Загрузил gorlov_as

Aidan O Dwyer Handbook of PI and PID Controller Tuning Rules

реклама
HANDBOOK OF
PI AND PID CONTROLLER
TUNING RULES
3rd Edition
P575.TP.indd 1
3/20/09 5:16:12 PM
This page intentionally left blank
HANDBOOK OF
PI AND PID CONTROLLER
TUNING RULES
3rd Edition
Aidan O’Dwyer
Dublin Institute of Technology, Ireland
ICP
P575.TP.indd 2
Imperial College Press
3/20/09 5:16:18 PM
Published by
Imperial College Press
57 Shelton Street
Covent Garden
London WC2H 9HE
Distributed by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
HANDBOOK OF PI AND PID CONTROLLER TUNING RULES
(3rd Edition)
Copyright © 2009 by Imperial College Press
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording or any information storage and retrieval system now known or to
be invented, without written permission from the Publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from
the publisher.
ISBN-13 978-1-84816-242-6
ISBN-10 1-84816-242-1
Typeset by Stallion Press
Email: enquiries@stallionpress.com
Printed in Singapore.
Steven - Hdbook of PI & PID (3rd).pmd
1
9/2/2009, 7:13 PM
b720_FM
17-Mar-2009
FA
Dedication
Once more, this book is dedicated with love to Angela, Catherine and Fiona and
to my parents, Sean and Lillian.
b720_FM
17-Mar-2009
This page intentionally left blank
FA
b720_FM
17-Mar-2009
FA
Preface
Proportional integral (PI) and proportional integral derivative (PID) controllers
have been at the heart of control engineering practice for over seven decades.
However, in spite of this, the PID controller has not received much attention from
the academic research community until the past two decades, when work by K.J.
Åström, T. Hägglund and F.G. Shinskey, among others, sparked a revival of
interest in the use of this ‘workhorse’ of controller implementation.
There is strong evidence that PI and PID controllers remain poorly understood
and, in particular, poorly tuned in many applications. It is clear that the many
controller tuning rules proposed in the literature are not having an impact on
industrial practice. One reason is that the tuning rules are not accessible, being
scattered throughout the control literature; in addition, the notation used is not
unified. The purpose of this book, now in its third edition, is to bring together and
summarise, using a unified notation, tuning rules for PI and PID controllers. The
author restricts the work to tuning rules that may be applied to the control of
processes with time delays (dead times); in practice, this is not a significant
restriction, as most process models have a time delay term. In this edition, the
structure of the book has been modified from the previous edition, with controller
tuning rules for non-self-regulating process models being summarised in a
different chapter from those for self-regulating process models.
It is the author’s belief that this book will be useful to control and instrument
engineering practitioners and will be a useful reference for students and
educators in universities and technical colleges.
I wish to thank the School of Electrical Engineering Systems, Dublin Institute
of Technology, for providing the facilities needed to complete the book. Finally,
I am deeply grateful to my mother, Lillian, and my father, Sean, for their
inspiration and support over many years and to my family, Angela, Catherine and
Fiona, for their love and understanding.
Aidan O’Dwyer
vii
b720_FM
17-Mar-2009
This page intentionally left blank
FA
b720_FM
17-Mar-2009
FA
Contents
Preface
........................................................................................................
vii
1. Introduction ........................................................................................................
1.1 Preliminary Remarks ......................................................................................
1.2 Structure of the Book......................................................................................
1
1
2
2. Controller Architecture...........................................................................................
2.1 Introduction ..................................................................................................
2.2 Comments on the PID Controller Structures . ................................................
2.3 Process Modelling ..........................................................................................
2.3.1 Self-regulating process models . ........................................................
2.3.2 Non-self-regulating process models...................................................
2.4 Organisation of the Tuning Rules ...................................................................
4
4
11
12
12
14
16
3. Controller Tuning Rules for Self-Regulating Process Models ...............................
3.1 Delay Model .................................................................................................
3.1.1 Ideal PI controller – Table 2 ..............................................................
3.1.2 Ideal PID controller – Table 3 ..........................................................
3.1.3 Ideal controller in series with a first order lag – Table 4 ................
3.1.4 Classical controller – Table 5 ...........................................................
3.1.5 Generalised classical controller – Table 6 ........................................
3.1.6 Two degree of freedom controller 1 – Table 7 ..................................
3.2 Delay Model with a Zero ...............................................................................
3.2.1 Ideal PI controller – Table 8 . ............................................................
3.3 FOLPD Model ...............................................................................................
3.3.1 Ideal PI controller – Table 9 ..............................................................
3.3.2 Ideal PID controller – Table 10 ........................................................
3.3.3 Ideal controller in series with a first order lag – Table 11 ................
3.3.4 Controller with filtered derivative – Table 12....................................
3.3.5 Classical controller – Table 13 ........................................................
3.3.6 Generalised classical controller – Table 14 . .....................................
3.3.7 Two degree of freedom controller 1 – Table 15 .............................
3.3.8 Two degree of freedom controller 2 – Table 16 .............................
3.3.9 Two degree of freedom controller 3 – Table 17 .............................
18
18
18
23
24
25
26
27
28
28
30
30
78
118
122
134
149
152
168
170
ix
b720_FM
x
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
3.4 FOLPD Model with a Zero ............................................................................
3.4.1 Ideal PI controller – Table 18 ............................................................
3.4.2 Ideal controller in series with a first order lag – Table 19 ................
3.5 SOSPD Model ..............................................................................................
3.5.1 Ideal PI controller – Table 20 ..........................................................
3.5.2 Ideal PID controller – Table 21 ........................................................
3.5.3 Ideal controller in series with a first order lag – Table 22 ................
3.5.4 Controller with filtered derivative – Table 23....................................
3.5.5 Classical controller – Table 24 ........................................................
3.5.6 Generalised classical controller – Table 25 . .....................................
3.5.7 Two degree of freedom controller 1 – Table 26 .............................
3.5.8 Two degree of freedom controller 3 – Table 27 .............................
3.6 SOSPD Model with a Zero ............................................................................
3.6.1 Ideal PI controller – Table 28 .........................................................
3.6.2 Ideal PID controller – Table 29 ........................................................
3.6.3 Ideal controller in series with a first order lag – Table 30 ...............
3.6.4 Controller with filtered derivative – Table 31....................................
3.6.5 Classical controller – Table 32 .........................................................
3.6.6 Generalised classical controller – Table 33 .......................................
3.6.7 Two degree of freedom controller 1 – Table 34 ..............................
3.6.8 Two degree of freedom controller 3 – Table 35 ..............................
3.7 TOSPD Model ..............................................................................................
3.7.1 Ideal PI controller – Table 36 . ..........................................................
3.7.2 Ideal PID controller – Table 37 .........................................................
3.7.3 Ideal controller in series with a first order lag – Table 38 ................
3.7.4 Controller with filtered derivative – Table 39 ....................................
3.7.5 Two degree of freedom controller 1 – Table 40 .................................
3.7.6 Two degree of freedom controller 3 – Table 41 . ...............................
3.8 Fifth Order System Plus Delay Model ...........................................................
3.8.1 Ideal PID controller – Table 42 .........................................................
3.8.2 Controller with filtered derivative – Table 43 ....................................
3.8.3 Two degree of freedom controller 1 – Table 44 . ...............................
3.9 General Model . ..............................................................................................
3.9.1 Ideal PI controller – Table 45 ...........................................................
3.9.2 Ideal PID controller – Table 46 .........................................................
3.9.3 Ideal controller in series with a first order lag – Table 47 ................
3.9.4 Controller with filtered derivative – Table 48 ..................................
3.9.5 Two degree of freedom controller 1 – Table 49 . ..............................
3.10 Non-Model Specific ......................................................................................
3.10.1 Ideal PI controller – Table 50 ............................................................
3.10.2 Ideal PID controller – Table 51 .........................................................
3.10.3 Ideal controller in series with a first order lag– Table 52 . ................
3.10.4 Controller with filtered derivative – Table 53 ...................................
3.10.5 Classical controller – Table 54 .........................................................
3.10.6 Generalised classical controller – Table 55 ......................................
180
180
182
183
183
206
232
236
238
251
253
264
277
277
279
282
284
286
288
289
292
293
293
296
297
298
299
302
303
303
305
308
310
310
312
315
316
317
318
318
324
332
336
341
343
b720_FM
17-Mar-2009
FA
Contents
xi
3.10.7 Two degree of freedom controller 1 – Table 56 . .............................. 346
3.10.8 Two degree of freedom controller 3 – Table 57 . .............................. 349
4. Controller Tuning Rules for Non-Self-Regulating Process Models .......................
4.1 IPD Model .....................................................................................................
4.1.1 Ideal PI controller – Table 58 . ..........................................................
4.1.2 Ideal PID controller – Table 59 ......................................................
4.1.3 Ideal controller in series with a first order lag – Table 60 ................
4.1.4 Controller with filtered derivative – Table 61 ..................................
4.1.5 Classical controller – Table 62 .........................................................
4.1.6 Generalised classical controller – Table 63 .....................................
4.1.7 Two degree of freedom controller 1 – Table 64 . ..............................
4.1.8 Two degree of freedom controller 2 – Table 65 . ..............................
4.1.9 Two degree of freedom controller 3 – Table 66 . ..............................
4.2 IPD Model with a Zero .................................................................................
4.2.1 Ideal PI controller – Table 67 . ..........................................................
4.3 FOLIPD Model ..............................................................................................
4.3.1 Ideal PI controller – Table 68 .........................................................
4.3.2 Ideal PID controller – Table 69 ........................................................
4.3.3 Ideal controller in series with a first order lag – Table 70 ................
4.3.4 Controller with filtered derivative – Table 71 ...................................
4.3.5 Classical controller – Table 72 .........................................................
4.3.6 Generalised classical controller – Table 73 ......................................
4.3.7 Two degree of freedom controller 1 – Table 74 ..............................
4.3.8 Two degree of freedom controller 2 – Table 75 ..............................
4.3.9 Two degree of freedom controller 3 – Table 76 ..............................
4.4 FOLIPD Model with a Zero ........................................................................
4.4.1 Ideal PID controller – Table 77 . .......................................................
4.4.2 Ideal controller in series with a first order lag – Table 78 ...............
4.4.3 Classical controller – Table 79 .........................................................
4.5 I 2 PD Model.....................................................................................................
4.5.1 Ideal PID controller – Table 80 . .......................................................
4.5.2 Classical controller – Table 81 ........................................................
4.5.3 Two degree of freedom controller 1 – Table 82 ..............................
4.5.4 Two degree of freedom controller 2 – Table 83 ................................
4.5.5 Two degree of freedom controller 3 – Table 84 ..............................
4.6 SOSIPD Model .............................................................................................
4.6.1 Ideal PI controller – Table 85 . ..........................................................
4.6.2 Two degree of freedom controller 1 – Table 86 . ..............................
4.7 SOSIPD Model with a Zero............................................................................
4.7.1 Classical controller – Table 87 .........................................................
4.8 TOSIPD Model...............................................................................................
4.8.1 Two degree of freedom controller 1 – Table 88 ..............................
350
350
350
359
364
366
368
371
372
378
381
383
383
385
385
388
392
394
395
397
399
416
418
420
420
422
423
424
424
425
426
427
429
430
430
431
436
436
437
437
b720_FM
xii
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
4.9 General Model with Integrator .......................................................................
4.9.1 Ideal PI controller – Table 89 . ..........................................................
4.9.2 Two degree of freedom controller 1 – Table 90 ................................
4.10 Unstable FOLPD Model ................................................................................
4.10.1 Ideal PI controller – Table 91 ............................................................
4.10.2 Ideal PID controller – Table 92 ........................................................
4.10.3 Ideal controller in series with a first order lag – Table 93 ...............
4.10.4 Classical controller – Table 94 .......................................................
4.10.5 Generalised classical controller – Table 95 .......................................
4.10.6 Two degree of freedom controller 1 – Table 96 ................................
4.10.7 Two degree of freedom controller 2 – Table 97 ..............................
4.10.8 Two degree of freedom controller 3 – Table 98 ..............................
4.11 Unstable FOLPD Model with a Zero ...........................................................
4.11.1 Ideal PI controller – Table 99 ............................................................
4.11.2 Ideal controller in series with a first order lag – Table 100 .............
4.11.3 Generalised classical controller – Table 101 ....................................
4.11.4 Two degree of freedom controller 1 – Table 102 ............................
4.12 Unstable SOSPD Model (one unstable pole) ................................................
4.12.1 Ideal PI controller – Table 103 ........................................................
4.12.2 Ideal PID controller – Table 104 . .....................................................
4.12.3 Ideal controller in series with a first order lag – Table 105 ..............
4.12.4 Classical controller – Table 106 ........................................................
4.12.5 Two degree of freedom controller 1 – Table 107 ..............................
4.12.6 Two degree of freedom controller 3 – Table 108 ..............................
4.13 Unstable SOSPD Model (two unstable poles) ...............................................
4.13.1 Ideal PID controller – Table 109 ......................................................
4.13.2 Generalised classical controller – Table 110 . ...................................
4.13.3 Two degree of freedom controller 2 – Table 111 ..............................
4.14 Unstable SOSPD Model with a Zero ..............................................................
4.14.1 Ideal PI controller – Table 112 . ........................................................
4.14.2 Ideal controller in series with a first order lag – Table 113 ..............
4.14.3 Generalised classical controller – Table 114 ...................................
4.14.4 Two degree of freedom controller 1 – Table 115 ..............................
4.14.5 Two degree of freedom controller 3 – Table 116 ..............................
438
438
439
440
440
447
455
458
462
463
473
475
480
480
481
483
484
486
486
488
490
491
497
503
506
506
508
509
511
511
513
516
518
520
5. Performance and Robustness Issues in the Compensation of FOLPD
Processes with PI and PID Controllers ...................................................................
5.1 Introduction ...................................................................................................
5.2 The Analytical Determination of Gain and Phase Margin .............................
5.2.1 PI tuning formulae ...............................................................................
5.2.2 PID tuning formulae ...........................................................................
5.3 The Analytical Determination of Maximum Sensitivity ................................
5.4 Simulation Results ..........................................................................................
521
521
522
522
525
529
529
b720_FM
17-Mar-2009
FA
Contents
5.5 Design of Tuning Rules to Achieve Constant Gain and Phase Margins,
for All Values of Delay...................................................................................
5.5.1 PI controller design..............................................................................
5.5.1.1 Processes modelled in FOLPD form......................................
5.5.1.2 Processes modelled in IPD form ...........................................
5.5.2 PID controller design ..........................................................................
5.5.2.1 Processes modelled in FOLPD form – classical controller....
5.5.2.2 Processes modelled in SOSPD form – series controller.........
5.5.2.3 Processes modelled in SOSPD form with a negative
zero – classical controller ......................................................
5.5.3 PD controller design . ..........................................................................
5.6 Conclusions . ..................................................................................................
xiii
534
534
534
536
539
539
541
542
542
543
Appendix 1 Glossary of Symbols and Abbreviations................................................. 544
Appendix 2 Some Further Details on Process Modelling........................................... 551
Bibliography
........................................................................................................ 565
Index
........................................................................................................ 599
This page intentionally left blank
b720_Chapter-01
17-Mar-2009
FA
Chapter 1
Introduction
1.1 Preliminary Remarks
The ability of proportional integral (PI) and proportional integral derivative (PID)
controllers to compensate most practical industrial processes has led to their wide
acceptance in industrial applications. Koivo and Tanttu (1991), for example,
suggest that there are perhaps 5–10% of control loops that cannot be controlled
by single input, single output (SISO) PI or PID controllers; in particular, these
controllers perform well for processes with benign dynamics and modest
performance requirements (Hwang, 1993; Åström and Hägglund, 1995). It has
been stated that 98% of control loops in the pulp and paper industries are
controlled by SISO PI controllers (Bialkowski, 1996) and that in process control
applications, more than 95% of the controllers are of PID type (Åström and
Hägglund, 1995). PI or PID controller implementation has been recommended
for the control of processes of low to medium order, with small time delays,
when parameter setting must be done using tuning rules and when controller
synthesis is performed either once or more often (Isermann, 1989).
However, despite decades of development work, surveys indicating the state
of the art of control in industrial practice report sobering results. For example,
Ender (1993) states that in his testing of thousands of control loops in hundreds
of plants, it has been found that more than 30% of installed controllers are
operating in manual mode and 65% of loops operating in automatic mode
produce less variance in manual than in automatic (i.e. the automatic controllers
are poorly tuned). The situation does not appear to have improved more recently,
as Van Overschee and De Moor (2000) report that 80% of PID controllers are
badly tuned; 30% of PID controllers operate in manual with another 30% of the
controlled loops increasing the short term variability of the process to be
controlled (typically due to too strong integral action). The authors state that 25%
1
b720_Chapter-01
2
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
of all PID controller loops use default factory settings, implying that they have
not been tuned at all.
These and other surveys (well summarised by Yu, 1999, pp. 1–2) show that
the determination of PI and PID controller tuning parameters is a vexing problem
in many applications. The most direct way to set up controller parameters is the
use of tuning rules; obviously, the wealth of information on this topic available in
the literature has been poorly communicated to the industrial community. One
reason is that this information is scattered in a variety of media, including journal
papers, conference papers, websites and books for a period of over seventy years.
The purpose of this book is to bring together, in summary form, the tuning
rules for PI and PID controllers that have been developed to compensate SISO
processes with time delay.
1.2 Structure of the Book
Tuning rules are set out in the book in tabular form. This form allows the rules to
be represented compactly. The tables have four or five columns, according to
whether the controller considered is of PI or PID form, respectively. The first
column in all cases details the author of the rule and other pertinent information.
The final column in all cases is labelled ‘Comment’; this facilitates the inclusion
of information about the tuning rule that may be useful in its application. The
remaining columns detail the formulae for the controller parameters.
Chapter 2 explores the range of PI and PID controller structures proposed in
the literature. It is often forgotten that different manufacturers implement
different versions of the PID controller algorithm (in particular); therefore,
controller tuning rules that work well in one PID architecture may work poorly in
another. This chapter also details the process models used to define the controller
tuning rules.
Chapters 3 and 4 detail, in tabular form, PI and PID controller tuning rules
(and their variations), as applied to a wide variety of self-regulating process
models and non-self-regulating process models, respectively. One-hundred-andsixteen such tables are provided altogether. To allow the reader to access data
readily, the author has arranged that each table starts on its own page; each table
is preceded by the controller used, together with a block diagram showing the
unity feedback closed loop arrangement of the controller and process model.
In Chapter 5, analytical calculations of the gain and phase margins of a large
sample of PI and PID controller tuning rules are determined, when the process
is modelled in first order lag plus time delay (FOLPD) form, at a range of ratios
b720_Chapter-01
17-Mar-2009
Chapter 1: Introduction
FA
3
of time delay to time constant of the process model. Results are given in
graphical form.
An important feature of the book is the unified notation used for the tuning
rules; a glossary of the symbols used is provided in Appendix 1. Appendix 2
outlines the range of methods used to determine process model parameters; this
information is presented in summary form, as this topic could provide data for a
book in itself. However, sufficient information, together with references, is
provided for the interested reader.
Finally, a comprehensive reference list is provided. In particular, the author
would like to recommend the contributions by McMillan (1994), Åström and
Hägglund (1995), (2006), Shinskey (1994), (1996), Tan et al. (1999a), Yu
(1999), Lelic and Gajic (2000) and Ang et al. (2005) to the interested reader,
which treat comprehensively the wider perspective of PID controller design and
application.
b720_Chapter-02
17-Mar-2009
FA
Chapter 2
Controller Architecture
2.1 Introduction
The ideal continuous time domain PID controller for a SISO process is expressed
in the Laplace domain as follows:
U (s ) = G c (s ) E (s )
(2.1)
with
G c (s) = K c (1 +
1
+ Td s)
Ti s
(2.2)
and with K c = proportional gain, Ti = integral time constant and Td =
derivative time constant. If Ti = ∞ and Td = 0 (i.e. P control), then it is clear
that the closed loop measured value y will always be less than the desired value r
(for processes without an integrator term, as a positive error is necessary to keep
the measured value constant, and less than the desired value). The introduction of
integral action facilitates the achievement of equality between the measured
value and the desired value, as a constant error produces an increasing controller
output. The introduction of derivative action means that changes in the desired
value may be anticipated, and thus an appropriate correction may be added prior
to the actual change. Thus, in simplified terms, the PID controller allows
contributions from present controller inputs, past controller inputs and future
controller inputs.
Many variations of the PID controller structure have been proposed (indeed,
the PI controller structure is itself a subset of the PID controller structure). As
Tan et al. (1999a) suggest, one important reason for the non-standard structures
is due to the transition of the controllers from pneumatic implementation through
electronic implementation to the present microprocessor implementation. A
substantial number of the variations in the controller structures used may be
4
b720_Chapter-02
17-Mar-2009
Chapter 2: Controller Architecture
FA
5
summarised by controller structure ‘supersets’. In this book, nine such supersets
are specified, which allows a sensible restriction on the number of tables that
need to be detailed. The controller structures specified are detailed below.
1. The ideal PI controller structure:

1 

G c (s) = K c 1 +
 Ti s 
(2.3)
2. The ideal PID controller structure:


1
G c (s) = K c 1 +
+ Td s 
 Ti s

(2.4)
This controller structure has also been labelled the ‘non-interacting’ controller
(McMillan, 1994), the ‘ISA’ algorithm (Gerry and Hansen, 1987) or the
‘parallel non-interacting’ controller (Visioli, 2001). A variation of the
controller is labelled the ‘parallel’ controller structure (McMillan, 1994).
G c (s ) = K c +
1
+ Td s
Ti s
(2.5)
This variation has also been labelled the ‘ideal parallel’, ‘non-interacting’,
‘independent’ or ‘gain independent’ algorithm.
The ideal PID controller structure is used in the following products:
(a) Allen Bradley PLC5 product (McMillan, 1994)
(b) Bailey FC19 PID algorithm (EZYtune, 2003)
(c) Fanuc Series 90–30 and 90–70 Independent Form PID algorithm
(EZYtune, 2003)
(d) Intellution FIX products (McMillan, 1994)
(e) Honeywell TDC3000 Process Manager Type A, non-interactive mode
product (ISMC, 1999)
(f) Leeds and Northrup Electromax 5 product (Åström and Hägglund,
1988)
(g) Yokogawa Field Control Station (FCS) PID algorithm (EZYtune,
2003).
b720_Chapter-02
6
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
3. Ideal controller in series with a first order lag:

 1
1
+ Td s 
G c (s) = K c 1 +
 Ti s
 Tf s + 1
(2.6)
4. Controller with filtered derivative:



Td s 
1

G c (s ) = K c  1 +
+
 Ti s 1 + s Td 


N 

(2.7)
This structure is used in the following products:
(a) Bailey Net 90 PID error input product with N = 10 (McMillan, 1994) and
FC156 Independent Form PID algorithm (EZYtune, 2003)
(b) Concept PIDP1 and PID1 PID algorithms (EZYtune, 2003)
(c) Fischer and Porter DCU 3200 CON PID algorithm with N = 8 (EZYtune,
2003)
(d) Foxboro EXACT I/A series PIDA product (in which it is an option
labelled ideal PID) (Foxboro, 1994)
(e) Hartmann and Braun Freelance 2000 PID algorithm (EZYtune, 2003)
(f) Modicon 984 product with 2 ≤ N ≤ 30 (McMillan, 1994; EZYtune,
2003)
(g) Siemens Teleperm/PSC7 ContC/PCS7 CTRL PID products with N = 10
(ISMC, 1999) and the S7 FB41 CONT_C PID product (EZYtune, 2003).
5. Classical controller: This controller is also labelled the ‘cascade’ controller
(Witt and Waggoner, 1990), the ‘interacting’ or ‘series’ controller (Poulin and
Pomerleau, 1996), the ‘interactive’ controller (Tsang and Rad, 1995), the
‘rate-before-reset’ controller (Smith and Corripio, 1997), the ‘analog’
controller (St. Clair, 2000) or the ‘commercial’ controller (Luyben, 2001).

