изучению и моделированию реальных явлений с помощью дискретных математических методов, которые используются в операционных системах современных ЭВМ, применяются для создания формальных грамматик в языках программирования, служат основой компьютерных алгоритмов для распознавания образов и формальной логики. Кроме того, студенты должны иметь представление об основных подходах к изучению количественных закономерностей явлений, носящих случайный характер, а также о методах, которые позволяют выявлять закономерности на фоне случайностей, делать обоснованные выводы и прогнозы, давать оценки вероятностей их выполнения или невыполнения. Студенты также должны получить знания и представления о потоках событий, которые повторяются многократно в системах производства, сервиса, управления, приема, переработки и передачи информации, телекоммуникаций, в автоматических линиях. Основные задачи. Студенты должны освоить основы линейной алгебры и аналитической геометрии, математического уравнений, дискретного анализа и пр. анализа, дифференциальных 5 1.2. Требования к уровню усвоения дисциплины В процессе изучения дисциплины студенты должны: знать и уметь использовать: - основные понятия и методы математического анализа, линейной алгебры, аналитической геометрии, дискретной математики, дифференциальных уравнений; методы теории вероятности и математической статистики; методы теории нечетких множеств, нечетких алгоритмов, элементы теории неопределенности; иметь опыт: - употребления математической символики для выражения количественных и качественных отношений объектов; - использования основных приемов обработки экспериментальных данных; - аналитического и численного решения алгебраических уравнений; - исследования, аналитического и численного решения обыкновенных дифференциальных уравнений; иметь представление: - о математике как особом способе познания мира, общности ее понятий и представлений; - о фундаментальном единстве наук, незавершенности естествознания и возможности его дальнейшего развития, применения новых математических методов, появляющихся в естественнонаучных исследованиях в предметной области. дисциплинах, в 6 1.3. Аудиторная работа Лекции № Тема занятия Кол-во часов Краткое содержание О З С ЛИНЕЙНАЯ АЛГЕБРА 1 2 3 4 5 МАТРИЦЫ И ОПЕРАЦИИ НАД МАТРИЦАМИ ОПРЕДЕЛИТЕЛИ И ИХ СВОЙСТВА ОБРАТНАЯ МАТРИЦА. РАНГ МАТРИЦЫ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ) МЕТОДЫ РЕШЕНИЯ СЛАУ ОДНОРОДНЫЕ СЛАУ. НЕОДНОРОДНЫЕ СЛАУ Основные матричные операции: сложение матриц, умножение матриц, умножение матриц на число. Транспонирование. Ортогональные матрицы. Вычисление степени матрицы. Некоторые специальные матрицы. Определители и их свойства Вычисление определителей. Решение системы линейных алгебраических уравнений по формулам Крамера. Вычисление обратной матрицы. Ранг матрицы, его свойства. Алгоритм вычисления ранга матрицы. Линейная комбинация строк матрицы. Связь ранга матрицы с линейной независимостью ее строк. Базисные строки матрицы Системы линейных алгебраических уравнений. Матричная форма записи линейных систем. Решение матричных уравнений. Решение линейной системы методом Гаусса. Решение системы линейных алгебраических уравнений методом простых итераций. Общая теория линейных систем Общая теория линейных систем Однородные системы линейных алгебраических уравнений. Неоднородные системы линейных алгебраических уравнений. 1 2 0,5 1 1 0,5 1 1 2 3 0,5 2 2 0,5 7 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 6 7 8 УРАВНЕНИЕ НА ПЛОСКОСТИ ПРЯМАЯ В ПЛОСКОСТИ И ПРОСТРАНСТВЕ КРИВЫЕ ВТОРОГО ПОРЯДКА Линии на плоскости. Различные 2 виды уравнений прямой на плоскости. Взаимное расположение прямых. Расстояние от точки до прямой. Понятие об уравнении линии и 1 прямой в пространстве. Общее уравнение плоскости. Нормальный вектор плоскости. Каноническое уравнение прямой в пространстве. Общее уравнение прямой в пространстве. Выпуклые множества, их свойства. 2 Кривые второго порядка: 2 окружность, эллипс, гипербола, парабола. Определение, вывод уравнений, исследование формы. Эти кривые как конические сечения. 2 2 АЛГЕБРА И ГЕОМЕТРИЯ 9 АЛГЕБРАИЧЕСКИЕ СТРУКТУРЫ 10 ВЕКТОРНЫЕ ПРОСТРАНСТВА 11 12 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ МНОГОМЕРНАЯ ГЕОМЕТРИЯ КРИВЫХ И ПОВЕРХНОСТЕЙ Понятие алгебраической структуры. 1 Группа. Кольцо. Область целостности. 1 1 1 Конечномерные векторные пространства. Понятие нормы. Понятие линейного (векторного) 1 пространства. Базис и размерность пространства. Координаты вектора в базисе. Евклидовы пространства. Неравенство Коши-Буняковского. Линейные операторы и их матрицы. Собственные векторы и собственные значения линейных операторов. Понятие кривой. Касательная к 1 кривой. Нормальная плоскость. Соприкасающаяся плоскость. Спрямляющая плоскость. Главная нормаль. Бинормаль. Длина дуги кривой. Естественная параметризация. Кривизна кривой. Кручение кривой. Понятие 1 1 0,5 8 поверхности. Касательная плоскость и нормаль поверхности. Первая квадратичная форма поверхности. Длина дуги кривой на поверхности. Угол между кривыми на поверхности. Площадь поверхности. Вторая квадратичная форма поверхности. Кривизна кривой на поверхности. ДИСКРЕТНАЯ МАТЕМАТИКА: ЛОГИЧЕСКОЕ ИСЧИСЛЕНИЕ , ГРАФЫ, КОМБИНАТОРИКА. ЭЛЕМЕНТЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ. НЕЧЕТКИЕ АЛГОРИТМЫ. ТЕОРИЯ НЕОПРЕДЕЛЕННОСТИ 13 14 15 16 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ ЭЛЕМЕНТЫ КОМБИНАТОРИКИ ЭЛЕМЕНТЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ. . НЕЧЕТКИЕ АЛГОРИТМЫ. ТЕОРИЯ НЕОПРЕДЕЛЕННОСТИ. Множества. Универсальное множество. Операции дополнения, пересечения и объединения над множествами и их свойства. Элементы алгебры логики высказываний. Алгебра высказываний. Операции над высказываниями. Формулы. Таблица истинности формулы. Число перестановок из n элементов. Число размещений из n элементов по m. Число сочетаний из n элементов по m. Примеры применения. Бином Ньютона. Введение в теорию нечетких множеств и нечеткой логики. Анализ неопределенности, основанный на понятиях нечетких множеств. Теория нечетких множеств как теория неопределенности и задачи принятия решений в нечетком эксперименте. 2 3 0,5 2 3 0,5 2 3 0,5 1 1 МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ, ЭКСТРЕМУМЫ ФУНКЦИЙ 9 17 18 Функция. Функции: основные 2 понятия и определения. Способы задания и свойства функции. Непрерывность функции. Точки разрыва. Предел функции. Свойства пределов. Замечательные пределы. Предел функции. Свойства пределов. Бесконечно малые и бесконечно большие величины. Непрерывность функции. Свойства непрерывных функций. Производная функции. Геометрический и физический смысл производной. Производные ФУНКЦИИ ОДНОЙ первого порядка. Приложения ПЕРЕМЕННОЙ. дифференциального исчисления Дифференциальное и Правила и формулы интегральное исчисление. ФОП. дифференцирования. Основные Экстремумы функций. теоремы дифференциального исчисления. Исследование функции и построение графика. Дифференциал функции и его приложение к приближенному вычислению значения функции. Экстремум функций одной переменной. Основные методы интегрирования. Неопределенный интеграл. Методы вычисления. Неопределенный интеграл. Методы вычисления. Определенный интеграл и его приложения. Функции нескольких переменных 1 (ФНП). Предел и непрерывность функции нескольких переменных. Дифференциальное исчисление ФУНКЦИИ НЕСКОЛЬКИХ ФНП. Производная и дифференциал функции нескольких переменных. ПЕРЕМЕННЫХ Экстремум функции нескольких переменных. Достаточные условия экстремума функции двух переменных. 2 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 19 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Типы дифференциальных 1 уравнений. Дифференциальные уравнения первого порядка. Дифференциальные уравнения высших порядков. Линейные 2 10 дифференциальные порядка. уравнения 2 ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ 20 Числовые последовательности. 1 Предел числовой последовательности. Числовые ПОСЛЕДОВАТЕЛЬНОСТИ ряды. Сходимость числовых рядов. И РЯДЫ Степенные ряды. Область сходимости степенного ряда. Ряды Тейлора (Маклорена). 2 ЧИСЛЕННЫЕ МЕТОДЫ 21 ЧИСЛЕННЫЕ МЕТОДЫ Численные методы анализа. 1 Численные методы решения дифференциальных уравнений. Численное дифференцирование и интегрирование. Интерполирование функций: интерполяционный многочлен Лагранжа. 2 ВЕКТОРНЫЙ АНАЛИЗ И ЭЛЕМЕНТЫТЕОРИИ ПОЛЯ 22 ЭЛЕМЕНТЫ ВЕКТОРНОГО АНАЛИЗА И ТЕОРИИ ПОЛЯ 1 Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей. ВСЕГО: 30 1 40 4 Практические занятия № Тема занятия Краткое содержание Кол-во часов О ЛИНЕЙНАЯ АЛГЕБРА З С 11 1 2 3 4 МАТРИЦЫ И ОПЕРАЦИИ НАД МАТРИЦАМИ ОПРЕДЕЛИТЕЛИ И ИХ СВОЙСТВА ОБРАТНАЯ МАТРИЦА. РАНГ МАТРИЦЫ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ) МЕТОДЫ РЕШЕНИЯ СЛАУ Основные матричные операции: 2 сложение матриц, умножение матриц, умножение матриц на число. Транспонирование. Определители и их свойства 2 Вычисление определителей. Решение системы линейных алгебраических уравнений по формулам Крамера. 1 0,5 1 0,5 2 1 0,5 6 1 0,5 Линии на плоскости. Различные 4 виды уравнений прямой на плоскости. Взаимное расположение прямых. Расстояние от точки до прямой. Понятие об уравнении линии и 6 прямой в пространстве. Общее уравнение плоскости. Нормальный вектор плоскости. Каноническое уравнение прямой в пространстве. Общее уравнение прямой в пространстве. 2 0,5 2 0,5 порядка: 2 гипербола, 2 Вычисление обратной матрицы. Ранг матрицы, его свойства. Алгоритм вычисления ранга матрицы. Системы линейных алгебраических уравнений. Матричная форма записи линейных систем. Решение матричных уравнений. Решение линейной системы методом Гаусса. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 5 УРАВНЕНИЕ НА ПЛОСКОСТИ 6 ПРЯМАЯ В ПЛОСКОСТИ И ПРОСТРАНСТВЕ 7 КРИВЫЕ ВТОРОГО ПОРЯДКА Кривые второго окружность, эллипс, парабола. ДИСКРЕТНАЯ МАТЕМАТИКА: ЛОГИЧЕСКОЕ ИСЧИСЛЕНИЕ , ГРАФЫ, КОМБИНАТОРИКА. ЭЛЕМЕНТЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ. НЕЧЕТКИЕ АЛГОРИТМЫ. ТЕОРИЯ НЕОПРЕДЕЛЕННОСТИ. 8 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ Множества. Универсальное 6 множество. Операции дополнения, пересечения и объединения над множествами и их свойства. 2 0,5 12 9 10 ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ ЭЛЕМЕНТЫ КОМБИНАТОРИКИ Элементы алгебры логики 6 высказываний. Алгебра высказываний. Операции над высказываниями. Формулы. Таблица истинности формулы. Число перестановок из n элементов. 6 Число размещений из n элементов по m. Число сочетаний из n элементов по m. Примеры применения. Бином Ньютона. 2 0,5 2 0,5 МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ, ЭКСТРЕМУМЫ ФУНКЦИЙ 11 ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. Дифференциальное и интегральное исчисление. Экстремумы функций. Функции: основные понятия и 8 определения. Способы задания и свойства функции. Непрерывность функции. Точки разрыва. Предел функции. Свойства пределов. Замечательные пределы. Предел функции. Свойства пределов. Бесконечно малые и бесконечно большие величины. Непрерывность функции. Свойства непрерывных функций. Производная функции. Геометрический и физический смысл производной. Производные первого порядка. Приложения дифференциального исчисления ФОП. Правила и формулы дифференцирования. Основные теоремы дифференциального исчисления. Исследование функции и построение графика. Дифференциал функции и его приложение к приближенному вычислению значения функции. Экстремум функций одной переменной. Основные методы интегрирования. Неопределенный интеграл. Методы вычисления. Неопределенный интеграл. Методы вычисления. Определенный интеграл и его приложения. 2 0,5 13 12 Функции нескольких переменных 5 (ФНП). Предел и непрерывность функции нескольких переменных. Дифференциальное исчисление ФУНКЦИИ НЕСКОЛЬКИХ ФНП. Производная и дифференциал функции нескольких переменных. ПЕРЕМЕННЫХ Экстремум функции нескольких переменных. Достаточные условия экстремума функции двух переменных. 2 0,5 4 0,5 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 13 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Типы дифференциальных 10 уравнений. Дифференциальные уравнения первого порядка. Дифференциальные уравнения высших порядков. Линейные дифференциальные уравнения 2 порядка. ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ 14 Числовые последовательности. 10 Предел числовой Числовые ПОСЛЕДОВАТЕЛЬНОСТИ последовательности. ряды. Сходимость числовых рядов. И РЯДЫ Степенные ряды. Область сходимости степенного ряда. 4 ЧИСЛЕННЫЕ МЕТОДЫ 15 ЧИСЛЕННЫЕ МЕТОДЫ Численные методы анализа. 2 Численные методы решения дифференциальных уравнений. Численное дифференцирование и интегрирование. Интерполирование функций: интерполяционный многочлен Лагранжа. 1 ВЕКТОРНЫЙ АНАЛИЗ И ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ 16 ЭЛЕМЕНТЫ ВЕКТОРНОГО АНАЛИЗА И ТЕОРИИ ПОЛЯ 1 Основные понятия 1 14 ВСЕГО: 78 30 6 Лабораторные занятия № Краткое содержание Тема занятия Кол-во часов О З С ЛИНЕЙНАЯ АЛГЕБРА 4 1 2 МАТРИЦЫ И ОПЕРАЦИИ НАД МАТРИЦАМИ ОПРЕДЕЛИТЕЛИ И ИХ СВОЙСТВА 3 ОБРАТНАЯ МАТРИЦА. РАНГ МАТРИЦЫ 4 СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ) МЕТОДЫ РЕШЕНИЯ СЛАУ Основные матричные операции: сложение матриц, умножение матриц, умножение матриц на число. Транспонирование. Вычисление степени матрицы. Определители и их свойства 2 Вычисление определителей. Решение системы линейных алгебраических уравнений по формулам Крамера. Вычисление обратной матрицы. 1 Ранг матрицы, его свойства. Алгоритм вычисления ранга матрицы. Решение линейной системы 4 методом Гаусса. Решение системы линейных алгебраических уравнений методом простых итераций. 1 0,5 1 0,5 1 0,5 1 0,5 ДИСКРЕТНАЯ МАТЕМАТИКА: ЛОГИЧЕСКОЕ ИСЧИСЛЕНИЕ , ГРАФЫ, КОМБИНАТОРИКА. ЭЛЕМЕНТЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ. НЕЧЕТКИЕ АЛГОРИТМЫ. ТЕОРИЯ НЕОПРЕДЕЛЕННОСТИ. 5 6 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ Множества. Универсальное 3 множество. Операции дополнения, пересечения и объединения над множествами и их свойства. Элементы алгебры логики 2 высказываний. Алгебра высказываний. Операции над высказываниями. Формулы. Таблица истинности формулы. 1 0.5 1 0.5 15 ЭЛЕМЕНТЫ КОМБИНАТОРИКИ 7 Число перестановок из n элементов. 2 Число размещений из n элементов по m. Число сочетаний из n элементов по m. Примеры применения. Бином Ньютона. 1 0.5 МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ, ЭКСТРЕМУМЫ ФУНКЦИЙ Предел функции. Свойства 1 пределов. Бесконечно малые и бесконечно большие величины. Непрерывность функции. Свойства непрерывных функций. Производная функции. ФУНКЦИИ ОДНОЙ Производные первого порядка. ПЕРЕМЕННОЙ. 8 Приложения дифференциального Дифференциальное и ФОП. Экстремум интегральное исчисление. исчисления функций одной переменной. Экстремумы функций. Неопределенный интеграл. Методы вычисления. Неопределенный интеграл. Методы вычисления. Определенный интеграл и его приложения. Функции нескольких переменных 1 (ФНП). Предел и непрерывность функции нескольких переменных. Дифференциальное исчисление ФУНКЦИИ НЕСКОЛЬКИХ ФНП. Производная и дифференциал функции нескольких переменных. ПЕРЕМЕННЫХ Экстремум функции нескольких переменных. Достаточные условия экстремума функции двух переменных. 16 0.5 0.5 0.5 0.5 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 18 Дифференциальные уравнения 2 первого порядка. Дифференциальные уравнения высших порядков. Линейные дифференциальные уравнения 2 порядка. 1 0.5 ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ 19 ПОСЛЕДОВАТЕЛЬНОСТИ Числовые Предел И РЯДЫ последовательности. 1 числовой 0.5 0.5 16 последовательности. Числовые ряды. Сходимость числовых рядов. Степенные ряды. Область сходимости степенного ряда. ЧИСЛЕННЫЕ МЕТОДЫ ЧИСЛЕННЫЕ МЕТОДЫ 20 Численные методы анализа. 1 Численные методы решения дифференциальных уравнений. Численное дифференцирование и интегрирование. Интерполирование функций: интерполяционный многочлен Лагранжа. ВСЕГО: 24 0.5 0.5 10 4 17 1.4. Самостоятельная работа № Тема занятия Кол-во часов Краткое содержание О З С ЛИНЕЙНАЯ АЛГЕБРА 1 2 3 4 5 МАТРИЦЫ И ОПЕРАЦИИ НАД МАТРИЦАМИ ОПРЕДЕЛИТЕЛИ И ИХ СВОЙСТВА ОБРАТНАЯ МАТРИЦА. РАНГ МАТРИЦЫ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ) МЕТОДЫ РЕШЕНИЯ СЛАУ ОДНОРОДНЫЕ СЛАУ. НЕОДНОРОДНЫЕ СЛАУ Основные матричные операции: сложение матриц, умножение матриц, умножение матриц на число. Транспонирование. Ортогональные матрицы. Вычисление степени матрицы. Некоторые специальные матрицы. Определители и их свойства Вычисление определителей. Решение системы линейных алгебраических уравнений по формулам Крамера. Вычисление обратной матрицы. Ранг матрицы, его свойства. Алгоритм вычисления ранга матрицы. Линейная комбинация строк матрицы. Связь ранга матрицы с линейной независимостью ее строк. Базисные строки матрицы Системы линейных алгебраических уравнений. Матричная форма записи линейных систем. Решение матричных уравнений. Решение линейной системы методом Гаусса. Решение системы линейных алгебраических уравнений методом простых итераций. Общая теория линейных систем Общая теория линейных систем Однородные системы линейных алгебраических уравнений. Неоднородные системы линейных алгебраических уравнений. 