3.3. Факторы, влияющие на пластическую деформацию металлов и их деформационное упрочнение Выше было показано, что пластическая деформация и упрочнение сильно зависят от типа решетки, ориентировки кристалла, способа деформации. Помимо перечисленных факторов на пластическую деформацию металлов и их деформационное упрочнение важное влияние оказывают также температура деформации, скорость деформации, содержание примесей и легирование и пр. Влияние температуры деформации. До сих пор мы рассматривали так называемую холодную пластическую деформацию при температурах от 0 до 0,2 – 0,25 Тпл, когда процессы термического возврата во время деформации можно было не учитывать (процессы термического возврата заключаются в устранении неравновесного избытка точечных дефектов и в перестройке дислокационной структуры, формирующейся при деформации). С повышением температуры выше 0,2 – 0,25 Т пл картина пластической деформации качественно изменяется. При высокотемпературной деформации перемещение дислокаций происходит под действием одновременно внешних напряжений и температурного воздействия. В результате деформационное упрочнение из-за повышения плотности дислокаций будет конкурировать с разупрочнением из-за снижения плотности дислокаций и совершенствования дислокационной структуры с повышением температуры. При теплой деформации (нагрев до 0,6 Тпл ) термический возврат всегда не полный, так как число вновь образующихся дислокаций больше, чем аннигилирующих, в результате сохраняется некоторое деформационное упрочнение металлов. При горячей деформации (нагрев выше 0,6 Тпл) термический возврат проходит полностью. Влияние примесей и легирование на пластическую деформацию может сказываться в основном за счет четырех эффектов: 1) образования примесных атмосфер на дислокациях; 2) изменения энергии дефектов упаковки; 3) увеличения сил трения при движении дислокаций; 4) упорядочения. Образование на дислокациях примесных атмосфер (Котрелла, Сузуки, Снука) затрудняет их перемещение, особенно при низких температурах, повышая напряжение, необходимое для начала работы дислокационных источников. Блокировка дислокационных источников затрудняет переход к новым системам скольжения, поэтому примеси могут вызывать удлинение стадии легкого скольжения. Легирование приводит к снижению энергии упаковки и облегчает двойникование, это имеет важное практическое значение. Легирование, способствующее облегчению двойникования, используется для повышения пластичности хрупких металлов, в которых деформация скольжением почти не происходит. Так легирование вольфрама, молибдена, хрома, рением значительно облегчает в них процесс двойникования. Инородные атомы в решетке твердого раствора являются центрами искажения, вокруг которых возникают поля упругих напряжений. Движение дислокаций в такой искаженной решетке затруднено по сравнению с чистым металлом, поскольку увеличиваются силы трения, препятствующие перемещению дислокаций. Все описанные эффекты влияния инородных атомов на особенности деформации проявляются тем сильнее, чем ниже температура деформации. С повышением температуры влияние растворимых примесей и легирующих элементов ослабляется из-за диффузионного размытая примесных атмосфер и активного развития термически активируемых процессов. Скорость деформации наряду с температурой и приложенным напряжением является одним из основных параметров пластической деформации. С увеличением скорости деформации происходит повышение уровня напряжения в металле и наоборот. Показатель скоростной чувствительности при пластической деформации металлов чаще всего не превышает 0,1, но в некоторых случаях может достигать 0,2 – 0,7. Тогда мы имеем дело со сверхпластической деформацией, которая характеризуется большим удлинением (часто на сотни – тысячи процентов) при практически полном отсутствии деформационного упрочнения. Сверхпластичность проявляется при температурах выше 0,5 Тпл и сравнительно малых скоростях деформации (10–5 –10–1 с –1) у различных материалов, в том числе чистых поликристаллических металлов с размером зерна 0,5 – 10 мкм. Основным механизмом сверхпластической деформации таких материалов являются межзеренные перемещения. В ряде случаев, особенно при циклическом изменении температуры, сверхпластичность может быть обусловлена протекающим в материале фазовым превращением, например полиморфным. file:///C:/Users/73B5~1/AppData/Local/Temp/GRRATGD5.htm 23.04.2015