ИСПОЛЬЗОВАНИЕ ИНТЕРФЕРОМЕТРА МАХА

реклама
ɋɛɨɪɧɢɤ ɬɪɭɞɨɜ 1-ɨɣ ȼɫɟɪɨɫɫɢɣɫɤɨɣ ɚɤɭɫɬɢɱɟɫɤɨɣ ɤɨɧɮɟɪɟɧɰɢɢ, 2014
ɂɋɉɈɅɖɁɈȼȺɇɂȿ ɂɇɌȿɊɎȿɊɈɆȿɌɊȺ ɆȺɏȺ-ɐȿɇȾȿɊȺ ȾɅə
ɗɄɋɉȿɊɂɆȿɇɌȺɅɖɇɈȽɈ ɂɋɋɅȿȾɈȼȺɇɂə ɈȻɊȺɁɈȼȺɇɂə
«ɇɈɀɄɂ» ɆȺɏȺ ɉɊɂ ɈɌɊȺɀȿɇɂɂ ɍȾȺɊɇɈȼɈɅɇɈȼɕɏ
ɂɆɉɍɅɖɋɈȼ ɈɌ ɀȿɋɌɄɈɃ ɉɈȼȿɊɏɇɈɋɌɂ
Ʉɚɪɡɨɜɚ Ɇ.Ɇ.1),2), ɘɥɞɚɲɟɜ ɉ.ȼ.1), ɏɨɯɥɨɜɚ ȼ.Ⱥ.1),
Ɉɥɢɜɶɟ ɋ.2), Ȼɥɚɧ-ɛɟɧɨɧ Ɏ.2)
1)
Ɏɢɡɢɱɟɫɤɢɣ ɮɚɤɭɥɶɬɟɬ ɆȽɍ ɢɦɟɧɢ Ɇ.ȼ. Ʌɨɦɨɧɨɫɨɜɚ, Ɇɨɫɤɜɚ
2)
ȼɵɫɲɚɹ ɢɧɠɟɧɟɪɧɚɹ ɲɤɨɥɚ ɝ. Ʌɢɨɧɚ, Ɏɪɚɧɰɢɹ
E-mail: masha@acs366.phys.msu.ru
Ɉɛɪɚɡɨɜɚɧɢɟ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɨɣ ɫɬɪɭɤɬɭɪɵ ɬɢɩɚ «ɧɨɠɤɢ» Ɇɚɯɚ - ɯɨɪɨɲɨ ɢɡɜɟɫɬɧɨɟ ɹɜɥɟɧɢɟ,
ɜɨɡɧɢɤɚɸɳɟɟ ɩɪɢ ɜɡɚɢɦɨɞɟɣɫɬɜɢɢ ɞɜɭɯ ɭɞɚɪɧɵɯ ɮɪɨɧɬɨɜ ɢ ɧɚɛɥɸɞɚɟɦɨɟ ɨɛɵɱɧɨ ɩɪɢ ɨɬɪɚɠɟɧɢɢ
ɫɢɥɶɧɵɯ ɭɞɚɪɧɵɯ ɜɨɥɧ (ɚɤɭɫɬɢɱɟɫɤɢɟ ɱɢɫɥɚ Ɇɚɯɚ Mɚ > 0.4) ɨɬ ɠɟɫɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ. ȼɨɡɦɨɠɧɨɫɬɶ
ɧɚɛɥɸɞɟɧɢɹ ɢ ɨɩɢɫɚɧɢɹ ɞɚɧɧɨɝɨ ɹɜɥɟɧɢɹ ɜ ɪɚɦɤɚɯ ɧɟɥɢɧɟɣɧɨɣ ɚɤɭɫɬɢɤɢ, ɤɨɝɞɚ ɚɤɭɫɬɢɱɟɫɤɢɟ ɱɢɫɥɚ Ɇɚɯɚ
ɫɨɫɬɚɜɥɹɸɬ ɜɫɟɝɨ ɥɢɲɶ 10-3-10-2, ɞɨ ɧɟɞɚɜɧɟɝɨ ɜɪɟɦɟɧɢ ɨɫɬɚɜɚɥɚɫɶ ɧɟɹɫɧɨɣ. ɐɟɥɶɸ ɞɚɧɧɨɣ ɪɚɛɨɬɵ
ɹɜɥɹɥɨɫɶ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ ɢɫɫɥɟɞɨɜɚɧɢɟ ɨɬɪɚɠɟɧɢɹ ɧɟɥɢɧɟɣɧɨɣ N-ɜɨɥɧɵ, ɫɨɡɞɚɜɚɟɦɨɣ ɢɫɤɪɨɜɵɦ
ɢɫɬɨɱɧɢɤɨɦ ɜ ɜɨɡɞɭɯɟ, ɨɬ ɩɥɨɫɤɨɣ ɠɟɫɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ. ɉɪɨɮɢɥɶ ɞɚɜɥɟɧɢɹ N-ɜɨɥɧɵ ɜɨɫɫɬɚɧɚɜɥɢɜɚɥɫɹ
ɩɨ ɨɩɬɢɱɟɫɤɢɦ ɢɡɦɟɪɟɧɢɹɦ, ɜɵɩɨɥɧɟɧɧɵɦ ɫ ɩɨɦɨɳɶɸ ɢɧɬɟɪɮɟɪɨɦɟɬɪɚ Ɇɚɯɚ-ɐɟɧɞɟɪɚ. ȼ ɷɤɫɩɟɪɢɦɟɧɬɟ
ɧɚɛɥɸɞɚɥɨɫɶ ɧɟɪɟɝɭɥɹɪɧɨɟ ɨɬɪɚɠɟɧɢɟ; ɢɫɫɥɟɞɨɜɚɧɚ ɷɜɨɥɸɰɢɹ «ɧɨɠɤɢ» Ɇɚɯɚ ɢ ɢɡɦɟɪɟɧɚ ɬɪɚɟɤɬɨɪɢɹ
ɬɪɨɣɧɨɣ ɬɨɱɤɢ ɩɨ ɦɟɪɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ N-ɜɨɥɧɵ ɜɞɨɥɶ ɩɨɜɟɪɯɧɨɫɬɢ.