1  1 + sTd

G c (s) = K c 1 +
 Ti s  1 + s Td
N
(2.8)
b720_Chapter-02
17-Mar-2009
FA
Chapter 2: Controller Architecture
7
The structure is used in the following products:
(a) Honeywell TDC Basic/Extended/Multifunction Types A and B products
with N = 8 (McMillan, 1994)
(b) Toshiba TOSDIC 200 product with 3.33 ≤ N ≤ 10 (McMillan, 1994)
(c) Foxboro EXACT Model 761 product with N = 10 (McMillan, 1994)
(d) Honeywell UDC6000 product with N = 8 (Åström and Hägglund, 1995)
(e) Honeywell TDC3000 Process Manager product – Type A, interactive
mode with N = 10 (ISMC, 1999)
(f) Honeywell TDC3000 Universal, Multifunction and Advanced
Multifunction products with N = 8 (ISMC, 1999)
(g) Foxboro EXACT I/A Series PIDA product (in which it is an option
labelled series PID) (Foxboro, 1994).
A subset of the classical PID controller is the so-called ‘series’ controller
structure, also labelled the ‘interacting’ controller or the ‘analog algorithm’
(McMillan, 1994) or the ‘dependent’ controller (EZYtune, 2003).

1 
(1 + sTd )
G c (s) = K c 1 +
 Ti s 
(2.9)
The structure is used in the following products:
(a) Turnbull TCS6000 series product (McMillan, 1994)
(b) Alfa-Laval Automation ECA400 product (Åström and Hägglund, 1995)
(c) Foxboro EXACT 760/761 product (Åström and Hägglund, 1995).
A further related structure is one labelled the ‘interacting’ controller (Fertik,
1975).



Td s 
1 

 1 +
G c (s) = K c 1 +
 Ti s  1 + s Td 
N 

The structure is used in the following products:
(a) Bailey FC156 Classical Form PID product (EZYtune, 2003)
(b) Fischer and Porter DCI 4000 PID algorithm (EZYtune, 2003).
(2.10)
b720_Chapter-02
8
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
6. Generalised classical controller:




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

(2.11)
7. Two degree of freedom controller 1:







[1 − β]Td s R (s) − K 1 + 1 + Td s Y(s) (2.12)
1
+
U (s) = K c  [1 − α] +
c
Td 
T 


Ti s
Ti s
1
1+ d s 
+
s



N 
N 


This controller is also labelled the ‘m-PID’ controller (Huang et al., 2000), the
‘ISA-PID’ controller (Leva and Colombo, 2001) and the ‘P-I-PD (only P is
DOF) incomplete 2DOF algorithm’ (Mizutani and Hiroi, 1991).
This structure is used in the following products:
(a) Bailey Net 90 PID PV and SP product (McMillan, 1994)
(b) Yokogawa SLPC products with α = −1 , β = −1 , N = 10 (McMillan,
1994)
(c) Omron E5CK digital controller with β = 1 and N = 3 (ISMC, 1999).
Notable subsets of this controller structure are:





Td s 
1 
1
R (s) − K c 1 +
• U (s) = K c 1 +
Y(s)
+
Td 

Ti s 
Ti s

1+
s

N 

(2.13)
which is used in the following products:
(a) Allen Bradley SLC5/02, SLC5/03, SLC5/04, PLC5 and Logix5550
products (EZYtune, 2003)
(b) Modcomp product with N = 10 (McMillan, 1994).
b720_Chapter-02
17-Mar-2009
FA
Chapter 2: Controller Architecture
9



1 
1
R (s) − K c 1 +
• U (s) = K c 1 +
+ Td s Y (s)
Ti s 
Ti s



(2.14)
Also labelled the ‘PI+D’ controller structure (Chen, 1996) or the
dependent, ideal, non-interacting controller structure (Cooper, 2006a), it
is used in the following products:
(a) ABB 53SL6000 product (ABB, 2001)
(b) Genesis product (McMillan, 1994)
(c) Honeywell TDC3000 Process Manager Type B, non-interactive
mode product (ISMC, 1999)
(d) Square D PIDR PID product (EZYtune, 2003).
 1 


1
R (s) − K c 1 +
• U (s) = K c 
+ Td s Y(s)
Ti s
 Ti s 


(2.15)
which is used in the following products:
(a) Toshiba AdTune TOSDIC 211D8 product (Shigemasa et al., 1987)
(b) Honeywell TDC3000 Process Manager Type C non-interactive
mode product (ISMC, 1999).
8. Two degree of freedom controller 2:




T
s
1
d
 1 + b f 1s (F(s)R (s) − Y(s) ) − K Y(s) ,
+
U(s) = K c 1 +
0

T  1 + a f 1s
Ti s
1+ d s

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
(2.16)
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5 s 4
b720_Chapter-02
10
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
9. Two degree of freedom controller 3:
U (s) = F1 (s)R (s) − F2 (s)Y(s) ,




(
)
1
−
β
T
s
1 + b f 1s
[1 − χ] + δ +
d 
,
F1 (s) = K c  [1 − α ] +

Td  1 + a f 1s + a f 2 s 2
Ti s 1 + Ti s
1+
s 

N 





1+ b f 2s
[
1 − φ] [1 − ϕ]Td s 

[
]
+
F2 (s) = K c 1 − ε +


T
Ti s
1 + a f 3s + a f 4 s 2
1+ d s 

N 

K (b + b f 4 s )
− 0 f3
(2.17)
1 + a f 5s
Notable subsets of this controller structure are:




Td s
1 
 R (s) − 1 +
• U (s) = K c 1 +
Y(s) 


Ti s 

 1 + (Td N )s 

(2.18)
Also labelled the ‘reset-feedback’ controller structure (Huang et al., 1996),
it is used in the following products:
(a) Bailey Fisher and Porter 53SL6000 and 53MC5000 products (ISMC,
1999)
(b) Moore Model 352 Single-Loop Controller product (Wade, 1994).


1 + Td s
1 
 R (s) −
• U(s) = K c 1 +
Y(s) 
1 + (Td N )s
Ti s 


(2.19)
Also labelled the ‘industrial controller’ structure (Kaya and Scheib,
1988), it is used in the following products:
(a) Fisher-Rosemount Provox product with N = 8 (ISMC, 1999;
McMillan, 1994)
(b) Foxboro Model 761 product with N = 10 (McMillan, 1994)
(c) Fischer-Porter Micro DCI product (McMillan, 1994)
b720_Chapter-02
17-Mar-2009
Chapter 2: Controller Architecture
FA
11
(d) Moore Products Type 352 controller with 1 ≤ N ≤ 30 (McMillan,
1994)
(e) SATT Instruments EAC400 product with N = 8.33 (McMillan, 1994)
(f) Taylor Mod 30 ESPO product with N = 16.7 (McMillan, 1994)
(g) Honeywell TDC3000 Process Manager Type B, interactive mode
product with N = 10 (ISMC, 1999).



Kc
1  1 + sTd 

R (s) − K c 1 +
Y (s)
• U (s) =
Tis
 Tis  1 + sTd 
N 

(2.20)
which is used in the following products:
(a) Honeywell TDC3000 Process Manager Type C, interactive mode
product with N = 10 (ISMC, 1999)
(b) Honeywell TDC3000 Universal, Multifunction and Advanced
Multifunction products with N = 8 (ISMC, 1999).
2.2 Comments on the PID Controller Structures
In some cases, one controller structure may be transformed into another; clearly,
the ideal and parallel controller structures (Equations 2.4 and 2.5) are very
closely related. It is shown by McMillan (1994), among others, that the
parameters of the ideal PID controller may be worked out from the parameters of
the series PID controller, and vice versa. The ideal PID controller is given in
Equation (2.22) and the series PID controller is given in equation (2.23).


1
G cp (s) = K cp 1 +
+ Tdp s 
 Tip s



(2.22)

1 
(1 + sTds )
G cs (s) = K cs 1 +
 Tis s 
(2.23)
Then, it may be shown that
 T 
 Tis 
Tds .
K cp = 1 + ds  K cs , Tip = (Tis + Tds ) , Tdp = 
Tis 

 Tis + Tds 
b720_Chapter-02
12
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Similarly, it may be shown that, provided Tip > 4Tdp ,


Tdp 
T 
 , T = 0.5T 1 + 1 − 4 dp  ,
K cs = 0.5K cp 1 + 1 − 4
is
ip


Tip 
Tip 





Tdp 
.
Tds = 0.5Tdp 1 − 1 − 4

Tip 


Åström and Hägglund (1996) point out that the ideal controller admits complex
zeroes and is thus a more flexible controller structure than the series controller,
which has real zeroes; however, in the frequency domain, the series controller
has the interesting interpretation that the zeroes of the closed loop transfer
function are the inverse values of Tis and Tds . O’Dwyer (2001b) developed a
comprehensive set of tuning rules for the series PID controller, based on the ideal
PID controller; as these are not strictly original tuning rules, only representative
examples are included in the relevant tables.
In a similar manner, it is straightforward to show that controller structures
(2.6), (2.7) and (2.8) are subsets of a more general controller structure, and
controller parameters may be transformed readily from one structure to another.
2.3 Process Modelling
Processes with time delay may be modelled in a variety of ways. The modelling
strategy used will influence the value of the model parameters, which will in turn
affect the controller values determined from the tuning rules. The modelling
strategy used in association with each tuning rule, as described in the original
papers, is indicated in the tables (see Chapters 3 and 4). These modelling
strategies are outlined in Appendix 2. Process models may be classified as selfregulating or non-self-regulating, and the models that fall into these categories
are now detailed.
2.3.1 Self-regulating process models
1.
2.
Delay model: G m (s) = K m e −sτm
Delay model with a zero:
G m (s) = K m (1 + Tm 3 s)e − sτ m or G m (s) = K m (1 − Tm 4 s)e − sτ m
b720_Chapter-02
17-Mar-2009
FA
Chapter 2: Controller Architecture
13
3.
First order lag plus time delay (FOLPD) model: G m (s) =
4.
FOLPD model with a zero:
K m e −sτ m
1 + sTm
K m (1 − sTm 4 )e − sτ m
K m (1 + sTm 3 )e −sτm
or G m (s) =
G m (s ) =
1 + sTm1
1 + sTm1
5.
Second order system plus time delay (SOSPD) model:
K m e − sτ m
or G m (s) =
G m (s) =
2
(1 + Tm1s )(1 + Tm 2 s )
Tm1 s 2 + 2ξ m Tm1s + 1
K m e − sτ m
6.
SOSPD model with a zero:
G m (s ) =
G m (s) =
7.
K m (1 + sTm 3 )e − sτm
2
Tm1 s 2 + 2ξ m Tm1s + 1
or G m (s) =
K m (1 − sTm 4 )e −sτ m
K m (1 − sTm 4 )e − sτ m
or G m (s) =
2
(1 + sTm1 )(1 + sTm 2 )
Tm1 s 2 + 2ξ m Tm1s + 1
Third order system plus time delay (TOSPD) model:
G m (s ) =
K m (1 + b1s + b 2 s 2 + b 3s 3 )e − sτ m
or
1 + a 1s + a 2 s 2 + a 3s 3
(
G m (s ) =
)
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )(1 + sTm3 )
G m (s) =
K m (Tm 3 s + 1)e −sτ m
(T s + 2ξ T s + 1)(T s + 1)
m1
8.
K m (1 + sTm 3 )e −sτm
(1 + sTm1 )(1 + sTm 2 )
2 2
m
m1
m2
Fifth order system plus delay model:
G m (s ) =
K m (1 + b1s + b 2 s 2 + b 3s 3 + b 4 s 4 + b s s 5 )e − sτm
1 + a 1s + a 2 s 2 + a 3s 3 + a 4 s 4 + a 5s 5
(
)
b720_Chapter-02
14
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
9. General model.
10. Non-model specific. Corresponding tuning rules may also apply to non-selfregulating processes.
2.3.2 Non-self-regulating process models
1.
Integral plus time delay (IPD) model: G m (s) =
2.
IPD model with a zero:
G m (s) =
3.
K m e −sτ m
s
K m (1 + sTm 3 )e −sτ m
K (1 − sTm 4 )e −sτ m
or G m (s) = m
s
s
First order lag plus integral plus time delay (FOLIPD) model:
K m e −sτ m
G m (s) =
s(1 + sTm )
4.
FOLIPD model with a zero:
G m (s) =
5.
6.
7.
8.
K m (1 + sTm 3 )e −sτ m
K (1 − sTm 4 )e −sτ m
or G m (s) = m
s(1 + sTm1 )
s(1 + sTm1 )
Integral squared plus time delay ( I 2 PD ) model: G m (s) =
K m e − sτ m
s2
Second order system plus integral plus time delay (SOSIPD) model:
K m e −sτ m
K m e −sτ m
G
(
s
)
or
=
G m (s ) =
m
2
2
s(1 + sTm1 )
s(Tm1 s 2 + 2ξ m Tm1s + 1)
K m (1 + sTm 3 )e − sτ m
s(1 + sTm1 )(1 + sTm 2 )
Third order system plus integral plus time delay (TOSIPD) model:
SOSIPD model with a zero: G m (s) =
G m (s) =
K m e − sτ m
K m e − sτ m
or G m (s) =
3
s(1 + sTm1 )(1 + sTm 2 )(1 + sTm 3 )
s(1 + sTm1 )
b720_Chapter-02
17-Mar-2009
FA
Chapter 2: Controller Architecture
9.
15
General model with integrator:
G m (s) =
K m e − sτ m
s(1 + sTm1 )
n
or
∏ (T s + 1)∏ (T
K
G (s ) =
s ∏ (T s + 1)∏ (T
m
m
i
i
m1i
i
m 3i
i
m 2i
m 4i
)
e
s + 2ξ T s + 1)
2 2
s + 2ξ m ni Tm 2i s + 1
2 2
mdi
−sτ m
m 4i
K m e −sτm
Tm s − 1
11. Unstable FOLPD model with a zero:
10. Unstable FOLPD model: G m (s) =
G m (s) =
K m (1 + sTm 3 )e −sτm
K (1 − sTm 4 )e − sτ m
or G m (s) = m
Tm s − 1
Tm1s − 1
12. Unstable SOSPD model (one unstable pole):
G m (s ) =
K m e − sτm
(Tm1s − 1)(1 + sTm 2 )
G m (s ) =
K m e − sτ m
(Tm1s − 1)(Tm 2 s − 1)
13. Unstable SOSPD model (two unstable poles):
14. Unstable SOSPD model with a zero:
G m (s) =
K m (1 + Tm 3 s )e −sτ m
2
Tm1 s 2 − 2ξ m Tm1s + 1
or
K m (1 + Tm 3 s )e − sτ m
2
− Tm1 s 2 + 2ξ m Tm1s + 1
G m (s ) =
or
K m (1 − sTm 4 )e − sτ m
2
Tm1 s 2 − 2ξ m Tm1s + 1
b720_Chapter-02
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
16
Table 1 shows the number of tuning rules defined for each PI/PID controller
structure and types of process model. The following data is key to the process
model type:
Model 1: Stable FOLPD model (with or without a zero)
Model 2: Stable SOSPD model (with or without a zero)
Model 3: Other stable models
Model 4: Non-model specific
Model 5: Models with an integrator
Model 6: Open loop unstable models
Table 1: PI/PID controller structure and tuning rules – a summary
Process model
Controller
Equation
(2.3)
(2.4)
(2.6)
(2.7)
(2.8)
(2.11)
(2.12)
(2.16)
(2.17)
Total
1
2
3
4
5
6
Total
261
140
20
36
74
7
74
7
28
649
63
82
23
9
53
7
36
3
15
291
58
20
3
5
1
1
14
0
1
103
59
63
9
11
12
4
9
0
2
169
90
66
16
6
26
5
106
16
8
339
32
35
17
0
17
6
37
8
30
182
563
406
88
67
183
30
276
34
84
1731
Table 1 shows that for the tuning rules defined, 60% are based on a selfregulating (or stable) model, 10% are non-model specific, with the remaining
30% based on a non-self-regulating model.
2.4 Organisation of the Tuning Rules
The tuning rules are organised in tabular form in Chapters 3 and 4. Within each
table, the tuning rules are classified further; the main subdivisions made are as
follows:
(i) Tuning rules based on a measured step response (also called process reaction
curve methods).
(ii) Tuning rules based on minimising an appropriate performance criterion,
either for optimum regulator or optimum servo action.
b720_Chapter-02
17-Mar-2009
Chapter 2: Controller Architecture
FA
17
(iii) Tuning rules that give a specified closed loop response (direct synthesis
tuning rules). Such rules may be defined by specifying the desired poles of
the closed loop response, for instance, though more generally, the desired
closed loop transfer function may be specified. The definition may be
expanded to cover techniques that allow the achievement of a specified gain
margin and/or phase margin.
(iv) Robust tuning rules, with an explicit robust stability and robust performance
criterion built into the design process.
(v) Tuning rules based on recording appropriate parameters at the ultimate
frequency (also called ultimate cycling methods).
(vi) Other tuning rules, such as tuning rules that depend on the proportional gain
required to achieve a quarter decay ratio or to achieve magnitude and
frequency information at a particular phase lag.
Some tuning rules could be considered to belong to more than one subdivision,
so the subdivisions cannot be considered to be mutually exclusive; nevertheless,
they provide a convenient way to classify the rules. All symbols used in the
tables are defined in Appendix 1.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3
Controller Tuning Rules for Self-Regulating
Process Models
3.1 Delay Model G m (s) = K m e − sτm

1 

3.1.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
+
U(s)

1 

K c 1 +
Ti s 

E(s)
−
K m e −sτ
Y(s)
m
Table 2: PI controller tuning rules – G m (s) = K m e −sτ m
Rule
1
Callender et al.
(1935/6).
Model: Method 1
Kc
Ti
0.568 K m τ m
Process reaction
3.64τ m
2
0.65 K m τ m
2.6τ m
3
0.79 K m τ m
3.95τ m
4
0.95 K m τ m
3.3τ m
1
Decay ratio = 0.015; period of decaying oscillation = 10.5τ m .
2
Decay ratio = 0.1; period of decaying oscillation = 8τ m .
3
Decay ratio = 0.12; period of decaying oscillation = 6.28τ m .
4
Decay ratio = 0.33; period of decaying oscillation = 5.56τ m .
18
Comment
Representative results
deduced from graphs.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Two constraints
method – Wolfe
(1951).
Model: Method 1
0.2
K mτm
0.3τ m
Decay ratio is as
small as possible.
Minimum ISE –
Haalman (1965).
Model: Method 1
Minimum error: step
load change – Gerry
(1998).
Minimum IAE –
Gerry and Hansen
(1987).
Minimum IAE –
Shinskey (1988),
p. 123.
Minimum IAE –
Shinskey (1994).
Model: Method 1
Minimum IAE –
Shinskey (1988),
p. 148.
Minimum IAE –
Shinskey (1996),
p. 167.
Minimum IAE –
Huang and Jeng
(2002).
Minimum ISE –
Keviczky and Csáki
(1973).
Model: Method 1
Fertik (1975).
Model: Method 1
Åström and Hägglund
(2000).
Model: Method 1
Minimum error integral (regulator mode).
Minimum performance index: regulator tuning
undefined
1.5τ m
G c (s) = 1 Tis
M s = 1.9 ; A m = 2.36 ; φ m = 50 0 .
0.3
Km
0.42τ m
Model: Method 1
0.345
Km
0.455τ m
Model: Method 1
0.43
Km
0.5τ m
Model: Method 1
0. 4 K m
0.5τ m
p. 67.
undefined
1.6K m τ m
G c (s) = 1 Tis ;
p. 63.
0.4255
Km
0.25Tu
Model: Method 1
0. 4 K u
0.25Tu
Model: Method 1
Minimum performance index: servo tuning
Model: Method 1
0.36 K m
0.47τ m
Minimum IAE = 1.377 τ m . A m = 2 ; φ m = 60 0 .
undefined
1.33τ m
G c (s) = 1 Tis ;
Minimum ISE =
1.53τ m ; K m = 1 .
0.5
0.635τ m
Km = 1
Minimum performance index: other tuning
0.35 K m
0.4 τ m
K c , Ti values
deduced from graph.
K c Ti maximised
0.25
0.35τ m
Km
subject to
M max = 2 .
19
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
20
Rule
Kc
Ti
Comment
Skogestad (2001).
Model: Method 1
Skogestad (2003).
Model: Method 1
Skogestad (2001).
Model: Method 1
0.16 K m
0.340τ m
M max = 1.4
0.200 K m
0.318τ m
M max = 1.6
0.26 K m
0.306τ m
M max = 2.0
x1 K m
x 2τm
Åström and Hägglund
(2004).
Model: Method 1
x1
Kc
Ti
undefined
2.70K m τ m
undefined
2.50K m τ m
undefined
x 2τm
1
x2
OS
x2
0.64
105%
x1
1.00
x1
OS
x1
5%
0.72
0.68
Kc =
2
Kc =
(
Stochastic
disturbance.
Critically damped
dominant pole.
Damping factor
(dominant pole) =
0.6.
G c (s) = 1 Tis
Coefficient values:
OS
OS
x2
x2
OS
17%
2
4%
Coefficient values:
OS
OS
x1
x1
OS
50%
1.5
2τ m
0.75
Kc
Ti
15%
0.78
20%
Model: Method 1
0.223607 K m
0.309017 τm
Model: Method 1
Kuwata (1987).
1
2
)
(
10%
)
e − ωd τ m
τ
1 − 0.5e − ωd τ m , Ti = − ωmτ 1 − 0.5e − ωd τ m .
Km
e d m
(
M max
0.400
1.1
0.211
0.342
1.6
0.389
1.2
0.227
0.334
1.7
0.376
1.3
0.241
0.326
1.8
0.363
1.4
0.254
0.320
1.9
0.352
1.5
0.264
0.314
2.0
Direct synthesis: time domain criteria
Step disturbance.
0. 5 K m
0.5τ m
Bryant et al. (1973).
Model: Method 1;
G c (s) = 1 Tis
Nomura et al. (1993).
x2
0.057
0.103
0.139
0.168
0.191
Van der Grinten
(1963).
Model: Method 1
Keviczky and Csáki
(1973).
Model: Method 1;
representative
coefficient values
estimated from
graphs; K m = 1 .
Coefficient values:
M max
x1
x2
0.4τm
K m 1 − 1 − 0.267 τm
) , T = 1.25τ 1 − 0.267τ − 0.25τ .
i
m
m
m
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kamimura et al.
(1994), Manum
(2005).
Model: Method 1;
G c (s) = 1 Tis .
Åström and Hägglund
(1995), pp. 187–189.
Model: Method 1
Kc
Ti
Comment
undefined
2K m τ m
OS = 10%
Also given by Schlegel (1998); M s = 1 .
undefined
2.6667 K m τ m
undefined
2.3529 K m τ m
0.305 K m
0.279τm
‘Quick’ servo
response; ‘negligible’
overshoot.
ξ = 0.3
0.273 K m
0.285τm
ξ = 0.4
OS = 0%
0.218 K m
0.288τm
ξ = 0.6
0.174 K m
0.276τm
ξ = 0.8
0.154 K m
0.265τm
ξ = 0.9
Åström and Hägglund
(1995), pp. 187–189,
Åström and Hägglund
(2006), pp. 185–186.
Model: Method 1
0.388 K m
0.258τm
ξ = 0.1
0.343 K m
0.270τm
ξ = 0.2
0.244 K m
0.288τm
ξ = 0.5
0.195 K m
0.284τm
ξ = 0.707
0.135 K m
0.250τm
ξ = 1.0
Hansen (2000).
0. 2 K m
0.3τ m
Model: Method 1
Buckley (1964).
Model: Method 1;
M max = 2dB .
Schlegel (1998).
Model: Method 1
Hägglund and Åström
(2004).
Model: Method 1
Åström and Hägglund
(2006), p. 243.
Direct synthesis: frequency domain criteria
undefined
1.45K m τ m
G c (s) = 1 Tis
0.075 K m
0.1τ m
0.53 K m
τm
0.55 K m
1.59 τ m
0.318 K m
0.405τm
0.15 K m
0.35τ m
0.15 K u
0.17Tu
0.1677 K m
0.363τm
Representative
results.
Ms = 1
M s = 1.4
Model: Method 1;
M s = M t = 1. 4 .
Robust
Bequette (2003),
p. 300.
τm
K m (2λ + τ m )
0.5τ m
Skogestad (2003).
Model: Method 1
0.294 K m
0.5τ m
Model: Method 1;
λ > τm (Yu, 2006,
p. 19).
IMC based rule.
21
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
22
Rule
Kc
Ti
Comment
1
0.5τm
K m 0.5τm + λ
0.5τm
Model: Method 1
undefined
x1K m τm
G c (s) = 1 Tis ;
Skogestad (2003).
0.25 K m
Other tuning
0.333τ m
Model: Method 1
McMillan (2005),
p. 35.
0.25 K m
0.25τ m
Model: Method 1
Yu (2006), p. 18.
0.30K u
Ultimate cycle
0.25Tu
Model: Method 1
Åström and Hägglund
(2006), p. 189.
Urrea et al. (2006).
Model: Method 1
3
17-Mar-2009
3
1.5 ≤ x1 ≤ 2 .
λ = Tm (aggressive tuning). λ = 3Tm (robust tuning).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models


