¨¸Ó³ ¢ —Ÿ. 2011. ’. 8, º 5(168). ‘. 785Ä789 ŠŒœ’…›… ’…•‹ƒˆˆ ‚ ”ˆ‡ˆŠ… …ŒŠ‚‘ŠŸ …‹Š‘–ˆŸ Š‚’‚›• ‘ˆ‘’…Œ ˆ ‚›—ˆ‘‹…ˆ… ”Œ› ‘…Š’‹œ›• ‹ˆˆ‰ ‚. ‚. ‘¥³¨´, . ‚. ƒμ·μÌμ¢ ‘ ³ ·¸±¨° £μ¸Ê¤ ·¸É¢¥´´Ò° Ê´¨¢¥·¸¨É¥É, ‘ ³ · , μ¸¸¨Ö ‚ ¸É ÉÓ¥ ¢Ò¢μ¤¨É¸Ö ´¥±μÉμ·μ¥ ´¥³ ·±μ¢¸±μ¥ ±¨´¥É¨Î¥¸±μ¥ Ê· ¢´¥´¨¥ ¤²Ö ¸¨¸É¥³Ò ¤¢ÊÌ ¨¤¥´É¨Î´ÒÌ ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¤¢ÊÌÊ·μ¢´¥¢ÒÌ Éμ³μ¢, ´ μ¸´μ¢ ´¨¨ ·¥Ï¥´¨Ö ±μÉμ·μ£μ ¢ÒΨ¸²Ö¥É¸Ö Ëμ·³ ¸¶¥±É· ²Ó´ÒÌ ²¨´¨° ¤²Ö ¤ ´´μ° ¸¨¸É¥³Ò. A non-Markovian kinetic equation for a system of two identical interacting two-level atoms has been derived. Solution of this equation has been used for calculation of spectral lines shape of this system. PACS: 32.30.-r ‚‚…„…ˆ… ˆ§ÊÎ¥´¨¥ ¸¶¥±É· ²Ó´ÒÌ ¸¢μ°¸É¢ ¨§²ÊÎ¥´¨Ö Éμ³μ¢ ¢μ ¢´¥Ï´¨Ì ¶μ²ÖÌ ´¥¸¥É ¢ ¦´ÊÕ ¨´Ëμ·³ Í¨Õ μ ¸É·Ê±ÉÊ·¥ Ô´¥·£¥É¨Î¥¸±¨Ì Ê·μ¢´¥° ¨ ¤¨´ ³¨±¥ ¶¥·¥Ìμ¤μ¢ ³¥¦¤Ê ´¨³¨. ‘ ¤·Ê£μ° ¸Éμ·μ´Ò, ¤¢ÊÌÊ·μ¢´¥¢Ò¥ Éμ³Ò ³μ£ÊÉ · ¸¸³ É·¨¢ ÉÓ¸Ö ± ± ±Ê¡¨ÉÒ Å ´μ¸¨É¥²¨ ¨´Ëμ·³ ͨ¨ ¢ ±¢ ´Éμ¢μ³ ±μ³¶ÓÕÉ¥·¥. Éμ ¤¥² ¥É ´¥μ¡Ì줨³Ò³ ¤¥É ²Ó´μ¥ ¨§ÊÎ¥´¨¥ ¸¶¥±É· ²Ó´ÒÌ Ì · ±É¥·¨¸É¨± ¨§²ÊÎ¥´¨Ö ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Éμ³μ¢ ¢ · §²¨Î´ÒÌ ¶μ²ÖÌ. ’· ¤¨Í¨μ´´μ ¤²Ö ·¥Ï¥´¨Ö ¶μ¤μ¡´ÒÌ § ¤ Î ¨¸¶μ²Ó§ÊÕÉ ¶μ¤Ìμ¤ ±¢ ´Éμ¢μ° É¥μ·¨¨ μɱ·ÒÉÒÌ ¸¨¸É¥³ [1], ¶·¨ ÔÉμ³ ±²ÕÎ¥¢Ò³ ¶·¨ ¢Ò¢μ¤¥ ±¨´¥É¨Î¥¸±¨Ì Ê· ¢´¥´¨° Ö¢²Ö¥É¸Ö ¶·¥¤¶μ²μ¦¥´¨¥ μ ³ ·±μ¢μ¸É¨ ¶·μÍ¥¸¸ ¢§ ¨³μ¤¥°¸É¢¨Ö Éμ³μ¢ ¸μ ¸¢μ¨³ μ±·Ê¦¥´¨¥³, É. ¥. ¶·¥´¥¡·¥¦¥´¨¥ ÔËË¥±É ³¨ ¶ ³Öɨ. ˆ§¢¥¸É´Ò¥ ¨§ ²¨É¥· ÉÊ·Ò ´¥³ ·±μ¢¸±¨¥ ±¨´¥É¨Î¥¸±¨¥ Ê· ¢´¥´¨Ö ´¥ ²¨Ï¥´Ò ´¥¤μ¸É ɱμ¢. ¨¡μ²¥¥ μ¡Ð¥¥ Ê· ¢´¥´¨¥ ± Ϩ³ Ä –¢ ´Í¨£ [2] ¶·¥¤¸É ¢²Ö¥É ¸±μ·¥¥ Ëμ·³ ²Ó´Ò° ¨´É¥·¥¸, ¶μ¸±μ²Ó±Ê ¥£μ ´¥¢μ§³μ¦´μ · §·¥Ï¨ÉÓ. „·Ê£¨¥ Ê· ¢´¥´¨Ö Ö¢²ÖÕÉ¸Ö ¸¶· ¢¥¤²¨¢Ò³¨ ²¨ÏÓ ¤²Ö μÎ¥´Ó ʧ±μ£μ ±² ¸¸ ¶·μÍ¥¸¸μ¢ [3] ²¨¡μ Ö¢²ÖÕÉ¸Ö Ë¥´μ³¥´μ²μ£¨Î¥¸±¨³¨ [4], ÔËË¥±ÉÒ ¶ ³Öɨ ¢ ±μÉμ·ÒÌ μ¶¨¸Ò¢ ÕÉ¸Ö ¢¢¥¤¥´¨¥³ ¤μ¶μ²´¨É¥²Ó´ÒÌ ³´μ¦¨É¥²¥° ¢ Ê· ¢´¥´¨¨ ‹¨´¤¡² ¤ [5]. –¥²Ó ´ ¸ÉμÖÐ¥° ¸É ÉÓ¨ Å ¢Ò¢μ¤ ´¥±μÉμ·μ£μ μ¡μ¡Ð¥´¨Ö Ê· ¢´¥´¨Ö ‹¨´¤¡² ¤ ¤²Ö ¸¨¸É¥³Ò ¤¢ÊÌ ¤¨¶μ²Ó-¤¨¶μ²Ó´μ-¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¤¢ÊÌÊ·μ¢´¥¢ÒÌ Éμ³μ¢ ¸ ÊÎ¥Éμ³ ¶·μÍ¥¸¸μ¢ ¢§ ¨³μ¤¥°¸É¢¨Ö ¸ É¥¶²μ¢Ò³ ·¥§¥·¢Ê ·μ³ ¸ ±· É±μ¢·¥³¥´´μ° ¶ ³ÖÉÓÕ. μ¸´μ¢¥ ·¥Ï¥´¨Ö ¶μ²ÊÎ¥´´μ£μ Ê· ¢´¥´¨Ö ¸É·μ¨É¸Ö ±μ´ÉÊ· ²¨´¨¨ ¨§²ÊÎ¥´¨Ö ¤ ´´μ° ¸¨¸É¥³Ò ¨ ¨¸¸²¥¤Ê¥É¸Ö ¥£μ μɲ¨Î¨¥ μÉ ±μ´ÉÊ· ²¨´¨¨, · ¸¸Î¨É ´´μ£μ ¢ ³ ·±μ¢¸±μ³ ¶·¨¡²¨¦¥´¨¨. 786 ‘¥³¨´ ‚. ‚., ƒμ·μÌμ¢ . ‚. 1. Œ„…‹œ ˆ Šˆ…’ˆ—…‘Š… “‚…ˆ… ¸¸³μÉ·¨³ ¤¢ ¤¨¶μ²Ó-¤¨¶μ²Ó´μ-¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¤¢ÊÌÊ·μ¢´¥¢ÒÌ Éμ³ ¢ É¥¶²μ¢μ³ ·¥§¥·¢Ê ·¥. ƒ ³¨²ÓÉμ´¨ ´ É ±μ° ¸¨¸É¥³Ò H = HA + HT + Hint + HAA + HAF , HA = ω0 (1) σpz Å £ ³¨²ÓÉμ´¨ ´ ¸¢μ¡μ¤´ÒÌ Éμ³μ¢, ω0 Å Î ¸ÉμÉ ¶¥·¥Ìμ¤μ¢ ¢ Éμ³¥, σpz Å ¤¨ £μ´ ²Ó´Ò° £¥´¥· Éμ· £·Ê¶¶Ò SU (2); HT = ωk b+ k bk Å £ ³¨²ÓÉμ´¨ ´ É¥·³μp k ¸É É (É¥¶²μ¢μ£μ ·¥§¥·¢Ê · ), ωk Å Î ¸ÉμÉ b+ k ¨ bk Å μ¶¥· Éμ·Ò ·μ¦¤¥´¨Ö k-£μ ËμÉμ´ , + ikRp + h. c.) Å £ ³¨²ÓÉμ´¨ ´ ¢§ ¨¨ Ê´¨ÎÉ즥´¨Ö k-£μ ËμÉμ´ ; Hint = (gkp bk σp e k,p ³μ¤¥°¸É¢¨Ö Éμ³ ¨ É¥·³μ¸É É , £¤¥ gkp Å ¸μμÉ¢¥É¸É¢ÊÕШ¥ ±μ´¸É ´ÉÒ ¢§ ¨³μ¤¥°¸É¢¨Ö, σp± Å ¶μ¢ÒÏ ÕШ° ¨ ¶μ´¨¦ ÕШ° Éμ³´Ò¥ 춥· Éμ·Ò, Rp Å · ¤¨Ê¸-¢¥±Éμ· k-£μ Éμ³ , k Å ¢μ²´μ¢μ° ¢¥±Éμ·; HAA = Vpp σp+ σp− Å £ ³¨²ÓÉμ´¨ ´ ¤¨¶μ²Ó-¤¨¶μ²Ó´μ£μ ¢§ ¨p=p ³μ¤¥°¸É¢¨Ö, Vpp Å ±μ´¸É ´É ¤¨¶μ²Ó-¤¨¶μ²Ó´μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö. ‚ · ¡μÉ¥ [6] ¨§²μ¦¥´ ³¥Éμ¤ ¶μ²ÊÎ¥´¨Ö ±¨´¥É¨Î¥¸±μ£μ Ê· ¢´¥´¨Ö ¨§ Ê· ¢´¥´¨Ö ‹¨Ê¢¨²²Ö ¸ ¨¸Ìμ¤´Ò³ £ ³¨²ÓÉμ´¨ ´μ³ ¤²Ö ¸¨¸É¥³Ò ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Éμ³μ¢. ‚ ´ ¨¡μ²¥¥ μ¡Ð¥³ ¸²ÊÎ ¥ ±¨´¥É¨Î¥¸±μ¥ Ê· ¢´¥´¨¥ ³μ¦´μ § ¶¨¸ ÉÓ ¢ ¢¨¤¥ t ρ̇ = i[HAA , ρ(t)] − dt K̂(t )ρ(t − t ). (2) 0 ‡¤¥¸Ó ρ Å ³ É·¨Í ¶²μÉ´μ¸É¨ Éμ³μ¢, K̂ Å ´¥±¨° ¸Ê¶¥·μ¶¥· Éμ·, ±μÉμ·Ò° ´ §Ò¢ ¥É¸Ö Ö¤·μ³ ¶ ³Öɨ. ·¥¤¶μ²μ¦¨³, ÎÉμ ¢·¥³Ö t t, É. ¥. ¢·¥³Ö ´ ¡²Õ¤¥´¨Ö § ¸¨¸É¥³μ° §´ Ψɥ²Ó´μ ¡μ²ÓÏ¥, Î¥³ Ì · ±É¥·´Ò° ¨´É¥·¢ ² ¶ ³Öɨ. ’죤 ³Ò ³μ¦¥³ · §²μ¦¨ÉÓ ¢ ·Ö¤ ³ É·¨ÍÊ ¶²μÉ´μ¸É¨ ¶μ¤ ¨´É¥£· ²μ³ ¨ μ£· ´¨Î¨ÉÓ¸Ö Éμ²Ó±μ ¤¢Ê³Ö β¥´ ³¨: ρ(t − t ) ρ(t) − ∂ρ t. ∂t (3) ¥·¢μ¥ ¸² £ ¥³μ¥ ¢ ÔÉμ³ · §²μ¦¥´¨¨ ¸μμÉ¢¥É¸É¢Ê¥É ³ ·±μ¢¸±μ³Ê ¶·¨¡²¨¦¥´¨Õ, Ê· ¢´¥´¨¥ ¤²Ö ±μÉμ·μ£μ Ìμ·μÏμ ¨§¢¥¸É´μ. ‚Éμ·μ¥ ¸² £ ¥³μ¥ ÊΨÉÒ¢ ¥É ¶μÖ¢²¥´¨¥ ±· É±μ¢·¥³¥´´μ° ¶ ³Öɨ. μ¤¸É ¢²ÖÖ · §²μ¦¥´¨¥ (3) ¢ Ê· ¢´¥´¨¥ (2) ¨ ¸²¥¤ÊÖ ²μ£¨±¥ ¢Ò¢μ¤ ±¨´¥É¨Î¥¸±μ£μ Ê· ¢´¥´¨Ö, ¶·¥¤²μ¦¥´´μ£μ ¢ ¸É ÉÓ¥ [6], ³μ¦´μ § ¶¨¸ ÉÓ ¥£μ ¢ ¸²¥¤ÊÕÐ¥³ ¢¨¤¥: ρ̇ = i[HAA , ρ(t)] + L̂M ρ(t) + L̂N M ∂ρ , ∂t (4) £¤¥ L̂M ¨ L̂N M Å ¸Ê¶¥·μ¶¥· Éμ·Ò, 춨¸Ò¢ ÕШ¥ ¸μμÉ¢¥É¸É¢¥´´μ ³ ·±μ¢¸±ÊÕ ¨ ´¥³ ·±μ¢¸±ÊÕ ·¥² ±¸ ͨÕ. „ ´´μ¥ Ê· ¢´¥´¨¥ ´¥ ³μ¦¥É ¡ÒÉÓ ·¥Ï¥´μ, ¶μÔÉμ³Ê ¢ ¸É ÉÓ¥ [7] ¶·μ¨§¢μ¤´ÊÕ ¢ ¶· ¢μ° Î ¸É¨ Ê· ¢´¥´¨Ö ¶·¥¤²μ¦¨²¨ § ³¥´¨ÉÓ ³ ·±μ¢¸±¨³ β¥´μ³. Éμ μ¶· ¢¤ ´μ, ¥¸²¨ ¥³ ·±μ¢¸± Ö ·¥² ±¸ ꬅ ±¢ ´Éμ¢ÒÌ ¸¨¸É¥³ 787 ÊÎ¥¸ÉÓ, ÎÉμ ¤²Ö ¡μ²ÓÏ¨Ì ¢·¥³¥´ ¤μ²¦´μ ¡ÒÉÓ ¸¶· ¢¥¤²¨¢μ ³ ·±μ¢¸±μ¥ Ê· ¢´¥´¨¥, ¢¸Ö ¨´Ëμ·³ Í¨Ö μ ±· É±μ¢·¥³¥´´μ° ¶ ³Öɨ ¸μ¤¥·¦¨É¸Ö ¢ ¸Ê¶¥·μ¶¥· Éμ·¥ L̂N M ¨ Éμ²Ó±μ ¢ ´¥³, ¶μÔÉμ³Ê ¢ ¶· ¢μ° Î ¸É¨ Ê· ¢´¥´¨Ö ³μ¦´μ § ³¥´¨ÉÓ ¶·μ¨§¢μ¤´ÊÕ ³ ·±μ¢¸±¨³ β¥´μ³. μ¸²¥ § ³¥´Ò ³Ò ¶μ²ÊΨ³ ¸²¥¤ÊÕÐ¥¥ Ê· ¢´¥´¨¥, ±μÉμ·μ¥ ¤²Ö ´Ê²¥¢μ° É¥³¶¥· ÉÊ·Ò ·¥§¥·¢Ê · § ¶¨¸Ò¢ ¥É¸Ö ¢ ¢¨¤¥ ρ̇ = i p=p + [σp+ σp− , ρ(t)]Vpp − pp γpp (ρσp+ σp− + σp+ σp− ρ − σp− ρσp+ )+ 2 i ∂γpp −2(σp+ σp− σi− ρσi+ − σi− ρσp+ σp+ σp− ) + [σi+ σi− σp+ σp− , ρ] , (5) γii 4 ∂ω ii pp £¤¥ g12 = g21 3γ0 = 4 − [μ1 μ2 − (μ1 eR )(μ2 eR )] cos (kR) + kR + [μ1 μ2 − 3(μ1 eR )(μ2 eR )] sin (kR) cos (kR) + (kR)2 (kR)3 , γ11 = γ22 = γ0 , γ12 = γ21 = 3γ0 2 sin (kR) + [μ1 μ2 − (μ1 eR )(μ2 eR )] kR + [μ1 μ2 − 3(μ1 eR )(μ2 eR )] cos (kR) sin (kR) − (kR)2 (kR)3 . ‡¤¥¸Ó γ0 Å ¸É ´¤ ·É´ Ö ±μ´¸É ´É ·¥² ±¸ ͨ¨, ±μÉμ· Ö ¶μ²ÊÎ ¥É¸Ö ¢ É¥μ·¨¨ μ¤´μ£μ Éμ³ . 