1 1 11 1 1 11 2 2 12 2 2 12 2 2 12 18 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 6 7 8 УРАВНЕНИЕ НА ПЛОСКОСТИ ПРЯМАЯ В ПЛОСКОСТИ И ПРОСТРАНСТВЕ КРИВЫЕ ВТОРОГО ПОРЯДКА Линии на плоскости. Различные 10 виды уравнений прямой на плоскости. Взаимное расположение прямых. Расстояние от точки до прямой. Понятие об уравнении линии и 6 прямой в пространстве. Общее уравнение плоскости. Нормальный вектор плоскости. Каноническое уравнение прямой в пространстве. Общее уравнение прямой в пространстве. Выпуклые множества, их свойства. 10 10 6 16 Кривые второго порядка: 4 окружность, эллипс, гипербола, парабола. Определение, вывод уравнений, исследование формы. Эти кривые как конические сечения. 4 10 Понятие алгебраической структуры. 4 Группа. Кольцо. Область целостности. 4 4 2 2 2 4 4 10 10 АЛГЕБРА И ГЕОМЕТРИЯ 9 АЛГЕБРАИЧЕСКИЕ СТРУКТУРЫ 10 ВЕКТОРНЫЕ ПРОСТРАНСТВА 11 12 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ МНОГОМЕРНАЯ ГЕОМЕТРИЯ КРИВЫХ И ПОВЕРХНОСТЕЙ Конечномерные векторные пространства. Понятие нормы. Понятие линейного (векторного) 4 пространства. Базис и размерность пространства. Координаты вектора в базисе. Евклидовы пространства. Неравенство Коши-Буняковского. Линейные операторы и их матрицы. Собственные векторы и собственные значения линейных операторов. Понятие кривой. Касательная к 10 кривой. Нормальная плоскость. Соприкасающаяся плоскость. Спрямляющая плоскость. Главная нормаль. Бинормаль. Длина дуги кривой. Естественная параметризация. Кривизна кривой. Кручение кривой. Понятие 19 поверхности. Касательная плоскость и нормаль поверхности. Первая квадратичная форма поверхности. Длина дуги кривой на поверхности. Угол между кривыми на поверхности. Площадь поверхности. Вторая квадратичная форма поверхности. Кривизна кривой на поверхности. ДИСКРЕТНАЯ МАТЕМАТИКА: ЛОГИЧЕСКОЕ ИСЧИСЛЕНИЕ , ГРАФЫ, КОМБИНАТОРИКА. ЭЛЕМЕНТЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ. НЕЧЕТКИЕ АЛГОРИТМЫ. ТЕОРИЯ НЕОПРЕДЕЛЕННОСТИ 13 14 15 16 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ ЭЛЕМЕНТЫ АЛГЕБРЫ ЛОГИКИ ЭЛЕМЕНТЫ КОМБИНАТОРИКИ ЭЛЕМЕНТЫ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ. . НЕЧЕТКИЕ АЛГОРИТМЫ. ТЕОРИЯ НЕОПРЕДЕЛЕННОСТИ. Множества. Универсальное множество. Операции дополнения, пересечения и объединения над множествами и их свойства. Элементы алгебры логики высказываний. Алгебра высказываний. Операции над высказываниями. Формулы. Таблица истинности формулы. Число перестановок из n элементов. Число размещений из n элементов по m. Число сочетаний из n элементов по m. Примеры применения. Бином Ньютона. Введение в теорию нечетких множеств и нечеткой логики. Анализ неопределенности, основанный на понятиях нечетких множеств. Теория нечетких множеств как теория неопределенности и задачи принятия решений в нечетком эксперименте. 20 20 20 20 20 20 20 22 22 20 30 30 МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЯ, ЭКСТРЕМУМЫ ФУНКЦИЙ 20 17 18 Функция. Функции: основные 10 понятия и определения. Способы задания и свойства функции. Непрерывность функции. Точки разрыва. Предел функции. Свойства пределов. Замечательные пределы. Предел функции. Свойства пределов. Бесконечно малые и бесконечно большие величины. Непрерывность функции. Свойства непрерывных функций. Производная функции. Геометрический и физический смысл производной. Производные ФУНКЦИИ ОДНОЙ первого порядка. Приложения ПЕРЕМЕННОЙ. дифференциального исчисления Дифференциальное и Правила и формулы интегральное исчисление. ФОП. дифференцирования. Основные Экстремумы функций. теоремы дифференциального исчисления. Исследование функции и построение графика. Дифференциал функции и его приложение к приближенному вычислению значения функции. Экстремум функций одной переменной. Основные методы интегрирования. Неопределенный интеграл. Методы вычисления. Неопределенный интеграл. Методы вычисления. Определенный интеграл и его приложения. Функции нескольких переменных 10 (ФНП). Предел и непрерывность функции нескольких переменных. Дифференциальное исчисление ФУНКЦИИ НЕСКОЛЬКИХ ФНП. Производная и дифференциал функции нескольких переменных. ПЕРЕМЕННЫХ Экстремум функции нескольких переменных. Достаточные условия экстремума функции двух переменных. 10 10 10 10 20 10 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 19 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Типы дифференциальных 10 уравнений. Дифференциальные уравнения первого порядка. Дифференциальные уравнения высших порядков. Линейные 21 дифференциальные порядка. уравнения 2 ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ 20 Числовые последовательности. 20 Предел числовой последовательности. Числовые ПОСЛЕДОВАТЕЛЬНОСТИ ряды. Сходимость числовых рядов. И РЯДЫ Степенные ряды. Область сходимости степенного ряда. Ряды Тейлора (Маклорена). 30 30 ЧИСЛЕННЫЕ МЕТОДЫ 21 ЧИСЛЕННЫЕ МЕТОДЫ Численные методы анализа. 30 Численные методы решения дифференциальных уравнений. Численное дифференцирование и интегрирование. Интерполирование функций: интерполяционный многочлен Лагранжа. 40 40 ВЕКТОРНЫЙ АНАЛИЗ И ЭЛЕМЕНТЫТЕОРИИ ПОЛЯ 22 1.5. ЭЛЕМЕНТЫ ВЕКТОРНОГО АНАЛИЗА И ТЕОРИИ ПОЛЯ 10 20 20 Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей. ВСЕГО: 218 270 336 Темы учебных проектов Дополнительным критерием усвоения дисциплины «Математика» является выполнение учебного проекта по темам: 1) 2) 3) 4) 5) Вся математика в среде популярных математических пакетов Природа математических абстракций Содержание и значение математической символики Счётные множества Системы уравнений межотраслевого баланса 22 6) Отношение сознания к материи: математика и объективная реальность 7) Поверхности второго порядка 8) Замечательные кривые в математике 9) Моделирование экономических систем 10) Математические модели и методы их расчета 11) История становления и развития математического моделирования 12) Математическое моделирование как философская проблема 13) Об основаниях теории множеств 14) Математика и проблема адекватного описания реальности 15) Математика и математическое образование в современном мире 1.6. Учебно- методическое обеспечение дисциплины Основная литература Перечень литературы 1. Кремер Н. Ш. Высшая математика для экономистов : учебник для вузов / Н.Ш. Кремер - Москва : ЮНИТИ, 2008. 479 c. 2. Данко П.Е. Высшая математика в упражнениях и задачах. В 2 ч. : учебное пособие для вузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова, С.П. Данко - Москва : ОНИКС, 2008. 368 c. 3. Соболь Б.В. Практикум по высшей математики : учебная книга / Б.В. Соболь, Н.Т. Мишняков, В.М. Поркшеян - Ростов-на-Дону : Феникс, 2007. 630 c. Дополнительная литература Перечень литературы 1. Виленкин И.В. Высшая математика для студентов экономических, технических, естественно-научных специальностей вузов : пособие / И.В. Виленкин, В.М. Гробер - Ростов-на-Дону : Феникс, 2008. 414 c. 2. Воронов М.В. Высшая математика для экономистов и менеджеров : учебное пособие / М.В. Воронов, Г.П. Мещеряков - Ростов-на-Дону : Феникс, 2004. 288 c. 3. Красс М. С. Математика для экономистов : учебное пособие / М.С. Красс, Б.П. Чупрынов - Санкт-Петербург : Питер, 2009. 464 c. 4. Кремер Н. Ш. Высшая математика для экономистов : учебник для вузов / Н.Ш. Кремер - Москва : ЮНИТИ, 2008. 479 c. 5. Макаров С.И. Математика для экономистов : учебное пособие / С.И. Макаров - Москва : КноРус, 2007. 264 c. 6. Самаров К.Л. Финансовая математика: практический курс : учебное 23 пособие 1.7. / К.Л. Самаров - Москва : Альфа-м, 2005. 80 c. Информационно- методическое обеспечение № п/п Перечень 1. MathCad 2001 Professional 2. WWW.EXPONENTA.RU 3. ЭУМК «Математика»/ СДО Прометей 4. Математические web-сервисы. http://www.mathelp.spb.ru/solver.htm 2. Конспекты лекций ЛИНЕЙНАЯ АЛГЕБРА Основные определения ~ Линейные операции ~ Произведение матриц ~ Единичная, скалярная матрицы ~ Возведение матрицы в степень ~ Транспонирование матрицы ~ Обратная матрица ~ Ортогональная матрица Матрицей размерности m x n называется прямоугольная таблица m x n чисел a ij , i=1,..., m, j=1,..., n: расположенных в m строках и n столбцах. Матрица называется квадратной, если m=n (n - порядок матрицы). Линейные матричные операции По определению, чтобы умножить матрицу на число, нужно умножить на это число все элементы матрицы. Суммой двух матриц одинаковой размерности, называется матрица той же размерности, каждый элемент которой равен сумме соответствующих элементов слагаемых. 24 Произведение матриц определяется следующим образом. Пусть заданы две матрицы A и B, причем число столбцов первой из них равно числу строк второй. Если , , то произведением матриц A и B, называется матрица , элементы которой вычисляются по формуле c ij =a i1 b 1j + a i2 b 2j + ... +a in b nj , i=1, ..., m, j=1, ..., k. Произведение матриц A и B обозначается AB, т.е. C=AB. ПРИМЕР 1. Действия с матрицами Произведение матриц, вообще говоря, зависит от порядка сомножителей. Если AB=BA, то матрицы A и B называются перестановочными. ПРИМЕР 2. Проверка перестановочности матриц. Для квадратных матриц определена единичная матрица - квадратная матрица, все диагональные элементы которой единицы, а остальные - нули: Единичная матрица чаще всего обозначается буквой E или E n, где n - порядок матрицы. Непосредственным вычислением легко проверить основное свойство единичной матрицы: AE=EA=A. 25 Скалярной матрицей называется диагональная матрица с одинаковыми числами на главной диагонали; единичная матрица - частный случай скалярной матрицы. ПРИМЕР 3. Умножение матрицы на матрицы специального вида Для квадратных матриц неотрицательную степень: определена операция возведения в целую A 0 =E, A 1 =A, A 2 =AA, ..., A n =A n-1 A, .... ПРИМЕР 4. Возведение матрицы в степень. Для прямоугольных матриц определена операция транспонирования. Рассмотрим произвольную прямоугольную матрицу A. Матрица, получающаяся из матрицы A заменой строк столбцами, называется транспонированной по отношению к матрице и обозначается A T: , Верны (AT (A+B)T=AT (AB)T =BT AT. . ) T +BT соотношения: =A; ; Квадратная матрица A, для которой A T =A, называется симметричной. Элементы такой матрицы, расположенные симметрично относительно главной диагонали, равны. Квадратная матрица A называется обратимой, если существует такая матрица X, что AX=XA=E. Матрица X называется обратной к матрице A и обозначается A -1, т.е. A A -1 =A -1A=E. Известно, что если матрица A невырождена (т.е ее определитель отличен от нуля), то у нее существует обратная матрица A -1. Верно соотношение: (A-1)T =(AT ) -1. ПРИМЕР 5. Обращение матрицы. 26 Квадратная матрица U, для которой U матрицей. -1 =U T, называется ортогональной Свойства ортогональной матрицы: Модуль определителя ортогональной матрицы равен единице. Сумма квадратов элементов любого столбца ортогональной матрицы равна единице. Сумма произведений элементов любого столбца ортогональной матрицы на соответствующие элементы другого столбца равна нулю. Такими же свойствами обладают строки ортогональной матрицы. ПРИМЕР 6. Ортогональная матрица. Определения. Разложение определителя по 1-ой строке ~ Разложение определителя по i-ой строке и j-ому столбцу ~ Определители матриц 2 и 3 порядков Пусть A квадратная матрица порядка n, n>1. Определителем квадратной матрицы A порядка n называется число det A= = , где M1 <j> - определитель квадратной матрицы порядка n -1, полученной из матрицы A вычеркиванием первой строки и j -го столбца, называемый минором элемента a1j . Формула det A = называется формулой вычисления определителя разложением по первой строке. Число (-1) j+1 M1 <j> называется алгебраическим дополнением элемента a1j. Пусть Mi <j> - определитель квадратной матрицы порядка n-1, полученной из матрицы A вычеркиванием i-й строки и j-го столбца (минор элемента aij ). Число (-1) j+i Mi <j> называется алгебраическим дополнением элемента aij матрицы A. Справедливы формулы вычисления определителя квадратной матрицы A разложением по i-й строке и разложением по j-му столбцу: 27 det A= = = = для i=1,2,...,n, j=1,2,...,n. ПРИМЕР 1. Вычисление определителя разложением по 1-ой строке. Для квадратной матрицы второго порядка формула вычисления определителя упрощается: det = = a11 a22 - a12 a21, поскольку, например, в формуле разложения определителя по 1-ой строке M1 < 1> =a22 , M1 < 2> =a21. Для квадратной матрицы третьего порядка формула вычисления определителя разложением по 1-ой строке имеет вид: = - + . ПРИМЕР 2. Вычисление определителей матриц 2 и 3 порядков. СЛАУ ~ Матричная форма записи ~ Решение матричных уравнений ~ Формулы Крамера ~ Метод Гаусса Рассмотрим систему линейных алгебраических уравнений (СЛАУ) относительно n неизвестных x1 , x2 , ..., xn: Эта система в "свернутом" виде может быть записана так: 28 S ni=1aij xj = bi , i=1,2, ..., n. В соответствии с правилом умножения матриц рассмотренная система линейных уравнений может быть записана в матричной форме Ax=b, где , , . Матрица A, столбцами которой являются коэффициенты при соответствующих неизвестных, а строками - коэффициенты при неизвестных в соответствующем уравнении называется матрицей системы. Матрица-столбец b, элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы. Матрица-столбец x, элементы которой - искомые неизвестные, называется решением системы. Система линейных алгебраических уравнений, записанная в виде Ax=b, является матричным уравнением. Если матрица системы невырождена, то у нее существует обратная матрица и тогда решение системы Ax=b дается формулой: x=A -1 b. ПРИМЕР 1. Решение матричного уравнения. Справедливо следующее утверждение (формулы Крамера). Если определитель D=det A матрицы системы Ax=b отличен от нуля, то система имеет единственное решение x1 , x2 , ..., xn, определяемое формулами Крамера xi =Di / D, i=1,2, ..., n, где Di - определитель матрицы n -го порядка, полученной из матрицы A системы заменой i -го столбца столбцом правых частей b. ПРИМЕР 2. Вычисление решения системы линейных уравнений по формулам Крамера. Метод Гаусса применим для решения системы линейных алгебраических уравнений c невырожденной матрицей системы. Идея метода Гаусса состоит в том, что систему n линейных алгебраических уравнений относительно n неизвестных x1 , x2 , ..., xn 29 приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей решение которой находят по рекуррентным формулам: xn =dn , xi = di -S nk=i+1 cik xk , i=n-1, n-2, ...,1. Матричная запись метода Гаусса. 1. системы Прямой ход метода Гаусса: приведение расширенной матрицы к ступенчатому виду с помощью элементарных операций над строками элементарными операциями понимаются следующие операции: матрицы (под перестановка строк; o умножение строки на число, отличное от нуля; o сложение строки матрицы с другой строкой, умноженной на отличное от нуля чиcло). 2. Обратный ход метода Гаусса: преобразование полученной ступенчатой матрицы к матрице, в первых n столбцах которой содержится единичная матрица o 30 , последний, (n+1)-й, столбец этой матрицы содержит решение системы. Система линейных уравнений ~ Решение системы ~ Совместные и несовместные системы ~ Однородная система ~ Совместность однородной системы ~ Ранг матрицы системы ~ Условие нетривиальной совместности ~ Фундаментальная система решений. Общее решение ~ Исследование однородной системы Рассмотрим систему m линейных алгебраических уравнений относительно n неизвестных x1 , x2 , ..., xn : Решением системы называется совокупность n значений неизвестных x1=x'1 , x2 =x'2 , ..., xn=x'n , при подстановке которых все уравнения системы обращаются в тождества. Система линейных уравнений может быть записана в матричном виде: где A — матрица системы, b — правая часть, x — искомое решение, Ap — расширенная матрица системы: . Система, имеющая хотя бы одно решение, называется совместной; система, не имеющая ни одного решения — несовместной. Однородной системой линейных уравнений называется система, правая часть которой равна нулю: 31 Матричный вид однородной системы: Ax=0. Однородная система всегда совместна, поскольку любая однородная линейная система имеет по крайней мере одно решение: x1=0 , x2=0 , ..., xn=0. Если однородная система имеет единственное решение, то это единственное решение — нулевое, и система называется тривиально совместной. Если же однородная система имеет более одного решения, то среди них есть и ненулевые и в этом случае система называется нетривиально совместной. Доказано, что при m=n для нетривиальной совместности системы необходимо и достаточно, чтобы определитель матрицы системы был равен нулю. ПРИМЕР 1. Нетривиальная совместность однородной системы линейных уравнений с квадратной матрицей. Применив к матрице системы алгоритм гауссова исключения, приведем матрицу системы к ступенчатому виду . Число r ненулевых строк в ступенчатой форме матрицы называется рангом матрицы, обозначаем r=rg(A) или r=Rg(A). Справедливо следующее утверждение. 