1
+ Td s 
3.1.2 Ideal PID controller G c (s) = K c 1 +
 Ti s

R(s)
E(s)
−
+


1
K c 1 +
+ Td s 
T
s
i


Y(s)
U(s)
K me
− sτ m
Table 3: PID controller tuning rules – delay model G m (s) = K m e − sτ m
Rule
Callender et al.
(1935/6).
Model: Method 1
Ream (1954).
Model: Method 1
Nomura et al.
(1993).
Model: Method 1
Kc
Ti
Td
Comment
0.749 K m τm
Process reaction
2.734 τ m
0.303τ m
0.2269 K m
0.3109τm
0.0264τm
‘Butterworth’.
0.2635 K m
0.3610τm
0.1911τm
0.3548 K m
0.4860τm
0.2735τm
‘Minimum
ITAE’.
‘Binomial’.
0.511 K m
0.511τm
0.1247 τm
Model: Method 1
0.40 K m
0.46τm
0.149τm
Regulator.
Representative
results deduced
2
1.31τ m
0.303τ m
1.24 K m τm
from graphs.
Direct synthesis: time domain criteria
Decay ratio
0.61 K m
0.491τm
0.015τm
≈ 33% .
‘Kitamori’.
0.230 K m
0.315τm
0.0086τm
1
Robust
Gong et al.
(1998).
Wang (2003),
pp. 15–17.
Model: Method 1
Servo; ±10%
overshoot.
Deduced from graphs; robust to ±25% uncertainty in process model
parameters.
0.29 K m
0.40τm
0.096τm
1
Decay ratio = 0.015; period of decaying oscillation = 10.5τ m .
2
Decay ratio = 0.12; period of decaying oscillation = 6.28τ m .
23
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
24
3.1.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
R(s)
+
E(s)
−


1
K c 1 +
+ Td s 
Ti s


1
1 + Tf s
Y(s)
U(s)
K m e −sτ
m
Table 4: PID controller tuning rules – delay model G m (s) = K m e −sτ m
Rule
Kc
Ti
Td
Comment
Robust
Bequette (2003),
p. 300.
Model: Method 1
τm
K m (4λ + τ m )
0.5τ m
0.167 τ m
λ > 1.7 τm (Yu, 2006, p. 19).
Tf =
2
2λ − 0.167τ m
4λ + τ m
2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models



1  1 + Td s 


3.1.4 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

E(s)
R(s)
−
+





1  1 + Td s  U(s)

K c 1 +
Td 
Ti s 

s
1 +
N 

Y(s)
K m e − sτ
m
Table 5: PID controller tuning rules – delay model G m (s) = K m e −sτ m
Rule
Kc
Ti
Td
Comment
Process reaction
Hartree et al.
(1937).
Model: Method 1
1
2
0.70
K mτm
2.66τ m
τm
0.78
K mτm
2.97 τ m
0.5τ m
1
N = 2. Decay ratio = 0.15; period of decaying oscillation = 4.49 τ m .
2
N = 2. Decay ratio = 0.042; period of decaying oscillation = 5.03τ m .
Representative
results.
25
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
26
3.1.5 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s)
E(s)
+
−




2
T
s
1
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
2
 Ti s
T  1 + a f 1s + a f 2 s
1+ d s 

N 

Rule
Yu (2006),
p. 18.
Model: Method 1
U(s)
K m e − sτ
Y(s)
m
Table 6: PID controller tuning rules – delay model K me −sτ m
Comment
Kc
Ti
Td
0.30K u
Ultimate cycle
0
0.23Tu
b f 0 = 0 , b f 1 = 0.12Tu , b f 2 = 0 , a f 1 = 0.012Tu , a f 2 = 0 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
27
3.1.6 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

E(s)
R(s)
−
+




T
s
1
d

K c 1 +
+
 Ti s
Td  +
1+
s

N 

−
U(s)
Y(s)
K me
− sτ m
Table 7: PID controller tuning rules – delay model G m (s) = K m e −sτ m
Rule
Kc
Kuwata (1987).
Model: Method 1
Nomura et al.
(1993).
Model: Method 1
1
Kc =
(
1
Ti
Kc
0.2 K m
Direct synthesis: time domain criteria
0.278τm
0
1.667 τm − 4.167
0.1 K m
0.278τm
1 Km
1.667 τm − 2.5
0.8τm
K m 1 − 1 − 0.267 τm
).
Comment
Td
0
α =1
α = 1 ; also given
by Kuwata
(1987).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
28
3.2 Delay Model with a Zero
G m (s) = K m (1 + Tm 3 s)e −sτ m or G m (s) = K m (1 − Tm 4 s)e −sτ m

1 

3.2.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
+

1 

K c 1 +

T
is 

−
Y(s)
U(s)
Model
Table 8: PI controller tuning rules – delay model with a zero
G m (s) = K m (1 + Tm 3 s)e −sτ m or G m (s) = K m (1 − Tm 4s)e −sτ m
Rule
Kc
2
2
(
T = 0.424τ 1 + 4.712(T
).
τ ).
Ti = 0.637 τm 1 + 3.142 Tm 4 τm
i
m
Comment
Direct synthesis: time domain criteria
1
‘Smaller’ τm Tm 4 .
Ti
undefined
Chidambaram (2002),
p. 157.
Model: Method 1;
G c (s) = 1 Tis .
1
Ti
m4
2
2
m
Ti
‘Larger’ τm Tm 4 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Jyothi et al. (2001).
Model: Method 1;
G c (s) = 1 Tis .
Jyothi et al. (2001).
Model: Method 1;
G c (s) = 1 Tis .
Kc
Ti
Comment
Direct synthesis: frequency domain criteria
3
τm Tm3 < 1
Ti
Ti
τm Tm3 > 1
5
Ti
0 < τm Tm 3 < 1
6
Ti
0 < τm Tm 3 < 10
4
undefined
1.5K m (τ m − Tm 3 )
2K m Tm 4
undefined
3
Ti = 0.64K m τm 1 + 9.870(Tm3 τm ) .
4
Ti = 1.27 K m τm 1 + 2.467(Tm3 τm ) .
5
Ti = 2.0309K mTm3e0.419692 τ m Tm 3 .
6
Ti =
7
Ti = 1.27 K m τm 1 + 2.467(Tm 4 τm ) .
8
Ti =
9
Ti =
τm Tm 4 < 1
Ti
τm Tm 4 > 1
8
Ti
0 < τm Tm 4 < 1
9
Ti
0 < τm Tm 4 < 10
7
1.5K m (τm + Tm 4 )
2
2
K mTm3
.
exp[− 0.706636 ln (τm Tm3 ) − 0.962232]
2
K m Tm 4
0.5 + 0.001945(τm Tm 4 ) − 0.03091(τm Tm 4 )2
K m Tm 4
.
0.6178 − 0.1452(τm Tm 4 ) + 0.0141(τm Tm 4 )2 − 0.0004883(τm Tm 4 )3
.
29
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
30
3.3 FOLPD Model G m (s) =
K m e −sτm
1 + sTm

1 

3.3.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
E(s)
+
−
U(s)

1 

K c 1 +
Ti s 

Y(s)
K m e − sτ
1 + sTm
m
Table 9: PI controller tuning rules – FOLPD model G m (s) =
Rule
Callender et al.
(1935/6).
Model: Method 1
Ziegler and Nichols
(1942).
Model: Method 2
Hazebroek and Van
der Waerden (1950).
Model: Method 2
K m e − sτ m
1 + sTm
Comment
Kc
Ti
1
0.568 K m τ m
Process reaction
3.64τ m
2
0.690 K m τ m
2.45τ m
τm
= 0.3
Tm
0.9Tm
K mτm
3.33τ m
Quarter decay ratio;
τm Tm ≤ 1 .
x1Tm K m τm
x 2τm
τm
Tm
x1
x2
Coefficient values:
x1
x2
τm
Tm
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
0.68
0.70
0.72
0.74
0.76
0.79
0.81
0.84
0.87
7.14
4.76
3.70
3.03
2.50
2.17
1.92
1.75
1.61
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
0.90
0.93
0.96
0.99
1.02
1.06
1.09
1.13
1.17
1.49
1.41
1.32
1.25
1.19
1.14
1.10
1.06
1.03
1
Decay ratio = 0.015; period of decaying oscillation = 10.5τ m .
2
Decay ratio = 0.043; period of decaying oscillation = 6.28τ m .
τm
Tm
x1
x2
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
1.20
1.28
1.36
1.45
1.53
1.62
1.71
1.81
1.00
0.95
0.91
0.88
0.85
0.83
0.81
0.80
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Hazebroek and Van

Tm 
τ
 0.5 m + 1
der Waerden (1950) –

K m τm 
Tm

continued.
Oppelt (1951).
3
Model: Method 2
K
2
τm
1.6τm − 1.2Tm
τm Tm > 3.5
1.66τ m
τ m >> Tm
c
Moros (1999).
Model: Method 1
τ m << Tm
0.8Tm K m τ m
3τ m
0.91Tm K m τ m
3.3τ m
Attributed to
Rosenberg.
0.6Tm K m τm
Regulator
4τ m
0% overshoot.
0.7Tm K m τm
2.33τ m
20% overshoot.
0.35Tm K m τm
Servo
1.17Tm
0% overshoot.
0.6Tm K m τm
Tm
20% overshoot.
Reswick (1956).
Model: Method 2;
K c , Ti deduced
from graphs;
τm Tm = 6.25 .
0.20 K m
Regulator
0.20τ m
0% overshoot.
0.30 K m
0.22τ m
20% overshoot.
0.15 K m
Servo
0.16τ m
0% overshoot.
0.20 K m
0.14τ m
20% overshoot.
Cohen and Coon
(1953).
Model: Method 2

T
1 
 0.9 m + 0.083
Km 
τm

Two constraints
method – Wolfe
(1951).
Model: Method 4
4
3.32τ m
Attributed to Oppelt.
Chien et al. (1952).
Model: Method 2;
0.1 < τm Tm < 1.0 .
3
Comment
Ti
Kc ≤
4
x1Tm K m τm
Quarter decay ratio;
0 < τm Tm ≤ 1.0 .
Ti
x 2τm
τm
Tm
Coefficient values:
x1
x2
x1
τm
Tm
x2
0.2
0.5
4.4
1.8
1.28
0.53
3.23
2.27
1.0
5.0
0.78
0.30

1 
1 
Tm
Tm 
+ 1 ; recommended K c =
− 1 .
1.5708
0.77
Km 
τm
K
τm
m 


 3.33(τm Tm ) + 0.31(τm Tm ) 2 
.
Ti = Tm 


1 + 2.22(τm Tm )


Decay ratio is as
small as possible;
minimum error
integral (regulator
mode).
31
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
32
Rule
Two constraints
criterion – Murrill
(1967), p. 356.
Model: Method 5
Heck (1969).
Model: Method 2
Kc
0.928  Tm 


K m  τ m 
Comment
Ti
0.946
Tm  τ m 


1.078  Tm 
0.583
Quarter decay ratio;
minimum error
integral (servo mode).
0.1 ≤ τm Tm ≤ 1.0 .
0.8Tm K m τm
3τ m
Regulator.
undefined
x 2K mτm
G c = 1 (Tis)
Regulator – representative values (deduced from graph):
τm Tm
x2
τm Tm
x2
τm Tm
x2
τm Tm
x2
0.11
0.13
0.14
0.17
2.94
0.20
2.50
0.40
2.17
0.71
1.96
2.86
0.25
2.38
0.50
2.13
2.78
0.29
2.35
0.56
2.08
2.63
0.33
2.30
0.63
2.00
Servo – representative values (deduced from graph):
τm Tm
x2
τm Tm
x2
τm Tm
x2
τm Tm
x2
0.11
0.13
0.14
0.17
3.92
3.85
3.64
3.51
0.56 K m
0.20
0.25
0.29
0.33
3.33
0.40
3.08
0.50
2.94
0.56
2.82
0.63
0.65Tm
2.63
0.71
2.27
2.47
2.41
2.35
Model: Method 3
Fertik and Sharpe
(1979).
Parr (1989).
0.91Tm K m τm
3.3τm
Model: Method 2
Sakai et al. (1989).
1.2408Tm K m τm
0.5τ m
Model: Method 2
Borresen and Grindal
(1990).
Model: Method 2
Klein et al. (1992).
Model: Method 1
1.0Tm
K mτm
3τ m
Also described by
ABB (2001).
McMillan (1994),
p. 25.
Model: Method 5
St. Clair (1997),
p. 22.
Model: Method 5
0.28Tm
K m (τ m + 0.1Tm )
0.53Tm
Km
3
τm
Time delay dominant
processes.
0.333Tm
K mτm
Tm
τm
≥ 0.33
Tm
x1 K m
x 2τm
Hay (1998),
Coefficient values – servo tuning:
pp. 197–198.
τ m Tm
x1
x2
τ m Tm
x1
Model: Method 1;
0.1
6.0
9.5
0.1
4.0
coefficients of K c , Ti
4.5
7.5
0.125
3.2
deduced from graphs. 0.125
0.167
3.0
5.4
0.167
2.2
0.25
2.0
3.4
0.25
1.3
0.5
0.8
1.7
0.5
0.5
x2
10.0
8.0
6.0
4.0
2.0
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Hay (1998),
pp. 197–198 –
continued.
Hay (1998), p. 200.
Model: Method 2;
K c , Ti deduced from
graphs.
Shinskey (2000),
(2001).
Lipták (2001).
Kc
Ti
x1 K m
x 2τm
τ m Tm
Coefficient values – regulator tuning:
x1
x2
τ m Tm
x1
0.1
9.5
0.125
7.0
0.167
5.0
0.25
3.4
0.5
1.8
x1 K m
x1
3.2
3.2
3.0
2.8
2.0
0.1
0.125
0.167
0.25
0.5
Minimum IAE –
Frank and Lenz
(1969).
Model: Method 1
x2
2.8
2.8
2.6
2.3
1.6
τm Tm
x2
4
1.6
1.7
1.0
1.2
0.8
1.0
0.7
0.667Tm K m τm
6.8
5.6
4.3
2.8
1.2
x 2 τm
4.9
4
3.0
2.6
2.1
1.9
1.76
1.51
0.2
0.3
0.4
0.5
3.78τ m
0.95Tm K m τm
Regulator.
Servo.
Regulator.
Servo.
Regulator.
Servo.
Regulator.
Servo.
Model: Method 2;
τm Tm = 6 .
Model: Method 2
4τ m
Chidambaram (2002), 1 
Tm 
p. 154.
0.4 + 0.665 
Km 
τm 
Model: Method 1
Faanes and Skogestad
0.71Tm
(2004).
K m τm
Model: Method 1
PMA (2006).
0.39Tm K m τ m
Minimum IAE –
Murrill (1967),
pp. 358–363.
Comment
‘Improved’ Ziegler–
Nichols method.
3.4τm
Equivalent Ziegler–
Nichols ultimate
cycle method.
Model: Method 2
3.3τm
6τ m
Minimum performance index: regulator tuning
0.986
0.707
Model: Method 5;
Tm  τ m 
0.984  Tm 




0.1 ≤ τm Tm ≤ 1.0 .
0.608  Tm 
K m  τm 
T 
1 
 x 1 + x 2 m 
K m 
τm 
T 
τm 
 x 1 + x 2 m 
x 2 
τm 
Representative coefficient values (deduced from graph):
τ m Tm
x1
x2
τ m Tm
x1
x2
0.2
0.4
0.6
0.8
0.37
0.42
0.44
0.45
0.77
0.85
0.91
0.98
1.0
1.2
1.4
0.46
0.46
0.46
1.05
1.11
1.17
33
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
34
Rule
Kc
Ti
Comment
Minimum IAE –
Pemberton (1972a),
Smith and Corripio
(1997), p. 345.
Tm
K mτm
Tm
Model: Method 1;
τ
0.1 ≤ m ≤ 0.5 .
Tm
Minimum IAE –
Murata and Sagara
(1977).
Model: Method 2
x1 K m
x2
τm Tm
x1
x2
τm Tm
4.5
2.3
1.5
0.6
0.9
1.1
0.2
0.4
0.6
1.2
0.9
1.4
1.6
0.8
1.0
0.075
Ti
Kc
0.05 ≤
τm
T
≤ 1.0 ; 0.05 ≤ L ≤ 7.0 .
Tm
Tm
Load disturbance
1
model =
.
1 + sTL
Values of x1 to x 10 for varying τm Tm provided.
0.75
1.0
x1
19.160 12.886 9.6994 6.5357 4.9749 3.3775 2.5985 2.1285 1.4947
1.1714
x2
4.7284 3.5703 4.2713 10.412 3.9767 2.3329 1.4059 1.1867 0.8493
0.7991
x3
9.4147 4.9974 3.7827 2.5854 1.9599 1.3112 1.0318 0.8244 0.5444
0.3968
τm Tm
0.05
x 2Tm
x1
5
Minimum IAE –
Kosinsani (1985),
pp. 43–44.
Model: Method 1
5
17-Mar-2009
0.1
0.15
0.2
0.3
0.4
0.5
x4
5.5495 6.1065 6.4339 0.1239 0.0182 0.1101 -3.0E-5 -5.0E-9 -8.0E-9 -3.0E-7
x5
-11.859 -2.1296 0.4052 200.86 375.61 13.563 2.8052 0.2503 -0.1163 0.8593
x6
1.0356 0.9598 0.8911 0.8734 0.8989 0.8537 0.8128 0.7849 0.7199
0.6711
x7
5.5638 3.9556 3.1631 2.2782 1.7580 1.3671 1.0831 0.9053 0.6215
0.5131
x8
0.2390 0.3740 0.4972 0.7729 1.1390 1.8367 2.4317 3.1877 3.2503
4.1661
x9
0.1162 0.1452 0.1667 0.1883 0.1789 0.2327 0.2775 0.2695 0.5488
0.6450
x 10
-1.6815 -1.5586 -1.4805 -1.4149 -1.5115 -1.2973 -1.4476 -1.5194 -1.4692 -1.5578
Kc =

 T 
 T  
1 
 x1 − e − x 2 TL Tm  x 3 cosx 4 L  + x 5 sin x 4 L   ,


Km 
 Tm 
 Tm  


Ti =
Tm
x6 +
1 + x8
.
x7
TL
− x9
Tm
x 10
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Shinskey (1988),
p. 123.
Model: Method 1
6
0.685  TL 


