Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 / UDC 633.15: 631.527.5 Ы ( 140-170) Ы Ы Э Ы EVALUATION OF ADAPTABILITY OF EARLY-MATURING (FAO 140-170) GRAIN CORN HYBRIDS IN MULTI-ENVIRONMENT TRIAL . ., , Orlyansky N.A., Doctor of Agricultural Sciences, Director . .*, , Orlyanskaya N.A.*, Candidate of Agricultural Sciences, Senior Researcher ё . ., Chebotarev D.S., Junior Researcher " ч ", , Voronezh branch of the All-Russian Scientific Research Institute of Corn, Voronezh region, Russia *E-mail: vf-nauka@yandex.ru ( 10 140-170) - , . 5 (bi), (Ymin-Ymax), ( ). (Ij=+2,14), (Ij=+0,19). . (Ij=+0,42), ч , , , . (Ij=-0,23), (18,24%) ), 140-24 (7,36 / , ) , 170-25 ). (bi=0,98, , (bi=0,86-0,88), : (Si2), (Ij=+0,23) , . : (Ij=-2,29). (15,44%) . : 170-27 (9,47 / , (8,21 / , ), 170-24 (7,53 / , , ( 170-24, 170-25 170-27), (bi=1,26-1,41), ( =1,10-1,14). 1,09) 140-26, 140-27 170-28, 26 8 ((Ymin-Ymax)/2) (Ij=+0,52), (Ij=-0,98) (61,39%), 2021 140-28 170. , The article shows the results of the evaluation of adaptability of early-maturing (FAO 140-170) grain corn hybrids under different environmental conditions. We conducted the research in 2021 in 8 areas of multi-environment trials which belonged to 5 regions of Russia. The adaptability of the corn hybrids was evaluated according to the regression coefficient (bi), the deviation from regression of variety at the environment (Si2), stress tolerance (Ymin-Ymax), genetic flexibility ((Ymin-Ymax)/2) and coefficient of adaptability ( ). Volgograd (irrigation) 119 Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 (Ij=+2.14), Nalchik (Ij=+0.52), Pyatigorsk (Ij=+0.42), Omsk (Ij=+0.23) and Voronezh (Ij= +0.19) had favourable environments. Unfavourable conditions were in Belgorod (Ij=-0.23), Volgograd (rainfed agriculture) (Ij=-0.98) and Chelyabinsk (Ij=-2.29). We found the significant influence of environmental conditions (61.39%), genotype (15.44%) and genotype x environment interaction (18.24%) on corn grain yield. The most yielding hybrids in some areas were Vo 170-27 (9.47 t/ha, Volgograd – irrigation), Vo 170-25 (8.21 t/ha, Nalchik), Vo 170-24 (7.53 t/ha, Pyatigorsk) and Vo 140-24 (7.36 t/ha, Voronezh). We found productive corn hybrids (V 17024, V 170-25 and V 170-27) with regression coefficient values bigger than one (bi=1,261,41) and the highest coefficients of adaptability in favourable environments ( =1,10-1,14) for intensive production. V 140-26, V 140-27 and V 170-28 hybrids had ecological plasticity (bi=0,98-1,09) and high grain yield, which varied according to different environmental conditions, genetic flexibility and adaptability. We recommended these hybrids for a wide range of environments. Hybrids V 140-28 and V 170-26, which were stress-tolerant and had low regression coefficients (bi=0,86-0,88), are better to choose for unfavourable conditions or extensive production systems. Key words: corn, early-maturing hybrids, ecological plasticity, stability, adaptability, grain corn yield. . , , , . , , , , 0,7 10 [1]. . 2021 . . . , 1,1 4 . « 2021 2001-2010 48,9 / , 2,97 . 118,4 . » - , , 2011-2020 , . , – , , , . . , . « , » [3-6]. - 120 . . 