25 3, 2011 535.2 , . . , . . , , , . , , . PACS: 05.40.Ca, 44.40.+a : , , , , - . - C— S— — , , , , . ( , , ; - , . ; ) (1)) ( - , , . ., T0 T (t ) , (2) 3 ST03 , C - t )1/3 (1 - T0 — t = 0. . 4 I (t ) - ST (t ), (2), I(t) J(t) . , ( ) - I (t ) I0 — - I0 t )4/3 (1 t = 0. , , (3) , (3) ( - , C dT S dt T 4, (1) ), ( , ) [1]. , . , . - J, . . . . , 105005, , . 2, 5. . (499) 263-67-35. E-mail: a.skripkin@mail.ru 18 . ., - , . ., 2011 2010 . t< t= , I (t ) J (1 (t )) 4/3 , t< . 26 3, 2011 , , , ). J( ) ( ; d ) dI (t ) d d (1 - J( ) )) 4/3 (t J0. d . , - , J( ), I (t ) 4 3 t 0 , (t ) . , , (4) d . 7/3 (4) , , . , I(t), - (4), t = 0, J(t) . J(t) I(t) , (4) , - (4). , , [5]. g1 ( ; t ) [2]. , . . 1 - g L ( 1 ,..., exp iJ 0 - , — , . - , [4] . , - exp L - 2 11/3 t) (5) , l 1 (tl (1 2 l 2 4/3 (1 1 11/3 (tl t1 )) L tk ) F(a, b, c; x) — [6]. , tl )11/3 (tl tk ) 7/3 F( 4 / 3,7 / 3, 1/ 3;1/ ( (tl (1 (1 l k l , k 1, k l F ( 4 / 3,7 / 3, 1/ 3;(1 l tl )4/3 1 1 7/3 1 t1 )) 1 L 11 l 1 (1 8 3 L ; t1 ,..., t L ) 1 . .). , 1 L g L ( 1 ,..., L ; t1 ,..., t L ) [3]. t ) 4/3 (1 8 1 33 (1 exp - , , I(t) g1 ( ; t ) exp iJ 0 1 , ( - , - . , J(t) . - , J( ) 1 , , tk ))) tk ) / ( (tl tk ))) 4/3 , (6) 27 3, 2011 F(a, b, c; x) x < 1. 1 tk 1; (tl tk ) 1 1 (tl tk ) . , (6) 1 tk 1, (tl tk ) (6) - 1 12,00 2 8,00 4,00 . (5) (6) 3 0 0,02 0,04 . 2. 0,1 2 4 =1 , c = 380 /( ) (1), R = 2 (2) R = 3 (3) R=1 DI(t) 0,08 DI(t) I(t) [7], I(t) 0,06 t, - I(t). 4 16,00 0,00 , 2 DI(t), 20,00 - : g1 ( ; t ) (i ) I (t ) 2 DI (t ) I (t ) J0 1 0 2 I (t ) (7) 1 t ) 4/3 (1 16 1 33 (1 (8) (7) ; I I 1 n I n I 0, n — ( n 1)!! D n / 2 (t ), n — . K(t,t – ) ( ) I(t) , , - g 2 ( 1, - 2 ; t1 , t 2 ). (6) , J0 16 /33. (7) (8) .1 2 K (t , t , 1 (1 1 (1 ) 4/3 (1 t) )) 4/3 (t 1 4/3 J 02 F ( 4 / 3,7 / 3, 1/ 3;1 / 2 F ( 4 / 3,7 / 3, 1/ 3;(1 0,80 (1 1 0,60 (t )) (t 4/3 7/3 2 ) )) / 4/3 ) . (9) 2 3 (6), 0,40 1 0,20 0,00 ) 1 . < I(t) >, 1,00 , . (8) t )11/3 , t ; 0 0,02 0,04 0,06 0,08 ) .3 0,1 t, (t 1 (9) t 1/ . 2 ), K(t,t – t 1/ 2 , (9) . 1. I(t) R=1 J0 = 1 c = 380 /( (1), R = 2 (2) R = 3 2 , ) (3) J 02 t. - 28 3, 2011 - K(t, t– )/ J 02 7 6 GI( ), 5 I(t), 4 1 0 , Iˆ( s) i . 3 2 - (7) 3 1 0 0,02 2 0,04 0,06 0,08 0,1 K(t,t– )/J02 = 10 t = 0,1 (1), t = 0,2 (2) t = 1 (3) 4 s ˆ , J ( s ), 3 es/ s— ˆ J ( s) — t, . 3. 4/3 4 s 3 Iˆ( s ) –1 (10) t; J(t); x, y — , - g1 ( ; t ), (5), t x 1e t dt . ( x, y ) I(t) (11) y (10) (11) - . (12) , p( I , t ) , 1 2 g1 ( ; t ) exp( i I )d 1 2 D (t ) (I exp I ) 2 D (t ) , 8/3 16 9 GI ( ) 2 GI( ) , I(t) , p(I,t) , t. I(t) " I, " GI( ), - " . 