2. Š’“ ‹ˆˆˆ ˆ‡‹“—…ˆŸ Š ± ¡Ò²μ ¶μ± § ´μ ´ ³¨ ¢ ¸É ÉÓ¥ [8], ±μ´ÉÊ· ²¨´¨¨ ¨§²ÊÎ¥´¨Ö μ¶·¥¤¥²Ö¥É¸Ö Ëμ·³Ê²μ° ⎧∞ ⎨ 1 S(ω, Δk) = Re σ1+ (t)σ1− (0) + σ2+ (t)σ2− (0) e−iωt dt + ⎩ π 0 ⎫ ∞ ⎬ + σ2 (t)σ1− (0) + σ1+ (t)σ2− (0) e−iωt dt , + cos (ΔkR) ⎭ 0 £¤¥ Δk = k − k Å · §´μ¸ÉÓ ¢μ²´μ¢ÒÌ ¢¥±Éμ·μ¢ ¶ ¤ ÕÐ¥° ¨ ¨§²ÊÎ¥´´μ° ¢μ²´; R Å ¢¥±Éμ·, ´ ¶· ¢²¥´´Ò° μÉ μ¤´μ£μ Éμ³ ± ¤·Ê£μ³Ê, ¥£μ ³μ¤Ê²Ó · ¢¥´ · ¸¸ÉμÖ´¨Õ ³¥¦¤Ê Éμ³ ³¨. ˆ¸¶μ²Ó§ÊÖ ±¢ ´Éμ¢ÊÕ É¥μ·¥³Ê ·¥£·¥¸¸¨¨ (¸³., ´ ¶·¨³¥·, [9]), ¨§ ·¥Ï¥´¨Ö Ê· ¢´¥´¨Ö (5) ³μ¦´μ ¶μ¸É·μ¨ÉÓ ±μ´ÉÊ· ²¨´¨¨ ¨§²ÊÎ¥´¨Ö ¢ ´ ²¨É¨Î¥¸±μ³ ¢¨¤¥, μ¤´ ±μ ¶μ²ÊÎ¥´´Ò¥ Ëμ·³Ê²Ò ¸²¨Ï±μ³ £·μ³μ§¤±¨ ¨ §¤¥¸Ó ´¥ ¶·¨¢μ¤ÖɸÖ. ‘μμÉ¢¥É¸É¢ÊÕШ¥ £· ˨±¨ ¶·¥¤¸É ¢²¥´Ò ´ ·¨¸Ê´±¥. 788 ‘¥³¨´ ‚. ‚., ƒμ·μÌμ¢ . ‚. Šμ´ÉÊ· ²¨´¨¨ ¨§²ÊÎ¥´¨Ö ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¤¢ÊÌÊ·μ¢´¥¢ÒÌ Éμ³μ¢ ¢ ´¥³ ·±μ¢¸±μ³ ¸²ÊÎ ¥. · ³¥É·Ò ¢ ¸¨¸É¥³¥ kR = π/5, ΔkR = π/6. ‘¶²μÏ´ Ö ±·¨¢ Ö ¸μμÉ¢¥É¸É¢Ê¥É γ0 (∂γ0 /∂ω) = 0 (³ ·±μ¢¸±¨° ¸²ÊÎ °), ÏÉ·¨Ìμ¢ Ö Å γ0 (∂γ0 /∂ω) = 2, ÏÉ·¨Ì¶Ê´±É¨·´ Ö Å γ0 (∂γ0 /∂ω) = 5 •μ·μÏμ ¢¨¤´μ, ÎÉμ ¸ ·μ¸Éμ³ ¶ · ³¥É· ´¥³ ·±μ¢μ¸É¨ γ0 (∂γ0 /∂ω) ±μ´ÉÊ· ¤¥Ëμ·³¨·Ê¥É¸Ö ¨ ¥£μ ³ ±¸¨³Ê³Ò ¸³¥Ð ÕɸÖ. Éμ, ¢¨¤¨³μ, ¸¢Ö§ ´μ ¸ ¤¥Ëμ·³ ͨ¥° ¸É·Ê±ÉÊ·Ò Ô´¥·£¥É¨Î¥¸±¨Ì Ê·μ¢´¥°, ± ±μÉμ·μ° ¶·¨¢μ¤ÖÉ ÔËË¥±ÉÒ ¶ ³Öɨ. ‡Š‹—…ˆ… ‚ · ¡μÉ¥ · ¸¸³μÉ·¥´ ³μ¤¥²Ó ¤¢ÊÌ ¨¤¥´É¨Î´ÒÌ ¤¨¶μ²Ó-¤¨¶μ²Ó´μ-¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Éμ³μ¢. ‚ · ³± Ì ±¢ ´Éμ¢μ° É¥μ·¨¨ μɱ·ÒÉÒÌ ¸¨¸É¥³ ¢Ò¢¥¤¥´μ 춥· Éμ·´μ¥ ±¨´¥É¨Î¥¸±μ¥ Ê· ¢´¥´¨¥, ¢ ±μÉμ·μ³ ÊÎÉ¥´Ò ÔËË¥±ÉÒ ±· É±μ¢·¥³¥´´μ° ¶ ³Öɨ. μ¸´μ¢¥ ·¥Ï¥´¨Ö ¶μ²ÊÎ¥´´μ£μ Ê· ¢´¥´¨Ö ¶μ¸É·μ¥´ ±μ´ÉÊ· ²¨´¨¨ ¨§²ÊÎ¥´¨Ö. μ± § ´μ, ÎÉμ ÔËË¥±ÉÒ ¶ ³Öɨ ¶·¨¢μ¤ÖÉ ± ¸ÊÐ¥¸É¢¥´´μ° ¤¥Ëμ·³ ͨ¨ ±μ´ÉÊ· ¨§²ÊÎ¥´¨Ö ¢ ¸· ¢´¥´¨¨ ¸ ³ ·±μ¢¸±¨³ ¸²ÊÎ ¥³. ‘ˆ‘Š ‹ˆ’…’“› 1. Fain B. Irreversibilities in Quantum Mechanics. N. Y.: Kluwer Acad. Publ., 2002. 