задачи_решения

реклама
Примерные задания
ЗАДАЧИ
для муниципального (районного, городского) этапа
Всероссийской олимпиады школьников по экономике
для обучающихся 9-11 классов
РЕШЕБНИК И КРИТЕРИИ ОЦЕНИВАНИЯ
(4 задачи, 80 баллов)
Время – 80 минут
Задача 1. (30 баллов)
Функция спроса на товар имеет вид:
QD= -10P+40,
А функция предложения этого товара – вид:
QS =a*P-2
Где а – параметр.
Затраты производителей на выпуск единицы товара равны 2.
Выручка производителей товара в условиях рыночного равновесия равна 30.
Найти величину предложения при цене, равной 5.
Решение:
Рыночное равновесие предполагает равенство величины спроса и величины предложения:
Q= QD= QS
Значит должно выполняться условие:
-10P+40= a*P-2
Откуда выводим равновесную цену:
42
P
a  10
Подставив выражение в функцию спроса, получаем:
42
Q= -10 *
+ 40
a  10
Теперь выпишем формулу расчета выручки, используя выведенные нами выражения:
42
42
TR=P*Q=
* (-10 *
+ 40)
a  10
a  10
Согласно условию задачи записываем:
42
42
* (-10 *
+ 40) = 30
a  10
a  10
Элементарное преобразование приводят к квадратному уравнению:
а2- 36а+128=0
Корнями этого уравнения являются величины а1 = 4 и а2 = 32
Значит, равновесная цена может принимать соответственно два значения: P1=3 и P2=1
Но P2 не имеет экономического смысла – не будут производители выпускать продукцию, если цена
единицы товара ниже затрат на её производство (равных, согласно условию, 2).
Значит не имеет экономического смысла и а2.
В то же время цена, равная 3, не противоречит здравому смыслу, а следовательно, нас устраивает
и первый (меньший) корень уравнения (4).
Чтобы найти величину предложения подставляем а = 4 и P=5
QS = 4*5-2=18
Ответ: 18
Задача 2. (10 баллов)
Фирма получила 40 тыс. ден. ед. прибыли, продавая продукцию по цене 200 ден. ед./шт.
Рентабельность по издержкам составила 20 %.
Определите объем выпуска и продаж.
Решение:
Выпишем определение рентабельности по издержкам:
Pr
*100
TC
Исходя из этой формулы можно найти величину совокупных издержек:
R
TC 
100 Pr 100 * 40000

 200 000 (ден. ед.)
R
20
Теперь рассчитаем выручку:
TR=TC+Pr=200 000 +40 000= 240 000 (ден. ед.)
Находим ответ:
TR 240000
Q

 1200 (шт.)
P
200
Ответ: 1200 штук
Задача 3. (30 баллов)
В теплицах города Морозограда выращиваются тюльпаны и гвоздики. Параметры спроса со
стороны горожан на оба вида : цветов в течение года не менялись.
Прямая точечная эластичность спроса на тюльпаны и перекрестная точечная эластичность
спроса на гвоздики были постоянными при всех значениях цен и равны по абсолютному
значению.
В июле равновесие на рынке тюльпанов было достигнуто при цене 16 р. за штуку и при
ежедневном объеме продаж, составившем 10 тыс. штук, а на рынке гвоздик - при ежедневном
объеме продаж, равном 12 тыс. штук.
В декабре в результате изменения предложения цветов равновесие было достигнуто при цене на
тюльпаны, составившей 25 р./шт., и при ежедневном объеме продаж гвоздик, равном 15 тыс.
штук.
Сколько тюльпанов продавалось в Морозограде за один декабрьский день?
Решение.
Вначале определим вид функции спроса на тюльпаны и функции, связывающей величину
спроса на гвоздики с ценой тюльпана.
В силу условия постоянства эластичности функции спроса во всех точках функция спроса на
тюльпаны запишется в виде
Q=b*Pa
(1)
где Q - величина спроса на тюльпаны в тыс. шт.,
Р - цена одного тюльпана, р./шт.,
a- эластичность спроса (а < о),
b - параметр (b>0)
По тем же соображениям функция, связывающая величину спроса на гвоздики с ценой тюльпана,
будет иметь вид:
q=c*P –a
(2)
где q - величина спроса на гвоздики в тыс. шт.,
c - параметр (с > 0).
(Заметим, что согласно своему экономическому смыслу прямая и перекрестная эластичность
имеют противоположные знаки.)
Исходя из условия задачи, при состоянии равновесия, установившемся. в июле, выражение (2)
может быть пере писано в виде
12=c*16-a
откуда
c=12*16a
(3)
При состоянии равновесия, установившемся в декабре выражение (2)перепишется как
15=c*25-a
Преобразуя последнее равенство с учетом (3), получаем
15=12*(16/25)a
откуда
a= log 16/2515/12 = -0,5
(4)
При состоянии равновесия, установившемся в июле выражение (1) с учетом (4) можно переписать
как
10=b*16 -1/2
откуда
b=40
(5)
Для равновесия, установившегося в декабре, выражение (1) с учетом (4) и (5) принимает вид:
Q=40*25-1/2=8 (тыс. шт.)
что является ответом задачи.
Ответ: 8 тыс. шт.
Задача 4. (10 баллов)
Розничные торговцы купили на мелкооптовом рынке по 100 кг бананов по цене 4 р. за,
килограмм. В течение дня они продавали бананы по цене 6 р. за килограмм. К концу большого
торгового дня бананы - начали портиться. У каждого продавца из 100 кг осталось по 30 кг. Первый
продавец начал сбрасывать цену и только при цене 3 р. продал оставшиеся бананы. Второй
продавец решил, что это невыгодно, и держал цену на уровне 6 р., и оставшиеся бананы у него
сгнили.
а) В чем причина, ошибки второго продавца?
б) Найдите бухгалтерскую и экономическую прибыль первого продавца, если торговое место
стоит 40 р. в день, а альтернативный заработок продавца в лучшем случае составляет 80 р. в день.
Рационально ли действовал первый продавец?
Решение:
а) Ясно, что первый продавец был прав, а второй ошибался в том, что он принимал во внимание
прошлые затраты, которые уже не вернуть. Это и есть необратимые затраты. Может быть, было
бы выгодно торговать загнившими бананами по цене ниже той, по которой они были
приобретены. Ведь альтернатив у торговца две: либо снизить цену до реальной, но не
покрывающей затраты, либо остаться с непроданными бананами.
б) Первый продавец получил выручку, равную 70 х 6 + 3х 3 = 510 р. при затратах, равных 400 р.
плюс 40 р. за торговое место плюс 60 р. зарплаты торговца. Бухгалтерская прибыль равна 510 400 - 40 = 70 р. Таким образом, он имеет экономическую прибыль: 510 - 400 - 40 - 80 = -10 р. Тем
не менее первый продавец действовал рационально в условиях риска и неопределенности.
Ответ: б) Бухгалтерская прибыль равна 70 р., экономическая прибыль отрицательна и равна -10 р.
Тем не менее первый продавец действовал рационально.
Скачать