Kc =
K m  Tm 
Ti
6
Kc
Ti
7
Kc
Ti
8
Kc
Ti
9
Kc
Ti
τ m Tm > 0.35
1.00Tm K m τ m
3.0τ m
τ m Tm = 0.2
1.04Tm K m τ m
2.25τ m
τ m Tm = 0.5
1.08Tm K m τ m
1.45τ m
τ m Tm = 1
1.39Tm K m τ m
τm
τ m Tm = 2
0.214 − 0.346
τm
Tm  τ

 m
T 
 m
,
1.977
0.874  TL 


Kc =
K m  Tm 
− 0.099 + 0.159
τm
Tm  τ

 m
T 
 m
0.871  TL 


Kc =
K m  Tm 
τ
− 0.015 + 0.384 m
Tm  τ

 m
T 
 m
τm
− 0.55
Tm
τ
0.513  TL 


Kc =
K m  Tm 
0.218
τm
Tm  τ


T 
 m
m 
−1.451
,
TL
τ
≤ 2.641 m + 0.16 .
Tm
Tm
,
τ
− 4.515 m + 0.067
Tm
τ

 m
T 
 m
0.876
, 2.641
τm
T
+ 0.16 ≤ L ≤ 1 .
Tm
Tm
−1.055
,
T T 
Ti = m  L 
0.444  Tm 
9
1.123

 m
T 
 m
−1.041
T T 
Ti = m  L 
0.415  Tm 
8
τm
≤ 0.35
Tm
−1.256
T T 
Ti = m  L 
0.214  Tm 
7
Comment
Kc
Minimum IAE – Yu
(1988).
Model: Method 1.
Load disturbance
K e −sτ L
.
model = L
1 + sTL
35
T T 
, Ti = m  L 
0.670  Tm 
− 0.003
− 0.217
τm
Tm
τm
− 0.213
Tm
τ
− 0.084

 m
T 
 m
 τm 


T 
 m
0.56
.
0.867
, 1<
TL
≤ 3.
Tm
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
36
Rule
Kc
Minimum IAE – Hill
and Venable (1989).
Model: Method 1
x1 K m
τm Tm
Ti
Comment
x 2Tm
Load disturbance
1
model =
.
1 + sTL
x1 values (this page) and x 2 values (next page) deduced from
graphs; robust to ±30% process model parameter changes.
0.05 0.07 0.1 0.15 0.2
0.3
0.4
0.5 0.75 1.0
TL Tm = 0.05
14.0
9.8
6.2
4.0
3.0
2.08
1.60
1.32
0.95
0.78
TL Tm = 0.1
16.8
10.3
7.2
4.3
3.2
2.14
1.63
1.33
0.97
0.77
TL Tm = 0.3
17.6
11.8
8.8
5.4
4.0
2.48
1.83
1.46
1.00
0.80
TL Tm = 0.5
17.0
11.4
8.6
5.6
4.2
2.67
1.96
1.58
1.06
0.84
TL Tm = 0.7
16.4
11.0
8.2
5.4
4.1
2.74
2.04
1.64
1.11
0.88
TL Tm = 1.0
15.7
10.5
7.8
5.2
4.0
2.70
2.07
1.68
1.17
0.92
TL Tm = 1.2
15.7
10.5
7.8
5.1
4.0
2.69
2.05
1.68
1.18
0.94
TL Tm = 1.5
15.8
10.5
7.8
5.1
3.9
2.68
2.01
1.68
1.18
0.95
TL Tm = 2.0
15.8
10.5
7.6
5.1
3.9
2.65
2.02
1.65
1.18
0.95
TL Tm = 2.5
15.9
10.5
7.8
5.1
3.9
2.64
1.95
1.63
1.17
0.95
TL Tm = 3.0
15.8
10.5
7.8
5.1
3.9
2.62
2.01
1.62
1.16
0.94
TL Tm = 3.5
15.8
10.4
7.8
5.1
3.9
2.59
1.98
1.61
1.15
0.93
TL Tm = 4.0
15.7
10.5
7.8
5.1
3.9
2.60
2.00
1.63
1.13
0.91
TL Tm = 4.5
15.6
10.4
7.8
5.1
3.8
2.54
1.98
1.60
1.13
0.92
TL Tm = 5.0
15.7
10.3
7.8
5.1
3.8
2.56
1.98
1.61
1.15
0.93
TL Tm = 5.5
15.5
10.3
7.8
5.1
3.9
2.55
1.98
1.62
1.17
0.92
TL Tm = 6.9
15.5
10.3
7.6
5.1
3.9
2.52
1.98
1.60
1.17
0.92
TL Tm = 6.5
15.5
10.3
7.8
5.2
4.0
2.60
2.00
1.62
1.18
0.93
TL Tm = 7.0
15.6
10.3
7.8
5.2
3.9
2.56
2.00
1.62
1.18
0.92
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum IAE – Hill
and Venable (1989).
Model: Method 1
x1 K m
τm Tm
Ti
Comment
x 2Tm
Load disturbance
1
model =
.
1 + sTL
x1 values (previous page) and x 2 values (this page) deduced
from graphs; robust to ±30% process model parameter changes.
0.05 0.07 0.1 0.15 0.2
0.3
0.4
0.5 0.75 1.0
TL Tm = 0.05
1.0
1.0
1.0
1.0
1.0
0.92
0.90
0.88
0.80
0.74
TL Tm = 0.1
1.0
1.0
1.0
1.0
1.0
0.92
0.90
0.88
0.80
0.74
TL Tm = 0.3
3.4
1.8
1.3
1.0
1.0
0.93
0.88
0.86
0.79
0.73
TL Tm = 0.5
4.4
2.8
2.0
1.7
1.2
1.00
0.93
0.87
0.78
0.72
TL Tm = 0.7
4.8
3.3
2.5
1.7
1.4
1.10
1.00
0.90
0.79
0.72
TL Tm = 1.0
5.4
3.8
3.0
2.2
1.7
1.32
1.11
0.99
0.82
0.74
TL Tm = 1.2
5.6
4.0
3.2
2.3
1.8
1.42
1.19
1.06
0.85
0.76
TL Tm = 1.5
6.0
4.2
3.4
2.5
2.0
1.54
1.32
1.13
0.91
0.80
TL Tm = 2.0
6.3
4.6
3.7
2.6
2.2
1.68
1.42
1.26
1.00
0.86
TL Tm = 2.5
6.7
4.7
3.8
2.7
2.3
1.76
1.53
1.32
1.06
0.90
TL Tm = 3.0
6.9
4.9
3.9
2.8
2.3
1.84
1.55
1.38
1.11
0.96
TL Tm = 3.5
7.1
5.1
4.0
3.0
2.4
1.91
1.62
1.43
1.16
0.99
TL Tm = 4.0
7.3
5.2
4.1
3.0
2.5
1.93
1.63
1.46
1.20
1.04
TL Tm = 4.5
7.4
5.3
4.2
3.1
2.5
2.01
1.68
1.50
1.21
1.05
TL Tm = 5.0
7.5
5.4
4.3
3.1
2.5
2.02
1.70
1.51
1.23
1.06
TL Tm = 5.5
7.6
5.4
4.2
3.2
2.6
2.04
1.72
1.52
1.23
1.09
TL Tm = 6.0
7.7
5.4
4.4
3.2
2.6
2.08
1.73
1.56
1.25
1.10
TL Tm = 6.5
7.9
5.5
4.3
3.2
2.6
2.05
1.74
1.56
1.26
1.10
TL Tm = 7.0
7.9
5.5
4.5
3.2
2.7
2.10
1.75
1.57
1.27
1.12
37
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
38
Rule
Kc
Ti
Comment
Minimum IAE –
Marlin (1995),
pp. 301–307.
Model: Method 1;
K c , Ti deduced from
graphs; robust to
±25% process model
parameter changes.
1.4 K m
0.24τ m
τ m Tm = 0.11
1.8 K m
0.52τ m
τ m Tm = 0.25
Minimum IAE –
Huang et al. (1996).
Model: Method 1
Minimum IAE –
Shinskey (1996),
p. 38.
Model: Method 1
Minimum IAE –
Edgar et al. (1997),
pp. 8-14, 8-15.
Model: Method 1
Minimum IAE –
Edgar et al. (1997),
p. 8-15.
10
Kc =
1.4 K m
0.75τ m
τ m Tm = 0.43
1.0 K m
0.68τ m
τ m Tm = 0.67
0. 8 K m
0.71τ m
τ m Tm = 1.0
0.55 K m
0.60τ m
τ m Tm = 1.50
0.45 K m
0.54τ m
τ m Tm = 2.33
0.35 K m
0.49τ m
τ m Tm = 4.0
0. 1 ≤
τm
≤1
Tm
Kc
Ti
0.95Tm K m τ m
3.4 τ m
τ m Tm = 0.1
0.95Tm K m τ m
2.9 τ m
τ m Tm = 0.2
0. 4 K m
0.5τ m
Time delay dominant.
0.94Tm K m τ m
4τ m
Time constant
dominant.
0.67Tm K m τ m
3.5τ m
Model: Method 2
10
−0.9077
−0.063 
τ 
τ 
1 
τ

6.4884 + 4.6198 m + 0.8196 m 
− 5.2132 m 
Km 
Tm

 Tm 
 Tm 


+
τ 
1 
− 7.2712 m 
Km 
 Tm 

0.5961
τm 
− 0.7241e Tm  ,


2
3
4

 τm  
 τm 
 τm 
τm








Ti = Tm 0.0064 + 3.9574
− 10.7619
+ 9.4348
− 6.4789
Tm
Tm 
Tm 
Tm  






5
6

 τm  
 τm 

.




− 2.2236
+ Tm 7.5146
Tm 
Tm  





b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Arrieta Orozco
(2003).
Model: Method 10
Minimum IAE –
Shinskey (2003).
Minimum IAE –
Harriott (1988).
Model: Method 1;
coefficients of K c , Ti
deduced from graphs.
Kc
11
Kc
Minimum IAE –
Shinskey (1994),
p. 167.
Minimum IAE –
Shinskey (1996),
p. 121.
Minimum ISE –
Hazebroek and Van
der Waerden (1950).
11
Kc =
Ti
0.1 ≤ τm Tm ≤ 1.2
0.74Tm K m τm
4.06τm
x1K u
x 2Tu
Model: Method 2
x1
x2
τm Tm
x1
x2
τm Tm
0.55
0.52
0.50
0.91
0.81
0.64
0.1
0.2
0.5
0.43
0.42
0.45
0.33
1.0
2.0
0.5K u
x 2Tu
τm Tm
x2
τm Tm
x2
τm Tm
0.80
0.1
0.77
0.2
0.58K u
0.64
0.53
0.5
1.0
0.43
2.0
0.81Tu
τ m Tm = 0.2
0.54 K u
0.66Tu
τ m Tm = 0.5
0.48K u
0.47Tu
τ m Tm = 1
0.46K u
0.37Tu
τ m Tm = 2
Ku
3.05 − 0.35(Tu τm )
12
Ti
Model: Method 1
0.55K u
0.78Tu
Model: Method 1;
τm Tm = 0.2 .
13
1.43Tm
Model: Method 2;
τ m Tm < 0.2 .
Kc
0.4749 
1.1251 

τ 
T 
1 
.
 , Ti = Tm − 0.2551 + 1.8205 m 
0.4485 + 0.6494 m 
T 


Km 
τm 

m 






2

T  
T
Ti = Tu  0.87 − 0.855 u + 0.172  u   .
τm
 τm  

τ 
Tm 
13
 0.74 + 0.3 m  .
Kc =
K m τ m 
Tm 
12
Comment
Also given by Arrieta Orozco and Alfaro Ruiz (2003).
x2
Minimum IAE –
Shinskey (1988),
p. 148.
Model: Method 1
Ti
39
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
40
Rule
Hazebroek and Van
der Waerden (1950) –
τm
continued.
Tm
Minimum ISE –
Haalman (1965).
Model: Method 1
Minimum ISE –
Murrill (1967),
pp. 358–363.
Model: Method 5
Minimum ISE –
Frank and Lenz
(1969).
Model: Method 1
Ti
x1Tm K m τm
x 2τm
x1
x2
0.80 7.14
0.83 5.00
0.89 3.23
0.67Tm
Kmτm
1.305  Tm 


K m  τ m 
0.959
T 
1 
 x 1 + x 2 m 
K m 
τm 
Coefficient values:
x1
τm
x2
Tm
0.7
1.0
1.5
0.96
1.07
1.26
τm
Tm
2.44
1.85
1.41
x1
x2
2.0 1.46 1.18
3.0 1.89 0.95
5.0 2.75 0.81
M max = 1.9; A m =
Tm
2.36; φ m = 50 0 .
Tm  τ m 


0.492  Tm 
0.739
0. 1 ≤
τm
≤ 1.0
Tm
T 
τm 
 x 1 + x 2 m 
x 2 
τm 
Representative coefficient values (deduced from graph):
τ m Tm
x1
x2
τ m Tm
x1
x2
0.2
0.4
0.6
0.8
Minimum ISE – Yu
(1988).
Model: Method 1
Comment
Kc
0.2
0.3
0.5
14
FA
0.53
0.58
0.61
0.62
14
0.82
0.88
0.97
1.05
Kc
1.0
1.2
1.4
0.954
τm
Tm
1.12
1.17
1.20
τm
≤ 0.35
Tm
Ti
K e −sτ L
0.921  TL 


Load disturbance model = L
. Kc =
1 + sTL
K m  Tm 
T T 
Ti = m  L 
0.430  Tm 
0.63
0.63
0.62
0.181− 0.205
− 0.49
τm
Tm  τ
 τm 


T 
 m

 m
T 
 m
0.639
,
−1.214
,
τ
TL
≤ 2.310 m + 0.077 .
Tm
Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum ISE – Yu
(1988) – continued.
Minimum ISE –
Zhuang (1992),
Zhuang and Atherton
(1993).
Kc
Ti
16
Kc
Ti
17
Kc
τm Tm > 0.35
Ti
1.279  Tm 


K m  τ m 
0.945
Tm  τ m 


0.535  Tm 
0.586
1.346  Tm 


K m  τ m 
0.675
Tm  τ m 


0.552  Tm 
0.438
1.157  TL 


Kc =
K m  Tm 
0.32
0.35
0.37
0.38
τ
− 0.045 + 0.344 m
Tm  τ

 m
T 
 m
− 0.065 + 0.234
0.77
0.80
0.86
0.93
τm
Tm  τ

 m
T 
 m
1.0
1.2
1.4
1.1 ≤
τm
≤ 2. 0
Tm
0.04 + 0.067
τm
Tm  τ


T 
 m
m 
0.38
0.39
0.39
1.00
1.05
1.10
−1.014
,
− 2.532
τm
Tm
− 0.292
 τm 


T 
 m
0.899
, 2.310
τm
T
+ 0.077 ≤ L ≤ 1 .
Tm
Tm
−1.047
,
T T 
Ti = m  L 
0.347  Tm 
1.289  TL 


Kc =
K m  Tm 
τm
≤ 1. 0
Tm
T 
τm 
 x 1 + x 2 m 
x 2 
τm 
T T 
Ti = m  L 
0.359  Tm 
17
0. 1 ≤
Representative coefficient values (deduced from graph):
τ m Tm
x1
x2
τ m Tm
x1
x2
0.2
0.4
0.6
0.8
1.07  TL 


Kc =
K m  Tm 
τm
≤ 0.35
Tm
15
T 
1 
 x 1 + x 2 m 
K m 
τm 
Minimum ITAE –
Frank and Lenz
(1969).
Model: Method 1
16
Comment
Model: Method 1 or Method 5 or Method 6 or Method 15.
0.977
0.680
τ
Tm  τ m 
0.859  Tm 
0.1 ≤ m ≤ 1.0




T
m
K m  τm 
0.674  Tm 
Minimum ITAE –
Murrill (1967),
pp. 358–363.
Model: Method 5
15
Ti
41
− 0.889
T T 
, Ti = m  L 
0.596  Tm 
−1.112
0.372
τm
Tm
τm
− 0.094
Tm
τ
− 0.44

 m
T 
 m
 τm 


T 
 m
0.898
, 1<
0.46
.
TL
≤ 3.
Tm
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
42
Rule
Kc
0.598  TL 


Kc =
K m  Tm 
0.272 − 0.254
τm
Tm  τ

 m
T 
 m
x 2 (τm + Tm )
τm
Tm
x1
x2
τm
Tm
0.67
1.00
1.50
0.94
0.66
0.54
Ti
0.76
0.71
0.65
2.33 0.47 0.59
4.00 0.42 0.52
9.00 0.375 0.47
Model: Method 1;
τm
≤ 0.35 .
Tm
Ti
Ti
,

 m
T 
 m
0.787  TL 


Kc =
K m  Tm 
0.084 + 0.154
τm
Tm  τ

 m
T 
 m
0.304
τm
− 0.112
Tm
τ

 m
T 
 m
0.878  TL 


Kc =
K m  Tm 
0.172 − 0.057
τm
Tm  τ


T 
 m
m 
,
TL
τ
≤ 2.385 m + 0.112 .
Tm
Tm
,
τ
− 5.809 m + 0.241
Tm
τ

 m
T 
 m
0.901
, 2.385
τm
T
+ 0.112 ≤ L ≤ 1 .
Tm
Tm
−1.042
,
T T 
Ti = m  L 
0.431  Tm 
21
0.196
−1.055
T T 
Ti = m  L 
0.425  Tm 
20
x2
−1.341
τ
− 0.011−1.945 m
Tm  τ
0.735  TL 


Kc =
K m  Tm 
x1
τm Tm > 0.35
Ti
T T 
Ti = m  L 
0.805  Tm 
19
Comment
Ti
Minimum ITAE with
x1 K m
OS ≤ 8% – Fertik
x1
x2
τm
(1975).
T
m
Model: Method 3;
5.0 0.53
x 1 , x 2 deduced from 0.11
0.25 2.6 0.74
graphs.
0.43 1.45 0.80
18
Minimum ITAE –
Kc
Yu (1988).
19
Kc
Load disturbance
20
K L e −sτ L
Kc
.
model =
1 + sTL
21
Kc
18
FA
− 0.909
T T 
, Ti = m  L 
0.794  Tm 
τ
− 0.148 m − 0.365
Tm
τ
0.228

 m
T 
 m
τm
Tm
− 0.257
 τm 


T 
 m
0.901
, 1<
0.489
.
TL
≤ 3.
Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum ITAE –
Arrieta Orozco
(2003).
Model: Method 10.
Minimum ITAE –
Arrieta Orozco
(2006), pp. 90–92.
Minimum ITSE –
Frank and Lenz
(1969).
Model: Method 1
Kc
22
23
Kc =
0.1 ≤
Ti
τm
≤ 1.2
Tm
Also given by Arrieta Orozco and Alfaro Ruiz (2003).
2 ≤ Am ≤ 4 ;
Model: Method 10
Kc
Ti
T 
1 
 x 1 + x 2 m 
Km 
τm 
T 
τm 
 x 1 + x 2 m 
x2 
τm 
23
Representative coefficient values (deduced from graph):
τ m Tm
x1
x2
τ m Tm
x1
x2
0.2
0.4
0.6
0.8
22
Comment
Ti
Kc
43
0.46
0.50
0.53
0.55
T 
1 
0.2607 + 0.6470 m 
Km 
 τm 

0.84
0.89
0.97
1.04
1.0
1.2
1.4
0.55
0.54
0.54
1.09
1.15
1.20
0.1789 

τ 
.
 , Ti = Tm − 1.5926 + 2.9191 m 
T 



m 




1.1055 
−1.5345 + 0.2865 A m − 0.0389 A m 2 

 τm 
1 
2
,

Kc =
1.2585 − 0.6179A m + 0.0764A m + x1 

Km 
Tm 



2
x1 = 0.8653 − 0.1783A m + 0.0127 A m , 0.1 ≤
τm
≤ 2.0 ;
Tm
7.7448 − 4.4925 A m + 0.6454 A m 2 

τ 
2
,
Ti = Tm 24.5244 − 17.4081A m + 2.7267 A m + x 2  m 


Tm 



2
x 2 = −21.8710 + 16.5760A m − 2.6258A m , 0.1 ≤
τm
< 1.0 ;
Tm
1.3703 − 0.2639 A m − 0.0110 A m 2 

 τm 
2

,

Ti = Tm 1.1097 − 0.2739A m + 0.0272A m + x 2 


Tm 



2
x 2 = 1.1821 − 0.3504A m + 0.0417 A m , 1.0 ≤
τm
≤ 2.0 .
Tm
b720_Chapter-03
Rule
Minimum ISTSE –
Zhuang (1992),
Zhuang and Atherton
(1993).
Minimum ISTSE –
Zhuang (1992),
Zhuang and Atherton
(1993).
Minimum ISTES –
Zhuang (1992),
Zhuang and Atherton
(1993).
Nearly minimum
IAE, ISE, ITAE –
Hwang (1995).
Model: Method 44
Nearly minimum IAE
and ITAE – Hwang
and Fang (1995).
Model: Method 30
25
26
27
FA
Handbook of PI and PID Controller Tuning Rules
44
24
17-Mar-2009
Kc
Comment
Ti
1.015  Tm 


K m  τ m 
0.957
Tm  τ m 


0.667  Tm 
0.552
1.065  Tm 


K m  τ m 
0.673
Tm  τ m 


0.687  Tm 
0.427
0. 1 ≤
τm
≤ 1. 0
Tm
1.1 ≤
τm
≤ 2. 0
Tm
Model: Method 1 or Method 5 or Method 6 or Method 15.
24
Model: Method 1
Ti
K
c
25
Model: Method 37
Ti
Kc
1.021  Tm 


K m  τ m 
0.953
Tm  τ m 


0.629  Tm 
0.546
1.076  Tm 


K m  τ m 
0.648
Tm  τ m 


0.650  Tm 
0.442
0. 1 ≤
τm
≤ 1. 0
Tm
1.1 ≤
τm
≤ 2. 0
Tm
Model: Method 1 or Method 5 or Method 6 or Method 15.
Decay ratio = 0.15;
26
K
µ
K
ω
τ
(1 − µ1 )K u
c
2 u u
0.1 ≤ m ≤ 2.0 .
Tm
27
Ti
Kc
Decay ratio = 0.12;
τ
0.1 ≤ m ≤ 2.0 .
Tm
 1.892K m K u + 0.244 
 0.706K m K u − 0.227 
τm
 K u , Ti = 

K c = 

 0.7229K K + 1.2736 Tu , 0.1 ≤ T ≤ 2.0 .
+
3
.
249
K
K
2
.
097
m
m u
m u




∧
∧




τm
 4.126K m K u − 2.610  ∧
 5.352K m K u − 2.926  ∧
K
,
=
Kc = 
T
u
i


 T u , 0.1 ≤ T ≤ 2.0 .
∧
∧
 5.848K K u − 1.06 
 5.539K K u + 5.036 
m
m
m




µ1 =
(
)
(
)
1.14 1 − 0.482ωu τm + 0.068ω2u τ2m
0.0694 − 1 + 2.1ωu τm − 0.367ω2u τ2m
, µ2 =
.
K u K m (1 + K u K m )
K u K m (1 + K u K m )
2

τ
τ 
(K c / K u ωu )
K c =  0.515 − 0.0521 m + 0.0254 m 2 K u , Ti =
2 


T

Tm 
m

 0.0877 + 0.0918 τm − 0.0141 τm 
2

Tm
Tm 

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Minimum error: step
load change – Gerry
(2003).
0.3 K m
0.42τ m
Model: Method 1;
τm Tm ≥ 5 .
x1 K m
Minimum IAE or ISE
– ECOSSE Team
τ m Tm
x1
(1996a).
0.11
1.1
Model: Method 1;
0.25
1.8
coefficients of K c , Ti
0.43
1.1
deduced from graphs.
0.67
1.0
1.0
0.8
1.50
0.59
2.33
0.42
4.0
0.32
28
Minimum IE –
Devanathan (1991).
Model: Method 1
x 2 (τ m + Tm )
Coefficient values:
x2
τ m Tm
0.23
0.23
0.72
0.72
0.70
0.67
0.60
0.53
0.11
0.25
0.43
0.67
1.0
x1
x2
5.8
3.1
2.1
1.7
0.91
0.5
0.6
0.7
0.8
0.9
x 2 Tu
Kc
x 2 coefficient values (deduced from graphs):
τ m Tm
0.2
0.4
0.6
x2
τ m Tm
x2
τ m Tm
x2
0.35
0.8
0.23
1.4
0.29
1.0
0.21
1.6
0.26
1.2
0.19
1.8
Minimum performance index: servo tuning
x1 K m
x 2 (τ m + Tm )
0.18
0.18
0.17
Minimum IAE –
Gallier and Otto
(1968).
Model: Method 58
Representative coefficient values (deduced from graphs):
τ m Tm
x1
x2
τ m Tm
x1
x2
Minimum IAE –
Rovira et al. (1969).
Model: Method 5
0.758  Tm 


K m  τ m 
0.053
0.11
0.25
12
6.4
2.9
0.861


0.16  

ξ cos  tan −1 1.57 D R −
D R  



28
Kc =
.
 −1  6.28Tm 

K m cos  tan 


 Tu 
0.95
0.91
0.84
0.67
1.50
4.0
Tm
τ
1.020 − 0.323 m
Tm
1.15
0.65
0.45
0.75
0.66
0.55
0.1 ≤
τm
≤ 1.0
Tm
45
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
46
Rule
Kc
Comment
Ti
Minimum IAE –
x1 K m
x 2Tm
Murata and Sagara
x1
x2
τm Tm
x1
x2
τm Tm
(1977).
2.7
0.9
0.2
0.9
1.3
0.8
Model: Method 2;
1.5
1.1
0.4
0.8
1.4
1.0
x1 , x 2 deduced from
1.1
1.2
0.6
graphs.
Minimum IAE – Bain 1 
τm
Tm 
> 0.2
and Martin (1983).

0.3 + 0.3
Tm + 0.4 τ m
T
Km 
τm 
m
Model: Method 1
Minimum IAE –
1.4 K m
0.72τ m
τm Tm = 0.11
Marlin (1995),
K c , Ti deduced from graphs; robust to ±25% process model
pp. 301–307.
parameter changes.
Model: Method 1
Minimum IAE –
τ
0.1 ≤ m ≤ 1
29
Huang et al. (1996).
T
Kc
i
Tm
Model: Method 1
Minimum IAE –
Model: Method 1;
0.6Tm
Smith and Corripio
T
0
.1 ≤ τm Tm ≤ 1.5 .
m
K mτm
(1997), p. 345.
Minimum IAE –
Minimum IAE =
0.59Tm
Huang and Jeng
T
2.1038τ m ;
m
Kmτm
(2002).
τ m Tm < 0.2 .
Model: Method 1
29
Kc =
τ 
1 
τ
− 13.0454 − 9.0916 m + 0.3053 m 
Km 
Tm
 Tm 

−1.0169
τ 
+ 1.1075 m 
 Tm 
+
3.5959 



τ 
1 
− 2.2927 m 
Km 
 Tm 

3.6843
τm 
+ 4.8259e Tm  ,


2
3
4

τ  
τ 
τ 
τ
Ti = Tm 0.9771 − 0.2492 m + 3.4651 m  − 7.4538 m  + 8.2567 m  

Tm
 Tm  
 Tm 
 Tm 

5
6

 τm  
 τm 

.




