Загрузил Николай Лемешев

otsenka-adaptivnosti-rannespelyh-fao-140-170-zernovyh-gibridov-kukuruzy-v-ekologicheskom-ispytanii

реклама
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
/ UDC 633.15: 631.527.5
Ы (
140-170)
Ы
Ы Э
Ы
EVALUATION OF ADAPTABILITY OF EARLY-MATURING (FAO 140-170)
GRAIN CORN HYBRIDS IN MULTI-ENVIRONMENT TRIAL
. .,
,
Orlyansky N.A., Doctor of Agricultural Sciences, Director
. .*,
,
Orlyanskaya N.A.*, Candidate of Agricultural Sciences, Senior Researcher
ё
. .,
Chebotarev D.S., Junior Researcher
"
ч ",
,
Voronezh branch of the All-Russian Scientific Research Institute of Corn,
Voronezh region, Russia
*E-mail: vf-nauka@yandex.ru
(
10
140-170)
-
,
.
5
(bi),
(Ymin-Ymax),
( ).
(Ij=+2,14),
(Ij=+0,19).
.
(Ij=+0,42),
ч
,
,
,
.
(Ij=-0,23),
(18,24%)
),
140-24 (7,36 / ,
)
,
170-25
).
(bi=0,98,
,
(bi=0,86-0,88),
:
(Si2),
(Ij=+0,23)
,
.
:
(Ij=-2,29).
(15,44%)
.
:
170-27 (9,47 / ,
(8,21 / ,
),
170-24 (7,53 / ,
,
(
170-24,
170-25
170-27),
(bi=1,26-1,41),
( =1,10-1,14).
1,09)
140-26,
140-27
170-28,
26
8
((Ymin-Ymax)/2)
(Ij=+0,52),
(Ij=-0,98)
(61,39%),
2021
140-28
170.
,
The article shows the results of the evaluation of adaptability of early-maturing (FAO 140-170)
grain corn hybrids under different environmental conditions. We conducted the research in
2021 in 8 areas of multi-environment trials which belonged to 5 regions of Russia. The
adaptability of the corn hybrids was evaluated according to the regression coefficient (bi), the
deviation from regression of variety at the environment (Si2), stress tolerance (Ymin-Ymax),
genetic flexibility ((Ymin-Ymax)/2) and coefficient of adaptability ( ). Volgograd (irrigation)
119
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
(Ij=+2.14), Nalchik (Ij=+0.52), Pyatigorsk (Ij=+0.42), Omsk (Ij=+0.23) and Voronezh (Ij= +0.19)
had favourable environments. Unfavourable conditions were in Belgorod (Ij=-0.23), Volgograd
(rainfed agriculture) (Ij=-0.98) and Chelyabinsk (Ij=-2.29). We found the significant influence of
environmental conditions (61.39%), genotype (15.44%) and genotype x environment
interaction (18.24%) on corn grain yield. The most yielding hybrids in some areas were Vo
170-27 (9.47 t/ha, Volgograd – irrigation), Vo 170-25 (8.21 t/ha, Nalchik), Vo 170-24 (7.53 t/ha,
Pyatigorsk) and Vo 140-24 (7.36 t/ha, Voronezh). We found productive corn hybrids (V 17024, V 170-25 and V 170-27) with regression coefficient values bigger than one (bi=1,261,41) and the highest coefficients of adaptability in favourable environments ( =1,10-1,14)
for intensive production. V 140-26, V 140-27 and V 170-28 hybrids had ecological plasticity
(bi=0,98-1,09) and high grain yield, which varied according to different environmental
conditions, genetic flexibility and adaptability. We recommended these hybrids for a wide range
of environments. Hybrids V 140-28 and V 170-26, which were stress-tolerant and had low
regression coefficients (bi=0,86-0,88), are better to choose for unfavourable conditions or
extensive production systems.
Key words: corn, early-maturing hybrids, ecological plasticity, stability, adaptability, grain corn yield.
.
,
,
,
.
,
,
,
,
0,7
10
[1].
.
2021
.
.
.
,
1,1
4
.
«
2021
2001-2010
48,9 /
,
2,97
.
118,4
.
»
-
,
,
2011-2020
,
.
,
–
,
,
,
.
.
,
.
«
,
» [3-6].
-
120
.
.
32,7 / ,
[2].
,
2021
.
.
.
-
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
,
[7].
,
.
[8].
,
,
.
,
–
170)
(
)
8
«
»
«
«
(
.
,
-
.
(
.
–
»(
)
–
» (
»(
»(
:
«
);
,
);
).
.
(
«
«
–
10
,
9,8
.
.
2,
[10].
3-
−
,
»(
–
14%-
(
«
,
);
«
)
-
140
.
,
.
.
:
[13],
(
5
-
.
[11]
W.A. Russell,
)
–
»
,
,
140-
2021
,
»
-
);
-
170)
–
[9].
,
.
,
-
. .
(Ymin-Ymax)
A. Rossielle, J. Hamblin
( )−
121
(Si2)
. . [14].
(bi)
S.A. Eberhart
[12],
((Ymin-Ymax)/2)
. .
