ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИЯ ВЕРОЯТНОСТЕЙ Подготовила: Стацуро Н.Н. Учитель математики МБОУ СОШ № 2 села Александров-Гай СОДЕРЖАНИЕ 1.Комбинаторика 2.История комбинаторики 3.Разделы комбинаторики 4.Открытие проблемы 5.Примеры комбинаторных конфигураций и задач 6.Теория вероятностей 7.История теории вероятностей Термин «комбинаторика» был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд «Рассуждения о комбинаторном искусстве». Иногда под комбинаторикой понимают более обширный раздел дискретной математики, включающий, в частности, теорию графов. Готфрид Вильгельм фон Лейбниц - немецкий философ, математик, юрист, дипломат ИСТОРИЯ КОМБИНАТОРИКИ Древний период Комбинаторные мотивы можно заметить в символике китайской «Книги Перемен» (V век до н. э.). По мнению её авторов, всё в мире комбинируется из различных сочетаний мужского и женского начал, а также восьми стихий: земля, горы, вода, ветер, гроза, огонь, облака и небо. Историки отмечают также комбинаторные проблемы в руководствах по игре в Го и другие игры. Большой интерес математиков многих стран с древних времён неизменно вызывали магические квадраты. Классическая задача комбинаторики: «сколько есть способов извлечь m элементов из N возможных» упоминается ещё в сутрах древней Индии (начиная примерно с IV века до н. э.). Индийские математики, видимо, первыми открыли биномиальные коэффициенты и их связь с биномом Ньютона. Во II веке до н. э. индийцы знали, что сумма всех биномиальных коэффициентов степени n равна 2n. ИСТОРИЯ КОМБИНАТОРИКИ Античные греки также рассматривали отдельные комбинаторные задачи, хотя систематическое изложение ими этих вопросов, если оно и существовало, до нас не дошло. Хрисипп (III век до н. э.) и Гиппарх (II век до н. э.) подсчитывали, сколько следствий можно получить из 10 аксиом; методика подсчёта нам неизвестна, но у Хрисиппа получилось более миллиона, а у Гиппарха — более 100000. Аристотель при изложении своей логики безошибочно перечислил все возможные типы трёхчленных силлогизмов. Аристоксен рассмотрел различные чередования длинных и коротких слогов в стихотворных размерах. Какие-то комбинаторные правила пифагорейцы, вероятно, использовали при построении своей теории чисел и нумерологии (совершенные числа, фигурные числа, пифагоровы тройки и др.). Магический квадрат на гравюре Дюрера «Меланхолия» ИСТОРИЯ КОМБИНАТОРИКИ Средневековье В XII веке индийский математик Бхаскара в своём основном труде «Лилавати» подробно исследовал задачи, связанные с перестановками и сочетаниями, включая перестановки с повторениями. В Западной Европе ряд глубоких открытий в области комбинаторики сделали два еврейских исследователя, Авраам ибн Эзра (XII век) и Леви бен Гершом (он же Герсонид, XIV век). Ибн Эзра обнаружил симметричность биномиальных коэффициентов, а Герсонид дал явные формулы для их подсчёта и применения в задачах вычисления числа размещений и сочетаний. Несколько комбинаторных задач содержит «Книга абака» (Фибоначчи, XIII век). Например, он поставил задачу найти наименьшее число гирь, достаточное для взвешивания любого товара весом от 1 до 40 фунтов. ИСТОРИЯ КОМБИНАТОРИКИ Новое время Джероламо Кардано написал математическое исследование игры в кости, опубликованное посмертно. Теорией этой игры занимались также Тарталья и Галилей. В историю зарождавшейся теории вероятностей вошла переписка заядлого игрока шевалье де Мерэ с Пьером Ферма и Блезом Паскалем, где были затронуты несколько тонких комбинаторных вопросов. Помимо азартных игр, комбинаторные методы использовались (и продолжают использоваться) в криптографии — как для разработки шифров, так и для их взлома. Джерола́ мо (Джироламо, Иероним) Карда́ но итальянский математик, инженер, философ, медик и астролог, в его честь назван карданный вал ИСТОРИЯ КОМБИНАТОРИКИ Блез Паскаль много занимался биномиальными коэффициентами и открыл простой способ их вычисления: «треугольник Паскаля». Хотя этот способ был уже известен на Востоке (примерно с X века), Паскаль, в отличие от предшественников, строго изложил и доказал свойства этого треугольника. Наряду с Лейбницем, он считается основоположником современной комбинаторики. Сам термин «комбинаторика» придумал Лейбниц, который в 1666 году (ему было тогда 20 лет) опубликовал книгу «Рассуждения о комбинаторном искусстве». Правда, термин «комбинаторика» Лейбниц понимал чрезмерно широко, включая в него всю конечную математику и даже логику. Ученик Лейбница Якоб Бернулли, один из основателей теории вероятностей, изложил в своей книге «Искусство предположений» (1713) множество сведений по комбинаторике. Блез Паскаль французский математик,физик,лит ератор и философ. ИСТОРИЯ КОМБИНАТОРИКИ В этот же период формируется терминология новой науки. Термин «сочетание» (combination) впервые