32 Для того, чтобы однородная система была нетривиально совместна, необходимо и достаточно, чтобы ранг r матрицы системы был меньше числа неизвестных n. ПРИМЕР 2. Нетривиальная совместность однородной системы трех линейных уравнений с четырьмя неизестными. Если однородная система нетривиально совместна, то она имеет бесконечное множество решений, причем линейная комбинация любых решений системы тоже является ее решением. Доказано, что среди бесконечного множества решений однородной системы можно выделить ровно n-r линейно независимых решений. Совокупность n-r линейно независимых решений однородной системы называется фундаментальной системой решений. Любое решение системы линейно выражается через фундаментальную систему. Таким образом, если ранг r матрицы A однородной линейной системы Ax=0 меньше числа неизвестных n и векторы e1 , e2 , ..., en-r образуют ее фундаментальную систему решений (Aei =0, i=1,2, ..., n-r), то любое решение x системы Ax=0 можно записать в виде x=c1 e1 + c2 e2 + ... + cn-r en-r , где c1 , c2 , ..., cn-r — произвольные постоянные. Записанное выражение называется общим решением однородной системы. Исследовать однородную систему — значит установить, является ли она нетривиально совместной, и если является, то найти фундаментальную систему решений и записать выражение для общего решения системы. Исследуем однородную систему методом Гаусса. Пусть матрица исследуемой однородной системы, ранг которой r< n. Такая матрица приводится Гауссовым исключением к ступенчатому виду 33 . Соответствующая эквивалентная система имеет вид Отсюда легко получить выражения для переменных x1 , x2 , ..., xr через xr+1 , xr+2 , ..., xn . Переменные x1 , x2 , ..., xr называют базисными переменными, а переменные xr+1 , xr+2 , ..., xn — свободными переменными. Перенеся свободные переменные в правую часть, получим формулы которые определяют общее решение системы. Положим последовательно значения свободных переменных равными и вычислим соответствующие значения базисных переменных. Полученные n-r решений линейно независимы и, следовательно, образуют фундаментальную систему решений исследуемой однородной системы: 34 ПРИМЕР 3. Исследование однородной системы на совместность методом Гаусса. Условие совместности ~ Исследование неоднородной системы. Частное решение Рассмотрим неоднородную систему m линейных алгебраических уравнений относительно n неизвестных x1 , x2 , ..., xn: В отличие от однородной системы, эта система совместна не всегда. Справедливо следующее утверждение (теорема Кронекера-Капелли). Для того, чтобы неоднородная система линейных алгебраических уравнений была совместна, необходимо и достаточно, чтобы ранг расширенной матрицы системы совпадал с рангом матрицы системы. ПРИМЕР 1. Проверка условия совместности неоднородной системы. Исследовать неоднородную систему — это значит установить, является ли она совместной, и если является — найти выражение для общего решения системы. 35 Исследуем неоднородную систему методом Гаусса. Пусть расширенная матрица исследуемой системы, ранг которой r равен рангу матрицы системы и r< n. Такая матрица приводится Гауссовым исключением к ступенчатому виду . Соответствующая эквивалентная система имеет вид Отсюда легко получить выражения базисных переменных x1 , x2 , ..., xr через свободные переменные xr+1 , xr+2 , ..., xn . Формулы определяют общее решение системы. Положив свободные переменные равными нулю, xr+1 =0, xr+2 =0, ..., xn=0, и вычислив соответствующие значения базисных переменных, получим частное решение исследуемой системы x1 =d1 , x2 =d2 , ..., xr=dr , xr+1 =0, xr+2 =0, ..., xn=0. 36 ПРИМЕР 2. Исследование неоднородной системы для двух различных правых частей методом Гаусса. Линейное пространство. Основные понятия ~ Базис и размерность линейного пространства. Координаты вектора в заданном базисе ~ Исследование линейной зависимости. Ранг матрицы ~ Ортонормированные базисы и ортогональные матрицы Линейное пространство. Основные понятия Пусть множество элементов произвольной природы, для определены операции сложения и умножения на действительное число: паре элементов множества суммой и ; паре , элемента . , отвечает элемент отвечает элемент которых , называемый , называемый произведением числа и Будем называть множество линейным пространством, если для всех его элементов определены операции сложения и умножения на действительное число и для любых элементов и произвольных чисел справедливо: , сложение коммутативно; , сложение ассоциативно; существует единственный нулевой элемент такой, что ; для каждого элемента существует единственный противоположный элемент такой, что , 5. , умножение на число ассоциативно; 6. , ; 7. , умножение на число дистрибутивно относительно сложения элементов; 8. , умножение вектора на число дистрибутивно относительно сложения чисел. 1. 2. 3. , 4. Равенства 1--8 называют аксиомами линейного пространства. 37 Линейное пространство часто называют векторным пространством, а его элементы -- векторами. Базис и размерность линейного пространства. Координаты вектора в заданном базисе Говорят, что элемент (вектор) через элементы (векторы) виде линейной комбинации . линейного пространства линейно выражается , если его можно представить в этих элементов, т.е. представить в виде Если любой вектор системы векторов линейного пространства линейно выражается через остальные векторы системы, то система векторов называется линейно зависимой. Система векторов, которая не является линейно зависимой, называется линейно независимой. Справедливо следующее утверждение. Система независима тогда векторов линейного пространства линейно и только тогда, когда из равенства следует равенство нулю всех коэффициентов . Если в линейном пространстве существует линейно независимая система из векторов, а любая система из -го вектора линейно зависима, то число называется размерностью пространства и обозначается . В этом случае пространство называют -мерным линейным пространством или мерным векторным пространством. Любая упорядоченная линейно независимая система векторов линейного пространства образует базис пространства и любой вектор единственным образом выражается через векторы базиса: . Числа называют координатами вектора в базисе и обозначают . При этом для любых двух произвольных векторов -мерного линейного пространства , и произвольного числа 38 справедливо: и . Это означает, что все -мерные линейные пространства “устроены” одинаково -как пространство векторов-столбцов из действительных чисел, т.е. что все они изоморфны пространству . Линейные пространства и называются изоморфными, если между их элементами можно установить такое взаимно однозначное соответствие, что если векторам и из соответствуют векторы и из , то вектору соответствует вектор и при любом вектору соответствует вектор . Изоморфизм -мерных линейных пространств пространству означает, что соотношения между элементами -мерного линейного пространства и операции с ними можно изучать как соотношения между векторами из и операции с ними и что всякое утверждение относительно векторов из справедливо для соответствующих элементов любого -мерного линейного пространства. Например, доказано, что система векторов , из ,..., образует базис в тогда и только тогда, когда отличен от нуля определитель матрицы, со столбцами : Для векторов из это означает, что они образуют базис в тогда и только тогда, когда отличен от нуля определитель матрицы, столбцами которой являются компоненты векторов . 39 Пусть и -- два базиса в . Матрицей перехода от базиса к базису называется матрица , столбцами которой являются координаты векторов в базисе : ... ... , Вектор линейно выражается через векторы обоих базисов. Тогда, если , то координаты вектора в базисе , и его координаты в базисе связаны соотношениями ПРИМЕР 1. Нахождение координат вектора в новом базисе. Исследование линейной зависимости. Ранг матрицы Пусть -- прямоугольная матрица размерности : Столбцы матрицы можно рассматривать как векторы из : 40 , , и исследовать их на линейную зависимость. Исследовать систему векторов на линейную зависимость -- это значит установить является система векторов линейно зависимой или нет. Доказано, что ранг матрицы равен максимальному числу линейно независимых столбцов матрицы. Это утверждение позволяет исследовать систему векторов на линейную зависимость следующим образом. Пусть -- исследуемая система векторов. Запишем матрицу столбцами которой являются векторы : , и вычислим ее ранг . Если исследуемая система векторов линейно независима, если же линейно зависима. Более того, если матрица операциями со строками , , , то , то она приведена к ступенчатому виду элементарными то векторы-столбцы , входящие в базисный минор, образуют линейно независимую подсистему, а векторы следующим образом линейно выражаются через базисные векторы: ... 41 ПРИМЕР 2. Исследование на линейную зависимость систем векторов. Выделение линейно независимой подсистемы векторов. Ортонормированные базисы и ортогональные матрицы Линейное пространство называется евклидовым, если каждой паре векторов , из этого пространства поставлено в соответствие действительное число , называемое скалярным произведением, и при этом для любых из и любого действительного числа справедливы следующие равенства: 1. ; 2. ; 3. ; при 4. Число , , -- нулевой вектор. называется длиной вектора -- расстоянием между векторами , , косинус которого , . , Векторы , из евклидова пространства ; число ; угол , -- углом между векторами называются ортогональными, если . Система векторов евклидова пространства называется ортонормированной, если векторы системы попарно ортогональны и имеют единичную длину. Базис конечномерного евклидова пространства называется ортонормированным базисом, если образующие его векторы попарно ортогональны и имеют единичную длину. Поскольку доказано, что в любом конечномерном евклидовом пространстве существует ортонормированный базис, будем рассматривать в мерном евклидовом пространстве только ортонормированные базисы. 42 Простейший пример евклидова пространства дает нам пространство -пространство столбцов, в котором скалярное произведение введено формулой . Тогда для любых справедливы формулы: , Все евклидовы пространства размерности . из устроены так же, как пространство Величины , и характеризуют взаимное расположение векторов и не зависят от выбранного ортонормированного базиса. Если и -- два ортонормированных базиса в мерном евклидовом пространстве, то матрица перехода от одного из этих базисов к другому -- ортогональная матрица. ПРИМЕР 3. Скалярное произведение векторов, норма вектора, угол между векторами. АЛГЕБРА Линейный оператор и его матрица. Переход к другому базису ~ Образ и ядро линейного оператора ~ Собственные значения и собственные векторы линейного оператора Пусть заданы линейные пространства и . Правило, по которому каждому элементу ставится в соответствие единственный элемент , называется оператором, действующим в линейных пространствах . Результат действия оператора на элемент обозначают или . Если элементы и связаны соотношением , то называют образом элемента ; элемент прообразом элемента . Множество элементов линейного пространства , для которых определено действие оператора , называют областью определения оператора и обозначают . 43 Множество элементов линейного пространства , которые являются образами элементов из области определения оператора , называют образом оператора и обозначают . Если , то . Оператор , действующий в линейных пространствах оператором, если и и для любого числа . называется линейным для любых Если пространства и совпадают, то говорят, что оператор действует в пространстве . В дальнейшем ограничимся рассмотрением линейных операторов, действующих в линейном пространстве . Линейный оператор и его матрица. Переход к другому базису Рассмотрим линейный оператор , действующий в конечномерном линейном пространстве , и пусть базис в . Обозначим через образы базисных векторов . Матрица столбцами которой являются координаты образов базисных векторов, называется матрицей линейного оператора в заданном базисе. Доказано, что каждому линейному оператору, действующему в n-мерном линейном пространстве, отвечает единственная квадратная матрица порядка n; и обратно каждая квадратная матрица порядка n задает единственный линейный оператор, действующий в этом пространстве. При этом соотношения 44 с одной стороны, связывают координаты образа с координатами прообраза , с другой стороны, описывают действие оператора, заданного матрицей . При изменении базиса линейного пространства матрица оператора, очевидно, изменяется. Пусть в пространстве произошел переход от базиса к базису . Связь между матрицей оператора в базисе и матрицей этого оператора в базисе задается формулой . Здесь ней. матрица перехода от базиса к базису и обратная к ПРИМЕР 1. Матрица оператора в новом базисе. Образ и ядро линейного оператора Рассмотрим линейный оператор , действующий в конечномерном линейном пространстве . Доказано, что образ линейного оператора линейное пространство. Размерность образа линейного оператора называется рангом оператора, обозначается . Ядром линейного оператора называется множество элементов из , образом которых является нулевой элемент. Ядро оператора обозначают : . Ядро линейного оператора линейное пространство; размерность ядра линейного оператора называется дефектом оператора, обозначается : . Для линейного оператора, действующего в n-мерном линейном пространстве справедливы следующие утверждения: , сумма ранга и дефекта оператора равно размерности пространства, в котором действует оператор: ; ранг оператора равен рангу его матрицы; ядро оператора совпадает с множеством решений линейной однородной системы с матрицей , размерность пространства решений этой системы равна дефекту 45 оператора, а ее фундаментальная система решений образует базис в ядре оператора; столбцы, входящие в базисный минор матрицы оператора образуют базис в образе оператора. Сформулированные утверждения позволяют описать структуру образа и ядра линейного оператора, заданного матрицей, используя язык матричных преобразований и общей теории линейных систем. ПРИМЕР 2. Образ и ядро линейного оператора. Собственные значения и собственные векторы линейного оператора Пусть линейный оператор, действующий в линейном пространстве. Число называется собственным значением, а ненулевой вектор соответствующим собственным вектором линейного оператора , если они связаны между собой соотношением . Пусть матрица оператора в некотором базисе. Собственные значения оператора и соответствующие им собственные векторы связаны соотношением , где единичная матрица, а нулевой элемент пространства . Это означает, что собственный вектор оператора является ненулевым решением линейной однородной системы , которое существует тогда и только тогда, когда . Следовательно, собственные значения линейного оператора могут быть вычислены как корни уравнения , а собственные векторы -- как решения соответствующих однородных систем. Уравнение оператора, а многочлен оператора. называется характеристическим уравнением характеристическим многочленом Для собственных значений и собственных векторов линейного оператора справедливы следующие утверждения: характеристический многочлен оператора, действующего в n-мерном линейном пространстве является многочленом n-й степени относительно ; 46 линейный оператор, действующий в n-мерном линейном пространстве имеет не более различных собственных значений; собственные векторы, отвечающие различным собственным значениям, линейно независимы; если линейный оператор, действующий в n-мерном линейном пространстве , имеет различных собственных значений, то собственные векторы оператора образуют базис в пространстве ; этот базис называют собственным базисом оператора; матрица оператора в базисе из его собственных векторов имеет диагональную форму с собственными значениями на диагонали. ПРИМЕР 3. Собственные значения и собственные векторы оператора. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ПЛОСКОСТИ И В ТРЕХМЕРНОМ ПРОСТРАНСТВЕ НА ПРЯМОЙ, Каноническое уравнение плоскости ~ Канонические и параметрические уравнения прямой ~ Расстояние от точки до плоскости ~ Координаты точки, делящей отрезок в заданном соотношении § 1. Каноническое уравнение плоскости в пространстве Пусть в декартовой системе координат дан вектор n={A,B,C} и точка М0=(x0,y0,z0). Построим плоскость Π, проходящую через т. М0, перпендикулярную вектору n (этот вектор называют нормальным вектором или нормалью плоскости). Утверждение 1: М Π ó М0М М0М={x-x0, y-y0, z-z0} n. n ó A(x-x0)+B(y-y0)+C(z-z0)=0. (*) (См. свойства скалярного произведения) Каноническое уравнение плоскости в пространстве: Аx+By+Cz+D=0, где D = -Ax0-By0-Cz0. Замечание 1: формула (*) используется при непосредственном решении задач, после упрощения получается искомое каноническое уравнение плоскости. 47 Пример 1. Написать каноническое уравнение плоскости, перпендикулярной вектору n={3,1,1} и проходящей через точку М(2,-1,1). Пример 2. Написать каноническое уравнение плоскости, содержащей точки K(2,1,-2), L(0,0,-1), M(1,8,1). § 2. Канонические и параметрические уравнения прямой в пространстве Пусть в декартовой системе координат дан вектор a={p,q,r} и точка М0=(x0,y0,z0). Построим прямую l, проходящую через т. М0, параллельную вектору a (этот вектор называют направляющим вектором прямой). Утверждение 2: М l ó М0М || a. М0М={x-x0, y-y0, z-z0} || a ó t R, т.ч. М0М=t·a => Параметрические уравнения прямой в пространстве: (**) Вы никогда не сталкивались с параметрическим заданием кривых? Поясним на примере: представьте себе, что по заранее намеченному маршруту с известной скоростью движется турист (автомобиль, самолёт, подводная лодка, как Вам больше понравится). Тогда, зная точку начала его путешествия, мы в любой момент времени знаем, где он находится. Таким образом, его положение на маршруте определяется всего одним параметром – временем. В нашем случае турист движется по бесконечной прямой в пространстве, в момент времени t0=0 он находится в точке М0, в любой другой момент времени t его координаты в пространстве вычисляются по формулам (**). Теперь несколько преобразуем формулы (**). 