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
.
,
.
1
,
«
.
,
(F
,
»
. 1).
.>F0.05) (
–
F-
(
(
(
)
(
)
)
(SS)
721,75
1,00
443,11
111,45
131,67
34,52
)
(df)
311
2
7
12
84
206
(mS)
.
0.05
63,30
9,29
1,57
0,17
377,91
55,46
9,37
2,05
1,80
1,34
,
(
) – 61,39%,
18,24% (
15,44%,
(
)
. 1).
70%
60%
50%
40%
30%
20%
10%
0%
(
1−
(Ij)
,
,
(+0,41),
(+0,51),
5,92-7,88
)
.
,
(+0,22)
/ .
,
(-0,98)
122
(+0,19) (
,
(-2,29).
,
(+2,14),
. 2).
(-0,24),
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
170-25
30,2%.
/ ,
–
3,45-5,50
4,54
170-27 (9,47 / ,
170-24 (7,53 / ,
),
170-25 (6,40 / ,
)
/ .
6,51 / ,
),
170-25 (8,21
140-24 (7,36 / ,
).
)
170-27 (5,80 / ,
2–
).
(
(
)
)
, /
,
140
,
140-24
140-25
140-26
140-27
140-28
170-24
170-25
170-26
170-27
170-28
-
7,03 4,74 4,95
6,75
6,27 5,09 4,48
6,35
4,83 4,92 5,06
5,07
8,27 5,80 6,55
5,45
8,63 5,58 7,16
5,59
8,80 6,90 7,41
5,54
8,40 6,35 6,47
5,00
7,47 5,70 6,73
5,68
8,23 7,13 7,53
6,00
9,03 8,21 6,64
6,28
7,60 5,94 4,64
7,11
9,47 7,62 6,11
6,14
8,37 7,31 6,26
6,56
7,88 6,25 6,15
5,96
+2,14 +0,51 +0,41 +0,22
,
05:
(
(
5,17
4,64
4,52
7,36
6,54
5,23
6,58
5,34
7,31
6,59
5,62
6,23
5,92
5,93
+0,19
4,90 3,97 2,46 5,00
4,00 4,10 2,90 4,73
4,63 2,77 4,48 4,54
5,37 4,93 3,34 5,88
5,23 5,27 3,76 5,97
5,83 5,13 4,30 6,14
6,23 5,17 3,83 6,00
6,20 4,53 3,68 5,67
6,30 4,83 2,19 6,19
6,40 5,47 3,46 6,51
5,10 4,50 3,66 5,52
5,97 5,80 3,25 6,32
5,37 5,40 3,51 6,09
5,50 4,76 3,45 5,74
-0,24 -0,98 -2,29 -
0,66
0,18
0,23
)
)
0,26
.
(bi),
1,41 (
. 3).
-
,
,
.
170-27 (1,31)
170-25 (1,26).
140-28 (0,86)
,
170-24 (1,41),
170-26 (0,88)
(0,98-1,09),
.
,
.
123
.
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
3–
(bi)
,
140
,
140-24
140-25
140-26
140-27
140-28
170-24
170-25
170-26
170-27
170-28
1,01
0,77
0,26
1,09
1,05
1,02
0,98
0,86
1,41
1,26
0,88
1,31
1,09
,
140-28 (0,26)
(0,18),
-
2
(Si )
(Ymin-Ymax)
-4,57
-3,45
-2,30
-4,92
-4,88
-4,50
-4,57
-3,79
-6,04
-5,58
-3,94
-6,22
-4,86
0,54
0,47
0,52
0,44
0,42
0,52
0,33
0,26
0,56
0,28
0,60
0,33
0,18
.
Si2
170-25 (0,28),
(Ymax+Ymin)/2
4,75
4,63
3,92
5,81
6,20
6,55
6,11
5,57
5,21
6,25
5,63
6,36
5,94
170-28
.
170-26 (0,60).
170-24 (0,56)
(Ymin-Ymax).
.
–
170-25 (-5,58),
140-28 (-3,79)
170-26 (-3,94),
170-24 (-6,04)
170-27 (-6,22).
(Ymax+Ymin)/2
.
170-27 (6,36)
(4,75),
,
140-26 (6,55),
170-25 (6,25),
140
(4,63)
( )
–
(3,92).
.
,
.
140-26 (1,13),
140-27 (1,11)
170-25 (1,14),
.
–
,
170-25 (1,10).
170-24 (1,13)
124
170-27(1,10),
(
. 2).
,
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
1,20
1,10
1,00
0,90
0,80
0,70
140
140-24 140-25 140-26 140-27 140-28 170-24 170-25 170-26 170-27 170-28
2–
.
,
(
.
.
170-24,
140-170)
.
,
170-25
,
170-27
,
140-28
140-26,
,
1.
2.
3.
4.
5.
6.
7.
//
140-27
.
. .
170-28,
170-26
.
.
,
. 2015. . 85. № 1. . 12-14.
2021
–
// URL:
https://www.agrovesti.net/lib/industries/corn.html (
: 23.04.2022).
. .,
. .,
. .
//
. 2020. . 27. № 3. . 421-426.