ɂɫɫɥɟɞɨɜɚɧɢɹ ɹɜɥɟɧɢɹ ɨɬɪɚɠɟɧɢɹ ɭɞɚɪɧɵɯ ɜɨɥɧ ɨɬ ɩɨɜɟɪɯɧɨɫɬɟɣ ɧɚɱɚɥɢɫɶ ɫ
ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɗ. Ɇɚɯɚ ɜ 1878 ɝ. [1]. ɉɪɨɞɟɥɚɧɧɵɟ Ɇɚɯɨɦ ɷɤɫɩɟɪɢɦɟɧɬɵ
ɫɜɢɞɟɬɟɥɶɫɬɜɨɜɚɥɢ ɨ ɬɨɦ, ɱɬɨ ɡɚɤɨɧ ɡɟɪɤɚɥɶɧɨɝɨ ɨɬɪɚɠɟɧɢɹ ɜɨɥɧ, ɩɪɢ ɤɨɬɨɪɨɦ ɭɝɨɥ
ɩɚɞɟɧɢɹ ɪɚɜɟɧ ɭɝɥɭ ɨɬɪɚɠɟɧɢɹ, ɧɚɪɭɲɚɟɬɫɹ ɜ ɫɥɭɱɚɟ ɫɢɥɶɧɵɯ ɭɞɚɪɧɵɯ ɜɨɥɧ. Ȼɨɥɟɟ ɬɨɝɨ
ɜ ɨɩɵɬɚɯ Ɇɚɯɚ ɧɚɛɥɸɞɚɥɚɫɶ ɬɪɟɯɜɨɥɧɨɜɚɹ ɫɬɪɭɤɬɭɪɚ ɨɬɪɚɠɟɧɢɹ, ɤɨɝɞɚ ɜɦɟɫɬɨ ɮɪɨɧɬɨɜ
ɩɚɞɚɸɳɟɣ ɢ ɨɬɪɚɠɟɧɧɨɣ ɜɨɥɧ ɜɛɥɢɡɢ ɩɨɜɟɪɯɧɨɫɬɢ ɮɨɪɦɢɪɨɜɚɥɫɹ ɨɞɢɧ ɭɞɚɪɧɵɣ ɮɪɨɧɬ,
ɫɨɟɞɢɧɹɸɳɢɣ ɬɨɱɤɭ ɩɟɪɟɫɟɱɟɧɢɹ ɮɪɨɧɬɨɜ ɩɚɞɚɸɳɟɣ ɢ ɨɬɪɚɠɟɧɧɨɣ ɜɨɥɧ ɫ
ɩɨɜɟɪɯɧɨɫɬɶɸ (Ɋɢɫ.1). Ɍɚɤɨɣ ɩɪɨɰɟɫɫ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɭɞɚɪɧɵɯ ɜɨɥɧ ɩɨɥɭɱɢɥ ɧɚɡɜɚɧɢɟ
ɧɟɪɟɝɭɥɹɪɧɨɝɨ ɨɬɪɚɠɟɧɢɹ, ɚ ɨɛɪɚɡɨɜɚɜɲɢɣɫɹ ɜɨɡɥɟ ɩɨɜɟɪɯɧɨɫɬɢ ɭɞɚɪɧɵɣ ɮɪɨɧɬ ɫɬɚɥ
ɧɚɡɵɜɚɬɶɫɹ «ɧɨɠɤɨɣ» Ɇɚɯɚ, ɜ ɱɟɫɬɶ ɗ. Ɇɚɯɚ, ɜɩɟɪɜɵɟ ɧɚɛɥɸɞɚɜɲɟɝɨ ɷɬɨ ɹɜɥɟɧɢɟ.
Ɍɨɱɤɚ ɩɟɪɟɫɟɱɟɧɢɹ ɬɪɟɯ ɭɞɚɪɧɵɯ ɮɪɨɧɬɨɜ ɩɨɥɭɱɢɥɚ ɧɚɡɜɚɧɢɟ ɬɪɨɣɧɨɣ ɬɨɱɤɢ.
ˇ̨̬̦̯
̪̺̖̜̌̔̌̀
̨̣̦̼̏
ˇ̨̬̦̯
̨̨̯̬̙̖̦̦̜̌
̨̣̦̼̏
̨̡̦̙ͨ̌ͩʺ̵̌̌
Ɋɢɫ. 1. ɉɪɨɫɬɪɚɧɫɬɜɟɧɧɚɹ ɫɬɪɭɤɬɭɪɚ ɭɞɚɪɧɵɯ ɮɪɨɧɬɨɜ, ɜɨɡɧɢɤɚɸɳɚɹ ɩɪɢ
ɧɟɪɟɝɭɥɹɪɧɨɦ ɨɬɪɚɠɟɧɢɢ
Ɍɟɨɪɟɬɢɱɟɫɤɨɟ ɢɫɫɥɟɞɨɜɚɧɢɟ ɧɟɪɟɝɭɥɹɪɧɨɝɨ ɨɬɪɚɠɟɧɢɹ ɛɵɥɨ ɧɚɱɚɬɨ ɜ 40-ɯ
ɝɨɞɚɯ ɩɪɨɲɥɨɝɨ ɜɟɤɚ ɜ ɪɚɛɨɬɚɯ Ⱦɠ. ɮɨɧ ɇɟɣɦɚɧɚ [2]. Ɋɚɡɪɚɛɨɬɚɧɧɚɹ ɮɨɧ ɇɟɣɦɚɧɨɦ
ɬɟɨɪɢɹ ɬɪɟɯɜɨɥɧɨɜɨɝɨ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɨɩɢɫɵɜɚɟɬ ɧɟɪɟɝɭɥɹɪɧɵɣ ɪɟɠɢɦ ɨɬɪɚɠɟɧɢɹ
ɬɨɥɶɤɨ ɜ ɫɥɭɱɚɟ ɫɢɥɶɧɵɯ ɭɞɚɪɧɵɯ ɜɨɥɧ ɫɨ ɡɧɚɱɟɧɢɹɦɢ ɚɤɭɫɬɢɱɟɫɤɨɝɨ ɱɢɫɥɚ Ɇɚɯɚ
Mɚ > 0.47 [3]. ɉɪɢ ɦɟɧɶɲɢɯ ɡɧɚɱɟɧɢɹɯ Mɚ ɬɟɨɪɢɹ ɮɨɧ ɇɟɣɦɚɧɚ ɧɚɱɢɧɚɟɬ ɪɚɫɯɨɞɢɬɶɫɹ ɫ
26
ɋɛɨɪɧɢɤ ɬɪɭɞɨɜ 1-ɨɣ ȼɫɟɪɨɫɫɢɣɫɤɨɣ ɚɤɭɫɬɢɱɟɫɤɨɣ ɤɨɧɮɟɪɟɧɰɢɢ, 2014
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦɢ ɞɚɧɧɵɦɢ, ɚ ɞɥɹ ɫɥɚɛɵɯ ɭɞɚɪɧɵɯ ɜɨɥɧ (ɡɧɚɱɟɧɢɹ Mɚ < 0.035)
ɨɩɪɨɜɟɪɝɚɟɬ ɩɪɢɧɰɢɩɢɚɥɶɧɭɸ ɜɨɡɦɨɠɧɨɫɬɶ ɫɭɳɟɫɬɜɨɜɚɧɢɹ ɧɟɪɟɝɭɥɹɪɧɨɝɨ ɪɟɠɢɦɚ
ɨɬɪɚɠɟɧɢɹ. ȼ ɬɨ ɠɟ ɜɪɟɦɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɧɚɛɥɸɞɟɧɢɹ ɩɨɞɬɜɟɪɠɞɚɸɬ ɨɛɪɚɬɧɨɟ [4].