48 Выразим из каждой строчки параметр t: Канонические уравнения прямой в пространстве: Замечание 2: Эта компактная запись на самом деле содержит три уравнения. Замечание 3: Это формальная запись и выражение вида допустимо. в данном случае Замечание 4: Надо понимать, что для уравнения плоскости (прямой) играет роль именно направление перпендикулярного (направляющего) вектора, а не он сам. Т.о. вполне допустимо из каких-либо соображений заменять данный (или полученный в ходе решения) вектор на пропорциональный ему. Целесообразно также упрощать полученное уравнение, деля все его коэффициенты на общий множитель. Пример 3. Написать канонические и параметрические уравнения прямой, параллельной заданной прямой и проходящей через заданную точку. Пример 4. Написать канонические уравнения прямой, заданной пересечением двух плоскостей. Пример 5. Найти точку пересечения прямой и плоскости. §3. Расстояние от точки до плоскости в пространстве Пусть в декартовых координатах Ax+By+Cz+D=0, а точка М1=(x1,y1,z1). плоскость Π задана уравнением: 49 Утверждение 3: расстояние от точки М1 до плоскости Π вычисляется по формуле: Пример 6. Найти расстояние от точки до плоскости. §4. Координаты точки, делящей отрезок в заданном соотношении Пусть в декартовой системе координат М1=(x1,y1,z1), М2=(x2,y2,z2) . Утверждение 4: Координаты т. М, т.ч. М1М=λ∙ММ2, находятся по следующим формулам: ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Основные определения ~ Действия со случайными событиями ~ Вероятность события. Аксиоматическое определение вероятности ~ Вероятность события. Классическое определение вероятности ~ Вероятность суммы событий ~ Вероятность произведения событий. Условная вероятность. Независимые события ~ Формула полной вероятности. Формулы Байеса Основные определения. Будем полагать, что результатом реального опыта (эксперимента) может быть один или несколько взаимоисключающих исходов; эти исходы неразложимы и взаимно исключают друг друга. В этом случае говорят, что эксперимент заканчивается одним и только одним элементарным исходом. Множество всех элементарных событий, имеющих место в результате случайного эксперимента, будем называть пространством элементарных событий W (элементарное событие соответствует элементарному исходу). Случайными событиями (событиями), пространства элементарных событий W . будем называть подмножества 50 Пример 1. Подбросим монету один раз. Монета может упасть цифрой вверх элементарное событие w ц (или w 1), или гербом - элементарное событие w Г (или w 2). Соответствующее пространство элементарных событий W состоит из двух элементарных событий: W = {w ц,w Г } или W = {w 1,w 2}. Пример 2. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1, w 2, w 3, w 4, w 5, w 6}, где w i- выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, A W . Пример 3. На отрезке [0, 1] наугад (случайно) поставлена точка. Измеряется расстояние точки от левого конца отрезка. В этом опыте пространство элементарных событий W = [0, 1] - множество действительных чисел на единичном отрезке. В более точных, формальных терминах элементарные события и пространство элементарных событий описывают следующим образом. Пространством элементарных событий называют произвольное множество W, W ={w}. Элементы w этого множества W называют элементарными событиями. Понятия элементарное событие, событие, пространство элементарных событий, являются первоначальными понятиями теории вероятностей. Невозможно привести более конкретное описание пространства элементарных событий. Для описания каждой реальной модели выбирается соответствующее пространство W. Событие W называется достоверным событием. Достоверное событие не может не произойти в результате эксперимента, оно происходит всегда. Пример 4. Бросаем один раз игральную кость. Достоверное событие состоит в том, что выпало число очков, не меньше единицы и не больше шести, т.е. W = {w 1, w 2, w 3, w 4, w 5, w 6}, где w i- выпадение i очков, - достоверное событие. Невозможным событием называется пустое множество . Невозможное событие не может произойти в результате эксперимента, оно не происходит никогда. Случайное событие может произойти или не произойти в результате эксперимента, оно происходит иногда. 51 Пример 5. Бросаем один раз игральную кость. Выпадение более шести очков невозможное событие . Противоположным событию A называется событие, состоящее в том, что событие A не произошло. Обозначается , . Пример 6. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, тогда событие - выпадение нечетного числа очков. Здесь W = {w 1, w 2, w 3,w 4, w 5,w 6}, где w i- выпадение i очков, A = {w 2,w 4,w 6}, = . Несовместными событиями называются события A и B, для которых A B = . Пример 7. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, событие B - выпадение числа очков, меньшего двух. Событие AB состоит в выпадении четного числа очков, меньшего двух. Это невозможно, A = {w 2,w 4,w 6}, B = {w 1}, AB = , т.е. события A и B - несовместны. Действия со случайными событиями Суммой событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одному из событий A или B. Обозначается A + B. Пример 8. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1, w 2, w 3, w 4, w 5, w 6}, где элементарное событие w i- выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, событие B - выпадение числа очков, большего четырех, B = {w 5, w 6}. Событие A + B = {w 2,w 4, w 5, w 6} состоит в том, что выпало либо четное число очков, либо число очков большее четырех, т.е. произошло либо событие A, либо событие B. Очевидно, что A + B W. Произведением событий A и B называется событие, состоящее из всех элементарных событий, принадлежащих одновременно событиям A и B. Обозначается AB. Пример 9. Бросаем один раз игральную кость. В этом опыте пространство элементарных событий W = {w 1, w 2, w 3,w 4, w 5,w 6}, где элементарное событие w i- выпадение i очков. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, событие B - выпадение числа очков, большего четырех, B = {w 5, w 6}. 52 Событие A B состоит в том, что выпало четное число очков, большее четырех, т.е. произошли оба события, и событие A и событие B, A B = {w 6} A B W . Разностью событий A и B называется событие, состоящее из всех элементарных событий принадлежащих A, но не принадлежащих B. Обозначается A\B. Пример 10. Бросаем один раз игральную кость. Событие A - выпадение четного числа очков, A = {w 2,w 4,w 6}, событие B - выпадение числа очков, большего четырех, B = {w 5, w 6}. Событие A\ B = {w 2,w 4} состоит в том, что выпало четное число очков, не превышающее четырех, т.е. произошло событие A и не произошло событие B, A\B W . Очевидно, что A + A = A, AA = A, . Нетрудно доказать равенства: , (A+B)C= AC + BC. Определения суммы и произведения событий переносятся на бесконечные последовательности событий: , событие, состоящее из элементарных событий, каждое из которых принадлежит хотя бы одному из ; , событие, состоящее из элементарных событий, каждое из которых принадлежит одновременно всем . Вероятность события. Аксиоматическое определение вероятности Пусть W - произвольное пространство элементарных событий, а совокупность случайных событий, для которой справедливо: W , AB и A\B , если A иB . Числовая функция P, определенная на совокупности событий вероятностью, если: 1. 2. 3. P(A) 0 для любого A из ; P(W ) = 1; если A иB несовместны, то P(A+B) = P(A) + P(B); - такая , A+B , называется 53 4. для любой убывающей , такой, что , Тройку последовательности событий {Ai}из , имеет место равенство . называют вероятностным пространством. Вероятность события. Классическое определение вероятности Пусть W= {w 1, w 2, …, w s} - произвольное конечное пространство элементарных событий, A - событие, состоящее из k элементарных событий: A={w i1, w i2, …, w 1 i1 i2 … i k s, k = 1, 2,…, s, и пусть . Определенная таким образом функция P(A) удовлетворяет всем аксиомам 1-4(здесь множество состоит из всех подмножеств множества W : ). Таково классическое определение вероятности события A. ik}, Принята следующая формулировка классического определения вероятности: вероятностью события A называется отношение числа исходов, благоприятствующих A, к общему числу исходов. Из приведенных определений следует: P( )=0, , . Вероятность суммы событий Для любых двух событий A и B справедливо: Если события A и B несовместны, то . . Вероятность произведения событий. Условная вероятность. Независимые события Условная вероятность P(A/B) события A при условии, что событие B произошло, P(B) > 0, определяется формулой . Для любых двух событий A и B справедливо: События A и B называются независимыми, если независимых, событий A и B справедливо: Формула полной вероятности. Формулы Байеса . . Для любых двух . 54 Пусть A - произвольное событие, а события B1, B2, …, Bn - попарно несовместны и образуют полную группу событий, т.е. . Тогда имеет место следующая формула для вероятности события A - формула полной вероятности - , где P(Bk)>0, k=1, 2, …, n, A B1+ B2 + …+ Bn. Если событие A произошло, то вероятность того, что имело место событие Bk вычисляется по формуле Байеса: Основные определения ~ Функция распределения случайной величины. Её свойства ~ Функция распределения дискретной случайной величины ~ Функция распределения и плотность вероятности непрерывной случайной величины ~ Квантили ~ Вероятность попадания в интервал Основные определения. Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие. Любая количественная характеристика, которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей. Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x . Событие принято записывать в виде x < x. В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , … Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M={1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I=[100, 3000]). Функция распределения случайной величины. Её свойства 55 Каждая случайная распределения. величина полностью определяется своей функцией Если x .- случайная величина, то функция F(x) = Fx (x) = P(x < x) называется функцией распределения случайной величины x . Здесь P(x < x) - вероятность того, что случайная величина x принимает значение, меньшее x. Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением. Функция распределения любой случайной величины обладает следующими свойствами: F(x) определена на всей числовой прямой R; F(x) не убывает, т.е. если x1 x2, то F(x1) F(x2); F(- )=0, F(+ )=1, т.е. F(x) непрерывна справа, т.е. и ; . Функция распределения дискретной случайной величины Если x - дискретная случайная величина, принимающая значения x1 < x2 < … < xi < … с вероятностями p1 < p2 < … < pi < …, то таблица вида x1 x2 … xi … p1 p2 … pi … называется распределением дискретной случайной величины. Функция распределения случайной величины, с таким распределением, имеет вид 56 У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид: 1 2 3 4 5 6 1/6 1/6 1/6 1/6 1/6 1/6 Функция распределения и плотность вероятности непрерывной случайной величины Если функция распределения Fx (x) непрерывна, то случайная величина x называется непрерывной случайной величиной. Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины px (x), которая связана с функцией распределения Fx (x) формулами и . Отсюда, в частности, следует, что для любой случайной величины . Квантили При решении практических задач часто требуется найти значение x, при котором функция распределения Fx (x) случайной величины x принимает заданное 57 значение p, т.е. требуется решить уравнение Fx (x) = p. Решения такого уравнения (соответствующие значения x) в теории вероятностей называются квантилями. Квантилью xp (p-квантилью, квантилью уровня p) случайной величины , имеющей функцию распределения Fx (x), называют решение xp уравнения Fx (x) = p, p (0, 1). Для некоторых p уравнение Fx (x) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют. Квантили, наиболее часто встречающиеся в практических задачах, имеют свои названия: медиана - квантиль уровня 0.5; нижняя квартиль - квантиль уровня 0.25; верхняя квартиль - квантиль уровня 0.75; децили - квантили уровней 0.1, 0.2, …, 0.9; процентили - квантили уровней 0.01, 0.02, …, 0.99. Вероятность попадания в интервал Вероятность того, что значение случайной величины Fx (x) попадает в интервал (a, b), равная P(a < x < b) = Fx (b) -Fx (a), вычисляется по формулам: - для непрерывной случайной величины и - для дискретной случайной величины. Если a= если b= , то , то , . Числовые характеристики случайных величин Математическое ожидание случайной величины ~ Дисперсия случайной величины ~ Моменты ~ Ассиметрия ~ Эксцесс ~ Среднее геометрическое и среднее гармоническое 58 Каждая случайная распределения. величина полностью определяется своей функцией В то же время при решении практических задач достаточно знать несколько числовых параметров, которые позволяют представить основные особенности случайной величины в сжатой форме. К таким величинам относятся в первую очередь математическое ожидание и дисперсия. Математическое ожидание случайной величины Математическое ожидание - число, вокруг которого сосредоточены значения случайной величины. Математическое ожидание случайной величины x обозначается Mx . Математическое ожидание дискретной случайной величины x , имеющей распределение x1 x2 ... xn p1 p2 ... pn называется величина конечно. , если число значений случайной величины Если число значений случайной величины счетно, то . При этом, если ряд в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания. Математическое ожидание непрерывной случайной величины с плотностью вероятностей px (x) вычисляется по формуле . При этом, если интеграл в правой части равенства расходится, то говорят, что случайная величина x не имеет математического ожидания. 59 Если случайная величина h является функцией случайной величины x , h = f(x), то . Аналогичные формулы справедливы для функций дискретной случайной величины: , . Основные свойства математического ожидания: математическое ожидание константы равно этой константе, Mc=c ; математическое ожидание - линейный функционал на пространстве случайных величин, т.е. для любых двух случайных величин x , h и произвольных постоянных a и b справедливо: M(ax + bh ) = a M(x )+ b M(h ); математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. M(x h ) = M(x )M(h ). Дисперсия случайной величины Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания. Если случайная величина x имеет математическое ожидание Mx , то дисперсией случайной величины x называется величина Dx = M(x - Mx )2. Легко показать, что Dx = M(x - Mx )2= Mx 2 - M(x )2. Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина Mx 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам , Для определения . меры разброса значений случайной величины часто 60 используется среднеквадратичное отклонение соотношением , связанное с дисперсией . Основные свойства дисперсии: дисперсия любой случайной величины неотрицательна, Dx дисперсия константы равна нулю, Dc=0; для произвольной константы D(cx ) = c2D(x ); 0; дисперсия суммы двух независимых случайных величин равна сумме их дисперсий: D(x ± h ) = D(x ) + D (h ). Моменты В теории вероятностей и математической статистике, помимо математического ожидания и дисперсии, используются и другие числовые характеристики случайных величин. В первую очередь это начальные и центральные моменты. Начальным моментом k-го порядка случайной величины x называется математическое ожидание k-й степени случайной величины x , т.е. a k = Mx k. Центральным моментом k-го порядка случайной величины x называется величина m k, определяемая формулой m k = M(x - Mx )k. Заметим, что математическое ожидание случайной величины - начальный момент первого порядка, a 1 = Mx , а дисперсия - центральный момент второго порядка, a 2 = Mx 2 = M(x - Mx )2 = Dx . Существуют формулы, позволяющие выразить центральные моменты случайной величины через ее начальные моменты, например: m 2=a 2-a 12, m 3 = a 3 - 3a 2a 1 + 2a 13. Если плотность распределения вероятностей непрерывной случайной величины симметрична относительно прямой x = Mx , то все ее центральные моменты нечетного порядка равны нулю. 61 Асимметрия В теории вероятностей и в математической статистике в качестве меры асимметрии распределения является коэффициент асимметрии, который определяется формулой , где m 3 - центральный момент среднеквадратичное отклонение. третьего порядка, - Эксцесс Нормальное распределение наиболее часто используется в теории вероятностей и в математической статистике, поэтому график плотности вероятностей нормального распределения стал своего рода эталоном, с которым сравнивают другие распределения. Одним из параметров, определяющих отличие распределения случайной величины x , от нормального распределения, является эксцесс. Эксцесс g случайной величины x определяется равенством . У нормального распределения, естественно, g = 0. Если g (x ) > 0, то это означает, что график плотности вероятностей px (x) сильнее “заострен”, чем у нормального распределения, если же g (x ) < 0, то “заостренность” графика px (x) меньше, чем у нормального распределения. Среднее геометрическое и среднее гармоническое Среднее гармоническое и среднее геометрическое случайной величины числовые характеристики, используемые в экономических вычислениях. Средним гармоническим случайной величины, принимающей положительные значения, называется величина . Например, для непрерывной случайной величины, распределенной равномерно на 62 [a, b], 0 < a < b, среднее гармоническое вычисляется следующим образом: и . Средним геометрическим случайной величины, принимающей положительные значения, называется величина . Название “среднее геометрическое” происходит от выражения среднего геометрического дискретной случайной величины, имеющей равномерное распределение x a1 a2 a3 ... an p 1/n 1/n 1/n ... 