/
. .
, . .
, . .
, . .
//
.
2022. № 4. . 13-17. DOI: 10.28983/asj.y2022i4pp13-17.
/ . .
,
. .
, . .
, . .
//
. 2021. № 5. .
35-38. DOI: 10.25802/SB.2021.64.38.006.
. .,
. .,
. .
//
. 2021. № 1(99). . 46-54. DOI: 10.35330/19916639-2021-1-99-46-54.
. .,
. .
//
. 2018.
№ 4(58). . 47-51. DOI: 10.31367/2079-8725-2018-58-4-47-51.
125
Ве тн к аг а но наук , 5
2022
DOI: 10.17238/issn2587-666X.2022.5.119
8.
9.
10.
11.
12.
13.
14.
, . .
, . .
31. DOI:10.25685/KRM.2019.2019.28247.
. .,
. .,
//
/
.
,
. .
//
. 2013. № 4. . 7-13.
. 1989. 194 .
. .
. .,
//
. .,
, 1984. 24 .
. .
. .
, . .
. 2019. № 4. . 26-
.
,
. .
. .,
. 2005. № 6.
. .,
«
» //
.
.:
, 1985. 351 .
:
.
. 49-53.
. .
. 1994. № 2. . 3-6.
REFERENCES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Sotchenko V.S. Rol' kukuruzy v povyshenii prodovol'stvennoj bezopasnosti strany //
Vestnik Rossijskoj akademii nauk. 2015. T. 85. № 1. S. 12-14.
Rynok
kukuruzy v
2021 godu
–
tendencii
i
prognozy //
URL:
https://www.agrovesti.net/lib/industries/corn.html (data obrashcheniya: 23.04.2022).
Gubin S.V., Loginova A.M., Getc G.V. Ekologicheskaya adaptivnost' novyh gibridov
kukuruzy s uchastiem linij omskoj selekcii // APK Rossii. 2020. T. 27. № 3. S. 421-426.
Ekologicheskoe izuchenie gibridov kukuruzy v stepnoj zone Nizhnego Povolzh'ya / S.A.
Zajcev, D.P. Volkov, L.A. Gudova, V.I. ZHuzhukin // Agrarnyj nauchnyj zhurnal. 2022. №
4. S. 13-17. DOI: 10.28983/asj.y2022i4pp13-17.
Izuchenie adaptivnosti materinskih form gibridov kukuruzy / N.A. Orlyanskij, N.A.
Orlyanskaya, A.G. Gorbacheva, I.A. Vetoshkin // Saharnaya svekla. 2021. № 5. S. 3538. DOI: 10.25802/SB.2021.64.38.006.
Sotchenko E.F., Orlyanskaya N.A., Sotchenko D.YU. Sravnitel'naya ocenka novyh rannespelyh
gibridov kukuruzy po urozhajnosti i adaptivnosti // Izvestiya Kabardino-Balkarskogo centra RAN.
2021. № 1(99). S. 46-54. DOI: 10.35330/1991-6639-2021-1-99-46-54.
Krivosheev G.YA., Ignat'ev A.S. Ekologicheskoe ispytanie novyh gibridov kukuruzy v
usloviyah razlichnoj vlagoobespechennosti // Zernovoe hozyajstvo Rossii. 2018. №
4(58). S. 47-51. DOI: 10.31367/2079-8725-2018-58-4-47-51.
Urozhaj i uborochnaya vlazhnost' zerna gibridov kukuruzy v raznyh ekologicheskih
usloviyah v zavisimosti ot srokov poseva / V.S Sotchenko, A.G. Gorbacheva, A.E.
Panfilov, I.A. Vetoshkina, N.I. Kazakova // Kormoproizvodstvo. 2019. № 4. S. 26-31.
DOI:10.25685/KRM.2019.2019.28247.
Gul'nyashkin A.V., Anashenkov S.S., Varlamov D.V. Selekciya gibridov kukuruzy
adaptirovannyh k zasushlivym usloviyam yuga Rossii // Zernovoe hozyajstvo Rossii.
2013. № 4. S. 7-13.
Metodika gosudarstvennogo sortoispytaniya sel'skohozyajstvennyh kul'tur. Moskva.
1989. 194 s.
Dospekhov B.A. Metodika polevogo opyta. M.: Agropromizdat, 1985. 351 s.
Zykin V.A., Meshkov V.V., Sapega V.A. Parametry ekologicheskoj plastichnosti
sel'skohozyajstvennyh rastenij, ih raschet i analiz: metodicheskie rekomendacii.
Novosibirsk, 1984. 24 s.
Goncharenko, A.A. Ob adaptivnosti i ekologicheskoj ustojchivosti sortov zernovyh kul'tur
// Vestnik RASKHN. 2005. № 6. S. 49-53.
Zhivotkov L.A., Morozova Z.A., Sekatueva L.I. Metodika vyyavleniya potencial'noj
produktivnosti i adaptivnosti sortov i selekcionnyh form ozimoj pshenicy po pokazatelyu
«urozhajnost'» // Selekciya i semenovodstvo. 1994. № 2. S. 3-6.
126
Скачать