Ɋɚɫɯɨɠɞɟɧɢɟ ɬɟɨɪɢɢ ɮɨɧ ɇɟɣɦɚɧɚ ɫ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɦɢ ɞɚɧɧɵɦɢ ɢɡɜɟɫɬɧɨ ɤɚɤ
ɩɚɪɚɞɨɤɫ ɮɨɧ ɇɟɣɦɚɧɚ, ɤɨɬɨɪɵɣ ɜɩɟɪɜɵɟ ɛɵɥ ɫɮɨɪɦɭɥɢɪɨɜɚɧ Ⱦɠ. Ȼɢɪɤɯɨɮɨɦ ɜ
1950 ɝ. [5]. ȼ ɩɪɟɞɩɪɢɧɹɬɵɯ ɩɨɩɵɬɤɚɯ ɪɚɡɪɟɲɢɬɶ ɩɚɪɚɞɨɤɫ ɮɨɧ ɇɟɣɦɚɧɚ ɩɪɟɞɦɟɬɨɦ
ɢɫɫɥɟɞɨɜɚɧɢɹ ɹɜɥɹɥɢɫɶ ɩɥɨɫɤɢɟ ɭɞɚɪɧɵɟ ɜɨɥɧɵ, ɢɦɟɸɳɢɟ ɮɨɪɦɭ ɫɬɭɩɟɧɶɤɢ, ɚ
ɚɤɭɫɬɢɱɟɫɤɢɟ ɱɢɫɥɚ Ɇɚɯɚ Mɚ ɫɨɫɬɚɜɥɹɥɢ ɧɟ ɦɟɧɟɟ 0.03 [3,4,6-8]. Ɍɚɤɢɟ ɜɨɥɧɵ ɹɜɥɹɸɬɫɹ
ɯɚɪɚɤɬɟɪɧɵɦɢ ɞɥɹ ɚɷɪɨɞɢɧɚɦɢɤɢ, ɧɨ ɧɟ ɪɟɚɥɢɫɬɢɱɧɵɦɢ ɞɥɹ ɚɤɭɫɬɢɤɢ. Ⱥɤɭɫɬɢɱɟɫɤɢɟ
ɜɨɡɦɭɳɟɧɢɹ ɫ ɭɞɚɪɧɵɦɢ ɮɪɨɧɬɚɦɢ ɢɦɟɸɬ ɫɥɨɠɧɭɸ ɜɪɟɦɟɧɧɭɸ ɫɬɪɭɤɬɭɪɭ (N-ɜɨɥɧɵ,
ɩɢɥɨɨɛɪɚɡɧɵɟ ɜɨɥɧɵ ɢ ɞɪ.) ɢ ɧɚ ɩɨɪɹɞɨɤ ɦɟɧɶɲɢɟ ɡɧɚɱɟɧɢɹ ɱɢɫɟɥ Ɇɚɯɚ Mɚ. Ɂɚɞɚɱɚ
ɨɬɪɚɠɟɧɢɹ ɬɚɤɢɯ ɪɚɡɪɵɜɧɵɯ ɚɤɭɫɬɢɱɟɫɤɢɯ ɜɨɥɧ ɨɬ ɩɨɜɟɪɯɧɨɫɬɟɣ ɞɨ ɫɢɯ ɩɨɪ ɨɫɬɚɟɬɫɹ ɞɨ
ɤɨɧɰɚ ɧɟɢɡɭɱɟɧɧɨɣ. ɇɚɫɤɨɥɶɤɨ ɢɡɜɟɫɬɧɨ ɚɜɬɨɪɚɦ, ɟɞɢɧɫɬɜɟɧɧɵɣ ɷɤɫɩɟɪɢɦɟɧɬ,
ɩɨɞɬɜɟɪɠɞɚɸɳɢɣ ɨɛɪɚɡɨɜɚɧɢɟ «ɧɨɠɤɢ» Ɇɚɯɚ ɞɥɹ ɪɚɡɪɵɜɧɵɯ ɚɤɭɫɬɢɱɟɫɤɢɯ ɜɨɥɧ,
ɩɪɨɜɟɞɟɧ ɜ ɪɚɛɨɬɟ [9] ɜ ɫɥɭɱɚɟ ɜɡɚɢɦɨɞɟɣɫɬɜɢɹ ɮɪɨɧɬɨɜ ɞɜɭɯ ɩɢɥɨɨɛɪɚɡɧɵɯ ɜɨɥɧ,
ɪɚɫɩɪɨɫɬɪɚɧɹɸɳɢɯɫɹ ɜ ɜɨɞɟ. ȼ ɪɚɛɨɬɟ [10] ɨɬɪɚɠɟɧɢɟ ɪɚɡɪɵɜɧɵɯ ɚɤɭɫɬɢɱɟɫɤɢɯ ɜɨɥɧ ɨɬ
ɠɟɫɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɢɫɫɥɟɞɨɜɚɧɨ ɜ ɱɢɫɥɟɧɧɨɦ ɷɤɫɩɟɪɢɦɟɧɬɟ ɞɥɹ ɫɥɭɱɚɟɜ ɩɥɨɫɤɢɯ
N-ɜɨɥɧ ɢ ɩɢɥɨɨɛɪɚɡɧɨɣ ɜɨɥɧɵ. ɐɟɥɶɸ ɞɚɧɧɨɣ ɪɚɛɨɬɵ ɹɜɥɹɟɬɫɹ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɟ
ɢɫɫɥɟɞɨɜɚɧɢɟ ɨɬɪɚɠɟɧɢɹ ɫɮɟɪɢɱɟɫɤɢ ɪɚɫɯɨɞɹɳɟɣɫɹ N–ɜɨɥɧɵ, ɫɨɡɞɚɜɚɟɦɨɣ ɢɫɤɪɨɜɵɦ
ɢɫɬɨɱɧɢɤɨɦ ɜ ɜɨɡɞɭɯɟ, ɨɬ ɩɥɨɫɤɨɣ ɠɟɫɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ.