+ 1.1496
+ Tm − 4.7536
Tm 
Tm  





b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Arrieta Orozco
(2003).
Model: Method 10
Minimum IAE –
Tavakoli and Fleming
(2003).
Model: Method 1
Minimum IAE –
Tavakoli et al.
(2006).
Minimum IAE –
Harriott (1988).
Ti coefficients
deduced from graph.
Kc
30
Comment
Ti
0.1 ≤
Ti
Kc
τm
≤ 1.2
Tm
Also given by Arrieta Orozco and Alfaro Ruiz (2003).
31
0.1 ≤
Ti
Kc
τm
≤ 10
Tm
Minimum A m = 6dB ; minimum φ m = 60 0 .
Kc
Ti
Model: Method 42;
A m ≥ 3 ; φ m ≥ 60 0 .
0.5K u
x 2Tu
Model: Method 1
32
x2
τm Tm
x2
τm Tm
x2
τm Tm
1.61
0.94
0.2
0.5
0.61
1.0
0.48
2.0
1.2099 
0.8714 

 Tm 
 τm 
1 


.




Kc =
0.2438 + 0.5305
, Ti = Tm 0.9377 + 0.4337
Km 
τm 
Tm 













1
T
τ
31
m
Kc =
+ 0.3047 , Ti = Tm 0.4262 m + 0.9581 .
0.4849
Km 
τm
Tm



30
32
Kc =

1  Tm
+ 0.071 , Ti = min[Tm + 0.143τ m ,9τ m ] .
0.5
K m  τm

47
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
48
Rule
Small IAE – Hwang
(1995).
Model: Method 44
Minimum ISE –
Zhuang (1992),
Zhuang and Atherton
(1993).
Model: Method 1 or
Method 5 or Method
6 or Method 15.
Minimum ISE –
Khan and Lehman
(1996).
Model: Method 1
Minimum ITAE –
Rovira et al. (1969).
Model: Method 5
33
17-Mar-2009
µ1 =
(
33
Kc
Ti
Comment
(1 − µ1 )K u
K c µ 2 K u ωu
Decay ratio = 0.1;
τ
0.1 ≤ m ≤ 2.0 .
Tm
0.980  Tm 


K m  τ m 
0.892
1.072  Tm 


K m  τ m 
0.560
Tm
τ
0.690 − 0.155 m
Tm
Tm
τ
0.648 − 0.114 m
Tm
0.01 ≤ τm Tm ≤ 0.2
35
Kc
Ti
0.2 ≤ τm Tm ≤ 20
0.586  Tm 


K m  τ m 
Tm
0.916
τ
1.030 − 0.165 m
Tm
0.1 ≤
τm
≤ 1.0
Tm
)
)
1.11 1 − 0.467ωu τm + 0.0657ω2u τ2m
,
K u K m (1 + K u K m )
(
τm
≤ 2.0
Tm
Ti
µ2 =
µ1 =
1.1 ≤
Kc
1.07 1 − 0.466ωu τm + 0.0667ω2u τ2m
,
K u K m (1 + K u K m )
(
τm
≤ 1.0
Tm
34
µ2 =
µ1 =
0.1 ≤
)
(
)
0.0328 − 1 + 2.21ωu τm − 0.338ω2u τ2m
, r = 0.5;
K u K m (1 + K u K m )
(
)
0.0477 − 1 + 2.07ωu τm − 0.333ω2u τ2m
, r = 0.75;
K u K m (1 + K u K m )
1.14 1 − 0.466ωu τm + 0.0647ω2u τ2m
,
K u K m (1 + K u K m )
(
)
0.0609 − 1 + 1.97ωu τm − 0.323ω2u τ2m
, r = 1.0;
K u K m (1 + K u K m )
r = parameter related to the position of the dominant real pole.
µ2 =
34
35
 0.7388 0.3185  Tm
 0.7388Tm + 0.3185τ m 

K c = 
+
 K , Ti = τ m  − 0.0003082T + 0.5291τ  .
T
τ
m
m 
m
m


 m
 0.808 0.511
 0.808Tm + 0.511τm − 0.255 Tm τm 
0.255  Tm
.
Kc = 
+
−
, Ti = τm 
 τm

Tm
 0.095Tm + 0.846τm − 0.381 Tm τm 
Tm τ m  K m

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
49
Comment
Minimum ITAE with
x1 K m
x 2 (τm + Tm )
OS ≤ 8% – Fertik
x1
x2
x1
x1
x2
τm
τm
τm
x2
(1975).
T
T
T
m
m
m
Model: Method 3;
x 1 , x 2 deduced from 0.11 3.05 0.95 0.67 0.71 0.76 2.33 0.42 0.59
0.25 1.70 0.88 1.00 0.55 0.71 4.00 0.39 0.52
graphs.
0.43 1.05 0.82 1.50 0.47 0.65 9.00 0.365 0.47
Minimum ITAE –
τ
0.1 ≤ m ≤ 1.2
36
Arrieta Orozco
Ti
Kc
Tm
(2003).
Also given by Arrieta Orozco and Alfaro Ruiz (2003).
Model: Method 10
Minimum ITAE –
2 ≤ Am ≤ 4 ;
37
Arrieta Orozco
Ti
Kc
Model: Method 10
(2006), pp. 90–92.
τ
Minimum ITAE –
− 0.9707 m
Tm
38
Model: Method 1
Barberà (2006).
0
.
9894
e
Kc
36
37
T 
1 
Kc =
0.1440 + 0.5131 m 
Km 
 τm 

1.5426 



.
 , Ti = Tm 0.9953 + 0.2073 τ m 
T 



m 




1.0382 
−1.0871+ 0.0048 A m + 0.0047 A m 2 

 τm 
1 
2
,

Kc =
0.9639 − 0.4436A m + 0.0496A m + x1 

Km 
Tm 



2
x1 = 1.3296 − 0.4355A m + 0.0509A m , 0.1 ≤ τm Tm ≤ 2.0 ;
6.1845 − 3.4585 A m + 0.4764 A m 2 

 τm 
2
,


Ti = Tm 2.7836 − 1.2511A m + 0.1692A m + x 2 


Tm 



2
x 2 = 0.8298 − 0.1193A m + 0.0083A m , 0.1 ≤ τm Tm < 1.0 ;
1.6705 − 0.2509 A m − 0.0447 A m 2 

 τm 
2

,

Ti = Tm 2.0174 − 0.5089A m + 0.0311A m + x 2 


Tm 



2
x 2 = 1.0065 − 0.4874A m + 0.0889A m , 1.0 ≤ τm Tm ≤ 2.0 .
38
Kc =
1
.
2


 τm 
τ
 + 2.0214 m + 0.00911
K m 1.5853
Tm 
Tm





b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
50
Rule
Kc
Ti
Comment
Smith (2002).
0.586Tm K m τm
Tm
Model: Method 1
Approximately minimum ITAE.
Minimum ISTSE –
Model: Method 1;

1 
Tm
+ 0.2
Fukura and Tamura
0.56
Tm + 0.36τm
0.05 ≤ τm Tm ≤ 1 .
Km 
τm

(1983).
0.921
Minimum ISTSE –
τ
Tm
0.712  Tm 
0.1 ≤ m ≤ 1.0


Zhuang (1992),
T
0
.
968
−
0
.
247
τ
T
m
m
m
K m  τm 
Zhuang and Atherton
(1993).
0.559
τ
Tm
0.786  Tm 
1.1 ≤ m ≤ 2.0
Model: Method 1 or


T
0
.
883
−
0
.
158
τ
T
m
m
m
K m  τm 
Method 5 or Method
6 or Method 15.
39
Minimum ISTSE –
Model: Method 1;
Ti
Kc
Zhuang (1992).
0.1 ≤ τm Tm ≤ 2.0 .
Minimum ISTSE –
Zhuang (1992),
Zhuang and Atherton
(1993).
Minimum ISTSE –
Majhi (2005).
Model: Method 52
0.361K u
41
Ti
Model: Method 1
Ti
Model: Method 37
40
Kc
0.712  Tm 


K m  τ m 
0.921
0.712Tm
0.694 − 0.182 τm Tm
0.1 ≤
τm
≤ 1.0
Tm
0.780  Tm 


K m  τ m 
0.543
0.780Tm
0.683 − 0.120 τm Tm
1.1 ≤
τm
≤ 2.0
Tm
0.673  Tm 


K m  τ m 
0.331
0.673Tm
0.511 − 0.066 τm Tm
2.1 ≤
τm
≤ 3.5
Tm
 4.264 − 0.148K m K u 
 K u , Ti = 0.083(1.935K m K u + 1)Tu .
K c = 

 12.119 − 0.432K m K u 
τ
40
Ti = 0.083(1.935K m K u + 1)Tu , 0.1 ≤ m ≤ 2.0 .
Tm
39
41
∧


∧
τm

∧
 1.506K m K u − 0.177  ∧
Kc = 
 K u , Ti = 0.055 3.616K m K u + 1 T u , 0.1 ≤ T ≤ 2.0 .
∧
 3.341K K u + 0.606 


m
m


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum ISTES –
Zhuang (1992),
Zhuang and Atherton
(1993).
Model: Method 1 or
Method 5 or Method
6 or Method 15.
Kc
0.569  Tm 


K m  τ m 
0.951
0.628  Tm 


K m  τ m 
0.583
Nearly minimum IAE
and ITAE – Hwang
and Fang (1995).
Tm
τ
1.023 − 0.179 m
Tm
Tm
τ
1.007 − 0.167 m
Tm
0.1 ≤
τm
≤ 1.0
Tm
1.1 ≤
τm
≤ 2.0
Tm
Model: Method 30;
0.1 ≤ τ m Tm ≤ 2.0 ;
decay ratio = 0.03.
Minimum performance index: other tuning
Model: Method 30;
43
Ti
0.1 ≤ τ m Tm ≤ 2.0 ;
Kc
decay ratio = 0.05.
Kc
Ti
x1 K m
Tm
42
Simultaneous
servo/regulator tuning
– Hwang and Fang
(1995).
44
Minimum
performance index –
Wilton (1999).
Model: Method 1;
coefficients of K c
estimated from
graphs.
Comment
Ti
Coefficient values:
b
τ m Tm
τ m Tm
x1
x1
b
0.1
0.1
0.1
0.1
750.0
17.487
4.8990
2.1213
0.0001
0.04
0.2
1
0.2
0.2
0.2
0.2
0.2
3.3675
2.2946
1.7146
1.1313
0.8764
0.008
0.04
0.2
1
5
0.4
0.4
0.4
0.4
0.4
1.6837
1.5297
1.2247
0.9192
0.7668
0.008
0.04
0.2
1
5
0.5
0.5
0.5
0.5
150.01
7.1386
2.6944
1.1314
0.0001
0.04
0.2
1
2

τ
τ 
(K c / K u ωu )
K c =  0.438 − 0.110 m + 0.0376 m 2 K u , Ti =
.
2 


T

Tm 
m

 0.0388 + 0.108 τm − 0.0154 τm 
2

Tm
Tm 

2

τ
τ 
(K c / K u ωu )
43
K c =  0.46 − 0.0835 m + 0.0305 m 2 K u , Ti =
.
2 


T

T
m
m 

 0.0644 + 0.0759 τm − 0.0111 τm 
2

Tm
Tm 

42
44
Performance index =
∫ [e (t) + bK (y(t) − y ) ]dt .
∞
0
2
2
m
∞
2
51
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
52
Rule
Wilton (1999) –
continued.
Minimum ITAE –
ABB (2001).
Model: Method 7
Ream (1954).
Model: Method 1;
decay ratio ≈ 33% .
Bryant et al. (1973).
Model: Method 1
Chiu et al. (1973).
Model: Method 1
Mollenkamp et al.
(1973).
Model: Method 1
Kc
Ti
x1 K m
Tm
Comment
τ m Tm
x1
b
τ m Tm
x1
b
0.6
0.6
0.6
0.6
0.6
1.1225
1.1218
0.9798
0.7778
0.6572
0.008
0.04
0.2
1
5
0.8
0.8
0.8
0.8
0.8
0.8980
0.9178
0.7348
0.7071
0.6025
0.008
0.04
0.2
1
5
1.0
1.0
72.004
1.6657
0.0001
0.2
1.0
1.0
3.6713
0.04
0.8485
1
τm
< 0.5
Tm
0.8591  Tm 


K m  τ m 
0.977
0.68
τ 
1.4837Tm  m 
 Tm 
Direct synthesis: time domain criteria
1.56 K m
0.368(τm + Tm )
τm Tm = 1.12
0.85 K m
0.454(τm + Tm )
τm Tm = 2.86
0.37Tm K m τm
Tm
0.40Tm K m τm
Tm
undefined
x 2K mτm
Critically damped
dominant pole.
Damping ratio
(dominant pole) =
0.6.
G c = 1 (Tis )
τ m Tm
Coefficient values (deduced from graph):
x2
τ m Tm
x2
0.33
0.40
0.50
0.67
0.33
0.40
0.50
0.67
12.5
11.1
11.1
9.1
7.1
6.3
5.6
4.3
1.0
2.0
10.0
6.7
4.2
3.0
Critically damped
dominant pole.
1.0
2.0
10.0
3.2
2.1
1.6
Damping ratio
(dominant pole) =
0.6.
λ variable;
suggested values: 0.2,
0.4, 0.6, 1.0.
λ = 1.0 , OS < 10%, Model: Method 11 (Pomerleau and Poulin,
2004).
Appropriate for
Tm
T
‘small τ m ’.
m
K (T + τ )
λTm
K m (1 + λτ m )
m
CL
m
Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
0.44Tm
Kmτm
Tm
0.04 ≤ τ m Tm ≤ 1.4 ;
deduced from graph.
0.43Tm
K mτm
Tm
1% overshoot – servo;
τm Tm > 0.2 .
1
Km
Tm
53
undefined
1 (x 2 τm )
G c = 1 Tis
Keviczky and Csáki
x 2 coefficient values (estimated from graph):
(1973);
0%
5%
10%
15%
20%
OS values in first τ m Tm OS
row; τ m Tm values 0.1
30
22
16
12
10
0.2
18
11
9
7.5
6
in first column;
0.5
8
6
5
4
3.5
Km = 1.
1.0
5
4
3.5
3
2.5
Model: Method 1
2.0
4
3
2.5
2.2
2
5.0
3
2.4
2
1.8
1.6
10.0
2.5
2.1
1.8
1.7
1.5
5% overshoot – servo
0.52Tm K m τm
Tm
0.04 ≤ τm Tm ≤ 1.4
– Smith et al. (1975).
Model: Method 1. Also given by Bain and Martin (1983).
1% overshoot – servo
– Smith et al. (1975).
Model: Method 1
Bain and Martin
(1983).
Model: Method 1
Kc
Ti
‘Very conservative
tuning for small
delay’.
Model: Method 1
0.5Tm K m τm
Tm
OS = 10%
0.5Tm K m τm
Tm
Model: Method 1
Kuwata (1987).
Suyama (1992).
Model: Method 1
5% overshoot – servo
– Smith and Corripio
(1997), p. 346.
Vítečková (1999),
Vítečková et al.
(2000a)
(Model: Method 9 –
Vítečková et al.,
2000b).
45
Kc =
45
φ m = 60 0 ; 0.25 ≤ τm Tm ≤ 1 (Voda and Landau, 1995).
x1Tm K m τm
x1
OS (%)
0.368
0.514
0.581
0.641
0
5
10
15
Tm
Coefficient values:
OS (%)
x1
0.696
0.748
0.801
0.853
20
25
30
35
x1
OS (%)
0.906
0.957
1.008
40
45
50
0.4(Tm + τm )
0.5
−
, Ti = 1.25x1 - 0.25(Tm + τm ) , with
K m (Tm + τm − x1 ) K m
x1 =
(Tm + τm )2 − 0.267τm 2 (3Tm + τm ) .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
54
Rule
Okada et al. (2006).
Model: Method 1
x1
Comment
Kc
Ti
x1Tm K m τm
Tm
ξ
Coefficient values:
ξ
x1
ξ
x1
x1
ξ
x1
ξ
0.368 1.0 0.454 0.8 0.578 0.6 0.765 0.4 1.06 0.2
0.407 0.9 0.510 0.7 0.661 0.5 0.896 0.3 1.29 0.1
Mann et al. (2001).
0.51Tm K m τm
Tm
0 < τm Tm < 2
Model: Method 37 or
46
Ti
Kc
Method 41.
Closed loop response overshoot (step input) < 5%.
47
undefined
G c = 1 (Tis )
Ti
Vítečková and
48
Ti
Kc
Víteček (2002).
Model: Method 1
For 0.05 < τ T < 0.8 , T = T ; overshoot is under 2%
m
m
i
m
(Vítečková and Víteček, 2003).
Pinnella et al. (1986).
Model: Method 24
46
undefined
49
Gc = Ki s
Ki
Critically damped servo response.


1 
T
Tm 
Tm
0.56 + 1.02 m −
− x1  + x 2  ,
1.0404

τm
τm 
τm
Km 




 0.56 + 1.02(Tm τm ) − (Tm τm )(1.0404(Tm τm ) − x1 ) + x 2 
τ
 Tm ;
Ti =  m − 1 
  0.04 − 1.02(Tm τm ) + (Tm τm )(1.0404(Tm τm ) − x1 ) + x 2 
 Tm
x 1 = 0.4, x 2 = 3.68, 1 < τ m Tm < 2 ; x 1 = 0.8, x 2 = 3.28, 2 < τ m Tm < 4 ;
Kc =
x 1 = 1.2, x 2 = 2.88, 4 < τ m Tm .
47
48
Ti = −
Km
2
2

 1+ 0.25 τ m  − 0.5 τ m −1
 1
T 
0.25
1 0.5    Tm 
Tm
Tm
e
 m


+
−
−
+
−
+
0
.
25
0
.
5


2
2




τ
τ
τ
T
τ
T
  m
m
m 
m
m
 m


Kc = −
[
]
1
τm Tm x12 + (2Tm + τm )x1 + 1 e τ m x1 ,
Km
x1 = −
49
Ki =
.
1
4K m τ m 2
2−
τm  τm 

+
Tm  Tm 
2
2
0.5
−
+
τ m Tm
2
τm
2
+
0.25
Tm
2
τ T x 2 + (2Tm + τm )x1 + 1
, Ti = − m m2 1
.
x1 (τm Tm x1 + Tm + τm )

τm
 τm  
2
2
 0.5  2 − Tm +  Tm  

τ 
τ
 

Tm  2 − m +  m  + 1 e 
.


Tm  Tm 


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Schneider (1988),
Bekker et al. (1991),
Khan and Lehman
(1996).
Model: Method 1
Bekker et al. (1991).
Model: Method 1;
ξ = 1 ; Tv = valve
opening time.
0.368Tm K m τm
Tm
ξ =1
0.403Tm K m τm
Tm
ξ = 0.6
1.571Tm K m τm
Tm
ξ = 0.0
0.368Tm
K m τm
Tm
Regulator – Gorecki
et al. (1989).
Model: Method 1
Hang et al. (1991).
Model: Method 1
50
Kc =
τm > 0.5Tm or
T v < 20Tm .
τm < 0.5Tm or
50
Kc
51
Kc
Tv > 20Tm .
Ti
Pole is real and has
maximum attainable
multiplicity.
Ti
0.16 ≤ τm Tm < 0.96
Ti
undefined
53
55
52
Kc
Servo response: 10% overshoot, 3% undershoot.
0.311Tm
.




 τm 
T 
 Tv 
 − 0.0760 ln  v  − 0.2685 
 + 0.1026 
 0.1092 ln 
 0.0121 ln 

T 

T
T
 τm  
 m
 m
 m
  Tv  


K m τm 

 Tm 


τ 
 m
2
2
 2 +  τ m  − 2 − τ m

 2T 
 τm 
2 Tm 
2 Tm
51
 − 1 e  m 
Kc =
2 + 
,



2Tm 
K m τm



2
52
G c = 1 (T i s ) , Ti =
 τ 
1 +  m 
 2Tm 
.
Ti = τm
2
3
2
2
 τm   τ m   τm    τ m  
 τm 
+
 +
 − 2 + 
  2+

3 + 
 



 
 2T 
 2Tm   Tm   2Tm    2Tm  
 m
0.5K m τm
.
2


 1 + (τ 2T )2 − 1 e
m
m


 1+  τ m  −1− τ m 
 2T 

2 Tm 
 m





  τm
 
 12 + 2  11(τm Tm ) + 13  
 11
+ 13  


(
)
τ
−
37
T
4
4
5
T

m
m

 K , T = 0.2
53
m

 + 1Tu .
Kc = 
 u i
 15  τm

6
 11(τm Tm ) + 13  
− 4  
  37
+ 14
15




 
  Tm
 37(τm Tm ) − 4  

b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
56
Rule
Kc
McAnany (1993).
Model: Method 29
Sklaroff (1992),
Åström and Hägglund
(1995).
54
0.5Tm K m τm
55
Kc
2
56 x 2 Tm τ m
2K m
Kamimura et al.
(1994).
Model: Method 1;
servo tuning.
Zhang (1994), Smith
(2002).
Model: Method 1
Kc =
Kc
Ti
Comment
Ti
TCL = 1.67Tm
Model: Method 32 or
3
Method 33.
T
m
K m (1 + 3τ m Tm )
pp. 250–251, 253. Honeywell UDC 6000 controller.
0.5556Tm K m τm
5τ m
τm Tm < 0.33
Fruehauf et al.
(1993).
Model: Method 2
Nomura et al. (1993).
Model: Method 1
Gonzalez (1994) –
pp. 114–115.
Model: Method 1
54
17-Mar-2009
Tm
τm Tm ≥ 0.33
Ti
0.01 ≤ τm Tm ≤ 10
0.5τm
δ0 = 0.21, 0.5, 0.7
(pp. 142–143).
57
Kc
Ti
10% overshoot.
58
Kc
Ti
0% overshoot.
59
Kc
Ti
‘Quick’ response:
‘negligible’
overshoot.
Tm K m τm
Tm
‘Good’ servo response; τ m is ‘small’.
(1.44Tm + 0.72Tm τm − 0.43τm − 2.14) , T = K m (5.56 + 2τm + τm 2 ) .
(
K m 0.72τm + 0.36τm 2 + 2
)
i
4Tm + 1.28τm − 2.4
0.5x1 − 0.1(Tm + τm )
55
Kc =
, Ti = 1.25x1 − 0.25(Tm + τm ) , with
K m (Tm + τm − x1 )
2
2
x1 = 0.2τm + 0.4τmTm + Tm .
56
x2 = −
2x1
+
τm
4 x12
τm
2
+
2
1
, x1 =
,
Tm τm
1 + (2π loge [b a ])2
b a = desired closed loop response decay ratio.
57
Kc =
58
Kc =
59
Kc =
0.5(Tm + τm )
0.5τm (2Tm + τm ) + 0.10
, Ti = Tm + τm −
.
K m [0.5τm (2Tm + τm ) + 0.10]
Tm + τm
0.375(Tm + τm )
0.5τm (2Tm + τm ) + 0.0781
, Ti = Tm + τm −
.
K m [0.5τm (2Tm + τm ) + 0.0781]
Tm + τm
0.425(Tm + τm )
0.5τm (2Tm + τm ) + 0.083
, Ti = Tm + τm −
.
K m [0.5τm (2Tm + τm ) + 0.083]
Tm + τm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ti
Comment
Kc
Ti
ξ = 0.9;
0.2 ≤ τ m Tm ≤ 1 .
0.5 K m
0.5(Tm + τ m )
‘Normal tuning’.
1 Km
0.7(Tm + τ m )
‘Rapid tuning’.
Kc
Davydov et al.
(1995).
Model: Method 6
Kuhn (1995).
Model: Method 17
Khan and Lehman
(1996).
Model: Method 1
Abbas (1997).
Model: Method 1
60
61
Kc
Ti
0.01 ≤ τm Tm ≤ 0.2
62
Kc
Ti
0.2 ≤ τm Tm ≤ 20
63
Kc
Tm + 0.5τ m
0 ≤ V ≤ 0.2 ;
0.1 ≤ τm Tm ≤ 5.0 .
τm
Tm
Model: Method 1;
ξ = 0.707 64.
Valentine and
Chidambaram
(1997a).
Bi et al. (1999).
τm 
1 
0.43 − 0.97

Km 
Tm 
0.5064Tm K m τm
Tm
Model: Method 16
Bi et al. (2000).
0.5064Tm K m τm
1.9747 K m Tm
Model: Method 16
Ettaleb and Roche
(2000).
1 Km
Tm + τ m
Model: Method 34;
TCL = Tm + τ m .
Ti
x1 > 0
Prokop et al. (2000).
Model: Method 1
60
Kc =
61
Kc =
65
Kc
0.413 + 0.8


τ
1
, Ti =  0.153 m + 0.362 Tm .