32,7 / , [2]. , 2021 . . . - Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 , [7]. , . [8]. , , . , – 170) ( ) 8 « » « « ( . , - . ( . – »( ) – » ( »( »( : « ); , ); ). . ( « « – 10 , 9,8 . . 2, [10]. 3- − , »( – 14%- ( « , ); « ) - 140 . , . . : [13], ( 5 - . [11] W.A. Russell, ) – » , , 140- 2021 , » - ); - 170) – [9]. , . , - . . (Ymin-Ymax) A. Rossielle, J. Hamblin ( )− 121 (Si2) . . [14]. (bi) S.A. Eberhart [12], ((Ymin-Ymax)/2) . . Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 . , . 1 , « . , (F , » . 1). .>F0.05) ( – F- ( ( ( ) ( ) ) (SS) 721,75 1,00 443,11 111,45 131,67 34,52 ) (df) 311 2 7 12 84 206 (mS) . 0.05 63,30 9,29 1,57 0,17 377,91 55,46 9,37 2,05 1,80 1,34 , ( ) – 61,39%, 18,24% ( 15,44%, ( ) . 1). 70% 60% 50% 40% 30% 20% 10% 0% ( 1− (Ij) , , (+0,41), (+0,51), 5,92-7,88 ) . , (+0,22) / . , (-0,98) 122 (+0,19) ( , (-2,29). , (+2,14), . 2). (-0,24), Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 170-25 30,2%. / , – 3,45-5,50 4,54 170-27 (9,47 / , 170-24 (7,53 / , ), 170-25 (6,40 / , ) / . 6,51 / , ), 170-25 (8,21 140-24 (7,36 / , ). ) 170-27 (5,80 / , 2– ). ( ( ) ) , / , 140 , 140-24 140-25 140-26 140-27 140-28 170-24 170-25 170-26 170-27 170-28 - 7,03 4,74 4,95 6,75 6,27 5,09 4,48 6,35 4,83 4,92 5,06 5,07 8,27 5,80 6,55 5,45 8,63 5,58 7,16 5,59 8,80 6,90 7,41 5,54 8,40 6,35 6,47 5,00 7,47 5,70 6,73 5,68 8,23 7,13 7,53 6,00 9,03 8,21 6,64 6,28 7,60 5,94 4,64 7,11 9,47 7,62 6,11 6,14 8,37 7,31 6,26 6,56 7,88 6,25 6,15 5,96 +2,14 +0,51 +0,41 +0,22 , 05: ( ( 5,17 4,64 4,52 7,36 6,54 5,23 6,58 5,34 7,31 6,59 5,62 6,23 5,92 5,93 +0,19 4,90 3,97 2,46 5,00 4,00 4,10 2,90 4,73 4,63 2,77 4,48 4,54 5,37 4,93 3,34 5,88 5,23 5,27 3,76 5,97 5,83 5,13 4,30 6,14 6,23 5,17 3,83 6,00 6,20 4,53 3,68 5,67 6,30 4,83 2,19 6,19 6,40 5,47 3,46 6,51 5,10 4,50 3,66 5,52 5,97 5,80 3,25 6,32 5,37 5,40 3,51 6,09 5,50 4,76 3,45 5,74 -0,24 -0,98 -2,29 - 0,66 0,18 0,23 ) ) 0,26 . (bi), 1,41 ( . 3). - , , . 170-27 (1,31) 170-25 (1,26). 140-28 (0,86) , 170-24 (1,41), 170-26 (0,88) (0,98-1,09), . , . 123 . Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 3– (bi) , 140 , 140-24 140-25 140-26 140-27 140-28 170-24 170-25 170-26 170-27 170-28 1,01 0,77 0,26 1,09 1,05 1,02 0,98 0,86 1,41 1,26 0,88 1,31 1,09 , 140-28 (0,26) (0,18), - 2 (Si ) (Ymin-Ymax) -4,57 -3,45 -2,30 -4,92 -4,88 -4,50 -4,57 -3,79 -6,04 -5,58 -3,94 -6,22 -4,86 0,54 0,47 0,52 0,44 0,42 0,52 0,33 0,26 0,56 0,28 0,60 0,33 0,18 . Si2 170-25 (0,28), (Ymax+Ymin)/2 4,75 4,63 3,92 5,81 6,20 6,55 6,11 5,57 5,21 6,25 5,63 6,36 5,94 170-28 . 170-26 (0,60). 170-24 (0,56) (Ymin-Ymax). . – 170-25 (-5,58), 140-28 (-3,79) 170-26 (-3,94), 170-24 (-6,04) 170-27 (-6,22). (Ymax+Ymin)/2 . 170-27 (6,36) (4,75), , 140-26 (6,55), 170-25 (6,25), 140 (4,63) ( ) – (3,92). . , . 140-26 (1,13), 140-27 (1,11) 170-25 (1,14), . – , 170-25 (1,10). 170-24 (1,13) 124 170-27(1,10), ( . 2). , Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 1,20 1,10 1,00 0,90 0,80 0,70 140 140-24 140-25 140-26 140-27 140-28 170-24 170-25 170-26 170-27 170-28 2– . , ( . . 170-24, 140-170) . , 170-25 , 170-27 , 140-28 140-26, , 1. 2. 3. 4. 5. 6. 7. // 140-27 . . . 170-28, 170-26 . . , . 2015. . 85. № 1. . 12-14. 2021 – // URL: https://www.agrovesti.net/lib/industries/corn.html ( : 23.04.2022). . ., . ., . . // . 2020. . 27. № 3. . 421-426. / . . , . . , . . , . . // . 