ɉɪɨɫɬɪɚɧɫɬɜɟɧɧɨ-ɜɪɟɦɟɧɧɚɹ ɫɬɪɭɤɬɭɪɚ ɚɤɭɫɬɢɱɟɫɤɨɝɨ ɩɨɥɹ, ɮɨɪɦɢɪɭɸɳɚɹɫɹ
ɩɪɢ ɨɬɪɚɠɟɧɢɢ ɧɟɥɢɧɟɣɧɨɣ N–ɜɨɥɧɵ ɨɬ ɠɟɫɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɜ ɜɨɡɞɭɯɟ, ɛɵɥɚ ɢɡɦɟɪɟɧɚ
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ
ɫ
ɩɨɦɨɳɶɸ
ɢɧɬɟɪɮɟɪɨɦɟɬɪɚ
Ɇɚɯɚ-ɐɟɧɞɟɪɚ.
ɋɯɟɦɚ
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɣ ɭɫɬɚɧɨɜɤɢ ɩɪɟɞɫɬɚɜɥɟɧɚ ɧɚ Ɋɢɫ.2.
ɚ)
ɛ)
Ɋɢɫ.2. ɋɯɟɦɚ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɣ ɭɫɬɚɧɨɜɤɢ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɢɧɬɟɪɮɟɪɨɦɟɬɪɚ Ɇɚɯɚɐɟɧɞɟɪɚ: ɚ) ɜɢɞ ɫɜɟɪɯɭ, ɛ) ɜɢɞ ɫɛɨɤɭ ɧɚ ɨɬɪɚɠɚɸɳɭɸ ɩɨɜɟɪɯɧɨɫɬɶ
ɋɮɟɪɢɱɟɫɤɢ ɪɚɫɯɨɞɹɳɚɹɫɹ N–ɜɨɥɧɚ ɫɨɡɞɚɜɚɥɚɫɶ ɢɫɤɪɨɜɵɦ ɪɚɡɪɹɞɧɵɦ
ɢɫɬɨɱɧɢɤɨɦ, ɧɚ ɷɥɟɤɬɪɨɞɵ ɤɨɬɨɪɨɝɨ ɩɨɞɚɜɚɥɨɫɶ ɧɚɩɪɹɠɟɧɢɟ ɩɨɪɹɞɤɚ 15 ɤȼ. Ɂɚɡɨɪ
ɦɟɠɞɭ ɷɥɟɤɬɪɨɞɚɦɢ ɫɨɫɬɚɜɥɹɥ 2 ɫɦ. ɉɨɞ ɢɫɤɪɨɜɵɦ ɢɫɬɨɱɧɢɤɨɦ ɧɚ ɪɚɫɫɬɨɹɧɢɢ
hsp = 21 ɦɦ ɩɨɦɟɳɚɥɚɫɶ ɠɟɫɬɤɚɹ ɩɨɜɟɪɯɧɨɫɬɶ. ɇɚ ɪɚɫɫɬɨɹɧɢɢ l ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɦ
ɧɚɩɪɚɜɥɟɧɢɢ ɨɬ ɢɫɬɨɱɧɢɤɚ ɩɪɨɯɨɞɢɥ ɩɪɨɛɧɵɣ ɥɚɡɟɪɧɵɣ ɩɭɱɨɤ ɢɧɬɟɪɮɟɪɨɦɟɬɪɚ, ɜ
ɤɨɬɨɪɨɦ ɡɚ ɫɱɟɬ ɢɡɦɟɧɟɧɢɹ ɨɩɬɢɱɟɫɤɨɝɨ ɩɨɤɚɡɚɬɟɥɹ ɩɪɟɥɨɦɥɟɧɢɹ ɩɪɢ ɩɪɨɯɨɠɞɟɧɢɢ
ɚɤɭɫɬɢɱɟɫɤɨɣ ɜɨɥɧɵ ɫɨɡɞɚɜɚɥɫɹ ɞɨɩɨɥɧɢɬɟɥɶɧɵɣ ɧɚɛɟɝ ɮɚɡɵ ij. ɂɧɬɟɪɮɟɪɨɦɟɬɪ ɫɨɫɬɨɹɥ
ɢɡ ɢɫɬɨɱɧɢɤɚ ɧɟɩɪɟɪɵɜɧɨɝɨ ɥɚɡɟɪɧɨɝɨ ɢɡɥɭɱɟɧɢɹ (Ȝ = 632 ɧɦ He-Ne, 10 ɦȼɬ), ɞɜɭɯ
ɞɟɥɢɬɟɥɟɣ ɩɭɱɤɚ ɢ ɞɜɭɯ ɡɟɪɤɚɥ, ɪɚɫɩɨɥɨɠɟɧɧɵɯ ɩɨɞ ɭɝɥɨɦ 45˚ ɤ ɩɭɱɤɭ; ɫɢɝɧɚɥ
ɪɟɝɢɫɬɪɢɪɨɜɚɥɫɹ ɫ ɩɨɦɨɳɶɸ ɮɨɬɨɞɢɨɞɚ.
