Контрольная работа №4 Варианты. 1 2 3 4 5 6 7 8 9 0 Номера задач. 4-1 4-11 4-21 4-31 4-41 4-51 4-61 4-71 4-2 4-12 4-22 4-32 4-42 4-52 4-62 4-72 4-3 4-13 4-23 4-33 4-43 4-53 4-63 4-73 4-4 4-14 4-24 4-34 4-44 4-54 4-64 4-74 4-5 4-15 4-25 4-35 4-45 4-55 4-65 4-75 4-6 4-16 4-26 4-36 4-46 4-56 4-66 4-76 4-7 4-17 4-27 4-37 4-47 4-57 4-67 4-77 4-8 4-18 4-28 4-38 4-48 4-58 4-68 4-78 4-9 4-19 4-29 4-39 4-49 4-59 4-69 4-79 4-10 4-20 4-30 4-40 4-50 4-60 4-70 4-80 4-1. На оптической скамье поставлена свеча с высотой пламени 0,05 м. Линза дает на экране увеличенное изображение пламени высотой 0,20 м. Не трогая линзу, свечу отодвинули на 0,05 м дальше от нее, затем, передвинув экран, вновь получили резкое изображение пламени высотой 0,10 м. Определить фокусное расстояние линзы. 4-2. Мнимое изображение предмета, увеличенное в три раза, находится на расстоянии 0,2 м от собирающей линзы. Какова оптическая сила линзы? 4-3. Два взаимно перпендикулярных луча, лежащих в плоскости, перпендикулярной границе раздела, переходят из воздуха в жидкость. У первого луча угол преломления 300, у второго 450. Найти показатель преломления жидкости. 4-4. На каком расстоянии находится предмет от вогнутого сферического зеркала, фокусное расстояние которого 0,2 м, если его действительное изображение находится на расстоянии 0,6 м от зеркала. Во сколько раз размер изображения больше самого предмета? 4-5. Луч света падает на границу раздела двух сред под углом 300. Показатель преломления первой среды n1 = 2,4. Определить показатель преломления второй среды, если известно, что отраженный и преломленный лучи перпендикулярны друг другу. 4-6. Чему равно главное фокусное расстояние плосковыпуклой стеклянной линзы (nст = 1,5), находящейся в скипидаре (nск = 1,47)? Радиус кривизны выпуклой поверхности линзы 25 см. 4-7. Расстояние между предметом и изображением в собирающей линзе равно 30 см. Увеличение линзы равно 3. Найти оптическую силу линзы. 4-8. Во сколько раз оптическая сила стеклянной линзы в воде меньше, чем в воздухе? nст = 1,5; nв = 1,3 4-9. Линза с фокусным расстоянием 30 см дает уменьшенное в 1,5 раза мнимое изображение предмета. На каком расстоянии от линзы находится предмет? 4-10. С помощью линзы на экране получено изображение предмета в 4 раза по площади больше, чем сам предмет. Предмет удален от линзы на 30 см. Найти фокусное расстояние линзы. 4-11. В опыте с зеркалами Френеля расстояние между темными полосами на экране 2,5 мм, а расстояние от мнимых источников до экрана 2 м. Определить расстояние между мнимыми источниками, если длина световой волны 0,62 мкм. 4-12. Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если синий светофильтр с длиной волны 4·10-5 см заменить красным с длиной волны 640 нм? 4-13. Найти длину волны монохроматического света, если расстояние между пятым и двадцать пятым светлыми кольцами в опыте Ньютона равно 0,9 см, а радиус кривизны линзы 15 м. Свет падает на установку нормально, и наблюдение проводится в отраженном свете. 4-14. На дифракционную решетку нормально падает монохроматический свет. Определить наибольший порядок дифракционного максимума, который дает решетка для красного света с длиной волны 650 нм и в случае фиолетового света с длиной волны 0, 41 мкм. Период решетки 0,002 мм. 4-15. Дифракционная решетка, освещенная нормально падающим монохроматическим светом, отклоняет спектр третьего порядка на угол 300. На какой угол отклоняет она спектр четвертого порядка? 4-16. Определить угол отклонения лучей зеленого света с длиной волны 0,55 мкм в спектре первого порядка, полученном с помощью дифракционной решетки, период которой равен 0,02 мм. 4-17. На щель шириной 0,1 мм нормально падает параллельный пучок света от монохроматического источника с длиной волны 600 нм. Определить ширину центрального максимума в дифракционной картине, проецируемой с помощью линзы, находящейся непосредственно за щелью, на экран, расположенный на расстоянии 1 м от линзы. 