T
τm
m


K m 1.905
+ 0.826 
Tm


τ 
Tm  0.3852 0.723
+
− 0.404 m2  ,
K m  τm
Tm
Tm 
Ti = τm
− 0.404τm 2 + 0.723Tm τm − 0.3852Tm 2
− 0.525τm 2 + 0.4104Tm τm − 0.00024Tm 2
62
Kc =
0.404Tm + 0.256τm − 0.1275 Tm τm
Tm  0.404 0.256 0.1275 
+
−
, T = τm
.
 i
K m  τm
Tm
τ
T
0.0808Tm + 0.719τm − 0.324 Tm τm
m m 

63
Kc =
0.148 + 0.186(Tm τm )
.
K m (0.497 − 0.464V 0.590 )
64
±1% TS = 2.5Tm , 0.1 ≤ τ m Tm ≤ 0.4 ; ±1% TS = 5Tm , 0.5 ≤ τ m Tm ≤ 0.9 .
65
1.045
Kc =
57
(
2
)
Tm τm Tm x1 + 2Tm x1 − 1
, Ti =
K m (τm + Tm )(1 + x1τm )

K m 2 τ m 2  K m 2
x1 +
+ Tm  x1 − 1


Tm
 Tm

x1 (Tm + τ m )
.
.
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
58
Rule
Kc
Chen and Seborg
(2002).
Chidambaram (2002),
p. 155.
Skogestad (2003).
Model: Method 56
Comment
Kc
Ti
Model: Method 1
67
Kc
0.413Tm + 0.8τm
Model: Method 1
0.5Tm K m τm
min (Tm ,8τ m )
Ti = 8τm (Faanes and
Skogestad, 2004).
0 ≤ τm Tm ≤ ∞
Kc
Ti
Tm (x1K m τm )
Tm
68
69
Gorez (2003).
Model: Method 1
Ti
66
Klán (2000).
Model: Method 18
66
17-Mar-2009
70
(1 − x 2 )τm + Tm
Tm
x1K m τm
τm ≤
τm
≤1
τ m + Tm
2
Kc =
T τ + 2Tm TCL − TCL
1 Tm τm + 2Tm TCL − TCL 2
,
, Ti = m m
2
Tm + τm
Km
(TCL + τm )
Tise − τ m s
 y
0 < TCL < Tm + Tm 2 + Tm τ m ,  
.
=
2
 d desired K c (TCLs + 1)
67
2
 τm  
1 
τm
.


Kc =
3.113 − 5.73
+ 3.24
Km 
Tm
Tm  



68
Kc =
2



1 
2τm (Tm + τm )
 , T = τm + Tm 1 + 1 + 2 τm   − τ .
1−
i
τ +T   m

K m  1 + 1 + 2τ 2 (τ + T )2 
2
m 
 m
m
m
m




69
x1 =
2
2

1
1.5M s − 2  τm  
5τ m



3−
+
2




M s (M s − 1) 0.32M s (M s − 1)  τm + Tm 
(
)
T
M
τ
+
m
m
s 

[
]


2.5τ m
0.5
1 −

−

M s (M s − 1) 
(
)
T
M
τ
+
m
m
s


(
2 M s 2 −1
)
; 0≤
2
2

 τm
 
 τm


− 0.4 M s  

− 0.4 M s 

0.1M s 
 τ + Tm
 
 τ m + Tm
 .
70
x1 =
7.5 −  m
  , x 2 = 1 − 0.5

Ms −1 
1 − 0.4 M s
1 − 0.4 M s


 






 

τm
≤ τm .
τ m + Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Klán and Gorez
(2005a).
Klán and Gorez
(2005b).
71
Kc
Ti
Model: Method 1
72
Kc
Ti
Model: Method 1;
0 ≤ τm Tm ≤ ∞ .
Skoczowski (2004).
73
Kc
Tm
Model: Method 1
74
Ti
Model: Method 1;
0.1 ≤ τm Tm ≤ 1 .
Sree et al. (2004),
Chidambaram et al.
(2005).
Foley et al. (2005).
0.9179  Tm 


K m  τm 
Haeri (2005).
Model: Method 1
McMillan (2005),
pp. 60–61.
Model: Method 13
71
Kc =
0.14Tm
e
K m τm
0.8915
75
Kc
Ti
Model: Method 1
76
Kc
0.96Tm + 0.46τ m
0 ≤ τm Tm ≤ 4
0.25 K m
Tm + 0.25τ m
τm Tm > 1
2

 τm  
τm
1.96
 
+1.65


τ m + Tm
 τ m + Tm  

, Ti = 5.38τ m e
2

 τm  
τm
 − 3.94
 
+1.80


τ m + Tm
 τ m + Tm  

59
.
2
0.5  
τm  
(τm + Tm )2 + Tm 2 .


T
=
Kc =
1 + 1 −
,
i
K m   τm + Tm  
2(τm + Tm )


2T
ln (1 OS)
73
K c ≤ m 1 + 2x12 − 2 x1 1 + x12  , with x1 ≈
.
2
2
τm 

π + [ln (1 OS)]
72
74
2


 τm 
τ
τm

 , 0.1 ≤ m ≤ 0.4 ;


−
+
Ti = Tm 10.59
2
.
3588
0
.
8985

T
T
T


m
m
 m


4
3
2


τ 
τ 
τ 
τ
Ti = Tm 0.7719 m  − 3.6608 m  + 6.5791 m  − 5.1652 m + 2.8059 ,
Tm


 Tm 
 Tm 
 Tm 


0.4 ≤
(1 + 2T ω ) 1 + T ω , T =
1 + 2T ω
)] .
ω [T + τ (1 + T ω
λK ω [T + τ (1 + T ω )]
2
75
Kc =
m
Kc =
2
m
2
90 0
m
m
m
2
90 0
2
m
76
2
90 0
2
i
90 0

1 
6.282
.
0.407 +
1.195 
K m 
1 + 14.956(τm Tm )

2
m
90 0
m
m
2
90 0
2
m
2
90 0
τm
≤ 1.5 .
Tm
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
60
Rule
Trybus (2005).
Model: Method 1
x1
Kc
Ti
Comment
0.6Tm
K m τm
0.8τm + 0.5Tm
x1Tm K m τm
Tm
Servo response: small
overshoot, short
settling time. 77
τm Tm ≤ 2
OS
x1
OS
x1
OS
OS
x1
x1
OS
x1
OS
0.34 0% 0.54 5% 0.64 10% 0.74 15% 0.82 20% 0.90 25%
x1 K m
0.5τm
τm Tm ≥ 2
x1
Xu et al. (2005).
OS
x1
OS
x1
OS
OS
x1
x1
OS
x1
OS
0.17 0% 0.27 5% 0.32 10% 0.37 15% 0.41 20% 0.45 25%
Model: Method 1
(0.3K m τm ) Tm
3.33τm
0.4 K m
79
Ti
Kukal (2006).
Model: Method 1
undefined
80
Ti
40% overshoot; unit
step servo response.
0% overshoot; unit
step servo response.
0.01 ≤ τm Tm ≤ ∞
Ti
0.01 ≤ τm Tm ≤ ∞
Mesa et al. (2006).
Model: Method 1
Tm + 0.5(1 − x1 )τm
K m τm (x1 + 1)
Tm + 0.5(1 − x1 )τm
Sample x1 values:
0.3, 0.5, 0.9.
78
Cuesta et al. (2006).
Model: Method 1
81
Ti
Kc
Kc
77
The author quotes the following source for this rule: Findeisen, W. (Ed.), Control Engineering
Handbook (2nd Edition). WNT, Warsaw, 1974 (in Polish).
1 100τm + 6.25Tm
T (100τm + 6.25Tm )(1000τm + 463Tm )
78
Kc =
, Ti = m
.
(100τm + 46.25Tm )(5.2τm + 684Tm )
K m 100τm + 46.25Tm
79
Ti =
0.4Tm (1000τm + 463Tm )
.
(5.2τm + 684Tm )
80
Gc =
2


T 
T 
1
, Ti = K m 2 m  + 4 m  + 1  e − x1 , x1 =
 τ

Tis
 τm 
  m 

81
Kc =
2


T 
1   Tm 
 + 1 − 2 m   e x 1 , x1 =
8
 τ 
K m   τm 
 m 


4(Tm τm )2 + 1 − 1
2(Tm τm )
8(Tm τm )2 + 1 − 1
2(Tm τm )
3
−1 .
−2;
2
1.5
T 
T 
T 
 T

24 m  + 4 m  + 8 m  + 1 +  8 m + 1
τ
 τm 
 τm 
 τm

Ti = τm  m 
3
T

8 m + 1
τ
 m

.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Skogestad (2006a).
Skogestad (2006b).
Model: Method 1
Visioli (2006),
p. 157.
Vítečková (2006).
Hougen (1979),
p. 335.
Model: Method 1;
coefficients of K c
estimated from
graphs.
Latzel (1988).
Gp = Gm ;
Model: Method 1
Latzel (1988).
Gp =
K pe
− sτ p
(1 + sTp1 ) 2
;
Model: Method 2
Latzel (1988).
Gp =
K pe
− sτ p
(1 + sTp1 )3
;
Model: Method 2
82
Kc ≥
∆d 0
∆y max
82
Kc
1
61
Comment
Ti
min[Tm ,4(TCL + τm )]
Model: Method 1
min[Tm , 4Tm K m ]
Slow control; ‘acceptable’ disturbance rejection performance.
Model: Method 1
0.3Tm K m τm
min[Tm ,8τm ]
≥ 0.368Tm K m τm
Model: Method 9
Tm
Direct synthesis: frequency domain criteria
Maximise crossover
x1 K m
Tm
frequency.
τ m Tm
x1
τ m Tm
x1
τ m Tm
x1
0.1
7.0
0.2
3.5
0.3
2.2
0.4
1.8
0.785Tm K m τm
0.5
0.6
0.7
1.4
1.1
1.0
0.8
0.9
1.0
0.8
0.75
0.7
Tm
φm = 450
0.524Tm K m τm
Tm
φm = 600
0.45Tm
K m (τm + 0.03Tm )
0.57Tm
φm = 450
0.30Tm
K m (τm + 0.03Tm )
0.57Tm
φm = 600
0.42Tm
K m (τm + 0.10Tm )
0.53Tm
φm = 450
0.28Tm
K m (τm + 0.10Tm )
0.53Tm
φm = 600 ; also given
by Klein et al. (1992).
, τm ≤ TCL ≤
Tm ∆y max
− τm ; ∆d 0 = maximum magnitude of a
K m ∆d 0
sinusoidal disturbance over all frequencies, ∆y max = maximum controlled variable change,
corresponding to the sinusoidal disturbance.
b720_Chapter-03
Rule
Kc
Regulator – Gorecki
et al. (1989).
Model: Method 1
Regulator – Gorecki
et al. (1989).
Model: Method 1
Somani et al. (1992).
Model: Method 1;
suggested A m :
1.75 ≤ A m ≤ 3.0 .
Kc =
Comment
Ti
Kc
Ti
undefined
2K m (τm + Tm )
83
x 2τm
x 1 K m A m 84
τ m Tm
x1
0.0375
0.1912
0.3693
0.5764
0.8183
1.105
1.449
36.599
7.754
4.361
3.055
2.369
1.950
1.672
Coefficient values:
x2
τ m Tm
3.57
3.33
3.13
2.94
2.78
2.63
2.50
x1
1.869
2.392
3.067
3.968
5.263
7.246
10.870
1 1 + 3(Tm τm ) + 6(Tm τm )2 + 6(Tm τm )3
,
Km
4 1 + 3(Tm τm ) + 3(Tm τm )2
[
]
τm
0.9806
< 1 , Kc ≈
Tm
K mAm
1 + 3(Tm τm ) + 6(Tm τm )2 + 6(Tm τm )3
[
3 1 + 2(Tm τm ) + 2(Tm τ m )2
4
( 1.886 + (4τ T ) − 1.373)
2
m
Kc =
]
.
+ 1 or
m
2
Kc ≈
85
x2
1.476
2.38
1.333
2.27
1.226
2.17
1.146
2.08
1.086
2.00
1.042
1.92
1.011
1.85
0.1 ≤ τm Tm ≤ 1
Ti
Kc
Ti = τm
For
Low frequency part
of magnitude Bode
diagram is flat.
G c = 1 (Tis )
Low frequency part of the magnitude Bode diagram is flat.
85
84
FA
Handbook of PI and PID Controller Tuning Rules
62
83
17-Mar-2009
2
T 
T 
τ
0.9806
0.9806
1 + 1.886 m  ; for m > 1 , K c ≈
1 + 8.669 m  .
Tm
KmAm
KmAm
 τm 
 τm 
5Tm
1 
Tm 
.
0.80 + 1.33  , Ti =
K mAm 
τm 
1.04[0.80 + 1.33(Tm τm )]2 − 1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
86
Lee et al. (1992).
Model: Method 1
x1 = 0.5 + 0.207
Hang et al. (1993a),
(1993b), pp. 61–65.
O’Dwyer (2001a).
Model: Method 1;
τm
> 0.3
Tm
(Yang and Clarke,
1996).
O’Dwyer (2001a).
Model: Method 1
2.42
86
Kc =
Kc
Ti
Comment
Ti
M s = 1.25
τm
, τm Tm < 2.42 ; x1 = 1 , τm Tm ≥ 2.42 .
Tm
ωp Tm
87
Model: Method 37
or Method 41.
Ti
KmAm
x 1Tm
K mτm
A m = π 2x 1 ;
Tm
φ m = π 2 − x 1 .88
Representative results
φm
x1
x1
Am
Am
φm
1.048
1.5
30
0
0.524
3
60 0
0.7854
2
450
0.393
4
x1
τm
Tm
Tm K u Tu
2
2
Tu + 4 π Tm
2
63
67.50
A m = π 2x 1 ;
φm = π 2 − x 1 .

τ 
τm
τ
T  τ
− 4 + 1.21 m + 4.4x1 m  m + 2 − 2.2 x1 m 

τm  Tm
Tm
Tm
Tm 

,

τm
τm 

+ 1.21
K m 4 + 4.4 x1

Tm
Tm 


τ 
τm
τ
T  τ
− 4 + 1.21 m + 4.4 x1 m  m + 2 − 2.2 x1 m 



τm  Tm
Tm
Tm
Tm 

Ti =
.
τm 
Tm  τm
+ 2 − 2.2 x1
0.96 + 2.42
τm  Tm
Tm 
τ
1
87
Ti =
; m ≤ 0.3 (Yang and Clarke, 1996).
2
Tm
4ωp τ m
1
2ωp −
+
π
Tm
2.42
88
Given A m , ISE is minimised when φ m = 68.8884 − 34.3534 A m + 9.1606
τm
Tm
for servo tuning (Ho et al., 1999); 2 ≤ A m ≤ 5 ; 0.1 ≤ τ m Tm ≤ 1 ;
Given A m , ISE is minimised when φ m = 45.9848A m 0.2677 (τ m Tm )0.2755 for
regulator tuning (Ho et al., 1999); 2 ≤ A m ≤ 5 ; 0.1 ≤ τ m Tm ≤ 1 .
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
64
Rule
Kc
x1
Am
0.50
3.14
0.61
2.58
0.67
2.34
0.70
2.24
Chen et al. (1999a).
r1ωr Tm K m
Symmetrical
optimum principle –
Voda and Landau
(1995).
Model: Method 1
90
φm
Ms
61.4
0
1.00
0.72
2.18
48.7
0
1.30
55.0
0
1.10
0.76
2.07
46.50
1.40
51.6
0
1.20
0.80
1.96
0
1.50
50.0
0
1.26
44.1
Model: Method 1
3.5 G p ( jω1350 )
4.6
ω1350
τm
≤ 0.1
Tm
1
4
2.828 G p ( jω1350 )
ω1350
89
0.1 <
τm
≤ 0.15
Tm
Kc
Ti
0.15 < τm Tm ≤ 1
0.1751
1
ω1350
τm
> 2 ; A m > 3.
Tm
G p ( jω1350 )
1
ωr − 1.273τm ωr + (1 Tm )
Kc =
φm
Ti
90
Ti =
Tm
Coefficient values:
Ms
x1
Am
1
Friman and Waller
(1997).
Model: Method 1
Comment
Ti
x1Tm K m τm
Chen et al. (1999b).
Model: Method 1
89
FA
2
1
4.6 G p ( jω1350 ) − 0.6K m
, ωr =
, Ti =
π 2 r1 A m − 1
.
4 τ m (r1 A m )2 − 1
1.15 G p ( jω1350 ) + 0.75K m
[
ω135 0 2.3 G p ( jω1350 ) − 0.3K m
].
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Schaedel (1997),
Henry and Schaedel
(2005) – optimal
servo response;
T1 , T2 given in
footnote 91.
Ti
0.5Ti
K m (T1 − Ti )
T1 − 2T2
0.375Ti
K m (T1 − Ti )
T1 −
91
2
T1 =
Tm
1 + 3.45
T1 =
τ am
2
T2
T1
Ti
2
2
4T2 
T 
1 − 2 22 
T1 
T1 
2
 3.86T2 2  1.46T2 2 
 Ti 
1 
1 −


0
.
69
−
1
 
T1 

T12 
Km 
T
 2


93
Kc
94
Kc
Tm
+ τ m , T2 2 = 1.25Tm τ am +
1 + 3.45
2
+ τ m , T2 = Tm τ am +
a
Tm − 0.7 τ m
0.7Tm
2
τ am
93
94
Minimum ITAE.
Minimum φ m = 50 0 .
Tm
τ m + 0.5τ m 2 , 0 <
τma
≤ 0.104 ;
Tm
Tm
+ 0.5τ m 2 ,
a
Tm − 0.7 τ m
2
92
‘Normal’ design –
Butterworth filter.
2
 3.11T2 2  1.43T2 2  ‘Sharp’ design –
1   Ti 
1 −
 Tschebyscheff filter
0.7   − 1
2
T1 
T1 
K m   T2 
(0.1 dB).


Tm
0.7Tm
92
2

1   Ti 

0
.
5
  − 1

Km
T
  2

Leva (2001).
Model: Method 1
91
‘Normal’ design –
Butterworth filter.
Model: Method 25
‘Sharp’ design –
Tschebyscheff filter
(0.5dB).
Model: Method 25
Minimum ITAE
(Henry and Schaedel,
2005).
Model: Method 26
2
2
0.375Ti
K m (T1 − Ti )
Henry and Schaedel
(2005) – optimal
regulator response.
Model: Method 26;
T1 , T2 given in
footnote 91;
τam Tm < 0.2 .
Comment
Kc
T 
Ti = −0.64T1 + 1.64T1 1 − 1.2 2  .
 T1 
 0.6981Tm

20Tm
20
.
K c = min 
,
 , ωc =
τ
+
5Tm
K
τ
K
(
τ
+
5
T
)
m
m m
m m
m 

 0.6981Tm

50Tm
20
.
K c = min 
,
 , ωc =
τ
+
5Tm
m
 K m τm K m (τm + 5Tm ) 
τ am
> 0.104 .
Tm
65
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
66
Rule
Kc
Potočnik et al.
(2001).
Model: Method 48
Cluett and Wang
(1997), Wang and
Cluett (2000), p. 177.
Model: Method 1;
τ
0.01 < m ≤ 10 .
Tm
Ti
Comment
95
Kc
Ti
τm Tm ≤ 0.1
96
Kc
Ti
0.1 < τm Tm < 0.15
97
Kc
Ti
0.1 < τm Tm < 1
98
Kc
Ti
99
Kc
Ti
100
Kc
Ti
7.50 ≤ A m ≤ 8.28 ,
78.50 ≤ φm ≤ 79.70 .
4.35 ≤ A m ≤ 5.02 ,
70.7 0 ≤ φm ≤ 74.00 .
TCL = 1.33τ m ,
3.29 ≤ A m ≤ 3.89 ,
64.40 ≤ φm ≤ 70.60 .
101
95
Kc =
2.74 ≤ A m ≤ 3.30 ,
Ti
Kc
57.80 ≤ φm ≤ 68.50 .
0.5
,

G p ( jω1350 ) 

G p jω135 0 1.14 + 13.24
Km




(
)
(
96
Kc =
(
K m − 2 G p jω1350
[
)
(
)
2

G p jω1350
G p jω1350 

+ 17.40
Ti =
1 + 2.48
.
2

ω135 0 
Km
Km


4
)
2K m K m − 2 G p ( jω135 0 )
(
]
, Ti =
[K + 2 G (jω ) ][2 G (jω ) − K ] .
ω
G ( jω ) [ G ( jω ) − K ]
m
p
135 0
)
p
p
135 0
135 0
p
m
135 0
m
135 0
(
)

G p jω135 0 
G jω 0 
2K m 
 , Ti = 1 0.75 + 1.15 p 135  .
0.75 + 1.15


Km
Km
ω135 0 
ω135 0 




0.099508τm + 0.99956Tm
0.019952τm + 0.20042Tm
98
τm , TCL = 4τ m .
Kc =
, Ti =
K m τm
0.99747 τm − 8.7425.10−5 Tm
97
Kc =
99
Kc =
0.16440τm + 0.99558Tm
0.055548τm + 0.33639Tm
τm , TCL = 2τ m .
, Ti =
K m τm
0.98607 τm − 1.5032.10− 4 Tm
100
Kc =
0.20926τm + 0.98518Tm
0.092654τm + 0.43620Tm
τm .
, Ti =
K m τm
0.96515τm + 4.2550.10− 3 Tm
101
Kc =
0.24145τm + 0.96751Tm
0.12786τm + 0.51235Tm
τm , TCL = τ m .
, Ti =
K m τm
0.93566τm + 2.2988.10− 2 Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
2.39 ≤ A m ≤ 2.93 ,
Cluett and Wang
(1997), Wang and
Cluett (2000) –
continued.
102
Kc
Ti
103
Kc
Ti
38.10 ≤ φm ≤ 66.30 .
Modulus optimum
principle – Cox et al.
(1997).
Model: Method 20
Smith (1998).
Model: Method 1
104
Kc
Ti
τm Tm ≤ 1
0.5Tm K m τm
Tm
τm Tm > 1
0.35
Km
0.42τ m
6 dB gain margin –
dominant delay
process.
Tm
1.3 ≤ M s ≤ 2
Wang et al. (2000a).
Model: Method 37 or
38.
105
Kc
67
49.60 ≤ φm ≤ 67.10 .
2.11 ≤ A m ≤ 2.68 ,
102
Kc =
0.26502τ m + 0.94291Tm
0.16051τm + 0.57109Tm
τ m , TCL = 0.8τ m .
, Ti =
K m τm
0.89868τ m + 6.9355.10 − 2 Tm
103
Kc =
0.19067 τm + 0.61593Tm
0.28242τm + 0.91231Tm
, Ti =
τm , TCL = 0.67τ m .
K m τm
0.85491τm + 0.15937Tm
104
Kc =
0.5  Tm 3 + Tm 2 τ m + 0.5Tm τ m 2 + 0.167 τm 3 
,
2
2
3

K m 
Tm τm + Tm τm + 0.667 τm

 T 3 + Tm 2 τm + 0.5Tm τm 2 + 0.167 τm 3 
.
Ti =  m
2
2


Tm + Tm τm + 0.5τm


105

1.508  Tm
K c = 1.451 −
.

Ms  K m τm

b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
68
Rule
Kc
Wang and Shao
(2000a).
Model: Method 1
Chen and Yang
(2000).
106
0.7Tm K m τm
Comment
Ti
1.5 ≤ x1 ≤ 2.5
Model: Method 8
Tm
M s = 1.26 ; A m = 2.24 ; φ m = 50 0 .
0.25Tm K m τm
0.8Tm
0.2 ≤ τm Tm < 1
0.1Tm 0.15
+
K m τm K m
0.3τ m + 0.5Tm
τm
>1
Tm
0.15 K m
0.3τ m
τm Tm → ∞
Hägglund and Åström
(2002).
Model: Method 1
Leva et al. (2003).
Model: Method 1
Kc =
Kc
Ti
A m > x1 ; φm > cos −1 (1 x1 ) (Wang and Shao, 1999b).
Hägglund and Åström
(2002).
Model: Method 5;
M s = 1.4 .
106
17-Mar-2009
107
Kc
Ti
108
Kc
Tm
M s = 1.4 ;
τm
≥ 0.5 .
Tm

1
1 
,
f 2 (ω90 0 ) −
λf1 (ω90 0 ) 
ω90 0 
f1 ( ω900 ) =
(1 + ω
Km
2
90
0
Tm
)
2 1.5
[(T + {1 + ω
m
−
f 2 ( ω900 ) = −
1
1 + ω900
2
[(T + {1 + ω
T
m
2
2
900
Tm 2 }τ m ) sin( − ω900 τ m − tan −1 ω900 Tm )
(1 + ω
2
900
Km
2
Tm 2
900
)
1.5
[ω T cos(−ω τ − tan ω T )],
2
900
m
900
2
−1
m
Tm }τ m ) cot( − ω900 τ m − tan −1 ω900 Tm )
m
[
2
2
]
2
2
2
2
m
ω900 Tm 2
1 + ω900 2 Tm 2
;
2
ω90 0 Tm + (1 + ω90 0 Tm )τm cos θ + (1 + 2ω90 0 Tm ) sin θ
3
900
]
−
Ti =
]
2
− ω90 0 Tm cos θ + ω90 0 [Tm + (1 + ω90 0 Tm )τm ] sin θ
,
θ = − ω900 τ m − tan −1 ω900 Tm .
107
108
Kc =
6.8τ m Tm
T 
1 
 0.14 + 0.28 m  , Ti = 0.33τ m +
.