ɂɡɦɟɪɟɧɢɹ ɜɵɩɨɥɧɹɥɢɫɶ ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ. ȼ ɨɬɫɭɬɫɬɜɢɟ ɚɤɭɫɬɢɱɟɫɤɨɣ
ɜɨɥɧɵ ɢɧɬɟɪɮɟɪɨɦɟɬɪ ɫɬɚɛɢɥɢɡɢɪɨɜɚɥɫɹ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨ ɜɵɯɨɞɧɨɣ ɫɢɝɧɚɥ ɛɵɥ
27
ɋɛɨɪɧɢɤ ɬɪɭɞɨɜ 1-ɨɣ ȼɫɟɪɨɫɫɢɣɫɤɨɣ ɚɤɭɫɬɢɱɟɫɤɨɣ ɤɨɧɮɟɪɟɧɰɢɢ, 2014
ɪɚɜɟɧ ɫɭɦɦɟ ɢɧɬɟɧɫɢɜɧɨɫɬɟɣ ɨɩɨɪɧɨɝɨ ɢ ɩɪɨɛɧɨɝɨ ɩɭɱɤɨɜ: I = I1 + I2. ɉɪɢ ɩɪɨɯɨɠɞɟɧɢɢ
ɚɤɭɫɬɢɱɟɫɤɨɣ ɜɨɥɧɵ ɱɟɪɟɡ ɩɪɨɛɧɵɣ ɩɭɱɨɤ ɜ ɧɟɝɨ ɜɧɨɫɢɬɫɹ ɞɨɩɨɥɧɢɬɟɥɶɧɚɹ ɮɚɡɚ ij, ɢ
ɢɧɬɟɧɫɢɜɧɨɫɬɶ ɫɜɟɬɚ ɧɚ ɮɨɬɨɞɢɨɞɟ ɢɡɦɟɧɹɟɬɫɹ ɫɨɝɥɚɫɧɨ ɮɨɪɦɭɥɟ:
I = I 1 + I 2 + 2 I 1 I 2 cos ϕ .
(1)
ȼ ɩɪɢɛɥɢɠɟɧɢɢ ɨɬɫɭɬɫɬɜɢɹ ɪɟɮɪɚɤɰɢɢ ɩɪɨɛɧɨɝɨ ɥɚɡɟɪɧɨɝɨ ɩɭɱɤɚ ɢ ɫ ɭɱɟɬɨɦ
ɫɮɟɪɢɱɟɫɤɨɣ ɫɢɦɦɟɬɪɢɢ ɡɚɞɚɱɢ ɨɩɬɢɱɟɫɤɢɣ ɧɚɛɟɝ ɮɚɡɵ ij ɫɜɹɡɚɧ ɫ ɜɨɡɦɭɳɟɧɢɟɦ
ɩɨɤɚɡɚɬɟɥɹ ɩɪɟɥɨɦɥɟɧɢɹ ɜɨɡɞɭɯɚ n ɩɪɹɦɵɦ ɩɪɟɨɛɪɚɡɨɜɚɧɢɟɦ Ⱥɛɟɥɹ:
4π ∞ n(r )rdr
ϕ ( R) =
,
³
(2)
λ r r 2 − R2
ɝɞɟ R – ɪɚɫɫɬɨɹɧɢɟ ɨɬ ɢɫɤɪɨɜɨɝɨ ɢɫɬɨɱɧɢɤɚ. ȼɨɫɫɬɚɧɚɜɥɢɜɚɹ ɮɚɡɭ ɢɡ ɨɩɬɢɱɟɫɤɨɝɨ
ɫɢɝɧɚɥɚ (1) ɢ ɩɪɢɦɟɧɹɹ ɨɛɪɚɬɧɨɟ ɩɪɟɨɛɪɚɡɨɜɚɧɢɟ Ⱥɛɟɥɹ ɤ ɜɵɪɚɠɟɧɢɸ (2),
ɜɨɫɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɜɨɡɦɭɳɟɧɢɟ ɩɨɤɚɡɚɬɟɥɹ ɩɪɟɥɨɦɥɟɧɢɹ n. Ⱥɤɭɫɬɢɱɟɫɤɨɟ ɞɚɜɥɟɧɢɟ ɜ
2
ɜɨɥɧɟ ɜɵɱɢɫɥɹɟɬɫɹ ɩɪɢ ɩɨɦɨɳɢ ɫɨɨɬɧɨɲɟɧɢɹ Ƚɥɷɞɫɬɨɧɚ [11]: p = nc0 / G, ɝɞɟ c0 –
ɫɤɨɪɨɫɬɶ ɡɜɭɤɚ ɜ ɜɨɡɞɭɯɟ ɢ G = 0.000226 ɦ3/ɤɝ - ɤɨɧɫɬɚɧɬɚ Ƚɥɷɞɫɬɨɧɚ ɩɪɢ Ȝ = 632 ɧɦ.
Ʉɚɤ ɩɨɤɚɡɚɥɢ ɩɪɨɜɟɞɟɧɧɵɟ ɚɜɬɨɪɚɦɢ ɢɡɦɟɪɟɧɢɹ N–ɜɨɥɧɵ ɜ ɫɜɨɛɨɞɧɨɦ ɩɨɥɟ [12],
ɜɪɟɦɟɧɧɨɟ ɪɚɡɪɟɲɟɧɢɟ ɢɧɬɟɪɮɟɪɨɦɟɬɪɚ ɫɨɫɬɚɜɥɹɟɬ 0.4 ɦɤɫ.