4-18. Определить максимальный порядок спектра, даваемого дифракционной решеткой при освещении ее нормально падающим пучком света с длиной волны 4х10-7м, если при освещении ее светом с длинной волны 570 нм, максимум второго порядка наблюдается под углом 300. 4-19. Найти число штрихов на 1 мм дифракционной решетки, если при нормальном падении света с длиной волны 600 нм решетка дает первый максимум на расстоянии 3,3 см от центрального, а расстояние от решетки до экрана 1,1 м. 4-20. От двух когерентных источников S1 и S2 с длиной волны 0,8 мкм лучи падают на экран. На экране наблюдается интерференционная картина. Когда на пути одного из лучей перпендикулярно ему поместили мыльную пленку (n = 1,33), интерференционная картина изменилась на противоположную. При какой минимальной толщине пленки это возможно? 4-21.Пучок естественного света падает на полированную поверхность стеклянной пластинки, погруженной в жидкость. Отраженный от плоскости пучок света образует угол 970 с падающим пучком. Определить показатель преломления жидкости, если отраженный свет максимально поляризован. nст = 1,5. 4-22. Определить концентрацию сахарного раствора, если при прохождении света через трубку с этим раствором длиной 20 см, плоскость поляризации света поворачивается на угол 100. Удельное вращение сахара в растворе 0,6 град/(дм·проц). 4-23. Интенсивность естественного света прошедшего два николя, уменьшилась в 8 раз. Пренебрегая поглощением света в николях, определить угол между их главными оптическими осями. 4-24. Луч света падает на стекло под углом 580, отраженный луч полностью поляризован. Определить показатель преломления и угол преломления луча в стекле. 4-25.Пучок естественного света проходит через два николя. Определить угол между их главными оптическими осями, если интенсивность света, вышедшего из второго николя равна 12% интенсивности света, падающего на первый николь. Потери света в каждом николе 20%. 4-26. Угол между главными оптическими осями двух поляроидов составляет 300. Определить, во сколько раз изменится интенсивность прошедшего через них света, если угол увеличить в 1,5 раза? 4-27. Чему равен показатель преломления стекла, если при отражении от него света отраженный луч будет полностью поляризован при угле преломления 300? 4-28. Два николя расположены так, что угол между их оптическими осями составляет 600. Определить, во сколько раз уменьшится интенсивность естественного света: 1) при прохождении через один николь; 2) при прохождении через два николя. Коэффициент поглощения каждого николя 5%. Потери на отражение света не учитывать. 4-29. Определить угол между главными оптическими осями поляризатора и анализатора, если анализатор в два раза уменьшает интенсивность света, прошедшего через поляризатор. 4-30. Найти удельное вращение сахарозы в соке сахарного тростника, если угол поворота плоскости колебаний поляризованного света составил 170 при длине трубки с раствором 10 см. Концентрация раствора 0,25 г/см3. 4-31. Найти кинетическую энергию α – частицы, которая движется со скоростью 0,92с( где с – скорость света в вакууме). 4-32. Определить импульс и кинетическую энергию электрона, движущегося со скоростью 0,9с( где с – скорость света в вакууме). 4-33. Энергия π – мезона, возникающего в верхних слоя атмосферы, составляет 6 ГэВ, а его среднее время жизни в связанной с ним системе отсчета равно 26 нс. Масса π – мезона равна 273 me. Определить время его жизни в лабораторной системе отсчета. 4-34. Определить релятивистский импульс электрона, обладающего кинетической энергией 5 МэВ. 4-35. Релятивистская масса тела, движущегося со скоростью v, возросла по сравнению с его массой покоя на 20%. Во сколько раз при этом уменьшилась его длина? 