встречается у Паскаля (1653, опубликован в 1665 году). Термин «перестановка» (permutation) употребил в указанной книге Якоб Бернулли (хотя эпизодически он встречался и раньше). Бернулли использовал и термин «размещение» (arrangement). После появления математического анализа обнаружилась тесная связь комбинаторных и ряда аналитических задач. Абрахам де Муавр и Джеймс Стирлинг нашли формулы для аппроксимации факториала. Окончательно комбинаторика как самостоятельный раздел математики оформилась в трудах Эйлера. Он детально рассмотрел, например, следующие проблемы.: Задача о ходе коня Задача о семи мостах, с которой началась теория графов Построение греко-латинских квадратов Обобщённые перестановки Кроме перестановок и сочетаний, Эйлер изучал разбиения, а также сочетания и размещения с условиями. Внимание к конечной математике и, в частности, к комбинаторике значительно повысилось со второй половины XX века, когда появились компьютеры. Сейчас это чрезвычайно содержательная и быстроразвивающаяся область математики. РАЗДЕЛЫ КОМБИНАТОРИКИ Перечислительная комбинаторика Перечислительная комбинаторика (или исчисляющая комбинаторика) рассматривает задачи о перечислении или подсчёте количества различных конфигураций (например, перестановок) образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п. Количество конфигураций, образованных несколькими манипуляциями над множеством, подсчитывается согласно правилам сложения и умножения. Типичным примером задач данного раздела является подсчёт количества перестановок. РАЗДЕЛЫ КОМБИНАТОРИКИ Структурная комбинаторика К данному разделу относятся некоторые вопросы теории графов, а также теории матроидов. Экстремальная комбинаторика Примером этого раздела может служить следующая задача: какова наибольшая размерность графа, удовлетворяющего определённым свойствам. Теория Рамсея Теория Рамсея изучает наличие регулярных структур в случайных конфигурациях элементов. Примером утверждения из теории Рамсея может служить следующее: в группе из 6 человек всегда можно найти трёх человек, которые либо попарно знакомы друг с другом, либо попарно незнакомы. В терминах структурной комбинаторики это же утверждение формулируется так: в любом графе с 6 вершинами найдётся либо клика, либо независимое множество размера 3. РАЗДЕЛЫ КОМБИНАТОРИКИ Вероятностная комбинаторика Этот раздел отвечает на вопросы вида: какова вероятность присутствия определённого свойства у заданного множества. Топологическая комбинаторика Аналоги комбинаторных концепций и методов используются и в топологии, при изучении дерева принятия решений, частично упорядоченных множеств, раскрасок графа и др. ОТКРЫТЫЕ ПРОБЛЕМЫ Комбинаторика, и в частности, теория Рамсея, содержит много известных открытых проблем, подчас с весьма несложной формулировкой. Например, неизвестно, при каком наименьшем N в любой группе из N человек найдутся 5 человек, либо попарно знакомых друг с другом, либо попарно незнакомых (хотя известно, что 49 человек достаточно). ПРИМЕРЫ КОМБИНАТОРНЫХ КОНФИГУРАЦИЙ И ЗАДАЧ Для формулировки и решения комбинаторных задач используют различные модели комбинаторных конфигураций. Примерами комбинаторных конфигураций являются: Размещением из n элементов по k называется упорядоченный набор из k различных элементов некоторого n-элементного множества. Перестановкой из n элементов (например чисел 1,2,…,n) называется всякий упорядоченный набор из этих элементов. Перестановка также является размещением из n элементов по n. Сочетанием из n по k называется набор k элементов, выбранных из данных n элементов. Наборы, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений. Композицией числа n называется всякое представление n в виде упорядоченной суммы целых положительных чисел. Разбиением числа n называется всякое представление n в виде неупорядоченной суммы целых положительных чисел. ТЕОРИЯ ВЕРОЯТНОСТЕЙ Тео́рия вероя́тностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. График плотности вероятности нормального распределения — одной из важнейших функций изучаемых в рамках теории вероятностей ИСТОРИЯ ТЕОРИИ ВЕРОЯТНОСТИ Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. ИСТОРИЯ ТЕОРИИ ВЕРОЯТНОСТИ Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год) ИСТОРИЯ ТЕОРИИ ВЕРОЯТНОСТИ Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики. ИСТОЧНИК:HTTP://WWW.MYSHARED.RU/SLIDE/49973/HTTP://IMAGES.YAN DEX.RU/YANDSEARCH?STYPE=IMAGE&LR=47&NOREASK=1&SOURCE=PSEARCH &TEXT=%D0%BF%D1%80%D0%B5%D0%B7%D0%B5%D0%BD%D1%82%D0%B0 %D1%86%D0%B8%D1%8F%20%D0%BD%D0%B0%20%D1%82%D0%B5%D0%B C%D1%83%20%D0%BA%D0%BE%D0%BC%D0%B1%D0%B8%D0%BD%D0%B0% D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0%20%D1%81%D0%BA%D0 %B0%D1%87%D0%B0%D1%82%D1%8C%20%D0%B1%D0%B5%D1%81%D0%B F%D0%BB%D0%B0%D1%82%D0%BD%D0%BE СПАСИБО ЗА ПРОСМОТР!)