ɋɬɪɭɤɬɭɪɚ ɩɨɥɹ ɩɪɢ
p, kPa
ɨɬɪɚɠɟɧɢɢ
ɚ)
30
ɋɬɪɭɤɬɭɪɚ ɩɟɪɟɞɧɟɝɨ ɮɪɨɧɬɚ
ɛ)
2
2
«ɧɨɠɤɚ»
Ɇɚɯɚ
20
1
10
0
p, kPa
h, mm
1.5
1
h = 6 mm
h = 8 mm
h = 10 mm
0.5
0
700
720
τ, μs
740
760
700
701
702
τ, μs
703
704
705
ɉɪɨɮɢɥɢ ɜɨɥɧ ɧɚ ɪɚɡɧɨɣ ɜɵɫɨɬɟ h ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ
ɜ)
h = 2 mm
2
h = 8 mm
h = 16 mm
h = 30 mm
p, kPa
1
0
-1
700
730
τ, μs
760
700
730
τ, μs
760
700
730
τ, μs
760
700
730
τ, μs
760
Ɋɢɫ. 3. ɉɪɨɫɬɪɚɧɫɬɜɟɧɧɨ-ɜɪɟɦɟɧɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɚɤɭɫɬɢɱɟɫɤɨɝɨ ɩɨɥɹ ɩɪɢ
ɨɬɪɚɠɟɧɢɢ N-ɜɨɥɧɵ ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ: ɚ) ɫɬɪɭɤɬɭɪɚ ɩɨɥɹ, ɛ) ɫɬɪɭɤɬɭɪɚ ɩɟɪɟɞɧɟɝɨ
ɮɪɨɧɬɚ, ɜ) ɜɨɫɫɬɚɧɨɜɥɟɧɧɵɟ ɩɪɨɮɢɥɢ N–ɜɨɥɧɵ ɧɚ ɪɚɡɥɢɱɧɨɣ ɜɵɫɨɬɟ h ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ
ȼɨɫɫɬɚɧɨɜɥɟɧɧɚɹ ɫ ɩɨɦɨɳɶɸ ɢɧɬɟɪɮɟɪɨɦɟɬɪɚ Ɇɚɯɚ-ɐɟɧɞɟɪɚ ɫɬɪɭɤɬɭɪɚ ɩɨɥɹ ɩɪɢ
ɨɬɪɚɠɟɧɢɢ ɩɪɟɞɫɬɚɜɥɟɧɚ ɧɚ Ɋɢɫ. 3(ɚ) ɞɥɹ ɫɥɭɱɚɹ l = 25 ɫɦ. Ⱦɚɧɧɚɹ ɤɚɪɬɢɧɚ ɩɪɟɞɫɬɚɜɥɹɟɬ
ɪɟɡɭɥɶɬɚɬɵ ɢɡɦɟɪɟɧɢɣ ɩɪɨɮɢɥɟɣ ɜɨɥɧɵ ɧɚ ɪɚɫɫɬɨɹɧɢɹɯ h ɨɬ ɠɟɫɬɤɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɜ
ɢɧɬɟɪɜɚɥɟ ɨɬ 2 ɦɦ ɞɨ 30 ɦɦ ɫ ɲɚɝɨɦ 2 ɦɦ. Ⱦɥɹ ɤɚɠɞɨɣ ɩɨɡɢɰɢɢ h ɢɡɦɟɪɹɥɢɫɶ ɩɪɨɮɢɥɢ
28
ɋɛɨɪɧɢɤ ɬɪɭɞɨɜ 1-ɨɣ ȼɫɟɪɨɫɫɢɣɫɤɨɣ ɚɤɭɫɬɢɱɟɫɤɨɣ ɤɨɧɮɟɪɟɧɰɢɢ, 2014
ɨɬ 150 ɪɚɡɪɹɞɨɜ ɢɫɤɪɨɜɨɝɨ ɢɫɬɨɱɧɢɤɚ, ɢɡ ɤɨɬɨɪɵɯ ɜɩɨɫɥɟɞɫɬɜɢɢ ɜɵɛɢɪɚɥɫɹ ɨɞɢɧ
«ɫɪɟɞɧɢɣ» ɩɪɨɮɢɥɶ, ɬɨ ɟɫɬɶ ɩɪɨɮɢɥɶ ɫɨ ɡɧɚɱɟɧɢɹɦɢ ɩɢɤɨɜɨɝɨ ɩɨɥɨɠɢɬɟɥɶɧɨɝɨ ɢ
ɨɬɪɢɰɚɬɟɥɶɧɨɝɨ ɞɚɜɥɟɧɢɣ, ɚ ɬɚɤɠɟ ɜɪɟɦɟɧɢ ɩɪɢɯɨɞɚ ɜɨɥɧɵ ɧɚɢɛɨɥɟɟ ɛɥɢɡɤɢɦɢ ɤ
ɫɪɟɞɧɢɦ ɡɧɚɱɟɧɢɹɦ, ɜɵɱɢɫɥɟɧɧɵɦ ɩɨ ɜɫɟɦ ɢɫɤɪɨɜɵɦ ɪɚɡɪɹɞɚɦ. ɍɪɨɜɧɢ ɞɚɜɥɟɧɢɹ ɜ
ɜɨɥɧɟ ɩɨɤɚɡɚɧɵ ɰɜɟɬɨɦ.