2022. № 4. . 13-17. DOI: 10.28983/asj.y2022i4pp13-17. / . . , . . , . . , . . // . 2021. № 5. . 35-38. DOI: 10.25802/SB.2021.64.38.006. . ., . ., . . // . 2021. № 1(99). . 46-54. DOI: 10.35330/19916639-2021-1-99-46-54. . ., . . // . 2018. № 4(58). . 47-51. DOI: 10.31367/2079-8725-2018-58-4-47-51. 125 Ве тн к аг а но наук , 5 2022 DOI: 10.17238/issn2587-666X.2022.5.119 8. 9. 10. 11. 12. 13. 14. , . . , . . 31. DOI:10.25685/KRM.2019.2019.28247. . ., . ., // / . , . . // . 2013. № 4. . 7-13. . 1989. 194 . . . . ., // . ., , 1984. 24 . . . . . , . . . 2019. № 4. . 26- . , . . . ., . 2005. № 6. . ., « » // . .: , 1985. 351 . : . . 49-53. . . . 1994. № 2. . 3-6. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Sotchenko V.S. Rol' kukuruzy v povyshenii prodovol'stvennoj bezopasnosti strany // Vestnik Rossijskoj akademii nauk. 2015. T. 85. № 1. S. 12-14. Rynok kukuruzy v 2021 godu – tendencii i prognozy // URL: https://www.agrovesti.net/lib/industries/corn.html (data obrashcheniya: 23.04.2022). Gubin S.V., Loginova A.M., Getc G.V. Ekologicheskaya adaptivnost' novyh gibridov kukuruzy s uchastiem linij omskoj selekcii // APK Rossii. 2020. T. 27. № 3. S. 421-426. Ekologicheskoe izuchenie gibridov kukuruzy v stepnoj zone Nizhnego Povolzh'ya / S.A. Zajcev, D.P. Volkov, L.A. Gudova, V.I. ZHuzhukin // Agrarnyj nauchnyj zhurnal. 2022. № 4. S. 13-17. DOI: 10.28983/asj.y2022i4pp13-17. Izuchenie adaptivnosti materinskih form gibridov kukuruzy / N.A. Orlyanskij, N.A. Orlyanskaya, A.G. Gorbacheva, I.A. Vetoshkin // Saharnaya svekla. 2021. № 5. S. 3538. DOI: 10.25802/SB.2021.64.38.006. Sotchenko E.F., Orlyanskaya N.A., Sotchenko D.YU. Sravnitel'naya ocenka novyh rannespelyh gibridov kukuruzy po urozhajnosti i adaptivnosti // Izvestiya Kabardino-Balkarskogo centra RAN. 2021. № 1(99). S. 46-54. DOI: 10.35330/1991-6639-2021-1-99-46-54. Krivosheev G.YA., Ignat'ev A.S. Ekologicheskoe ispytanie novyh gibridov kukuruzy v usloviyah razlichnoj vlagoobespechennosti // Zernovoe hozyajstvo Rossii. 2018. № 4(58). S. 47-51. DOI: 10.31367/2079-8725-2018-58-4-47-51. Urozhaj i uborochnaya vlazhnost' zerna gibridov kukuruzy v raznyh ekologicheskih usloviyah v zavisimosti ot srokov poseva / V.S Sotchenko, A.G. Gorbacheva, A.E. Panfilov, I.A. Vetoshkina, N.I. Kazakova // Kormoproizvodstvo. 2019. № 4. S. 26-31. DOI:10.25685/KRM.2019.2019.28247. Gul'nyashkin A.V., Anashenkov S.S., Varlamov D.V. Selekciya gibridov kukuruzy adaptirovannyh k zasushlivym usloviyam yuga Rossii // Zernovoe hozyajstvo Rossii. 2013. № 4. S. 7-13. Metodika gosudarstvennogo sortoispytaniya sel'skohozyajstvennyh kul'tur. Moskva. 1989. 194 s. Dospekhov B.A. Metodika polevogo opyta. M.: Agropromizdat, 1985. 351 s. Zykin V.A., Meshkov V.V., Sapega V.A. Parametry ekologicheskoj plastichnosti sel'skohozyajstvennyh rastenij, ih raschet i analiz: metodicheskie rekomendacii. Novosibirsk, 1984. 24 s. Goncharenko, A.A. Ob adaptivnosti i ekologicheskoj ustojchivosti sortov zernovyh kul'tur // Vestnik RASKHN. 2005. № 6. S. 49-53. Zhivotkov L.A., Morozova Z.A., Sekatueva L.I. Metodika vyyavleniya potencial'noj produktivnosti i adaptivnosti sortov i selekcionnyh form ozimoj pshenicy po pokazatelyu «urozhajnost'» // Selekciya i semenovodstvo. 1994. № 2. S. 3-6. 126