0,6 3 0,4 0 2 1 0 2 4 6 8 10 , 1 . 5. 0,0953 0,0949 4 1 0,2 2 0,0957 0,0951 2 0,8 , 0,0955 - 1,2 " t p(I, t), GI( ) . 5. . . 4 4 , 3 2 I(t) = 10 -1, = 20 2 -1 DI( ) -1 , = 30 - -1 , 3 0,0947 0,4 0,6 0,8 . 4. 1 1,2 I, 1,4 , - 2 . p(I,t) R=1 t = 0,1 (2) - t = 0,07 (1), ( 1/ ) t = 0,13 (3) , - (4), . - 29 3, 2011 - 0, w( ) : w( ) , - ( 0 ), . J(t) N0 - . . h( ) exp i (15) . 0 (15) (13) (14) - J0 ( ) 0 — N0 0, I(t): , n 1 . g1 ( ; t ) exp N 0 , , . . - . g1 ( ; t ) L g L ( 1 ,..., g1 ( ; t ) exp N0 g L ( 1 ,..., 4 3 t h 0 4 3 (1 L ; t1 ,..., t L ) (t )) exp N 0 L d ))7/3 (tk (17) . ) ) ( (16) (17), - (7)—(9), h J0 0 N0 N 0 02 . 0 - k k 1 (1 n 3n n ! n 1 k , min(t1 ,...,t L ) 0) ( 1 d ; (13) 7/3 (4i n L k 1 (1 0 (16) ; 1 L ; t1 ,..., t L ) exp N 0 min(t1 ,...,t L ) J(t), t )7 n /3 (1 )n 0 3n n !(7n / 3 1) n 1 1 1 h( ), g ( 1,..., L ; t1,..., tL ) I(t) - (4i 1 d ))7/3 (tk (14) . , , , - ( ). : , , 0 2 0. , I - , , - I I 4 32 243 3 I 256 2 N0 2 4 0 N 0 30 , N0 363 675 . ; , . - , , , , , D 0. w( ), , , , . . w( ) 1 2 D exp ( 0) 2D 2 , 30 3, 2011 , - , , . . h( ) exp(i 1 D 2 ) exp 0 2 2 0 N0 . N 02 , — (13) g1 ( ; t ) (14), g ( 1,..., L . - , L ; t1,..., t L ) , - , I(t) , , - . - N0: g1 ( ; t ) exp N 0 exp t exp exp 0 8 L 9 k 1 (1 , ))7/3 , , . 2 2 1 d ))14/3 (t g L ( 1,..., t 0 (t 3(1 0 8 D 9 (1 exp N 0 4i exp (18) , L ; t1 ,..., t L ) 4 L 3 k 1 (1 i , , ))7/3 (tk , 2 2 k D 1 d ))14/3 ( tk , 0 k . , , , I(t) , , , J0 N 0 0 ). (8), , , - . (18) (7) ( DI(t) , - , , . 1. N 0 (2 2 0 D ), , - . (12), . [8], , . . . — .: , 1964. 2. . . . — .: . . . 3. . ., . . // . 2009. . 52. 2. . 66. 4. . ., . ., . ., , 1997. . .— 1976. 5. 2004. 6. 7. . . // . . , . . . .C , 1984. . . , 1990. .— - 3. . 47. . . ., .— .: ., .— 8. .: - . .: .: , 1988. 31 3, 2011 Thermal radiation of the body subjected to the fluctuating external influence A. N. Morozov, A. V. Skripkin Bauman Moscow State Technical University, 5 2-nd Bauman str., Moscow, 105005, Russia E-mail: a.skripkin@mail.ru Considered are fluctuations of a radiation intensity of the body which is subjected to the external influence having a character of the white or shot noise. The general statistical characteristics of radiation, such as characteristic functions, dispersion, spectral density, etc, are defined. PACS: 05.40.Ca, 44.40.+a Keywords: thermal radiation, intensity fluctuations, non-Markovian process, charasteric function, spectral density Bibliography — 8 references. Received February 18, 2010