ɇɚ Ɋɢɫ. 3(ɚ) ɯɨɪɨɲɨ ɜɢɞɧɨ, ɱɬɨ ɩɟɪɟɞɧɢɣ ɮɪɨɧɬ N–ɜɨɥɧɵ ɨɬɪɚɠɚɟɬɫɹ ɨɬ
ɩɨɜɟɪɯɧɨɫɬɢ ɧɟɪɟɝɭɥɹɪɧɵɦ ɨɛɪɚɡɨɦ – ɧɚ ɪɚɫɫɬɨɹɧɢɹɯ h ” 6 ɦɦ ɮɨɪɦɢɪɭɟɬɫɹ ɬɨɥɶɤɨ ɨɞɢɧ
ɮɪɨɧɬ – «ɧɨɠɤɚ» Ɇɚɯɚ, ɤɨɬɨɪɵɣ, ɧɚɱɢɧɚɹ ɫ ɪɚɫɫɬɨɹɧɢɹ h = 8 ɦɦ, ɪɚɫɯɨɞɢɬɫɹ ɧɚ ɞɜɚ
ɮɪɨɧɬɚ – ɩɚɞɚɸɳɟɣ ɢ ɨɬɪɚɠɟɧɧɨɣ ɜɨɥɧ. ɋɬɪɭɤɬɭɪɚ ɩɟɪɟɞɧɟɝɨ ɮɪɨɧɬɚ ɜ ɨɤɪɟɫɬɧɨɫɬɢ
ɬɪɨɣɧɨɣ ɬɨɱɤɢ ɢɡɨɛɪɚɠɟɧɚ ɧɚ Ɋɢɫ. 3(ɛ), ɝɞɟ ɨɬɱɟɬɥɢɜɨ ɧɚɛɥɸɞɚɟɬɫɹ ɩɪɨɰɟɫɫ ɪɚɡɞɟɥɟɧɢɹ
«ɧɨɠɤɢ» Ɇɚɯɚ ɧɚ ɞɜɚ ɮɪɨɧɬɚ. ɇɟɪɟɝɭɥɹɪɧɵɣ ɯɚɪɚɤɬɟɪ ɨɬɪɚɠɟɧɢɹ ɧɚɛɥɸɞɚɥɫɹ ɬɨɥɶɤɨ ɞɥɹ
ɩɟɪɟɞɧɟɝɨ ɮɪɨɧɬɚ N–ɜɨɥɧɵ; ɨɬɪɚɠɟɧɢɟ ɡɚɞɧɟɝɨ ɮɪɨɧɬɚ ɩɪɨɢɫɯɨɞɢɥɨ ɪɟɝɭɥɹɪɧɵɦ
ɨɛɪɚɡɨɦ. ɗɬɨ ɫɜɹɡɚɧɨ ɫ ɬɟɦ, ɱɬɨ ɡɚɞɧɢɣ ɮɪɨɧɬ ɜɨɥɧɵ ɹɜɥɹɟɬɫɹ ɛɨɥɟɟ «ɪɚɡɦɵɬɵɦ» ɢ ɢɦɟɟɬ
ɦɟɧɶɲɢɣ ɩɟɪɟɩɚɞ ɞɚɜɥɟɧɢɣ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ ɩɟɪɟɞɧɢɦ ɮɪɨɧɬɨɦ. ɇɚ ɩɪɟɞɫɬɚɜɥɟɧɧɵɯ ɧɚ
Ɋɢɫ. 3(ɜ) ɩɪɨɮɢɥɹɯ ɜɨɥɧ ɧɚ ɪɚɡɧɨɣ ɜɵɫɨɬɟ h ɨɬ ɩɨɜɟɪɯɧɨɫɬɢ ɜ ɫɬɪɭɤɬɭɪɟ ɡɚɞɧɟɝɨ ɮɪɨɧɬɚ
ɢɡɧɚɱɚɥɶɧɨ ɧɚɛɥɸɞɚɸɬɫɹ ɮɪɨɧɬɵ ɩɚɞɚɸɳɟɣ ɢ ɨɬɪɚɠɟɧɧɨɣ ɜɨɥɧ (ɩɪɨɮɢɥɶ ɩɪɢ h = 2 ɦɦ),
ɤɨɬɨɪɵɟ ɜɩɨɫɥɟɞɫɬɜɢɢ ɛɵɫɬɪɨ ɪɚɫɯɨɞɹɬɫɹ ɞɪɭɝ ɨɬ ɞɪɭɝɚ.
ȼ ɪɚɛɨɬɟ ɛɵɥɚ ɬɚɤɠɟ ɢɡɦɟɪɟɧɚ ɬɪɚɟɤɬɨɪɢɹ ɬɪɨɣɧɨɣ ɬɨɱɤɢ ɩɨ ɦɟɪɟ
ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ «ɧɨɠɤɢ» Ɇɚɯɚ ɜɞɨɥɶ ɩɨɜɟɪɯɧɨɫɬɢ (Ɋɢɫ.4). ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ
ɞɚɧɧɵɟ ɯɨɪɨɲɨ ɚɩɩɪɨɤɫɢɦɢɪɭɸɬɫɹ ɥɢɧɟɣɧɨɣ ɡɚɜɢɫɢɦɨɫɬɶɸ ɜ ɩɪɟɞɟɥɚɯ ɢɫɫɥɟɞɭɟɦɵɯ ɜ
ɷɤɫɩɟɪɢɦɟɧɬɟ ɪɚɫɫɬɨɹɧɢɣ l. Ɇɢɧɢɦɚɥɶɧɨ ɞɨɫɬɭɩɧɨɟ ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɪɚɫɫɬɨɹɧɢɟ h ɨɬ
ɩɨɜɟɪɯɧɨɫɬɢ ɫɨɫɬɚɜɥɹɥɨ 2 ɦɦ, ɨɞɧɚɤɨ ɥɢɧɟɣɧɚɹ ɢɧɬɟɪɩɨɥɹɰɢɹ ɞɚɧɧɨɣ ɡɚɜɢɫɢɦɨɫɬɢ ɜ
ɫɬɨɪɨɧɭ ɭɦɟɧɶɲɟɧɢɹ ɞɥɢɧɵ «ɧɨɠɤɢ» Ɇɚɯɚ ɩɪɟɞɫɤɚɡɵɜɚɟɬ, ɱɬɨ ɪɟɝɭɥɹɪɧɵɣ ɪɟɠɢɦ
ɨɬɪɚɠɟɧɢɹ ɩɟɪɟɯɨɞɢɬ ɜ ɧɟɪɟɝɭɥɹɪɧɵɣ ɩɪɢ l = 8 ɫɦ. ɋɬɨɢɬ ɨɬɦɟɬɢɬɶ, ɱɬɨ ɪɟɡɭɥɶɬɚɬɵ
ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ, ɩɪɨɜɟɞɟɧɧɨɝɨ ɜ ɪɚɛɨɬɟ [10], ɩɪɟɞɫɤɚɡɵɜɚɸɬ ɧɟɥɢɧɟɣɧɵɣ
ɯɚɪɚɤɬɟɪ (ɫɧɚɱɚɥɚ ɧɟɥɢɧɟɣɧɵɣ ɪɨɫɬ, ɩɨɬɨɦ ɫɩɚɞ) ɢɡɦɟɧɟɧɢɹ ɞɥɢɧɵ «ɧɨɠɤɢ» Ɇɚɯɚ ɩɨ
ɦɟɪɟ ɟɺ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɜɞɨɥɶ ɩɨɜɟɪɯɧɨɫɬɢ ɜ ɫɥɭɱɚɟ ɩɥɨɫɤɨɣ ɢɞɟɚɥɶɧɨɣ N–ɜɨɥɧɵ.