2. Zwanzig R. Ensemble Method in the Theory of Irreversibility // J. Chem. Phys. 1960. V. 33, No. 5. P. 1338Ä1341. 3. Breuer H. -P., Petruccione F. The Theory of Open Quantum Systems. Oxford: Oxford Univ. Press, 2002. 4. Shabani A., Lidar D. A. Completely Positive Post-Markovian Master Equation via a Measurement Approach // Phys. Rev. A. 2005. V. 71. P. 020101(R). 5. Lindblad G. On the Generators of Quantum Dynamical Semigroups // Commun. Math. Phys. 1976. V. 48, No. 2. P. 119Ä130. ¥³ ·±μ¢¸± Ö ·¥² ±¸ ꬅ ±¢ ´Éμ¢ÒÌ ¸¨¸É¥³ 789 6. Kurizki G., Ben-Reuven A. Theory of Cooperative Fluorescence from Products of Reactions or Collisions: Identical Neutral Atomic Fragments // Phys. Rev. A. 1987. V. 36. P. 90Ä102. 7. Gangopadhyay G. Non-Markovian Master Equation for Linear and Nonlinear Systems // Phys. Rev. A. 1992. V. 46, No. 3. P. 1507Ä1515. 8. ƒμ·μÌμ¢ . ‚., ‘¥³¨´ ‚. ‚. ¸Î¥É ¸¶¥±É· ˲Êμ·¥¸Í¥´Í¨¨ ¤²Ö ¤¢ÊÌ ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Éμ³μ¢ // ¶É¨± ¨ ¸¶¥±É·μ¸±μ¶¨Ö. 2009. ’. 107, º 4. ‘. 617Ä622. 9. Lax M. Quantum Noise. XI. Multitime Correspondence between Quantum and Classical Stochastic Processes // Phys. Rev. 1968. V. 172. P. 350Ä361.