4-36. Определить относительную скорость движения тела, если релятивистское сокращение длины движущегося тела составляет 24%. 4-37. Какая кинетическая энергия должна быть сообщена ракете массой 1,5 т, чтобы она приобрела скорость 120 Мм/с. 4-38. Найти кинетическую энергию электрона, если масса движущегося электрона вдвое больше его массы покоя. Какая скорость электрона соответствует этим условиям? 4-39. Источник монохроматического света с длиной волны 600 нм движется по направлению к наблюдателю со скоростью 0,1 с. Определить длину волны излучения, которую зарегистрирует спектральный прибор наблюдателя. 4-40. Электроны, вылетающие из циклотрона, обладают кинетической энергией 0,67 МэВ. Какую долю скорости света составляет скорость этих электронов. 4-41. Максимум энергии излучения абсолютно черного тела при некоторой температуре приходится на длину волны 1 мкм. Вычислить энергетическую светимость тела при этой температуре и энергию, излучаемую с площади 300 см2 поверхности тела за 1 минуту. Определить также массу, соответствующую этой энергии. 4-42. Проволока, длиной 3,5 м и диаметром 1,5·10-4 м, раскалена до температуры 2500 К. Считая проволоку абсолютно черным телом, определить ее интегральную мощность излучения. 4-43. На поверхность площадью 3 см2 в течение 10 минут падает свет, энергия которого 20 Дж. Определить: 1) облученность поверхности; 2) световое давление на поверхности, если она полностью поглощает лучи; 3) световое давление на поверхности, если она полностью отражает лучи. 4-44. Длина волны, на которую приходится максимум энергии в спектре излучения черного тела, равна 580 нм. Определить максимальную спектральную плотность энергетической светимости. 4-45. Во сколько раз надо увеличить термодинамическую температуру абсолютно черного тела, чтобы его энергетическая светимость возросла в два раза? 4-46. Мощность излучения абсолютно черного тела равна 10 кВт. Найти величину излучающей поверхности тела, если известно, что длина волны, на которую приходится максимум плотности его энергетической светимости, равна 7·10-5 см. 4-47. Длина волны, на которую приходится максимум энергии в спектре излучения абсолютно черного тела 0,58 мкм. Определить энергетическую светимость поверхности тела. 4-48. В результате мульчирования молотым мелом поверхность почвы приняла температуру 170 С. Определить лучепоглощательную способность почвы, если ее лучеиспускательная способность при данной температуре 64 Дж/(м2·с). 4-49. Поток энергии, излучаемой из смотрового окошка плавильной печи, равен 34 Вт. Определить термодинамическую температуру печи, если площадь отверстия 6 см2. 4-50. Пучок монохроматического света с длиной волны 663 нм падает нормально на зеркальную плоскую поверхность. Поток излучения 0,6 Вт. Определить: 1) силу давления, испытываемую этой поверхностью; 2) число фотонов, ежесекундно падающих на поверхность. 4-51. Определить максимальную скорость фотоэлектронов, испускаемых с поверхности серебряной пластинки, облучаемой γ – лучами с длиной волны 1 пм. 4-52. Красная граница фотоэффекта у рубидия 810 нм. Какую обратную разность потенциалов нужно приложить к фотоэлементу, чтобы задержать электроны, испускаемые рубидием под действием ультрафиолетовых лучей с длиной волны 100 нм? 4-53. Определить кинетическую энергию и скорость фотоэлектронов при облучении натрия лучами с длиной волны 400 нм, если красная граница фотоэффекта натрия 600 нм. 4-54. Работа выхода для некоторого металла 3,2 эВ. Найти массу и импульс кванта, способного выбить электрон из этого металла. 4-55. Катод освещается излучением с длиной волны 360 нм, причем ежесекундно на 1см2 поверхности падает энергия 6·10-5 Дж. Считая, что 3% падающих фотонов выбивают электроны, определить плотность тока насыщения. 