Km 
τm 
10τ m + Tm
 T (0.5π − φm ) 5Tm 
K c = minimum  m
,
 ; minimum φ m , maximum ωc .
K m τm
K m TCL 

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Leva et al. (2003) –
continued.
Mataušek and
Kvaščev (2003).
Model: Method 1
Kristiansson and
Lennartson (2002b).
Model: Method 1
110
Comment
Kc
Tm
minimum φ m = 50 0 .
x 1Tm
K mτm
Tm
x 1 = 0.5π − φ m .110
109
Kristiansson (2003).
Model: Method 12
Kristiansson and
Lennartson (2006).
109
Ti
Kc
111
Kc
0.57Tm + 0.29τm
0.2 ≤ τm Tm ≤ 5
112
Kc
Ti
τm Tm < 1
113
Kc
0.60Tm + 0.28τm
τm Tm ≥ 1
114
Kc
1.25 Tm
1.6 ≤ M s ≤ 1.9
115
Kc
1.4 τ m + 0.8Tm
τm Tm < 0.2
69
Model: Method 12; 1.65 ≤ M max ≤ 1.80 .
 0.698Tm

τm + 5Tm
5x1Tm
K c = minimum 
,
, 4 ≤ x1 ≤ 10 .
 , TCL =
x1
 K m τm K m (τm + 5Tm ) 
‘Acceptable’
values
of
0
x1 :
0.5 ≤ x 1 ≤ 3 .
‘Recommended’
values
of
x1 :
0
0.32 ≤ x 1 ≤ 0.54 ( 59 ≤ φ m ≤ 72 ). Choose x 1 = 0.32 when large variations in process
parameters are expected; choose x 1 = 0.54 to give 6% ≤ OS < 13% and 1.4 < M s ≤ 2 .
111
112
113
Kc =
0.57(0.57 + 0.29[τm Tm ])
, 1.65 ≤ M max ≤ 1.75 .
K m ([τm Tm ] − 0.055)
2

 τm  
0.57
τm

,


Kc =
0.37 + 0.94
− 0.42
K m ([τm Tm ] − 0.055) 
Tm
Tm  



Kc =
0.57(0.60 + 0.28[τm Tm ])
.
K m ([τm Tm ] − 0.055)

ω150 0 
0.075
.
 0.2 +
K m 
K150 0 K m + 0.05 
0.57(0.8Tm + 1.4τm )
115
Kc =
.
K m Tm ([τm Tm ] − 0.055)
114
Kc =
[
]
2

τ  
τ
Ti = Tm 0.37 + 0.94 m − 0.42 m   .
Tm

 Tm  

b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
70
Rule
Kc
Kristiansson and
Lennartson (2006) –
continued.
Bai and Zhang
(2007).
Model: Method 59
Leva et al. (1994).
Ti
Comment
116
Kc
τ m + Tm
0.2 ≤ τm Tm ≤ 1
117
Kc
0.6τ m + 1.2Tm
τ m Tm ≥ 1
0.526Tm
K m τm
Tm
φm = 59.80 .
Tan et al. (1996).
Hägglund and Åström
(2004).
Model: Method 1
Kc
Ti
Model: Method 54
119
Kc
Ti
Model: Method 36
120
Kc
Ti
1.920 < φ < 2.356 ;
M s = 1.2 .
121
Kc
Ti
φ = 2.09 radians
(good choice).
0.57(Tm + τm )
.
K m Tm ([τm Tm ] − 0.055)
Kc =
117
Kc =
0.57(1.2Tm + 0.6τ m )
.
K m Tm ([τ m Tm ] − 0.055)
118
Kc =
ωcn Ti
Km
1 + ωcn 2Tm 2
2
1 + ωcn Ti
, Ti =
2
[
]
tan φm − 1.571 + τm ωcn + tan −1 (ωcn Tm )
ωcn
with ωcn =
Kc =
A m = 2.98 ,
118
116
119
FA
(
)
x1Ti ωφ 1 + x1Tmωφ 2
(
A m 1 + x1Ti ωφ
)
2
, Ti =
2.82 − φm − tan −1[(Tm τm )(1.571 − φm )]
.
τm
1
, ωφ < ω u .
x1ωφ tan − tan x1Tm ωφ − x1τm ωφ − φ
[
]
−1
x1 = 0.8, τm Tm < 0.5 ; x1 = 0.5, τm Tm > 0.5 .
120
121
Kc =
Kc =
6.283(1.72φ − 2.55)
2.01 − 0.80φ
, Ti =
.
2


G p jωφ

G p jωφ 
1 + (15.45 − 6.30φ)
 G p jωφ
1 + (3.44φ − 5.20 )
 ωφ
Km 

Km 





( )
0.33
( )

G jω 
1 + 2.26 p φ  G p jωφ
Km 



( )
( )
( )
, Ti =
6.61
( )
2

G jω 
1 + 2.01 p φ  ωφ
Km 



.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Hägglund and Åström
(2004) – continued.
Hägglund and Åström
(2004).
Xu et al. (2004).
Model: Method 37
Ti
Comment
122
Kc
Ti
2.094 < φ < 2.443 ;
M s = 1.4 .
123
Kc
Ti
φ = 2.269 radians
(reasonable choice).
124
Kc
Ti
2.356 < φ < 2.705 ;
M s = 2.0 .
125
Kc
Ti
126
Kc
Ti
Tm x1K m τm
Tm
φ = 2.53 radians
(good choice).
Model: Method 5;
‘AMIGO’ tuning rule.
1.5 ≤ x1 ≤ 2.5
x1 = 2 implies A m > 2, φm > 600 (Xu and Shao, 2004b).
Huang et al. (2005a).
Model: Method 51
0.50Tm + 0.22 τ m
Kmτm
0.9Tm + 0.4τ m
Huang and Jeng
(2005).
0.495Tm + 0.22τm
K m τm
0.9Tm + 0.4 τ m
122
123
Kc =
Kc =
Model: Method 1
6.283(1.72φ − 3.05)
2.50 − 0.92φ
, Ti =
.
2


G p jωφ

G p jωφ 
1 + (10.75 − 4.01φ)
 G p jωφ
1 + (3.44φ − 6.10 )
 ωφ
Km 

Km 





( )
0.41
( )
( )
, Ti =
5.36
.
2

G p jωφ 
1 + 1.71
 ωφ
Km 



6.283(0.86φ − 1.50)
3.43 − 1.15φ
124
, Ti =
.
Kc =
2

G p jωφ 

G p jωφ 
1 + (11.30 − 4.01φ)
 G p jωφ
1 + (1.72φ − 2.90)
 ωφ
Km 

Km 





4
.
25
0
.
52
125
, Ti =
.
Kc =
2

G p jωφ 

G p jωφ 
1 + 1.15
 G p jωφ
1 + 1.45
 ωφ
Km 

Km 





( )

G jω 
1 + 1.65 p φ  G p jωφ
Km 



( )
( )
( )
126
Kc =
( )
( )
( )
( )
( )
0.15 
τm Tm  Tm
6.7 τm Tm 2
+ 0.35 −
, Ti = 0.35τm + 2
.
2
K m 
(τm + Tm )  K m τm
Tm + 2Tm τm + 10τm 2
71
b720_Chapter-03
Rule
Kc
Åström and Hägglund
(2006), pp. 228–229.
Åström and Hägglund
(2006), pp. 258–260.
Model: Method 5;
detuned ‘AMIGO’
tuning rule.
Clarke (2006).
Model: Method 27
K c (1) =
Ti
Comment
(1)
Model: Method 5;
‘AMIGO’ tuning
rule; M s = M t = 1.4 .
(1)
Ti
( 2)
Ti
( 2)
τm Tm > 0.11
( 3)
Ti
( 3)
( 4)
Ti
( 4)
τm
< 0.11
Tm
127
Kc
128
Kc
129
Kc
130
Kc
Tm τm
0.5
T
1+ m
Km
τm
τ m Tm  Tm
13τ m Tm 2
0.15 
(1)
+ 0.35 −
,
T
=
0
.
35
τ
+
.

i
m
K m 
(τ m + Tm )2  K m τ m
Tm 2 + 12Tm τ m + 7 τ m 2
K c (1)
128
129
FA
Handbook of PI and PID Controller Tuning Rules
72
127
17-Mar-2009
Kc
( 2)
= x1K c
K c ( 3) ≥
(1)
, x1 = 0.5,0.1 or 0.01; Ti
( 2)
= Ti
(1) K c
( 2)
Ti (1)
K m + 1 − M s −1
K c (1) K c ( 2) K m + 1 − M s −1
2K c (1) (τm + Tm )
1
+
−1 ,
2
(1)
(1)
−1
M


s
M s  M s + M s − 1 Ti 1 − M s + K c K m


(
)
Ti (3) = Ti (1)
130
K c ( 4) <
.
−
K c (3) K c (1) K m + 1 − M s 1
Kc
(1)
K c K m + 1 − M s −1
( 3)
.
2K c (1) (τm + Tm )
1
+
−1,
2
(1)
1
(1)
Ms
M s  M s + M s − 1 Ti 1 − M s − + K c K m


(
)
Ti ( 4) = 2K c (1) K m
τm + Tm
.
2
2

M s  M s + M s + 1  K c ( 4) K m + 1 − M s −1


(
)
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
131
Ti
Comment
Kc
Ti
0.2 ≤ τm Tm ≤ 10 ;
Kc
Ti
Model: Method 1
x1Tm K m τm
Ti
Model: Method 40
Kc
King (2006).
Model: Method 1
131
Lavanya et al.
(2006b).
Padhy and Majhi
(2006b).
132
Kc =
133
73
1.2 ≤ M s ≤ 2.0 .
2
3
4




τ 
 τm 
 τ 
 τ 
1  
  + x 2 log10  m  + x 3 log10  m   + x 4 log10  m  + x 5  ,
x1 log10 
T 

T 
T 
K m  


 m
 Tm  
 m 
 m  


2
2
x1 = −0.2236M s + 1.247 M s − 0.9838 , x 2 = 0.738M s − 3.8471M s + 3.0252 ,
2
2
x 3 = −0.945M s + 4.8577 M s − 3.8272 , x 4 = 0.605M s − 3.2148M s + 2.5509 ,
2
x 5 = −0.2998M s + 1.6155M s − 1.276 ;
2
  τ 3

τ 
τ 
Ti = Tm  x 6  m  + x 7  m  + x 8  m  + x 9  ,
  Tm 

 Tm 
 Tm 


x 6 = −0.001003M s − 0.001185 , x 7 = 0.0155M s + 0.0264 ,
2
x 8 = −0.0772M s + 0.197 M s − 0.0677 , x 9 = 0.1257 M s + 0.8159 .
132
Kc =
33.3
Km
Kc =
Tm
K m τm
∧ 2
∧ 2



1 + ωu Tm 2 1 + ωu TCL 2  , τm > 1 ;






∧ 2
∧ 2



1 + ωu Tm 2 1 + ωu TCL 2  , τm < 1 ;






Ti =
∧


tan − τm ωu + π − φm  , φm measured in radians.


ω
1
∧
u
Tm x1
K m τm
2φm + π(A m − 1)
133
.
x1 =
; Ti =
A m x1 
A m x1 
1
2 Am2 − 1
+
1 −

τm 
π 
Tm
(
)
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
74
Rule
Kc
Ti
Comment
Robust
Tm
λK m
Tm
2Tm + τ m
2λ K m
Tm + 0.5τ m
Tm
K m (τ m + λ)
Tm
Tm + 0.5τ m
K m (λ + τ m )
Tm + 0.5τ m
λ ≥ 1.7 τ m ,
λ > 0.1Tm .
Rivera et al. (1986).
λ
≥
1
.
7
τ
,
λ
>
0
.
2
T
(Luyben,
2001);
λ
=
2τ
(minimum
ISE –
Model: Method 1
m
m
m
de Oliveira et al., 1995); λ = max[2.3τm ,0.15Tm ] (Visioli, 2005).
Chien (1988).
Model: Method 1
Brambilla et al.
(1990).
Model: Method 1
134
λ ≥ 1.7 τ m ,
λ > 0.1Tm .
134
No model uncertainty: λ = τ m , 0.1 ≤ τ m Tm ≤ 1 ;
λ = [1 − 0.5 log10 (τ m Tm )]τ m , 1 < τ m Tm ≤ 10 .
λ = Tm (Chien, 1988); (‘aggressive’ tuning) (Åström and Hägglund, 2006).
λ = 3Tm (‘robust’ tuning) (Åström and Hägglund, 2006).
λ = 2τ m (Bialkowski, 1996); (‘aggressive, less robust’ tuning) (Gerry, 1999).
λ > Tm + τ m (Thomasson, 1997).
0.45τm ≤ λ ≤ 0.8τm (Huang et al., 1998).
λ = 2(Tm + τ m ) (‘more robust’ tuning) (Gerry, 1999).
λ = a. max(Tm , τ m ) : a > 3 (‘slow’ design), 2 ≤ a ≤ 3 (‘normal’ design),
1 ≤ a < 2 (‘fast’ design), a < 1 (‘faster’ design) (Andersson (2000), p. 11).
Model: Method 10.
0.1Tm ≤ λ ≤ 0.5Tm , τm Tm ≤ 0.25 ; λ = 1.5(τm + Tm ),0.25 < τm Tm ≤ 0.75 ;
λ = 3(τm + Tm ), τm Tm > 0.75 (Leva, 2001).
Tm ≤ λ ≤ τm or τm ≤ λ ≤ Tm (Smith, 2002).
λ = 1.7Tm (Faanes and Skogestad, 2004).
λ = max[0.25τ m ,0.2T m ] (Leva, 2007).
λ > [0.1Tm ,0.8τm ] (‘aggressive’ tuning), λ > [Tm ,8τm ] (‘moderate’ tuning),
λ > [10Tm ,80τm ] (‘conservative’ tuning) (Arbogast et al., 2006).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Pulkkinen et al.
(1993).
0.7Tm K m τm
λ (τ m + Tm )
x1 K m
x 2 Tm
Comment
Ti
Model: Method 1
Ogawa (1995).
τm
Model: Method 1;
x1
x2
coefficients of K c , Ti Tm
0.9
1.3
deduced from graphs. 0.5
1.0
0.6
1.6
0.5
0.7
1.3
1.0
0.47
1.7
0.5
0.47
1.3
1.0
0.36
1.8
0.5
0.4
1.3
1.0
0.33
1.8
Thomasson (1997).
τm
Model: Method 1
2K (τ + λ)
τm
Tm
x1
x2
2.0
10.0
2.0
10.0
2.0
10.0
2.0
10.0
0.45
0.4
0.4
0.35
0.32
0.3
0.3
0.29
2.0
7.0
2.2
7.5
2.4
8.5
2.4
9.0
Chen et al. (1997).
Model: Method 31
minimum (Tm ,6τ m )
m
0.5τ m
m
0.5Tm
K m max( τ m ,0.5)
λ = TCL .
τ m > 0.5
3
τ m < 0.5
Desired closed loop
2
τm
2(λ + τ m )
K m (λ + τ m )
20% uncertainty in
process parameters.
33% uncertainty in
process parameters.
50% uncertainty in
process parameters.
60% uncertainty in
process parameters.
τ m >> Tm ;
Lee et al. (1998).
Model: Method 1
Tm +
Isaksson and Graebe
(1999).
Model: Method 1
Chun et al. (1999).
Model: Method 43
Tm + 0.25τ m
K mλ
Tm + 0.25τ m
Tm > τ m ; λ not
specified.
Tm (τ m + 2λ ) − λ2
K m (τ m + λ )
Tm (τ m + 2λ ) − λ2
τ m + Tm
Representative
λ = 0.4Tm .
Tm
K m (λ + τm )
Tm
x1 K m
x 2 (τm + Tm )
2
Zhong and Li (2002).
Model: Method 1
Wang (2003), p. 14.
Model: Method 1.
Regulator;
x1 , x 2 deduced from
graphs; robust to
±25% uncertainty in
process model
parameters.
Tm +
τm2
2(λ + τ m )
response =
e − τ ms
.
(λs + 1)
∆τm ≤ λ ≤ 1.4∆τm ;
x1
x2
τ
x1
x2
τ
5.1
4.5
3.6
2.9
2.3
1.8
1.4
0.23
0.34
0.44
0.50
0.57
0.60
0.63
0.05
0.11
0.18
0.25
0.33
0.43
0.54
1.1
0.9
0.8
0.8
0.7
0.6
0.5
0.65
0.64
0.63
0.62
0.61
0.58
0.56
0.67
0.82
1.0
1.22
1.5
1.9
2.3
∆τ m = time delay
uncertainty.
τ = τm Tm
τ
x1
x2
0.4
0.4
0.4
0.4
0.3
0.50
0.50
0.46
0.44
0.42
3.0
4.0
5.7
9.0
19.0
75
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
76
Rule
Kc
Wang (2003), p. 13.
Model: Method 1.
Servo; ±10%
overshoot, step input.
x1 , x 2 deduced from
graphs; robust to
±25% uncertainty in
process model
parameters
x1 K m
Wang (2003),
pp. 50–54.
Model: Method 1.
Servo; ±10%
overshoot, step input.
Wang (2003),
pp. 50–54.
Model: Method 1.
Regulator; x1
deduced from graph;
robust to ±25%
uncertainty in
process model
parameters.
Åström and
Hägglund (2006),
p. 187.
Comment
Ti
x 2 (τm + Tm )
τm
Tm
x1
x2
τm
Tm
x1
x2
τm
Tm
0.79 0.05
0.82 0.11
0.81 0.18
0.70 0.25
0.75 0.33
0.72 0.43
0.73 0.54
Tm
K m (τ m + λ)
0.81
0.68
0.65
0.59
0.50
0.43
0.38
0.67
0.63
0.63
0.60
0.55
0.51
0.47
Tm
0.67
0.82
1.0
1.22
1.5
1.9
2.3
0.34
0.31
0.29
0.29
0.27
0.43
0.43
0.39
0.39
0.38
3.0
4.0
5.7
9.0
19.0
x1
x2
2.94
2.73
2.20
1.65
1.29
1.04
0.85
λ = 0.0132(τm + Tm ) , τm Tm ≤ 0.05 ;
λ = 0.286τm + 0.0034(τm + Tm ) , 0.05 ≤ τm Tm ≤ 19.0 ;
λ = 0.27(τm + Tm ) , τm Tm ≥ 19.0 ;
robust to ±25% uncertainty in process model parameters.
Tm
λ = x1 (τm + Tm )
Tm
K m (τ m + λ)
x1
τm Tm
x1
0.05
0.08
0.11
0.11
0.18
0.12
0.25
0.13
0.33
0.15
Tm
K m (τ m + λ)
0.43
0.54
0.67
0.82
1.00
0.16
0.18
0.19
0.21
0.22
x1
0.01
0.03
0.04
0.06
0.07
τm Tm
τm Tm
x1
τm Tm
1.22
0.25
4.0
1.5
0.26
5.7
1.9
0.27
9.0
2.3
0.27
19.0
3.0
Model: Method 1;
delay dominated
max [Tm ,3τm ]
processes.
λ = Tm (aggressive tuning); λ = 3Tm (robust tuning).
Ultimate cycle
McMillan (1984).
Model: Method 2 or
Method 55.
135
Kc
Ti
Tuning rules
developed from
K u , Tu .




0.65
  T
 

1.881 Tm 
1
 
135
m

=
τ
+
T
1
.
67
1
Kc =
,



i
m
0.65

 .
K m τm   T
 
  Tm + τm  
m
 
1 + 

  Tm + τm  
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
77
Comment
Ti
x 1K u
x 2 Tu
Kuwata (1987).
x1
x2
x1
x2
x1
x2
τm
τm
τm
Model: Method 1;
T
T
Tu
x 1 , x 2 deduced from
u
u
0.29 0.84 0.28 0.24 0.24 0.35 0.225 0.17 0.43
graphs.
0.27 0.46 0.30 0.23 0.20 0.38 0.225 0.155 0.45
0.25 0.31 0.33 0.225 0.18 0.40 0.225 0.115 0.48
0.654
Boe and Chang
τ 
(1988).
Quarter decay ratio.
1.935Tm  m 
0.54 K u
 Tm 
Model: Method 1
τ
0.876
Claimed equivalent to
Hill and Adams
1.36 − 0.245 m
0.961  Tm 
Tm
Ziegler–Nichols
(1988).