1/n Среднее геометрическое, вычисляется следующим образом: , т.е. получилось традиционное определение среднего геометрического чисел a1, a2, …, an. Например, среднее геометрическое случайной величины, имеющей показательное распределение с параметром l , вычисляется следующим образом: , . Здесь С » 0.577 - постоянная Эйлера. Наиболее распространенные распределения дискретных случайных величин. Биномиальное распределение ~ Геометрическое распределение ~ 63 Гипергеометрическое распределение ~ Пуассоновское распределение Биномиальное распределение Пусть проводится серия из n независимых испытаний, каждое из которых заканчивается либо “успехом” либо “неуспехом”. Пусть в каждом испытании (опыте) вероятность успеха p, а вероятность неуспеха q = 1- p. С таким испытанием можно связать случайную величину x , значение которой равно числу успехов в серии из n испытаний. Эта величина принимает значения от 0 до n. Ее распределение называется биномиальным и определяется формулой Бернулли , 0 < p <1, k = 0, 1, …, n, , Mx = np, Dx = npq, . Геометрическое распределение Со схемой испытаний Бернулли можно связать еще одну случайную величину x число испытаний до первого успеха. Эта величина принимает бесконечное множество значений от 0 до + и ее распределение определяется формулой pk = P(x= k) = qk-1 p, 0 <p <1, k=1, 2, … , , , . Гипергеометрическое распределение В партии из N изделий имеется M (M < N) доброкачественных и N - M дефектных изделий. Если случайным образом из всей партии выбрать контрольную партию из n изделий, то число доброкачественных изделий в контрольной партии случайная величина, которую обозначим x. Распределение такой случайной величины называется гипергеометрическим и имеет вид: , k = 0, 1, …, min(n,M), , , . Пуассоновское распределение Пуассоновское распределение c параметром l имеет случайная величина x , 64 принимающая целые неотрицательные значения k = 0, 1, 2, … с вероятностями pk: , , Mx =l, Dx = l , l > 0 - параметр распределения Наиболее распространенные распределения непрерывных случайных величин. Равномерное распределение ~ Экспоненциальное (показательное) распределение ~ Нормальное распределение ~ Распределение хи-квадрат (c 2- распределение) ~ F-распределение Фишера ~ Распределение Парето ~ Логистическое распределение ~ Логнормальное распределение ~ Вета-распределение ~ Распределение Вейбулла ~ Распределение Коши ~ Гамма-распределение ~ Распределение Лапласа Равномерное распределение Непрерывная случайная величина x , принимающая значения на отрезке [a, b], распределена равномерно на [a, b], если ее плотность распределения px (x) и функция распределения Fx (x ) имеют соответственно вид: , . Экспоненциальное (показательное) распределение Непрерывная случайная величина x имеет показательное распределение с параметром l > 0, если она принимает только неотрицательные значения, а ее плотность распределения px (x )и функция распределения Fx (x) имеют соответственно вид: , . Нормальное распределение Нормальное распределение играет исключительно важную роль в теории вероятностей и математической статистике. Случайная величина x нормально распределена с параметрами a и s , s >0, если ее плотность распределения px (x ) и функция распределения Fx (x) имеют соответственно вид: 65 , , Mx = a, Dx = s 2. Часто используемая запись x ~ N(a, s ) означает, что случайная величина x имеет нормальное распределение с параметрами a и s . Говорят, что случайная величина x имеет стандартное нормальное распределение, если a = 0 и s = 1 (x ~ N(0, 1)). Плотность и функция распределения стандартного нормального распределения имеют вид: , Здесь , Mx = 0, Dx = 1. - функция Лапласа. Функция распределения нормальной величины x ~ N(a, s ) выражается через функцию Лапласа следующим образом: . Если x ~ N(a, s ), то случайную величину h = (x-a)/s называют стандартизованной или нормированной случайной величиной; h ~ N(0, 1) - имеет стандартное нормальное распределение. Распределение хи-квадрат (c 2- распределение) Пусть x 1, x 2, …, x n - независимые случайные величины, каждая из которых имеет стандартное нормальное распределение N(0, 1). Составим случайную величину c 2 = x 12 + x 22 + …+ x n2. Ее закон распределения называется c 2- распределением с nстепенями свободы. Плотность вероятности этой случайной величины вычисляется по формуле: , Dc 2=2n. 66 Здесь - гамма-функция Эйлера. Распределение Стьюдента Пусть случайная величина x имеет стандартное нормальное распределение, а случайная величина c n2 - c 2-распределение с n степенями свободы. Если x и c n2 - независимы, то про случайную величину говорят, что она имеет распределение Стьюдента с nстепенями свободы. Плотность вероятности этой случайной величины вычисляется по формуле: , x R, Mt n = 0, Dt n = n/(n-2), n>2. При больших n распределение Стьюдента практически не отличается от N(0, 1). F-распределение Фишера Пусть случайные величины c n2и c m2 независимы и имеют распределение c 2 с n и mстепенями свободы соответственно. Тогда о случайной величине говорят, что она имеет F-распределение. Плотность вероятности этой случайной величины вычисляется по формуле: , x>0, , m>2; Распределение Парето , m > 4. - гамма-функция Эйлера; 67 Распределение Парето часто применяется в экономических исследованиях. Плотность вероятностей для случайной величины, распределенной по Парето, имеет вид , . Распределение Парето имеет математическое ожидание только при r > 1, а дисперсию - только при r > 2. Cлучайная величина, распределенная по Парето, принимает значения только в области x x0, x0 > 0. Логистическое распределение Это еще одно распределение, широко применяемое в экономических исследованиях. Для случайной величины x , имеющей логистическое распределение, функция распределения и функция плотности вероятностей имеют соответственно вид: , , , , x R, a и b - параметры распределения. По своим свойствам логистическое распределение очень похоже на нормальное. Логнормальное распределение Случайная величина x имеет логарифмическое нормальное (логнормальное) распределение с параметрами a и s , если случайная величина lnx имеет нормальное распределение с параметрами a >и s . Функция распределения и функция плотности вероятностей логнормального распределения имеют соответственно вид: , , , . Бета-распределение Случайная величина x имеет В-распределение (бета-распределение) с 68 параметрами a1 и a2, если ее функция плотности вероятностей имеет вид: Распределение Вейбулла Случайная величина x имеет распределение Вейбулла с параметрами l 0 и a , если ее функция распределения и функция плотности вероятностей имеют соответственно вид: , , , - гамма-функция Эйлера. Распределение Коши Случайная величина x имеет распределение Коши с параметрами a и c, если ее функция распределения и функция плотности вероятностей имеют соответственно вид: У распределения Коши не существует ни математического ожидания, ни дисперсии. Это распределение не имеет ни одного момента положительного порядка. Гамма-распределение Случайная величина x имеет Г-распределение (гамма-распределение) параметрами a и b, если ее функция плотности вероятностей имеет вид: , a > 0, b > 0, , , . с 69 Распределение Лапласа Случайная величина x имеет распределение Лапласа (двустороннее экспоненциальное распределение) с параметром l , если ее функция плотности вероятностей имеет вид: , - < x < , Mx = 0, Dx = 2/l 2. Закон больших чисел Неравенство Чебышева ~ Теорема Бернулли ~ Центральная предельная теорема. ~ Закон больших чисел ~ Теорема Ляпунова Практика изучения случайных явлений показывает, что хотя результаты отдельных наблюдений, даже проведенных в одинаковых условиях, могут сильно отличаться, в то же время средние результаты для достаточно большого числа наблюдений устойчивы и слабо зависят от результатов отдельных наблюдений. Теоретическим обоснованием этого замечательного свойства случайных явлений является закон больших чисел. Названием "закон больших чисел" объединена группа теорем, устанавливающих устойчивость средних результатов большого количества случайных явлений и объясняющих причину этой устойчивости. Простейшая форма закона больших чисел, и исторически первая теорема этого раздела - теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной. Теорема Пуассона утверждает, что частота события в серии независимых испытаний стремится к среднему арифметическому его вероятностей и перестает быть случайной. Предельные теоремы теории вероятностей, теоремы Муавра-Лапласа объясняют природу устойчивости частоты появлений события. Природа эта состоит в том, что предельным распределением числа появлений события при неограниченном возрастании числа испытаний (если вероятность события во всех испытаниях одинакова) является нормальное распределение. Центральная предельная теорема объясняет широкое распространение нормального закона распределения. Теорема утверждает, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин с конечными дисперсиями, закон распределения 70 этой случайной величины оказывается практически нормальным законом. Теорема, приведенная ниже под названием "Закон больших чисел" утверждает, что при определенных, достаточно общих, условиях, с увеличением числа случайных величин их среднее арифметическое стремится к среднему арифметическому математических ожиданий и перестает быть случайным. Теорема Ляпунова объясняет широкое распространение нормального закона распределения и поясняет механизм его образования. Теорема позволяет утверждать, что всегда, когда случайная величина образуется в результате сложения большого числа независимых случайных величин, дисперсии которых малы по сравнению с дисперсией суммы, закон распределения этой случайной величины оказывается практически нормальным законом. А поскольку случайные величины всегда порождаются бесконечным количеством причин и чаще всего ни одна из них не имеет дисперсии, сравнимой с дисперсией самой случайной величины, то большинство встречающихся в практике случайных величин подчинено нормальному закону распределения. В основе качественных и количественных утверждений закона больших чисел лежит неравенство Чебышева. Оно определяет верхнюю границу вероятности того, что отклонение значения случайной величины от ее математического ожидания больше некоторого заданного числа. Замечательно, что неравенство Чебышева дает оценку вероятности события для случайной величины, распределение которой неизвестно, известны лишь ее математическое ожидание и дисперсия. Неравенство Чебышева. Если случайная величина x имеет дисперсию, то для любого e > 0 справедливо неравенство , где Mx и Dx математическое ожидание и дисперсия случайной величины x . Теорема Бернулли. Пусть m n - число успехов в n испытаниях Бернулли и p вероятность успеха в отдельном испытании. Тогда при любом e > 0 справедливо . Центральная предельная теорема. Если случайные величины x 1, x 2, …, x n, … попарно независимы, одинаково распределены и имеют конечную дисперсию, то 71 при n ® равномерно по x (- , ) . Закон больших чисел. Если случайные величины x 1, x 2, …, x n, … попарно независимы и ,то для любого e > 0 . Теорема Ляпунова. Пусть x 1, x 2, …, x n, …- неограниченная последовательность независимых случайных величин с математическими ожиданиями m1, m2, …, mn, … и дисперсиями s 12, s 22, …, s n2… . Обозначим , , , . Тогда = Ф(b) - Ф(a) для любых действительных чисел a и b , где Ф(x) - функция распределения нормального закона. МАТЕМАТИЧЕСКИЙ АНАЛИЗ Понятие множества ~Операции над множествами Одно из основных понятий современной математики — понятие множества. Оно является первичным, т. е. не поддается определению через другие, более простые понятия. С понятием множества мы встречаемся довольно часто: множество студентов нашего института, множество преподавателей, множество изучаемых дисциплин и т. д. Хотя в силу первичности понятия множества нельзя дать ему строгое определение, но можно воспользоваться описательным определением, предложенным одним из создателей теории множеств – немецким математиком Георгом Кантором (1845-1918). Он сказал: «Множество есть многое, мыслимое нами как единое». Приведенные примеры обладают одним существенным свойством: все эти множества состоят из определенного конечного числа объектов, которые мы будем называть элементами множества. При этом каждый из объектов данного вида либо принадлежит, либо не принадлежит рассматриваемому множеству. Например, если мы рассмотрим множество студентов некоторой учебной группы, то, обратившись к списку этой группы, мы можем утверждать, что студент 72 Иванов принадлежит этому множеству, а студент Петров уже не принадлежит в связи с отчислением. Множества, включающие только такие объекты, принадлежность или не принадлежность которых к тому или иному множеству не вызывает сомнения, называются четкими множествами. Поскольку каждый рассматриваемый объект либо принадлежит, либо не принадлежит к рассматриваемому четкому множеству, эти множества всегда имеют ясно очерченные границы. Четким множествам противопоставлены нечеткие или «лингвистические» множества, включающие такие объекты, которые могут быть отнесены к тому или иному множеству лишь с определенной степенью достоверности. Понятие нечетких множеств (fuzzy sets) было впервые введено в 1965 году американским математиком Л. Заде. Понятие нечеткого множества можно проиллюстрировать на примере применения прилагательных детский, юношеский, молодой, среднего возраста, пожилой, старый. Разные люди вкладывают в эти понятия разные возрастные рамки. Например, период от 16 до 21 года может считаться либо как юношеский, либо как относящийся к молодому возрасту. Таким образом, каждое из рассмотренных определений представляет собой нечеткое подмножество с размытыми краями. Объекты, попадающие на эти размытые края, относятся к указанным множествам лишь с известной долей достоверности. Так, например, девятнадцатилетний мужчина может быть с достоверностью 50% отнесен к множеству юношей, и с той же достоверностью — к множеству молодых людей. Аппарат нечетких множеств может применяться для описания процессов мышления, лингвистических явлений и вообще для моделирования человеческого поведения, при котором допускаются частичные истины, а строгий математический формализм не является категорически необходимым. Множества, которые состоят из конечного числа элементов, называются конечными множествами. К числу конечных множеств относится также и пустое множество, т.