Распознавание позы человека на изображении с помощью скрытых марковских моделей Коротенко Д.Ю., Научный руководитель: Гультяева Т.А., ассистент НГТУ, Новосибирск г. Новосибирск, dkor88@mail.ru Распознавание образов используется во многих областях человеческой деятельности: медицине, военном деле, геологии, и т.д. Одним из методов теории распознавания образов, основанном на параметрическом оценивании распределений и максимизации функции правдоподобия, является построение скрытых марковских моделей (СММ). Распознавание – это отнесение конкретного объекта, представленного значениями его свойств (признаков), к одному из фиксированного перечня образов (классов) по определённому решающему правилу [1]. В данной работе рассматриваются СММ с дискретным пространством наблюдений ( , A, B) . Матрица A – это матрица переходных вероятностей скрытых состояний, – вектор распределения вероятностей начального состояния, B – матрица распределения вероятностей появления символов алфавита в текущем скрытом состоянии модели. Для применения аппарата СММ к распознаванию образов необходимо произвести обучение модели – оценить её параметры по некоторому набору обучающих последовательностей (изображений). Для оценки параметров модели ( , A, B) , при известных последовательностях наблюдений O используется оптимизационный алгоритм Баума-Велша [2], суть которого состоит в максимизации функции правдоподобия arg max L(O | ) . Таким образом, полученная модель является ОМП-оценкой параметров исходной модели. Так как данный алгоритм довольно сильно зависит от начального приближения и может сходиться к локальному максимуму функции правдоподобия, то используется также алгоритм поиска глобального экстремума. , O Nmax | ] того, что последовательности O k , k 1, N max сгенерированы моделью вычисляется с 1 2 Логарифм вероятности ln P[O , O , помощью forward- и backward-вероятностей. Здесь N max – количество последовательностей наблюдений для оценки модели. Так как происходит работа с изображениями, то для обучения СММ необходимо извлечь наблюдения из изображения. Для этого в данной работе выполнены предобработка изображения, выделение контура че- ловека и извлечение наблюдений, путём сканирования полученного контура. Для подавления шумов производилась бинаризация изображения. Алгоритм выделения контура основан на понятии связной области. Далее производился обход выделенного контура, вдоль которого передвигалось сканирующее окно(СО) – прямоугольная геометрическая область точек изображения, в пределах которой вычисляется элементарное наблюдение. В соответствии с выбранным направлением движения можно выделить несколько типов СО, различающихся положением начальной точки (угла прямоугольника), соединяющейся с контуром. В качестве наблюдаемых символов выбраны углы, которые представляют собой сумму угла (между горизонтальным направлением нижней стороны сканирующего окна и контуром человека в пределах сканируемой области) и некоторой добавки, которая зависит от типа СО . Для обучения и распознавания будем использовать СММ, имеющую полносвязную марковскую цепь, с фиксированным начальным состоянием и дискретное пространство наблюдений. Поэтому полученные последовательности углов, изменяющихся в диапазоне от 0 до 360 , дискретизируются на несколько групп. В данной работе для обучения и тестирования системы распознавания использовалось 10 поз, для каждой из которых 5 обучающих, 15 тестовых изображений. Распознавание одного изображения заключается в нахождении такой модели (соответствующей конкретной позе), что вероятность того, что последовательность наблюдаемых символов (углов изображения) сгенерирована этой моделью, является максимальной. Также в работе проведены исследования влияния параметров СММ (количества скрытых состояний, ширины, высоты и перекрытия сканирующего окна, вида обучающих картинок) на процент верно распознанных изображений (тестовых и обучающих), время обработки изображений, распознавания и обучения. В результате исследований наиболее высокий и стабильный процент распознавания тестовых изображений был получен приблизительно 87%, обучающих – 99%. Таким образом, можно сделать вывод, что аппарат скрытых марковских моделей возможно применять для распознавания поз человека. Литература 1. Волошин, Г.Я. Методы распознавания образов [Электронный ресурс] : конспект лекций по курсу "Распознавание образов" / Г.Я. Волошин ; редактор Ильин А.А.. – Режим доступа: http://abc.vvsu.ru/Books/Metody_r/page0001.asp. 2. Баяковский, Ю. М. Анализ информации, содержащейся в изображении [Электронный ресурс]: материалы к лекциям по курсу компьютерной графики ВМиК МГУ/– Режим доступа: http://www.graphicon.ru/oldgr/courses/cg/lectures/2006/. 3. Rabiner, L. R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition / L. R. Rabiner // Proceedings of the IEEE. – IEEE, 1989. – vol. 77, no. 2. – С. 257-285.