əɜɥɹɟɬɫɹ ɥɢ ɩɨɥɭɱɟɧɧɚɹ ɜ ɞɚɧɧɨɣ ɪɚɛɨɬɟ ɥɢɧɟɣɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɫɥɟɞɫɬɜɢɟɦ
ɫɮɟɪɢɱɧɨɫɬɢ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɜɨɥɧɵ ɢ ɟɺ ɛɨɥɟɟ ɛɵɫɬɪɵɦ ɡɚɬɭɯɚɧɢɟɦ ɩɨ ɫɪɚɜɧɟɧɢɸ ɫ
ɢɫɫɥɟɞɭɟɦɨɣ ɜ [10] ɩɥɨɫɤɨɣ ɜɨɥɧɨɣ ɢɥɢ ɠɟ ɩɨɥɭɱɟɧɧɚɹ ɜ ɞɚɧɧɨɦ ɷɤɫɩɟɪɢɦɟɧɬɟ
ɬɪɚɟɤɬɨɪɢɹ ɬɪɨɣɧɨɣ ɬɨɱɤɢ ɹɜɥɹɟɬɫɹ ɧɚɱɚɥɶɧɵɦ ɭɱɚɫɬɤɨɦ ɛɨɥɟɟ ɫɥɨɠɧɨɣ ɧɟɥɢɧɟɣɧɨɣ
ɡɚɜɢɫɢɦɨɫɬɢ – ɜɨɩɪɨɫ ɞɚɥɶɧɟɣɲɢɯ ɢɫɫɥɟɞɨɜɚɧɢɣ.
Ɋɚɛɨɬɚ ɜɵɩɨɥɧɟɧɚ ɩɪɢ ɩɨɞɞɟɪɠɤɟ ɝɪɚɧɬɨɜ ɉɪɟɡɢɞɟɧɬɚ ɊɎ ʋ 14.124.13.5895-ɆɄ,
ɧɚɭɱɧɨɣ ɲɤɨɥɵ ɇɒ-283.2014.2 ɢ ɊɎɎɂ 14-02-31878_ɦɨɥ_ɚ.
Ⱦɥɢɧɚ «ɧɨɠɤɢ» Ɇɚɯɚ, mm
10
8
6
4
2
0
10
15
20
l , cm
25
30
Ɋɢɫ. 4. Ɍɪɚɟɤɬɨɪɢɹ ɬɪɨɣɧɨɣ ɬɨɱɤɢ
ɋɉɂɋɈɄ ɅɂɌȿɊȺɌɍɊɕ
1. Mach, E. Uber den Verlauf von Funkenwellen in der Ebene und im Raume //
Sitzungsbr. Akad. Wiss. Wien. — 1878.— ʋ78.— P. 819–838.
29
ɋɛɨɪɧɢɤ ɬɪɭɞɨɜ 1-ɨɣ ȼɫɟɪɨɫɫɢɣɫɤɨɣ ɚɤɭɫɬɢɱɟɫɤɨɣ ɤɨɧɮɟɪɟɧɰɢɢ, 2014
2. von Neumann. Oblique reflection of shocks // In John von Neumann Collected Work
(ed. A. H. Taub). — 1963. Vol. 6 — P. 238–299.
3. P. Colella, L.F.Henderson. The von Neumann paradox for the diffraction of weak
shock waves // J. Fluid Mech. — 1990. Vol. 213. — P. 71-94.
4. B.Skews, J.Ashworth. The physical nature of weak shock wave reflection // J. Fluid
Mech. — 2005. Vol. 542. — P. 105-114.
5. G. Birkhoff. Hydrodynamics. A Study in Logic. Fact and Similitude // Princeton
University Press — 1950.
6. Brio, Hunter. Mach reflection for the two-dimensional Burgers equation // Physica
D — 1992.
7. A.R. Zakharian, M. Brio, J. K. Hunter, G. M. Webb. The von Neumann paradox in
weak shock reflection // J. Fluid Mech. — 2000. Vol. 422.— P. 193–205.
8. E. Vasil’ev, A. Kraiko. Numerical simulation of weak shock diffraction over a wedge
under the von Neumann paradox conditions // Comput. Maths. Math. Phys. — 1999.
Vol. 39.— P. 1335–1345.
9. R.Marchiano, F.Coulouvrat, S. Baskar. Experimental evidence of deviation from
mirror reflection for acoustical shock waves// Physical review — 2007.— E 76. — P.
056602.
10. S. Baskar, F. Coulouvrat, R. Marchiano. Nonlinear reflection of grazing acoustic
shock waves: unsteady transition from von Neumann to Mach to Snell-Descartes
reflections // Cambridge University Press — 2007. —. P. 27-55.
11. W. Merzkirch //Academic Press, New York and London — 1974.
12. Yuldashev P.V., Karzova M.M., Blanc-Benon Ph, Ollivier S., Khokhlova V.A.
Application of Mach-Zehnder interferometer to characterize spark-generated spherical
N-waves in air. // Journal of the Acoustical Society of America (166th meeting of the
Acoustical Society of America) — 2013. Vol. 134. — P. 3981.
ɧɚɡɚɞ ɤ ɫɨɞɟɪɠɚɧɢɸ
30
Скачать