е. множество, не содержащее ни одного элемента. Введение понятия пустого множества связано с тем, что, определяя тем или иным способом множество, мы не можем знать заранее, содержит ли оно хотя бы один элемент. Например, множество отличников в какой-либо учебной группе. Множества, рассматриваемые при решении практических задач, чаще всего имеет дело с конечными множествами объектов. В качестве примеров бесконечных множеств можно привести множества, рассматриваемые в математике: множество всех натуральных чисел (N) и множество всех целых чисел (Z). Способы задания множеств Произвольные множества будем обозначать прописными, а элементы множества строчными буквами латинского алфавита, пустое множество - символом Ø. Существуют два различных способа задания множества. Можно дать полный перечень элементов этого множества. Этот способ называется перечислением множества. Элементы перечисляемого множества заключают обычно в 73 фигурные скобки. Например, множество А, состоящее из букв русского алфавита, вместе с пробелом (его обозначают знаком ∆) запишется так: А = {а, б, в, ..., ю, я, ∆}. Множество студентов учебной группы определяется списком в соответствующем журнале. Понятно, что этот способ задания множества применим только для конечных множеств. Обычно его используют в тех случаях, когда число элементов множества не очень велико. Другой способ состоит в том, что задается свойство, которым обладает каждый элемент, принадлежащий рассматриваемому множеству, и не обладает ни один элемент, ему не принадлежащий. Этот способ называют описанием множества, а свойство, определяющее множество, характеристическим. При описании множеств используются различные символы, операции. Если A есть некоторое множество, а x — входящий в него объект, то символическая запись x A означает, что x является элементом множества A; при этом говорят: «x входит в А», «x принадлежит А». Если x не принадлежит множеству А, то пишут x А. Пусть, например, А есть множество букв русского алфавита, тогда, обозначив букву д как элемент х, а букву d как элемент y, можно записать х A, y А. В том случае, когда речь идет о нечетком множестве, указывается степень достоверности, с которой x принадлежит множеству A, Это выражается записью P (x A). Например, пусть A — множество юношей, а x обозначает девятнадцатилетнего мужчину; тогда, исходя из приведенных выше рассуждений, можно записать 0,5 (x A). Отношения между множествами Чтобы наглядно изображать множества и отношения между ними, английский математик Джон Венн (1834 - 1923) предложил использовать замкнутые фигуры на плоскости. Намного раньше Леонард Эйлер (1707 - 1783) для этих целей использовал круги, при этом точки внутри круга считались элементами множества. Такие изображения сейчас называют диаграммами Эйлера - Венна. Пусть даны два произвольных множества A и B, тогда возможны пять случаев отношений между ними: Множества A и B не имеют общих элементов (см. рис. 1а). Множества A и B имеют общие элементы, но не все элементы множества A принадлежат множеству B , и не все элементы множества B принадлежат множеству A. В этом случае говорят о пересечении множеств A и B (см. рис. 1б). Все элементы множества B принадлежат множеству A, но не все элементы множества А принадлежат множеству В. В этом случае говорят о включении множества В во множество А Определение: Если имеются два множества A и B, причем каждый элемент множества В принадлежит множеству А, то множество В называется подмножеством множества А. Записывается это так: В А Само множество A и пустое множество Ø называют несобственными подмножествами множества А. Все остальные подмножества называются собственными. Все элементы множества A принадлежат множеству B, но не все элементы 74 множества B принадлежат множеству A. В этом случае говорят о включении множества A во множество B (А В) (см. рис. 1г). Все элементы множества A принадлежат множеству B и все элементы множества B принадлежат множеству A. В этом случае говорят, что множества A и B равны. Определение: Множество, относительно которого все множества, рассматриваемые в данной задаче, являются подмножествами, называется универсальным. Универсальное множество будем обозначать буквой U. Основные операции над множествами Основными операциями, осуществляемыми над множествами, являются сложение (объединение), умножение (пересечение) и вычитание. Эти операции, как мы увидим дальше, не тождественны одноименным операциям, производимым над числами. Определение: Объединением (или суммой) двух множеств A и B называется множество, содержащее все такие и только такие элементы, которые являются элементами хотя бы одного из этих множеств. Объединение множеств A и B обозначают как A B. Это определение означает, что сложение множеств A и B есть объединение всех их элементов в одно множество A B. Если одни и те же элементы содержатся в обоих множествах, то в объединение эти элементы входят только по одному разу. Аналогично определяется объединение трёх и более множеств. Определение : Пересечением (или умножением) двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат множеству A и множеству В одновременно. Пересечение множеств A и B обозначают как A B. Аналогично определяется пересечение трёх и более множеств. Разностью множеств A и B называется множество, состоящее из тех и только тех элементов множества A и которые не принадлежат множеству В. Разность множеств A и B обозначают как A \ B. Операция, при помощи которой находится разность множеств, называется вычитанием Если В А, то разность A \ B называется дополнением множества B до множества A. Если множество B является подмножеством универсального множества U, то дополнение B до U обозначается B , то есть B = U \ B. Упражнения: 1) Рассмотрим три множества N={0,2,4,5,6,7}, M={1,3,5,7,9} и P ={1,3,9,11}. Найти a) A=NM b) B=NM c) C=NP 75 2) Ответьте, какими из операций над заданными множествами следует воспользоваться для получения множеств, описанных ниже. a) Дано: А – множество всех студентов факультета, В – множество студентов, имеющих академические задолженности. Определить С – множество успевающих студентов факультета. b) Дано: А – множество всех отличников факультета, В – множество студентов, не имеющих академических задолженностей, С – множество успевающих студентов, имеющих хотя бы одну тройку. Определить D – множество студентов факультета, успевающих без троек. c) Дано: U – множество всех студентов учебной группы, А - множество студентов этой группы, получивших зачет по физкультуре, В – множество студентов той же группы, успешно сдавших зачет по истории Отечества. Определить С – множество студентов той же учебной группы, преуспевших в обеих дисциплинах, D – множество студентов той же группы, «заваливших» хотя бы один из зачетов. Свойства объединения и пересечения множеств Из определений объединения и пересечения множеств вытекают свойства этих операций, представленные в виде равенств, справедливых для любых множеств A, BиС. 1. A B = B A — коммутативность объединения; 2. A B = B A — коммутативность пересечения; 3. A (B С) = (A B) С— ассоциативность объединения; 4. A (B С) = (A B) С— ассоциативность пересечения; 5. A (B С) = (A B) (A С) — дистрибутивность пересечения относительно объединения; 6. A (B С) = (A B) (A С) — дистрибутивность объединения относительно пересечения; Законы поглощения: AA=A AA=A AØ=A AØ=Ø AU=U AU=A Следует заметить, что разность не обладает свойствами коммутативности и ассоциативности, то есть A \ B ≠ B \ A и A \ (B \ С) ≠ (A \ B) \ С. В этом легко убедиться, построив диаграммы Эйлера - Венна. Разбиение множества на классы. Классификация В процессе изучения предметов и явлений окружающего мира мы постоянно сталкиваемся с классификацией. Классификация широко используется в биологии, химии, математике, языке и многих других науках. Она облегчает процесс усвоения знаний. 76 Классификация в любой области человеческой деятельности связана с разбиением множества на подмножества (классы). Например, классификация частей речи, членов предложения, чисел, геометрических фигур и так далее. Полученные подмножества должны обладать следующими свойствами: 1) они не должны быть пустыми; 2) не должны содержать общих элементов; 3) объединение всех подмножеств должно равняться самому множеству. Определение: Классификацией или разбиением множества на классы называется представление этого множества в виде объединения непустых попарно непересекающихся своих подмножеств. Число элементов объединения и разности двух конечных множеств Пусть A и B — конечные множества. Число элементов множества A условимся обозначать символом m(A) и называть численностью множества A. Определим численность объединения множеств A и B. Если множества A и B не пересекаются (см. рис. 1а), то m(AB) = m(A) + m(B). Таким образом, численность объединения конечных непересекающихся множеств равна сумме численностей этих множеств. Если множества A и B пересекаются (см. рис. 1б), то в сумме m(A) + m(B) число элементов пересечения AB содержится дважды: один раз в m(A), а другой — в m(B). Поэтому, чтобы найти численность объединения m(AB) , нужно из указанной суммы вычесть m(AB). Таким образом: m(AB) = m(A) + m(B) - m(AB) Определим теперь численность разности множеств A и B. Если множества A и B не пересекаются (см. рис. 1а), то A \ B = A, и поэтому m(A\B) = m(A). Если множества A и B пересекаются (см. рис. 1б), то m(A\B) = m(A) - m(AB). Если В А (см. рис. 1в), то AB = B, и, следовательно, m(A\B) = m(A) - m(B). Задача 1. Каждый студент первого курса обязан изучать хотя бы один иностранный язык. На юридическом факультете изучаются либо английский, либо немецкий язык. Из 94 первокурсников юридического факультета 76 человек изучают английский язык, 34 – изучают немецкий. Сколько студентов изучают два языка? Решение. Обозначим А – множество студентов, изучающих английский язык; В – множество студентов, изучающих немецкий язык. Множество всех первокурсников равно АВ. Множество, изучающих два языка AB. Воспользуемся формулой m(AB) = m(A) + m(B) - m(AB). Из условия задачи m(A)=76, m(B)=34, m(AB) =94. Поэтому m(AB)= 76+34-94=16. Задача 2. В одном из городов Украины часть жителей говорит только по-русски, 77 часть – только по-украински, часть говорит на обоих языках. Известно, что 90% жителей говорит по-русски, а 80% - по-украински. Какой процент жителей говорит на обоих языках? Какой процент говорит только по-русски? Какой процент говорит только по-украински? Решение. Введем ряд обозначений. Пусть N – множество жителей, говорящих порусски, а K – по-украински. По условию задачи m(N) = 90%, m(K) = 80%, а m(NK) = 100% - это общее число жителей. Процент двуязычных жителей m(NK) может быть определен из соотношения m(NK) = m(N) + m(K) -m(NK) 100%=90%+80%- m(NK) m(NK)=90%+80%-100%=70%. Множества одноязычных жителей определяются следующими выражениями: Русскоязычные - N\(NK), говорящие только по-украински - K\(NK). Поскольку в обоих случаях пересечение (NK) является подмножеством множеств N и K, то количество одноязычных жителей может быть получено по формулам m(N\(NK))= m(N)- m(NK)=90%-70%=20% m(K\(NK))= m(K)- m(NK)=80%-70%=10% Задача 3. Итоговое рейтинговое задание по курсу «Математика и информатика» содержало три задания: по MS Office, по математике и по Справочной правовой системе (СПС). Результаты проверки задания у 40 студентов представлены ниже. Выполнены Количество Выполнены задания Количество задания выполнивших выполнивших MS Office 20 MS Office и СПС 7 СПС 18 MS Office и 8 математика Математика 18 СПС и математика 9 Известно также, что ни одного задания не выполнили трое. Сколько студентов выполнили все три задания? Сколько студентов выполнили ровно два задания? Решение. Введем обозначения: N– множество студентов, выполнивших задание по MS Office; K – выполнивших задание по СПС; P – выполнивших задание по математике; x – число студентов, выполнивших все три задания. Дадим графическое представление рассматриваемых множеств (Рис. 3). Из рисунка можно отметить следующие данные: (7-x) – число студентов, выполнивших задания MS Office и СПС, но не по математике; (8-x) - число студентов, выполнивших задания MS Office и математике, но не по СПС, (9-x) – по СПС и математике, но не по MS Office. Если n, k, p – количество студентов, выполнивших только одно задание соответственно по MS Office, СПС и математике, то можно записать следующие выражения: m(N)=20=16+n-x; m(K)=18=15+k-x; m(P)=18=17+p-x, 78 в результате решения которых получим следующие соотношения: n=4+x; k=3+x; p=1+x. Всего в рейтинге участвовало 40 студентов, трое не выполнили ни одного задания, это означает, что, по крайней мере, одно задание выполнили 37 студентов. Множество студентов, выполнивших, по крайней мере, по одному заданию NKP. m(NKP) = 37. В соответствии с рис.3 это выражение будет равно: m(NKP) = n+k+p+24-2x, подставив в него выражения n, k и p через x, получим 4+x+3+x+1+x+24-2x=37 x=37-32=5. Таким образом, число студентов, выполнивших все три задания равно 5. Для определения количества студентов, выполнивших ровно два задания, из рисунка 3 получается следующее выражение 9-x+8-x+7-x=24-3x=24-15=9. Задача 4. В штучном отделе магазина посетители обычно покупают либо один торт, либо одну коробку конфет, либо один торт и одну коробку конфет, В один из дней было продано 57 тортов и 36 коробок конфет. Сколько было покупателей, если 12 человек купили и торт, и коробку конфет? Решение. Обозначим через T множество покупателей, купивших торт, а через К – множество покупателей коробки конфет. Тогда отношение между этими множествами может быть проиллюстрировано следующей диаграммой Тогда множество всех покупателей определяется, как объединение вышеуказанных множеств Т К. А множество покупателей, сделавших две покупки, получается в результате пересечения тех же множеств Т К. Их количество согласно условию задачи m(Т К) = 12. Согласно теории m(Т К)=m(Т) + m(К) - m(Т К). Подставив в эту формулу данные из условия задачи, получим m(Т К)= 57 + 36 – 12 = 81. Элементы математического анализа Основные определения ~ Бесконечно малая последовательность ~ Бесконечно большая последовательность Основные определения. Последовательность множестве натуральных чисел последовательности - это функция, заданная на . Число называется пределом , если для любого положительного числа , как бы 79 мало оно ни было, существует такой номер справедливо , что для всех неравенство . эквивалентное неравенству c номерами Неравенство , , означает, что для любого существует такой номер , что все c номерами расположены между и . Последовательность, предел которой - конечное число , называется сходящейся, и ее предел обозначают элементы последовательности . Если изобразить на плоскости точками с координатами то неравенства означают, что все точки номерами расположены между параллельными оси абсцисс прямыми и . , с ПРИМЕР 1. Сходящаяся последовательность Бесконечно малая последовательность. Последовательность равен нулю , предел которой , называется бесконечно малой. ПРИМЕР 2. Бескнечно малая последовательность Бесконечно большая последовательность. Последовательность называется бесконечно большой, если для любого положительного числа , как бы велико оно ни было, существует такой номер справедливо неравенство , что для всех , записываем с номерами . ПРИМЕР 3. Бесконечно большая последовательность ПРИМЕР 4. Исследование процесса сходимости последовательности Пределы суммы, произведения Неопределенности и их раскрытие и частного последовательностей ~ Пределы суммы, произведения и частного последовательностей. Пусть заданы две последовательности и . Если существуют и , то существуют и пределы суммы и произведения последовательностей, а при 80 и предел частного, причем , , . Для правильного применения этих теорем очень важно существование пределов каждой последовательности. ПРИМЕР 1. Простейшие методы вычисления пределов последовательностей Неопределенности и их раскрытие. Если и , то может существовать случае говорят, что имеем неопределенность типа существовать и . В этом . Также может , в этом случае имеем неопределенность типа , то может существовать . Если . В этом случае говорят, что имеем неопределенность типа . Поскольку в перечисленных случаях не применимы теоремы о пределе суммы, произведения и частного, используют другие способы вычисления, которые называют методами раскрытия неопределенностей. Это, как правило, алгебраические преобразования, приводящие выражения к виду, при котором можно пользоваться упомянутыми теоремами. ПРИМЕР 2. Методы раскрытия неопределенностей Производная функции в точке ~ Односторонние производные ~ Секущая графика функции Касательная и нормаль к графику функции Производная функции в точке - Пусть функция . Точка определена на промежутке — произвольная точка из области определения функции, — приращение функции в точке приращением независимой переменной независимой переменной в точке , вызванное . Производной функции , по называется предел 81 отношения приращения функции к приращению при стремлении к нулю, т.е. , — производная функции в точке . ПРИМЕР 1. Вычисление производных Односторонние производные - Если определена при определить функции правую производную , то можно в точке : Аналогично, если определена при производная функции в точке : Функция производную в точке имеет в точке , определяется левая тогда и только тогда, когда совпадают ее левая и правая производные: . ПРИМЕР 2. Вычисление односторонних производных Секущая графика функции - Пусть промежутке — функция, определенная на . Прямая, проходящая через точки , называется секущей графика функции , , . Угловой 82 коэффициент секущей равен и ее уравнение имеет вид . ПРИМЕР 3. Построение секущей графика функции Касательная и нормаль к графику функции - Касательной к графику функции в точке проходящей через точки называется , предельное положение , когда коэффициент касательной равен значению производной в точке уравнение имеет вид в точке секущей, . Угловой и ее . Нормалью к графику функции называется прямая , проходящая через эту точку перпендикулярно касательной. Угловой коэффициент нормали равен и ее уравнение имеет вид . ПРИМЕР 4. Построение касательной и нормали к графику функции 3. Практические занятия 3.1. Содержание практических работ Матрицы. Действия с матрицами 1. Ортогональная матрица Определители. Вычисление определителей 1. Вычисление определителей матриц 2 и 3 порядков Методы решения систем линейных алгебраических уравнений 1. Решение системы линейных уравнений методом Гаусса Online-инструмент для решения линейных алгебраических систем уравнений Общая теория систем линейных уравнений. Однородные системы 1. Нетривиальная совместность однородной системы линейных уравнений с квадратной матрицей Общая теория систем линейных уравнений. Неоднородные системы 1. Проверка условия совместности неоднородной системы 2. Линейное пространство. Основные понятия 1. Нахождение координат вектора в новом базисе. 83 2. Исследование на линейную зависимость систем векторов. Выделение линейно независимой подсистемы векторов. 