4-56. Определить максимальную скорость фотоэлектронов, вырываемых с поверхности серебра ультрафиолетовым излучением с длиной волны 0,155 мкм. 4-57. Скорость электронов, вылетающих из металла под действием света, равна 0,5·106 м/с. Найти длину волны света, если работа выхода для этого металла равна 1,6 эВ. 4-58. Кинетическая энергия электронов, вылетающих из металла под действием света, равна 0,5 эВ, работа выхода для этого металла равна 4,18·10-19 Дж. Найти длину волны падающего света. 4-59. Заряд металлического шара емкостью 2,1 мкФ равен 6,3 мкКл. Определить, на сколько увеличится заряд шара при длительном облучении его фотонами с энергией 7,2 эВ? Работа выхода электронов из металла 1,6 эВ. 4-60. Для предпосевного облучения семян применен лазер, излучающий волны с длиной 632 нм. Интенсивность излучения 2·103 Вт/м2. Определить число фотонов, поглощенных семенами с площадью поверхности 5 мм2. Время облучения 10 минут. 4-61.Электрон в атоме находится на возбужденном уровне с энергией - 4,3 эВ. Определить минимальную энергию фотона, способного вызвать ионизацию атома. 4-62. Найти значение постоянной Ридберга, если при переходе электрона в атоме водорода с четвертой орбиты на вторую излучаются фотоны с длиной волны 436 нм. 4-63. Во сколько раз длина волны излучения атома водорода при переходе электрона с четвертой орбиты на третью больше длины волны, связанной с переходом электрона со второй орбиты на первую? 4-64. Определить наименьшее и наибольшее значение энергии фотона в ультрафиолетовой серии атома водорода. 4-65. Найти энергию фотона, излучаемого атомом водорода при переходе электрона с третьего энергетического уровня на первый, а также длину электромагнитной волны, соответствующую этому фотону. 4-66. Вычислить скорость α – частицы, у которой дебройлевская длина волны такая же, как у электрона, движущегося со средней квадратичной скоростью при температуре 180С. 4-67. Найти отношение длин волн вторых по порядку спектральных линий серий Лаймана и Пашена. 4-68. Определить энергию фотона, соответствующего второй линии в первой инфракрасной серии атома водорода. 4-69. Вычислить длины волн де Бройля для: 1) электрона, летящего со скоростью 106 м/с; 2) протона, летящего со скоростью 500 м/с; 3) шара массой 1 г, движущегося со скоростью 10 м/с. 4-70. Вычислить радиус первой боровской орбиты и скорость электрона на этой орбите. 4-71. Найти энергию связи ядра атома гелия (42Не). 4-72. Определить энергию, выделяемую при делении ядер урана одного ядра выделяется энергия 200 МэВ. 235 92U массой 1 кг. При делении 4-73. Вычислить дефект массы, полную и удельную энергию связи ядра изотопа ртути 20080Нg. 4-74. При осуществлении термоядерной реакции синтеза ядра гелия из ядер изотопов водорода – дейтерия и трития по схеме 1Н 2 + 31Н → 42Не + 10n освобождается энергия 17,6 МэВ. Какая энергия освободится при синтезе 1 г гелия? Сколько каменного угля потребовалось бы сжечь для получения такой же энергии? 4-75. Вычислить энергию ядерной реакции 16 8О + 21Н → 147N + 42Не . Выделяется или поглощается эта энергия? 4-76. Найти энергию связи ядра атома углерода 126C. 4-77. При определении периода полураспада короткоживущего радиоактивного изотопа использован счетчик импульсов. Вначале за одну минуту было насчитано 250 импульсов, а через час за одну минуту счетчик сосчитал 92 импульса. Определить постоянную радиоактивного распада и период полураспада изотопа. 4-78. Определить дефект массы и энергию связи бора 105B. 4-79. Имеется 4 г радиоактивного кобальта. Сколько граммов кобальта распадется за 216 суток, если его период полураспада 72 суток? 4-80. Навеска почвы, в которую внесено удобрение с радиоактивным фосфором 3215Р, имеет активность 10 мкКи. Определить массу фосфора, если его период полураспада 14,28 дня.