Ферромагнитный резонанс в массивах магнитных микрополосок

реклама
Ферромагнитный резонанс в массивах
магнитных микрополосок
Докладчик:
аспирант 1 года обучения
Р. В. Горев
Научный руководитель:
в. н. с. ИФМ РАН, д.ф.-м.н.
В. Л. Миронов
План доклада:
1. Введение.
2. Теоретическое описание динамических свойств
ферромагнетика.
3. Принципы микромагнитного моделирования.
4. Эксперимент по изучению спектра ФМР.
5. Численный расчет спектра ФМР.
2
Введение
200 нм
3 мкм
3 мкм
3
Уравнение Ландау-Лифшица
H eff
H eff
M
t
M
M
  [ M  H eff ]
t
M
M

  [ M  H eff ]  2 [ M  [ M  H eff ]]
t
M
4
Эффективное поле
M
  [ M  H eff ]
t
H eff
E

M
E  Eext  Eexch  Ean  Ed
Eext  - ( M (r )  H ext (r ))dV
V
Eexch
 M 
 A

 xi 
2
Ean  KM x2
1
Ed  -  ( M (r )  H d (r ))dV
2V
5
Размагничивающее поле
1
Ed  -  ( M (r ), H d (r ))dV
2V
divH d (r )  -4 div( M (r ))
1
r
   ( M (r ) ( ))dV
V
H d (r )  -( (r ))
 (r )  -div(4 M ( r ))   ( r )
H d (r )   N (r ) M (r )
2
N ik  
xi xk
dr '
 r r'
V
6
Размагничивающие факторы
y
Шар
N xx  N yy  N zz  4 3
Бесконечная пластина
N xx  N zz  0 N yy  4
Бесконечный цилиндр
N yy  N zz  2 N xx  0
Эллипсоид
a bc
e  1  b2 a 2
1  e2  1  e

N xx  2 3  ln
 2e  N yy  N zz  2 (1  N xx )
e  1 e

z
x
7
Колебания однородно намагниченного эллипсоида
y
H ex
M
  [ M , H eff ]
t
H eff  H d  H ex   N M  H ex
z
Hd  H0 h
M  M0 m
 N xx

m  M 0  const h  H 0  const N   0
 0
it
i

t

m  me
h  he
N yy  N zz
x
0
N yy
0
0 

0 
N zz 
   ( H ex  ( N yy - N xx ) M 0 )
8
Принципы микромагнитного моделирования
M

  [ M , H eff ]  2 [ M ,[ M , H eff ]]
t
M
E  Eext  Eexch  Ean  Ed
H eff 
E
M
y
z
x
 M 3r ( M  r ) 
hd    3 
V
5
r
 r

 ( M i  M j ) 3( M j  r )( M i  r )  2
Wdij   

V
3
5
r
r


9
Алгоритм расчета ФМР-спектра
1) H ex  1 Oe
y
z
3) mz (t )
2) H ex  0
y
H ex
x
z
x
4) mz (t )  FT  mz ( )
10
400 nm
Алгоритм расчета ФМР-спектра
200 nm
Roman Adam et al., JAP, 101, 09F516 (2007).
11
Эксперимент по изучению спектра ФМР
 s  9.8 GHz
12
Эксперимент по изучению спектра ФМР
13
Изготовление микрополосок
1 – подложка Si
2 – резист PMMA (нанесение на центрифуге)
3 – магнитный материал Ni80Fe20 (магнетронное
напыление)
14
Эксперимент по изучению спектра ФМР
3 мкм
600 нм  3000 нм  30 нм
Ms = 750 G
15
Алгоритм расчета «полевого» спектра ФМР
y
M

t
  [ M , H eff ] 
M
2
[ M ,[ M , H eff ]]
H eff  H ex  h ex
z
x
H ex1 : mz (t )  FT  mz ( s )
H ex 2 : mz (t )  FT  mz ( s )


mz ( H ex )

H exn : mz (t )  FT  mz ( s )
16
«Полевой» ФМР-спектр микрополоски
1
2
3
4
1
2
3
4
17
Заключение
Экспериментально и численно исследованы СВЧ-свойства
массива ферромагнитных микрополосок, разработан
алгоритм расчета их ФМР-спектров.
18
Спасибо за внимание
19
Скачать