3. Скалярное произведение векторов, норма вектора, угол между векторами. Элементарная теория линейных операторов 1. Собственные значения и собственные векторы оператора. Геометрические векторы 1. Вычисление длин сторон треугольника Ориентация пространства. Скалярное, векторное и смешанное произведение векторов 1. Вычислить объем тетраэдра и его высоту Предел числовой последовательности 1. Исследование сходимости последовательности Методы вычисления пределов последовательностей 1. Методы раскрытия неопределенностей Предел функции в точке 1. Функция, не имеющая предела в точке Бесконечно малые функции. Сравнение бесконечно малых функций 1. Бесконечно малые функции 2. Сравнение бесконечно малых функций 3. Таблица эквивалентных бесконечно малых функций Методы вычисления пределов функции 1. Раскрытие неопределенностей с помощью формулы Тейлора Непрерывность функции в точке, на отрезке 1. Доказательство непрерывности функции в точке 2. Нахождение наибольшего и наименьшего значения непрерывной функции на отрезке 3. Отделение корней уравнения f(x)=0 с непрерывной левой частью 4. Геометрический смысл формулы Лагранжа Классификация точек разрыва 1. Доказательство непрерывности функции в точке 2. Вычисление односторонних пределов 3. Определение типа точки разрыва Производная, ее вычисление, геометрический смысл 1. Построение касательной и нормали к графику функции Производные сложных, обратных функций 1. Вычисление производных сложных функций 2. Вычисление производных обратной функции Дифференцируемость, дифференциал 1. Вычисление дифференциала функции Производные и дифференциалы высших порядков 1. Вычисление дифференциалов высших порядков Исследование функций и построение графиков 1. Отыскание асимптот графика функции 84 2. Нахождение интервалов монотонности и экстремумов 3. Нахождение интервалов выпуклости, вогнутости и точек перегиба Кривые на плоскости 1. Построение кривой, заданной параметрически Неопределенный интеграл, простейшие методы интегрирования 1. Простейшие методы интегрирования 2. Замена переменной в неопределенном интеграле 3. Интегрирование по частям в неопределенном интеграле Интегрирование некоторых классов функций 1. Интегрирование иррациональных функций Определенный интеграл. Формула Ньютона-Лейбница 1. Вычисление определенного интеграла как предела интегральной суммы Применение определенного интеграла для вычисления площадей и длин дуг 1. Вычисление площадей и длин дуг в декартовых координатах 2. Вычисление площадей и длин дуг при параметрическом задании кривых 3. Вычисление площадей и длин дуг в полярных координатах Несобственные интегралы 1. Исследование функции, заданной интегралом 2. Вычисление несобственного интеграла с бесконечным пределом 3. Вычисление несобственного интеграла от неограниченной функции 4. Исследование несобственных интегралов на сходимость Числовые ряды 1. Вычисление частичной суммы числового ряда. 2. Исследование сходящегося и расходящегося рядов. 3. Простейшие методы вычисления суммы ряда. Сходимость знакоположительных рядов 1. Исследование сходимости ряда по первой теореме сравнения. 2. Исследование сходимости ряда по второй теореме сравнения. 3. Исследование сходимости ряда по признаку Даламбера. 4. Исследование сходимости ряда по признаку Коши. Сходимость знакопеременных рядов 1. Исследование знакопеременного ряда на абсолютную сходимость. 2. Исследование сходимости знакочередующихся рядов. Функциональные ряды, равномерная сходимость 1. Нахождение области сходимости функционального ряда. 2. Изучение сходимости функционального ряда. 3. Исследование функционального ряда на равномерную сходимость. Ряд Тейлора 1. Нахождение области сходимости функционального ряда. 2. Разложение в ряд Маклорена некоторых элементарных функций. 3. Разложение в ряд Тейлора с использованием стандартных разложений. Ряд Фурье 1. Разложение в ряд Фурье и исследование частичных сумм. 85 2. Разложение в ряд Фурье на произвольном отрезке. Сходимость ряда Фурье 1. Исследование явления Гиббса. 2. Нахождение тригонометрического многочлена наилучшего приближения. 3. Исследование сходимости ряда Фурье в зависимости от гладкости функций. Функции многих переменных 1. Построение графика функции двух переменных. 2. Построение линий и поверхностей уровня. 3. Нахождение экстремумов с помощью линий уровня. Частные производные, градиент 1. Вычисление частных производных. 2. Вычисление производных по направлению. 3. Вычисление градиента функции. 4. Вычисление полного дифференциала. 5. Вычисление производных высших порядков. Исследование на экстремум 1 . Исследование на экстремум по определению. 2 . Исследование на экстремум функции двух переменных. Условный экстремум 1 . Нахождение условного экстремума функции двух и трех переменных. 2 . Нахождение условного экстремума функции двух переменных методом Лагранжа. 3 . Нахождение наибольшего и наименьшего значений функции двух переменных. Скалярное поле 1 . Исследование скалярного поля с помощью линий уровня. 2 . Вычисление производной по направлению скалярного поля. 3 . Вычисление градиента скалярного поля. Введение. Справочные сведения из теории вероятностей. Основные инструменты Mathcad для задач теории вероятностей. 1. Функция распределения, ее график 2. Определение в математическом пакете двумерного случайного вектора 3. Свойства нормального распределения Функция распределения случайной величины. Дискретные случайные величины. 1. Вычисление вероятностей событий 2. Вычисление вероятностей событий Функция распределения случайной величины. Непрерывные случайные величины. 1. Вычисление вероятностей событий Предельные теоремы для биномиального распределения. 1. Точность формулы Пуассона 2. Точность формулы Муавра-Лапласа 3. Точность интегральных формул Муавра-Лапласа 86 4. Применение теоремы Бернулли Функции распределения многомерных случайных величин. 1. Распределение координат случайного вектора 2. Распределение координат случайного вектора Независимость случайных величин. 1. Независимость координат непрерывного случайного вектора 2. Независимость координат дискретного случайного вектора Условные распределения дискретных случайных величин. 1. Условные и безусловные распределения компонент случайного вектора Условные распределения непрерывных случайных величин. 1. Независимость компонент непрерывного случайного вектора 2. Независимость компонент нормально распределенного случайного вектора Функции от случайных величин. Плотность вероятностей суммы двух случайных величин. 1. Плотность вероятностей случайной величины. 2. Плотность вероятности суммы двух стандартных нормальных распределений случайных величин. 3. Распределение произведения компонент двумерного дискретного случайного вектора с по известным распределениям его компонент. Числовые характеристики случайных величин. 1. Найти характеристики случайной величины . 2. Вычислить коэффициент асимметрии распределения Рэлея. 3. Вычислить эксцесс для двух случайных величин. 4. Случайная величина x распределена равномерно на отрезке [2, 3]. Найдем для нее среднее гармоническое и среднее геометрическое. Числовые характеристики двумерных случайных величин. 1. Вычислить математическое ожидание дискретного двумерного случайного вектора с заданным распределением. 2. Вычислим дисперсию двумерного случайного вектора, определенного в е 1. 3. Вычислим математические ожидания и условные математические ожидания компонент случайного вектора с заданным распределением. Ковариация. Корреляция. 1. Вычислить ковариации компонент дискретного случайного вектора с заданным распределением. 2. Вычислим корреляционную матрицу дискретного случайного вектора. 3.2. Содержание лабораторных работ Содержание лабораторных работ повторяет содержание практических. Лабораторные работы предполагают использование инструментария Mathcad и /или MS EXCEL при решении задач. 4. План самостоятельной работы студентов 4.1. Содержание самостоятельной работы Матрицы. Действия с матрицами 87 1. Действия с матрицами 2. Проверка перестановочности матриц 3. Умножение матрицы на матрицы специального вида 4. Возведение матрицы в степень 5. Обращение матрицы 6. Ортогональная матрица Определители. Вычисление определителей 1. Вычисление определителя разложением по 1-ой строке 2. Вычисление определителей матриц 2 и 3 порядков Методы решения систем линейных алгебраических уравнений 1. Решение матричного уравнения 2. Вычисление решения системы линейных уравнений по формулам Крамера 3. Решение системы линейных уравнений методом Гаусса Online-инструмент для решения линейных алгебраических систем уравнений Общая теория систем линейных уравнений. Однородные системы 1. Нетривиальная совместность однородной системы линейных уравнений с квадратной матрицей 2. Нетривиальная совместность однородной системы трех линейных уравнений с четырьмя неизвестными 3. Исследование однородной системы на совместность методом Гаусса Общая теория систем линейных уравнений. Неоднородные системы 1. Проверка условия совместности неоднородной системы 2. Исследование неоднородной системы для двух различных правых частей методом Гаусса Линейное пространство. Основные понятия 1. Нахождение координат вектора в новом базисе. 2. Исследование на линейную зависимость систем векторов. Выделение линейно независимой подсистемы векторов. 3. Скалярное произведение векторов, норма вектора, угол между векторами. Элементарная теория линейных операторов 1. Матрица оператора в новом базисе. 2. Образ и ядро линейного оператора. 3. Собственные значения и собственные векторы оператора. Геометрические векторы 1. Доказать свойство координат коллинеарных векторов 3. Проверка коллинеарности векторов 4. Найти координаты середины отрезка 5. Разложение вектора в заданном базисе 6. Вычислить координаты векторов 7. Вычислить длины сторон треугольника Ориентация пространства. Скалярное, векторное и смешанное произведение векторов 1. Найти угол между векторами 88 2. Вычислить площадь параллелограмма, построенного на векторах a и b. 3. Проверка компланарности векторов 4. Принадлежность 4 точек одной плоскости 5. Вычислить объем тетраэдра и его высоту Предел числовой последовательности 1. Сходящаяся последовательность 2. Бесконечно малая последовательность 3. Бесконечно большая последовательность 4. Исследование процесса сходимости последовательности Методы вычисления пределов последовательностей 1. Простейшие методы вычисления пределов последовательностей 2. Методы раскрытия неопределенностей Предел функции в точке 1. Доказательство существования предела функции в точке 2. Доказательство того, что функция бесконечно большая 3. Функция, не имеющая предела в точке Бесконечно малые функции. Сравнение бесконечно малых функций 1. Бесконечно малые функции 2. Сравнение бесконечно малых функций 3. Таблица эквивалентных бесконечно малых функций Методы вычисления пределов функции 1. Простейшие методы вычисления пределов 2. Простейшие методы раскрытия неопределенностей 3. Раскрытие неопределенностей с помощью эквивалентных бесконечно малых 4. Раскрытие неопределенностей с помощью правила Лопиталя 5. Раскрытие неопределенностей с помощью формулы Тейлора Непрерывность функции в точке, на отрезке 1. Доказательство непрерывности функции в точке 2. Нахождение наибольшего и наименьшего значения непрерывной функции на отрезке 3. Отделение корней уравнения f(x)=0 с непрерывной левой частью 4. Геометрический смысл формулы Лагранжа Классификация точек разрыва 1. Доказательство непрерывности функции в точке 2. Вычисление односторонних пределов 3. Определение типа точки разрыва Производная, ее вычисление, геометрический смысл 1. Вычисление производных 2. Вычисление односторонних производных 3. Построение секущей графика функции 4. Построение касательной и нормали к графику функции Производные сложных, обратных функций 1. Вычисление производных сложных функций 89 2. Вычисление производных обратной функции Дифференцируемость, дифференциал 1. Вычисление приращения функции в точке 2. Вычисление дифференциала функции по определению 3. Вычисление дифференциала функции Производные и дифференциалы высших порядков 1. Вычисление производных высших порядков 2. Вычисление дифференциалов высших порядков Исследование функций и построение графиков 1. Отыскание асимптот графика функции 2. Нахождение интервалов монотонности и экстремумов 3. Нахождение интервалов выпуклости, вогнутости и точек перегиба Кривые на плоскости 1. Построение кривой в декартовых координатах 2. Построение кривой, заданной параметрически 3. Построение кривой в полярных координатах Формула Тейлора 1. Оценка остаточного члена 2. Разложение функции в окрестности нуля 3. Разложение функции в окрестности произвольной точки Неопределенный интеграл, простейшие методы интегрирования 1. Простейшие методы интегрирования 2. Замена переменной в неопределенном интеграле 3. Интегрирование по частям в неопределенном интеграле Интегрирование некоторых классов функций 1. Интегрирование рациональных функций 2. Интегрирование тригонометрических функций 3. Интегрирование иррациональных функций Определенный интеграл. Формула Ньютона-Лейбница 1. Вычисление определенного интеграла как предела интегральной суммы 2. Вычисление определенного интеграла 3. Замена переменной и интегрирование по частям в определенном интеграле Применение определенного интеграла для вычисления площадей и длин дуг 1. Вычисление площадей и длин дуг в декартовых координатах 2. Вычисление площадей и длин дуг при параметрическом задании кривых 3. Вычисление площадей и длин дуг в полярных координатах Несобственные интегралы 1. Исследование функции, заданной интегралом 2. Вычисление несобственного интеграла с бесконечным пределом 3. Вычисление несобственного интеграла от неограниченной функции 4. Исследование несобственных интегралов на сходимость Числовые ряды 1. Вычисление частичной суммы числового ряда. 90 2. Исследование сходящегося и расходящегося рядов. 3. Простейшие методы вычисления суммы ряда. Сходимость знакоположительных рядов 1. Исследование сходимости ряда по первой теореме сравнения. 2. Исследование сходимости ряда по второй теореме сравнения. 3. Исследование сходимости ряда по признаку Даламбера. 4. Исследование сходимости ряда по признаку Коши. Сходимость знакопеременных рядов 1. Исследование знакопеременного ряда на абсолютную сходимость. 2. Исследование сходимости знакочередующихся рядов. Функциональные ряды, равномерная сходимость 1. Нахождение области сходимости функционального ряда. 2. Изучение сходимости функционального ряда. 3. Исследование функционального ряда на равномерную сходимость. Ряд Тейлора 1. Нахождение области сходимости функционального ряда. 2. Разложение в ряд Маклорена некоторых элементарных функций. 3. Разложение в ряд Тейлора с использованием стандартных разложений. Ряд Фурье 1. Разложение в ряд Фурье и исследование частичных сумм. 2. Разложение в ряд Фурье на произвольном отрезке. Сходимость ряда Фурье 1. Исследование явления Гиббса. 2. Нахождение тригонометрического многочлена наилучшего приближения. 3. Исследование сходимости ряда Фурье в зависимости от гладкости функций. Функции многих переменных 1. Построение графика функци двух переменных. 2. Построение линий и поверхностей уровня. 3. Нахождение экстремумов с помощью линий уровня. Частные производные, градиент 1. Вычисление частных производных. 2. Вычисление производных по направлению. 3. Вычисление градиента функции. 4. Вычисление полного дифференциала. 5. Вычисление производных высших порядков. Исследование на экстремум 1 . Исследование на экстремум по определению. 2 . Исследование на экстремум функции двух переменных. Условный экстремум 1 . Нахождение условного экстремума функции двух и трех переменных. 2 . Нахождение условного экстремума функции двух переменных методом Лагранжа. 3 . Нахождение наибольшего и наименьшего значений функции двух переменных. 91 Скалярное поле 1 . Исследование скалярного поля с помощью линий уровня. 2 . Вычисление производной по направлению скалярного поля. 3 . Вычисление градиента скалярного поля. Введение. Справочные сведения из теории вероятностей. Основные инструменты Mathcad для задач теории вероятностей. 1. Функция распределения, ее график 2. Определение в математическом пакете двумерного случайного вектора 3. Свойства нормального распределения Функция распределения случайной величины. Дискретные случайные величины. 1. Вычисление вероятностей событий 2. Вычисление вероятностей событий Функция распределения случайной величины. Непрерывные случайные величины. 1. Вычисление вероятностей событий Предельные теоремы для биномиального распределения. 1. Точность формулы Пуассона 2. Точность формулы Муавра-Лапласа 3. Точность интегральных формул Муавра-Лапласа 4. Применение теоремы Бернулли Функции распределения многомерных случайных величин. 1. Распределение координат случайного вектора 2. Распределение координат случайного вектора Независимость случайных величин. 1. Независимость координат непрерывного случайного вектора 2. Независимость координат дискретного случайного вектора Условные распределения дискретных случайных величин. 1. Условные и безусловные распределения компонент случайного вектора Условные распределения непрерывных случайных величин. 1. Независимость компонент непрерывного случайного вектора 2. Независимость компонент нормально распределенного случайного вектора Функции от случайных величин. Плотность вероятностей суммы двух случайных величин. 1. Плотность вероятностей случайной величины. 2. Плотность вероятности суммы двух стандартных нормальных распределений случайных величин. 3. Распределение произведения компонент двумерного дискретного случайного вектора с по известным распределениям его компонент. Числовые характеристики случайных величин. 1. Найти характеристики случайной величины . 2. Вычислить коэффициент асимметрии распределения Рэлея. 3. Вычислить эксцесс для двух случайных величин. 92 4. Случайная величина x распределена равномерно на отрезке [2, 3]. Найдем для нее среднее гармоническое и среднее геометрическое. Числовые характеристики двумерных случайных величин. 1. Вычислить математическое ожидание дискретного двумерного случайного вектора с заданным распределением. 2. Вычислим дисперсию двумерного случайного вектора, определенного в е 1. 3. Вычислим математические ожидания и условные математические ожидания компонент случайного вектора с заданным распределением. Ковариация. Корреляция. 1. Вычислить ковариации компонент дискретного случайного вектора с заданным распределением. 2. Вычислим корреляционную матрицу дискретного случайного вектора. 5. Контрольные работы (только для ЗО). 5.1 Методические рекомендации по выполнению и оформлению контрольных работ Задания к контрольным работам составлены в соответствии с требованиями по математике Государственных образовательных стандартов по соответсвующим специальностям для подготовки специалистов с высшим образованием. Контрольные работы выполняют по варианту, номер которого совпадает с последней цифрой учебного шифра студента, и сдают для проверки преподавателю-рецензенту. В таблице указаны номера задач, которые студент должен решить при выполнении каждой контрольной работы в соответствующем семестре. Преподаватель-рецензент проверяет правильность решения каждой задачи и отмечает ошибки решения или недостатки оформления контрольной работы. В конце работы преподаватель пишет рецензию на ее выполнение, где отмечает недостатки и достоинства решения задач, а также выносит окончательное заключение «Работа допущена к зачету» или «Работа не допущена к зачету». Во втором случае рецензент подробно указывает причины и дает рекомендации по исправлению ошибок. В той же тетради после рецензии преподавателя студент должен исправить решения указанных задач и вновь сдать контрольную работу на проверку. Зачет по контрольной работе студент может получить лишь после беседы с преподавателем. 5.2. Перечень рекомендуемой литературы 1. Кремер Н. Ш. Высшая математика для экономистов : учебник для вузов / Н.Ш. Кремер - Москва : ЮНИТИ, 2008. 479 c. 2. Данко П.Е. Высшая математика в упражнениях и задачах. В 2 ч. : учебное пособие для вузов / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова, С.П. Данко Москва : ОНИКС, 2008. 368 c. 3. Соболь Б.В. Практикум по высшей математики : учебная книга / Б.В. Соболь, Н.Т. Мишняков, В.М. Поркшеян - Ростов-на-Дону : Феникс, 2007. 630 c. 93 5.3. Темы (варианты) контрольных работ Задания к контрольным работам №1,2 Семестр Вариант 01 02 03 04 05 06 07 08 09 10 1 2 Контрольная работа №1 Контрольная работа №2 1 11 21 31 41 51 61 71 81 91 101 111 2 12 22 32 42 52 62 72 82 92 102 112 3 13 23 33 43 53 63 73 83 93 103 113 4 14 24 34 44 54 64 74 84 94 104 114 5 15 25 35 45 55 65 75 85 95 105 115 6 16 26 36 46 56 66 76 86 96 106 116 7 17 27 37 47 57 67 77 87 97 107 117 8 18 28 38 48 58 68 78 88 98 108 118 9 19 29 39 49 59 69 79 89 99 109 119 10 20 30 40 50 60 70 80 90 100 110 120 Контрольная работа №1 Темы: Элементы линейной алгебры и аналитической геометрии. Математический анализ. Задача 1. 1-10. Даны вершины А1(х1, у1, z1), А2(х2, у2, z2), А3(х3, у3, z3), А4(х4, у4, z4), пирамиды. Найти: 1) длину ребра А1А2; 2) угол между ребрами А1А2 и А1А4; 3) уравнение грани А1А2А3 и ее площадь; 4) уравнения высоты, опущенной из вершины А4 на грань А1А2А3. 1.А1(3,2,1), 2.А1(2,-1,8), 3.А1(8,5,0), 4.А1(0,1,-1), 5.А1(3,2,-3), 6.А1(0,6,-1), 7.А1(2,-3,2), 8.А1(6,-2,0), 9.А1(1,4,-2), 10. А1(1,8,2), Задача 2. А2(-1,3,2), А2(3,4,4), А2(-3,7,-5), А2(3,-4,4), А2(3,-1,-1), А2(3,-8,2), А2(0,5,4), А2(6,2,-1), А2(-3,0,3), А2(4,-1,2), А3(2,0,-1), А3(2,-1,2), А3(-4,1,3), А3(6,-1,3), А3(0,2,-2), А3(4,-1,0), А3(5,6,1), А3(2,-1,4), А3(8,0,1), А3(-1,5,3), А4(4,-2,3). А4(6,1,6). А4(-2,1,-4). А4(5,2,-1). А4(4,-2,3). А4(2,1,-4). А4(-2,1,3). А4(-2,7,4). А4(1,-4,0). А4(3,3,-3). 94 11-20. Составить уравнение множества точек, для каждой из которых выполняется следующее условие: 11. Сумма квадратов расстояний до точек А(1,1) и В(-3,3) равна 20. 12. Сумма квадратов расстояний до точек А(3,-3), В(1,1) и С(-1,-1) равна 28. 13. Сумма квадратов расстояний до точек А(3,0), В(0,4), С(-1,0) и D(2,-4) равна 58. 14. Квадрат расстояния до точки А(0,3) на 3 больше квадрата расстояния до оси абсцисс. 15. Сумма расстояний до точек А(6,0) и О(0,0) равна 10. 16. Квадрат расстояния до точки А(2,0) на 16 больше квадрата расстояния до оси координат. 17. Сумма квадратов расстояний до сторон прямоугольника, образованного прямыми х=0,у=0 , х-4=0, у-2=0, равна 20. 18. Расстояние до точки А(0,3) равно расстоянию до оси абсцисс. 19. Разность расстояний до точек А(0,10) и О(0,0) равна 8. 20. Расстояние до точки А(2,0) равно расстоянию до оси ординат. Задача 3. 21-30. Даны векторы а , b , с , d в некотором базисе. Показать, что векторы а , b , с образуют базис, и найти координаты вектора d в этом базисе. Систему линейных уравнений решить методом Крамера. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. (7,3,0), (2,0,3), (1,2,2), (-2,3,1), (1,3,1), (2,5,-1), (-1,4,3), (3,3,2), (-2,-1,1), (1,5,1), (4,1,1), (-9,2,10), (5,-2,-7), (2,6,7), (1,-8,2), (-1,2,-6), (5,0,1), (1,2,3), (2,3,0), (-2,5,4), (-7,1,12), (-4,2,10), (0,5,-1), (4,-1,0), (0,-5,3), (-2,1,1), (-1,4,4), (1,-1,4), (-4,2,3), (3,-1,2), (-11,8,5). (-1,-2,-10). (-2,6,-6). (6,-3,-5). (3,-8,2). (-11,-5,-1). (-7,8,7). (4,-1,7). (-10,-9,3). (4,19,9). Задача 4. 31-40. Применяя метод Гаусса исключения неизвестных, решить систему линейных уравнений. Сделать проверку найденного решения. 4 x1 2 x 2 x3 3x 4 11, x 6 x 9 x 8, 3 4 31. 1 3х1 4 х 2 3х3 х 4 10, 2 х1 2 х 2 х3 2 х 4 0. 3x1 7 x 2 x3 2 x 4 11, 4 x 2 х x 7 x 8, 2 3 4 32. 1 х1 4 х 2 3х3 5 х 4 8, 2 х 2 6 х3 5 х 4 13. 95 x1 x 2 3x3 2 x 4 8, 2 x 3х x 4 x 7, 2 3 4 33. 1 3х1 2 х 2 4 х3 х 4 3, 5 х1 6 х 2 2 х3 х 4 1. 3x1 x 2 3x 4 0, 2 x 3х x 2 x 10, 2 3 4 34. 1 х1 4 х 2 2 х3 х 4 3, 3х1 2 х 2 х3 3х 4 6. x1 5 x 2 3x3 2 x 4 12, 4 x 4 x x x 2, 1 2 3 4 35. 3x1 2 x 2 4 x3 5 x 4 18, x1 4 x 2 x3 6 x 4 10. 2 x1 x 2 4 x3 x 4 3, x 2 x 3x 2 x 11, 2 3 4 36. 1 3x1 x 2 2 x3 x 4 2, 5 x1 3x 2 6 x3 2 x 4 5. x1 2 x 2 5 x3 3x 4 1, 5 x 9 x 5 x 9, 3 4 37. 1 6 x1 x 2 x3 x 4 10, x1 x 2 x3 2 x 4 4. 4 x1 3x 2 2 x3 x 4 6, 3x 2 x 3x 2 x 15, 2 3 4 38. 1 x1 7 x 2 6 x3 4 x 4 13, x1 x 2 3x3 3x 4 5. 2 x1 3x 2 x3 x 4 4, 3x x 7 x x 27, 3 4 39. 1 2 2 x x x 5 x 4 0, 1 2 3 x1 3x 2 4 x3 2 x 4 10. 3x1 2 x 2 x3 x 4 8, 5 x x 2 x 11, 1 2 3 39. x x x 1 2 3 x 4 0, 2 x1 2 x 2 6 x3 3x 4 9. Задача 5. 41-50. Найти: 41. а) lim x 14 x 2 3 , 3x 2 x 4 1 x2 , 3x 2 x 1 8x 4 x 3 2 , 43. а) lim x 6 x 4 2 x 2 3 1 x 4x 3 , 44. а) lim x 1 x 2 8 x 3 4 3x x 2 , 45. а) lim x 4 x 2 3 x 1 42. а) lim x 46. а) lim x 4 x 5x 3 , 2 x2 x3 4x 2 4x 3 , 5 x 2 3x 4 7 x 2 4x 2 , 48. а) lim x 3 2 x 5 x 2 47. а) lim x б) lim x 1 x3 1 , x 2 8x 7 в) lim 2x 2 2x 4 . 5 x x3 1 x 1 x 3x 2 11x 10 lim . , б) xlim в) 2 x 0 2 2 x 5 x 2 5x x 2 x3 8 lim 2 . , б) xlim в) 2 x 4 3 x 11x 4 2 x x 6 x2 x 2 4 x , в) lim б) lim . x 1 x 2 2 x 3 x 4 1 6x 5 x 2 4x 3 x 2 2x 3 , б) lim в) lim . x 1 x 2 x 2 x 3 2x 1 x 4 4 x 2 13x 3 3 x 9 . б) lim , в) lim x 3 x 0 x2 x 6 x 1 1 x 2 2x , x 2 4x 4 x2 x 2 , б) lim x 1 x3 x б) lim x2 x 4 в) lim x 5 в) lim x 0 x 1 2 . x5 x 1 1 . 2x 96 49. а) lim x x2 x 1 , 7x2 x 2 б) lim x2 4 7x2 50. а) lim 2 , x 3 x 4 x 5 x2 4 , x 2 3x 2 x2 x 2 б) lim , x 2 4 x2 в) lim x 1 в) lim x 0 x8 3 . 3x 3 x2 1 1 x 2 16 4 . Задача 6. 51-60. Задана функция y=f(x). Найти все точки разрыва функции, если они существуют. Построить график функции. х, 51. f ( x) х 2 , 3х 2, х 1, 1 х 2, х 2. 1 2 2 x , 52. f ( x) x 1, 1 х, х 1, 2 х 0, х 0. х 0, х 1, 2 53. f ( x) х 1, 0 х 1, 1 х, х 1. 1 2 х, х 1, 54. f ( x) х, 1 х 1, 2 / х, х 1. х2 , 55. f ( x) х 2, 2 х , 1 / х, х 1, 56. f ( x) х , 1 х 1, 2 / x, х 1. х 1, 1 х 1, х 1. 2 х2 , х 0, 57. f ( x) х 2, 0 х 2, х, х 2. х 2 1, х 0, 58. f ( x) 1 2 х, 0 х 2, х 2, х 2. х 1, 1 х, 59. f ( x) 2 х, 1 х 2, 8 х 2 , х 2. х 1, х 1, 2 60. f ( x) х 1, 1 х 2, 2 х, х 2. Контрольная работа №2. Темы: Дифференциальное исчисление функций одной переменной. Применение дифференциального исчисления для исследования функций и построения их графиков. Неопределенный интеграл. Определенный интеграл. Задача 1. 61-70. Найти производные следующих функций: 97 1 x2 ; в) х а cos t , x 61. a) y arcsin 3x 1 9 x 2 ; б ) y 62. a) y 2 х ; б ) y 1 sin 3x ; в ) х ln( 1 t 2 ), 1 sin 3x у b sin t. у t 2. 63. а) у х 3 е 3 х ; б ) у 3 1 ln 2 x ; в) х 1 cos 2t , у 2 sin 2t. 64. а) у 1 е х ; б ) у sin 2 x 1 ; в) х t 2 , cos x 2 у 1 t 65. а) у е 2 х sin x; б ) у arctg 3 x; в) х , у 66. a) y ( х 1) arctg x ; б ) y 1 x 1 x 1 3 t t. 2 t 1 . t ; в) х ln(cos t ), 1 3 у sin 2 t. 1 2 1 2 1 t 67. a) y e x cos 3x; б ) y ln 2 ( x 3 1); в) х t 3 t 2 1, у t 2 . 68. а) у х 2 ln( x 2 1); б ) у 4 tg 2 x ; в) х е t , у t e t 2 2 1 t 2 69. a) y ( x 1) x 2 1; б ) у е sin x ; в) х ln t , у t . 1 3 2 1 2 1 3 70. а) у cos 2 x cos 3 2 x; б ) у ( х 2 4) е х ; в) х t 2 t , у t 3 t. Задача 2. 71-80. Вычислить приближенно n x , заменяя приращение функции ее дифференциалом. 71. 3 130. 72. 130. 73. 4 250. 74. 200. 75. 3 220. 76. 4 620. 77. 260. 78. 3 120. 79. 4 650. 80. 1000. Задача 3. 81-90. Заданные функции исследовать методами дифференциального исчисления. На основании результатов исследований построить графики функций. 1 х х3 х 1 б) у 2 ; 82. a) у х 2 ; б ) у 2 . 81. а) у 3x 2 x 2 x 3 ; 3 х 4 3 х 1 83. a) y 6 x 2 x ; 2 3 х2 1 б) у ; х 84. а) у 2 х 4 х 1; 4 2 х2 4 б) у . х 98 х4 85. а) у 8 х ; 4 2 б) у х ; х 1 87. а) у 36 х( х 1) 3 ; б ) у 2 х 89. а) у х( х 2) 2 ; 8 ; х3 1 2 1 х ; 3 3х б) у х 4 2х 2 . б) у х2 х4 86. а) у х ; 4 3 88. у ( х 2 1) 3 ; б) у х 90. а) у х 5 х 3 2 х; х . 3х 1 б) у х 1 . х2 1 Задача 4. 91-100. Найти интегралы. Результаты проверить дифференцированием. 91. a) x( x 1)( x 2)dx; б ) xdx ; в ) x cos 3 xdx; x2 5 92. a) ( x 1)( x х 1)dx; б ) г) dx . 2 x 5x 7 2 3х 2 dx ; в) x 2 х dx; 6 1 x г) dx . x 2x 5 2 x x 3e x x 2 dx xdx dx; б ) ; в) x 3 ln xdx; г ) . 3 1 2x x 5x 2 x ln x 1 3x dx; в ) x 2 ln xdx; г ) dx. 94. a) (1 3 x 2 ) 3 dx; б ) 3 2x x 93. a) 1 x х2 95. a) dx; б ) х7 dx; в ) arccos 2 xdx; x 2 96. a) х2 2 3 х 2 97. а) (1 2 х 3 ) 2 dx; 98. а) dx dx; б ) ; в ) arctg 2 xdx; x 1 б ) xdx xdx ; в) x ; 2 2x 3 e г) г) г) хdx . 2 x dx . x 2x 2 ( х 1)dx . x2 x 1 (1 х) 2 99. а) е х dx х 1 dx; б ) ; в) хе2 х dx; г ) dx. 2x 2х 1 1 e х х (х х 2 )2 х dx; б ) 100. а) 2 х е х dx; б ) хdx 1 х2 ; в ) х sin х cos xdx; г ) dx . 3х x 1 2 arctg( x / 2) 2х 3 dx; в ) х sin 3xdx; г ) dx. 2 2х 1 4 x 99 Задача 5. 101-110. Найти площадь фигуры, ограниченной заданными линиями. Сделать рисунок. 101. у=х3, у=4х. 102.у=2х-х2, у=-х. 1 2 103. у=х2, у х 2 , у=2х. 1 3 104.у=2х2, у= 4 2 х . 2 3 105. у х 2 , у 4 х 2 106. у= х , у=4х3/2. 107.у=3-2х, у=х2. 108. у=2-х2, у= х2. 1 2 109. у= 2 х , у х 2 . Задача 6. 111-120. расходимость. 111. 2 Вычислить 110.у=х3, у=-х2. несобственный dx 112. е 2 х dx. 113. x ln x 0 x 2 dx 114. x 2 интеграл или доказать dx xdx 0 x 4 1 115. 2 x 1 2 dx x x 1 116. (2 x) dx. 117. 2 .118. 2 dx .119. xe x dx .120 3 dx . x 2 2 x 4 1 x 1 4 0 3 его 100 6. 6.1 Учебные проекты Тематика учебных проектов 1) Вся математика в среде популярных математических пакетов 2) Природа математических абстракций 3) Содержание и значение математической символики 4) Счётные множества 5) Системы уравнений межотраслевого баланса 6) Отношение сознания к материи: математика и объективная реальность 7) Поверхности второго порядка 8) Замечательные кривые в математике 9) Моделирование экономических систем 10) Математические модели и методы их расчета 11) История становления и развития математического моделирования 12) Математическое моделирование как философская проблема 13) Об основаниях теории множеств 14) Математика и проблема адекватного описания реальности 15) Математика и математическое образование в современном мире 6.2 Методические рекомендации по выполнению, указания к оформлению После определения темы и знакомства с планом необходимо усвоить соответствующие разделы учебно-методической литературы и понять место данной темы в структуре курса. Для более глубокого и полного понимания темы следует обратить внимание на методические рекомендации и специальную литературу к каждой теме, список которой приводится в настоящем издании. Накопленный материал необходимо осмыслить и только затем приступить к написанию работы. Работа должна быть правильно и грамотно оформлена. На титульном листе следует указать название учебного заведения, факультет и курс, на котором обучается студент, его фамилию, имя и отчество. Необходимо также указать фамилию, имя и отчество преподавателя, ведущего лекционный курс, его ученую степень и звание. Писать нужно четким разборчивым почерком, страницы должны быть пронумерованы, следует также оставлять поля. В начале работы приводится план, а в конце – библиография. Необходимо делать общепринятые ссылки на цитируемую литературу (либо в скобках в конце цитаты, либо внизу страницы). По завершении работы ставится дата и подпись. 101 Студентам следует помнить, что в контрольной работе недопустимо механическое переписывание соответствующих разделов учебников, первоисточников или другой литературы по теме. Работа должна представлять самостоятельное изложение вопросов темы. Проектную работу следует сдавать в сроки, установленные учебным графиком. Если она не зачтена, то необходимо выслать новую работу, где были бы учтены замечания рецензента или изложены мотивы несогласия с замечаниями рецензента. Тема проектной работы выбирается следующим образом (по первой букве фамилии студента): А, Я – 1, Г, Ч – 4, З, Э – 7, Л – 10, О, П – 13, Б, Ц – 2, Д, Ш – 5, Е, И – 8, М – 11, Р, С – 14, В, Ю – 3, Ж, Х – 6, Щ, К – 9, Н,У – 12, Т,Ф – 15. 6.5. Перечень рекомендуемой литературы 1. Виленкин И.В. Высшая математика для студентов экономических, технических, естественно-научных специальностей вузов : пособие / И.В. Виленкин, В.М. Гробер - Ростов-на-Дону : Феникс, 2008. 414 c. 2. Воронов М.В. Высшая математика для экономистов и менеджеров : учебное пособие / М.В. Воронов, Г.П. Мещеряков - Ростов-на-Дону : Феникс, 2004. 288 c. 3. Красс М. С. Математика для экономистов : учебное пособие / М.С. Красс, Б.П. Чупрынов - Санкт-Петербург : Питер, 2009. 464 c. 4. Кремер Н. Ш. Высшая математика для экономистов : учебник для вузов / Н.Ш. Кремер - Москва : ЮНИТИ, 2008. 479 c. 5. Макаров С.И. Математика для экономистов : учебное пособие / С.И. Макаров - Москва : КноРус, 2007. 264 c. 7. Самаров К.Л. Финансовая математика: практический курс : учебное пособие / К.Л. Самаров - Москва : Альфа-м, 2005. 80 c. 7. Контроль 7.1. Тестовые задания Приведем примеры тестовых заданий. Полный вариант теста для самоподготовки студент может пройти в СДО Прометей (http://prometeus.iubip.ru:8000/), получив предварительно доступ к СДО в отделе электронных технологий обучения ИУБиП. ЗАДАНИЕ N 1 Заданы множества и . Верными для них 102 являются утверждения… ВАРИАНТЫ ОТВЕТОВ: 1) «Множество 3) конечно» «Множество подмножество множества 5) «Множества и 2) есть » «Множество подмножество множества 4) «Множество есть » конечно» не равны» ЗАДАНИЕ N 2 Заданы произвольные множества А, В и С. Расположите указанные справа множества так, чтобы каждое из них было подмножеством следующего за ним. ВАРИАНТЫ ОТВЕТОВ: 2 1 3 A 4 ЗАДАНИЕ N 3 Если отношение задано неравенством: принадлежит следующая пара чисел… , то данному отношению ВАРИАНТЫ ОТВЕТОВ: 1 3 2 4 (2,2) ЗАДАНИЕ N 4 Количество перестановок из букв слова «вальс», в которых буква «в» на первом месте, а буква «с» - в конце слова, равно… ЗАДАНИЕ N 5 103 Пусть равно… . Тогда множество M1 ЗАДАНИЕ N 6) Заданы множества {2,6,-6} и {4,-4}, тогда декартовым произведением этих … ЗАДАНИЕ N 7 Принято обозначать: N-множество натуральных чисел; Q-множество рациональных чисел; Z-множество целых чисел; R-множество действительных чисел. Тогда верным утверждением будет… 1 2 3 4 ЗАДАНИЕ N 8 Высказывание A – «Джон фон Нейман – архитектор ЭВМ»; высказывание В – «Диагонали прямоугольника равны». Конъюнкцией этих высказываний ( ) является предложение … ЗАДАНИЕ N 9 Игральный кубик бросают один раз. Вероятность того, что на верхней грани выпадет число очков, равное пяти или шести, равна... ЗАДАНИЕ N 10 Для вычисления дисперсии дискретной случайной величины используется формула… ВАРИАНТЫ ОТВЕТОВ: 104 1 ) 2 ) 3 ) 4 ) ЗАДАНИЕ N 11 График плотности вероятностей для нормального распределения изображен на рисунке... ВАРИАНТЫ ОТВЕТОВ: 1 2 3 4 ЗАДАНИЕ N 12 Из приведённых величин случайными являются… 105 ВАРИАНТЫ ОТВЕТОВ: 1 «Число бракованных деталей в прибывшей на завод партии» 3 «Число дней в декабре» 2 «Число p=3,1415927» 4 «Число очков при стрельбе по мишени» ЗАДАНИЕ N 13 Вероятность наступления некоторого события не может быть равна... ВАРИАНТЫ ОТВЕТОВ: 1 0,3 3 1,3 2 4 1 0,7 ЗАДАНИЕ N 14 В результате некоторого эксперимента получен статистический ряд: Тогда значение относительной частоты при будет равно… ВАРИАНТЫ ОТВЕТОВ: 1 3 0,1 0,5 8. Контактная информация преподавателя Гурниковская Рената Юрьевна 2 4 0,4 0,2 106 e-mail iubip12@rambler.ru