0
.
83
τ
e
m
K m  τm 
ultimate cycle
Model: Method 1
method.
Geng and Geary
0.71Tm
τm
< 0.167
(1993).
3.33τ m
K mτm
Tm
Model: Method 1
Luyben (1993).
0.225K u
0.415Tu
τm Tm = 0.05
Model: Method 1
^
^
Perić et al. (1997).
Model: Method 49
Matsuba et al. (1998).
Model: Method 1
Huang et al. (2005a).
Model: Method 51
K u tan 2 φ m
0.1592 Tu
tan φ m
1 + tan 2 φ m
0.99  Tm 


K m  τ m 
136
0.9
Kc
τ 
2.63τ m  m 
 Tm 
Ti
0.097
0.1 ≤
τm
≤ 1.0
Tm


2


 ^ 


0.9  K u  − 1
0.55 

 
136
+
Kc =
0
.
4
,
2


K m 
^

 
−1
 π − tan   K u  − 1 

 










2
2

 
^ 
 ^ 


−1  
 
Ti = 0.159 Tu 0.9  K u  − 1 + 0.4π − tan
 K u  − 1   .

 
 



 

^
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
78


1
+ Td s 
3.3.2 Ideal PID controller G c (s) = K c 1 +
 Ti s

E(s)
R(s)
+

 U(s)
1
K c 1 +
+ Td s 
 Ti s

−
Y(s)
K m e − sτ
1 + sTm
m
Table 10: PID controller tuning rules – FOLPD model G m (s) =
Rule
Callender et al.
(1935/6).
Model: Method 1
Ziegler and
Nichols (1942).
Model: Method 2
Chien et al.
(1952) –
regulator.
Model: Method 2
Chien et al.
(1952) – servo.
Model: Method 2
Cohen and Coon
(1953).
Model: Method 2
Kc
1
1.066
K mτm
Ti
K m e − sτ m
1 + sTm
Comment
Td
Process reaction
0.353τ m or
1.418τ m
0.47τ
m
τm
= 0.3
Tm
x1Tm
K m τm
2τ m
0.5τ m
0.95Tm
K mτm
2.38τ m
0.42τ m
1.2 ≤ x1 ≤ 2 ;
quarter decay
ratio.
0% overshoot;
0.1 < τm Tm < 1 .
1.2Tm
K mτm
2τ m
0.42τ m
20% overshoot;
0.1 < τm Tm < 1 .
0.6Tm
K mτm
Tm
0.5τ m
0% overshoot;
0.1 < τm Tm < 1 .
0.95Tm
K mτm
1.36Tm
0.47τ m
20% overshoot;
0.1 < τm Tm < 1 .
Ti
0.37 τm
1 + 0.19(τm Tm )
2
Kc
1
Decay ratio = 0.043; period of decaying oscillation = 6.28τ m .
2
Kc =
 2.5(τm Tm ) + 0.46(τm Tm ) 2 

1 
T
.
1.35 m + 0.25  , Ti = Tm 




Km 
τm
1 + 0.61(τm Tm )



Quarter decay
ratio;
0.1 < τm Tm ≤ 1 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Comment
Td
Ti
0.950
0.738
Three constraints
K c K m Td
Tm  τ m 
1.370  Tm 
= 0.5 ;
3




method – Murrill
T
Tm
d
1.351  Tm 
(1967), p. 356. K m  τ m 
0.1 < τm Tm < 1 .
Model: Method 5
Quarter decay ratio; minimum integral error (servo mode).
Åström and
Model:
3 Km
T90%
0.5τ m
Hägglund (1988),
Method 28
pp. 120–126.
T90% = 90% closed loop step response time (Leeds and Northrup
Electromax V controller).
Parr (1989),
Model: Method 2
1.25Tm K m τm
2.5τ m
0.4 τ m
p. 194.
Borresen and
Model: Method 2
Tm K m τm
3τ m
0.5τ m
Grindal (1990).
4
Sain and Özgen
Model:
Ti
Td
Kc
(1992).
Method 29
Connell (1996),
Approximate
1.6Tm
p. 214.
quarter decay
1.6667 τ m
0.4 τ m
K mτm
Model: Method 2
ratio.
x1 K m
x 2τm
x 3τ m
Hay (1998), pp.
Coefficient values – servo tuning:
197,198.
τ
T
x
x2
x3
τm Tm
x1
x2
x3
m
m
1
Model:
0.125
6.5
9.0
0.47
0.125
5.0
9.8
0.34
Method 1;
5.0
6.5
0.45
0.167
3.7
7.0
0.32
coefficients of 0.167
0.25
3.5
4.2
0.40
0.25
2.5
4.8
0.30
K c , Ti , Td
0.5
1.8
2.2
0.35
0.5
1.1
2.5
0.27
deduced from
Coefficient values – regulator tuning:
graphs.
τm Tm
x1
x2
x3
τm Tm
x1
x2
x3
0.125
0.167
0.25
0.5
3
4
τ 
Td = 0.365Tm  m 
 Tm 
Kc =
9.8
7.2
4.5
2.2
2.0
1.8
1.6
1.4
0.52
0.50
0.45
0.35
0.1
0.125
0.167
0.25
0.5
10.0
8.0
6.0
4.0
2.0
2.2
2.2
2
1.8
1.4
0.35
0.35
0.34
0.32
0.28
0.950
.

0.8647Tm + 0.226τm
0.0565Tm
1 
T
 0.6939 m + 0.1814  , Ti =
, Td =
.


T
T
Km 
τm
m

+ 0.8647
0.8647 m + 0.226
τm
τm
79
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
80
Rule
Hay (1998),
p. 200.
Model:
Method 2;
coefficients of
K c , Ti , Td
deduced from
graphs.
Comment
Kc
Ti
Td
x1 K m
x 2 τm
x 3τm
x1
x2
x3
4.7
2.4
2.8
1.5
1.8
0.5
1.2
0.8
1.0
0.7
1.2Tm K m τm
0.87
1.87
0.95
1.55
1.00
1.33
1.00
1.15
0.95
1.00
1.32
1.28
1.07
1.0
0.90
0.78
0.78
0.64
0.72
0.54
τm Tm
0.3
0.4
0.5
0.6
0.7
Moros (1999).
Model: Method 1 1.2Tm K m τm
2τ m
0.42τ m
2τ m
0.44τ m
Lipták (2001).
1.6τ m
0.6τ m
2.4τm
0.38τm
Chidambaram
(2002), p. 154.
Alfaro Ruiz
(2005a).
ControlSoft Inc.
(2005).
PMA (2006).
Model: Method 2
5
FA
Kc =
0.85Tm K m τm
5
Kc
Regulator.
Servo.
Regulator.
Servo.
Regulator.
Servo.
Regulator.
Servo.
Regulator.
Servo.
Attributed to
Oppelt.
Attributed to
Rosenberg.
Model: Method 2
Model: Method 1. ‘Improved’ Ziegler–Nichols method.
x1Tm K m τm
2.5τm
0.4τm
2.0 ≤ x1 ≤ 3.33 ;
Model: Method 2
6
Ti
Td
1.0 ≤ x1 ≤ 1.67 ;
Kc
Model: Method 1
7
Model:
2 Km
τ m + Tm
Td
Method 11
2τm
0.59Tm
2τm
K m τm
Alternative.
τm

1  Tm
+ 0.45 .
1.8
K m  τm


τ 

τ 
Tm  0.40 + 0.153 m 
Tm  2.50 + 0.957 m 
Tm 
Tm 

x 
T


6
, Td =
.
K c = 1 1.56 m + 0.68 , Ti =
(
)
1
+
0
.
787
τ
T
Km 
τm
(
1
0
.
787
T
+
τ
m
m
m
m)

7
τ T 
τ T 
Td = max  m , m  (slow loop); Td = min  m , m  (fast loop).
3
6


 3 6 
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Minimum performance index: regulator tuning
0.921
0.749
Minimum IAE –
Tm  τ m 
1.435  Tm 
8




Model: Method 5
Murrill (1967),
Td
K m  τm 
0.878  Tm 
pp. 358–363.
Minimum IAE –
12.52 K m
0.20Tm
0.04Tm
τm Tm = 0.10
Lopez (1968),
2.68 K m
0.69Tm
0.22Tm
τm Tm = 0.50
p. 50.
1.47 K m
1.04Tm
0.42Tm
τm Tm = 1.00
Minimum IAE –
Marlin (1995),
pp. 301–307.
Model: Method 8
Minimum IAE –
Peng and Wu
(2000).
Model:
Method 21
1.3 K m
0.7 τ m
0.01τ m
τ m Tm = 0.43
1.0 K m
0.68τ m
0.05τ m
τ m Tm = 0.67
0.85 K m
0.65τ m
0.08τ m
τ m Tm = 1.0
0.65 K m
0.65τ m
0.10τ m
τ m Tm = 1.5
0.45 K m
0.55τ m
0.14τ m
τ m Tm = 2.33
0.4 K m
0.50τ m
0.21τ m
τ m Tm = 4.0
Coefficients of K c , Ti , Td estimated from graphs; robust to ±25%
process model parameter changes.
6.558K m
0.925Tm
0.061Tm
τ m Tm = 0.1
2.311K m
0.677Tm
0.189Tm
τ m Tm = 0.2
1.479 K m
0.633Tm
0.233Tm
τ m Tm = 0.3
1.117 K m
0.647Tm
0.250Tm
τ m Tm = 0.4
0.947 K m
0.705Tm
0.268Tm
τ m Tm = 0.5
0.825K m
0.752Tm
0.289Tm
τ m Tm = 0.6
0.731K m
0.792Tm
0.312Tm
τ m Tm = 0.7
0.695K m
0.871Tm
0.316Tm
τ m Tm = 0.8
0.630K m
0.895Tm
0.326Tm
τ m Tm = 0.9
0.651K m
1.030Tm
0.306Tm
τ m Tm = 1.0
1.137
8
τ 
Td = 0.482Tm  m 
 Tm 
, 0.1 ≤
τm
≤1.
Tm
81
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
82
Rule
9
Minimum IAE –
Kosinsani
(1985),
pp. 46–48.
Model: Method 1
Kc
Ti
Td
Comment
Kc
Ti
Td
Load disturbance
model =
1
.
1 + sTL
0.05 ≤
τm
T
≤ 1.0 ; 0.05 ≤ L ≤ 7.0 .
Tm
Tm
Values of x1 to x 15 for varying τm Tm provided. The controller
tuning formula is not recommended when τm Tm = 0.4, TL Tm > 6.5 ;
τm Tm = 0.5, TL Tm > 5.5 ; τm Tm = 0.75, TL Tm > 5.0 ;
τm Tm = 1.0, TL Tm > 4.5 .
0.75
1.0
x1
27.567 18.817 13.984 9.3318 7.0210 4.7110 3.6156 2.9398 2.0164
1.5805
x2
3.2174 1.2714 7.6166 4.9233 3.9864 2.9383 2.2643 1.8975 2.0290
0.6154
x3
-2.3336 -1.8823 6.8896 4.5267 3.2537 2.0947 1.5546 1.2108 0.7548
0.5345
x4
-31.416 -31.416 -1.9E-6 -3.4E-7 -1.0E-5 -5.6E-8 -9.0E-9 -9.5E-9 0.4277
0.3603
x5
-7.2662 -6.2990 -9.9212 -0.0978 1.9228 1.6537 2.3143 1.5861 1.5845 -0.6779
x6
7.8891 3.7533 1.1676 0.9631 1.1989 0.5403 2.5070 2.6381 0.6400
1.1821
x7
8.1491 8.0893 8.5751 6.3996 4.9687 4.0498 7.8855 0.7385 2.5128
2.6522
x8
-0.4706 -0.5880 -0.6459 -0.6104 -0.4955 -0.5196 -0.0233 -0.2809 -0.1774 -0.0445
x9
14.020 11.353 5.2382 1.7098 0.6395 0.1405 1.7941 3.5610 0.0825
x 10
-3.6987 -3.4514 -1.7079 -1.3466 -1.3080 -0.2366 -0.5171 -0.5509 -0.0100 -0.4917
τm Tm
9
0.05
0.075
0.1
0.15
0.2
0.3
0.4
0.5
0.6528
x 11
4.6405 3.5079 3.1794 3.5195 7.5219 1.8090 0.5537 0.1952 1.3773
x 12
-0.8986 -0.4818 -0.2947 -0.4508 -2.7213 -4.4931 -1.8157 -2.5837 -4.7205 -2.3611
x 13
0.0270 -1491.0 -4829.2 -1224.6 -13635 -31129 -31539 -40901 -52408
x 14
-0.0090 1491.1 4829.3 1224.7
52408
59325
x 15
-4.1759 6.2E-7 3.8E-7 3.2E-6 5.0E-7 3.9E-7 5.6E-7 5.7E-7 6.8E-7
7.5E-7
13635
31130
31539
40901
0.5675
-59324

 T 
 T  
1 
 x1 − e − x 2 TL Tm  x 3 cosx 4 L  + x 5 sin x 4 L   ,


Km 
 Tm 
 Tm  


Tm
, Td = Tm x13 + x14e x15 TL Tm .
Ti =


TL
x 8 Tl Tm
x 10 TL Tm
x6 + x7 1 − e
sin  x11
+ x 9e
+ x12 
Tm


Kc =
(
)
(
)
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Comment
Td
Ti
Load disturbance
Minimum IAE –
x1 K m
x 2Tm
x 3Tm
1
model =
.
Hill and Venable
1 + sTL
(1989).
Model: Method 1 x1 values (this page), x 2 values (p. 84) and x 3 values (p. 85) deduced
from graphs: robust to ±30% process model parameter changes.
0.05 0.07 0.1 0.15 0.2
0.3
0.4
0.5 0.75 1.0
τm Tm
TL Tm = 0.05
19.0
11.8
8.6
TL Tm = 0.1
21.2
13.6
9.8
TL Tm = 0.3
22.0
14.6
10.9
TL Tm = 0.5
22.2
14.7
11.0
TL Tm = 0.7
22.1
14.7
TL Tm = 1.0
22.0
14.8
TL Tm = 1.2
22.2
TL Tm = 1.5
5.5
4.2
2.88
2.20
1.80
1.32
1.08
6.1
4.5
3.00
2.26
1.83
1.33
1.09
7.1
5.3
3.44
2.58
2.06
1.40
1.12
7.2
5.5
3.66
2.76
2.22
1.51
1.19
11.0
7.3
5.6
3.76
2.85
2.33
1.59
1.24
11.1
7.4
5.7
3.81
2.94
2.39
1.66
1.32
14.9
11.2
7.4
5.7
3.84
2.95
2.41
1.70
1.35
22.4
15.0
11.3
7.5
5.8
3.88
2.98
2.43
1.72
1.37
TL Tm = 2.0
22.5
15.0
11.2
7.5
5.8
3.91
3.00
2.45
1.74
1.40
TL Tm = 2.5
22.6
15.2
11.2
7.6
5.9
3.93
3.01
2.46
1.75
1.40
TL Tm = 3.0
22.8
15.0
11.2
7.7
5.9
3.95
3.02
2.48
1.76
1.40
TL Tm = 3.5
22.7
15.1
11.0
7.5
5.9
3.94
3.02
2.48
1.75
1.40
TL Tm = 4.0
22.7
15.0
10.9
7.6
5.9
3.94
3.02
2.48
1.76
1.40
TL Tm = 4.5
22.7
15.1
11.2
7.6
5.9
3.95
3.03
2.48
1.77
1.41
TL Tm = 5.0
22.6
15.1
11.2
7.5
5.9
3.94
3.03
2.50
1.78
1.42
TL Tm = 5.5
22.7
15.1
11.3
7.6
5.9
3.94
3.03
2.51
1.79
1.42
TL Tm = 6.0
22.6
15.0
11.5
7.6
5.9
3.94
3.03
2.51
1.80
1.44
TL Tm = 6.5
22.6
15.0
11.3
7.5
5.8
3.94
3.04
2.52
1.80
1.45
TL Tm = 7.0
22.7
14.9
11.5
7.6
5.9
3.95
3.05
2.54
1.81
1.46
83
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
84
Rule
Kc
Comment
Td
Ti
Load disturbance
Minimum IAE –
1
x1 K m
x 2Tm
x 3Tm
model =
.
Hill and Venable
1 + sTL
(1989).
Model: Method 1 x1 values (p. 83), x 2 values (this page) and x 3 values (p. 85) deduced
from graphs: robust to ±30% process model parameter changes.
0.05 0.07 0.1 0.15 0.2
0.3
0.4
0.5 0.75 1.0
τm Tm
1.0
1.0
1.0
1.0
1.0
0.92
0.90
0.90
0.82
0.78
TL Tm = 0.1
1.0
1.0
1.0
TL Tm = 0.3
10.5
6.6
4.6
1.0
1.0
0.92
0.90
0.90
0.82
0.78
2.3
1.1
1.00
0.96
0.92
0.82
0.79
TL Tm = 0.5
10.7
7.0
5.1
3.2
2.3
1.48
1.18
1.04
0.86
0.80
TL Tm = 0.7
10.4
TL Tm = 1.0
9.7
7.0
5.2
3.4
2.7
1.80
1.40
1.20
0.95
0.82
6.7
5.1
3.5
2.8
2.00
1.62
1.40
1.06
0.92
TL Tm = 1.2
10.3
7.0
5.4
3.8
2.9
2.14
1.75
1.48
1.13
0.96
TL Tm = 1.5
11.0
7.6
5.8
4.0
3.1
2.32
1.86
1.59
1.20
1.00
TL Tm = 2.0
12.3
8.4
6.5
4.6
3.6
2.60
2.10
1.79
1.30
1.06
TL Tm = 2.5
13.1
9.0
7.0
4.9
3.8
2.80
2.26
1.90
1.40
1.15
TL Tm = 3.0
13.7
9.6
7.3
5.2
4.1
3.00
2.39
2.01
1.50
1.22
TL Tm = 3.5
14.1
9.8
7.8
5.4
4.2
3.12
2.50
2.13
1.57
1.26
TL Tm = 4.0
14.6
10.2
8.0
5.6
4.4
3.21
2.59
2.20
1.61
1.30
TL Tm = 4.5
15.0
10.5
8.0
5.7
4.5
3.32
2.66
2.23
1.63
1.33
TL Tm = 5.0
15.4
10.8
8.2
5.9
4.7
3.40
2.72
2.30
1.65
1.35
TL Tm = 5.5
15.6
10.9
8.3
6.0
4.8
3.45
2.76
2.33
1.67
1.37
TL Tm = 6.0
15.9
11.1
8.3
6.1
4.9
3.50
2.79
2.36
1.70
1.39
TL Tm = 6.5
16.1
11.2
8.6
6.2
5.0
3.54
2.80
2.38
1.70
1.40
TL Tm = 7.0
16.4
11.5
8.5
6.2
5.0
3.57
2.83
2.40
1.72
1.40
TL Tm = 0.05
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Td
Load disturbance
Minimum IAE –
1
x1 K m
x 2Tm
x 3Tm
model =
.
Hill and Venable
1 + sTL
(1989).
Model: Method 1 x1 values (p. 83), x 2 values (p. 84) and x 3 values (this page) deduced
from graphs: robust to ±30% process model parameter changes.
0.05 0.07 0.1 0.15 0.2
0.3
0.4
0.5 0.75 1.0
τm Tm
TL Tm = 0.05
0.022 0.034 0.045 0.067 0.089 0.13
0.17
0.21
0.30
0.39
TL Tm = 0.1
0.020 0.030 0.042 0.064 0.088 0.13
0.17
0.21
0.30
0.40
TL Tm = 0.3
0.027 0.038 0.050 0.068 0.081 0.13
0.17
0.21
0.31
0.41
TL Tm = 0.5
0.027 0.039 0.051 0.074 0.094 0.13
0.17
0.22
0.32
0.41
TL Tm = 0.7
0.026 0.038 0.050 0.075 0.097 0.14
0.18
0.22
0.32
0.41
TL Tm = 1.0
0.024 0.037 0.050 0.073 0.097 0.14
0.19
0.23
0.33
0.42
TL Tm = 1.2
0.026 0.038 0.051 0.076 0.100 0.14
0.19
0.23
0.34
0.43
TL Tm = 1.5
0.027 0.040 0.052 0.079 0.104 0.15
0.20
0.24
0.34
0.44
TL Tm = 2.0
0.028 0.041 0.057 0.083 0.110 0.16
0.21
0.26
0.37
0.46
TL Tm = 2.5
0.028 0.042 0.058 0.085 0.113 0.17
0.22
0.27
0.38
0.48
TL Tm = 3.0
0.029 0.045 0.059 0.088 0.118 0.17
0.23
0.28
0.40
0.50
TL Tm = 3.5
0.029 0.045 0.062 0.090 0.120 0.18
0.23
0.28
0.41
0.52
TL Tm = 4.0
0.029 0.046 0.064 0.090 0.122 0.18
0.24
0.29
0.42
0.52
TL Tm = 4.5
0.030 0.045 0.062 0.092 0.123 0.18
0.28
0.30
0.42
0.52
TL Tm = 5.0
0.030 0.044 0.062 0.095 0.125 0.18
0.24
0.30
0.42
0.52
TL Tm = 5.5
0.030 0.047 0.062 0.094 0.126 0.19
0.24
0.30
0.42
0.52
TL Tm = 6.0
0.031 0.048 0.061 0.094 0.128 0.19
0.25
0.30
0.42
0.52
TL Tm = 6.5
0.031 0.048 0.063 0.095 0.133 0.19
0.25
0.30
0.42
0.52
TL Tm = 7.0
0.031 0.049 0.062 0.095 0.130 0.19
0.25
0.30
0.42
0.52
85
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
86
Rule
Kc
Minimum IAE –
Arrieta Orozco
(2006).
10
Kc
Ti
Td
Ti
Td
Comment
0.1 ≤
τm
≤ 2.0
Tm
pp. 23–24. Model: Method 10
Minimum IAE –
τ
0.1 ≤ m ≤ 1.0
Pessen (1994).
0.7 K u
0.4Tu
0.149Tu
Tm
Model: Method 1
0.749
0.921
Modified
Tm  τ m 
3  Tm 
11


minimum IAE –
Model:


Td
0.878  Tm 
Method 14
Cheng and Hung K m  τ m 
(1985).
1.006 0.1 ≤ τ
0.945
0.771
Minimum ISE –
m Tm ≤ 1 ;
τ 
Tm  τ m 
1.495  Tm 
0.56Tm  m 




Murrill (1967),
Model: Method 5
K m  τm 
1.101  Tm 
 Tm 
pp. 358–363.
Minimum ISE –
13.41 K m
0.14Tm
0.05Tm
τm Tm = 0.10
Lopez (1968),
2.84 K m
0.55Tm
0.28Tm
τm Tm = 0.50
p. 50.
1.52 K m
0.86Tm
0.56Tm
τm Tm = 1.00
0.970
0.753
τ
1.473  Tm 
Tm  τ m 
0.1 ≤ m ≤ 1.0
12


Minimum ISE –


T
T
d
m
1115
.
Zhuang (1992), K m  τ m 
 Tm 
Zhuang and
0.735
0.641
τ
Tm  τ m 
Atherton (1993). 1.524  Tm 
1.1 ≤ m ≤ 2.0
13




T
T
d
m
K m  τm 
1.130  Tm 
Model: Method 1 or Method 5 or Method 6 or Method 15.
10
T 
1 
Kc =
0.2068 + 1.1597 m 
Km 
 τm 

1.0158 
0.5022 



 , Ti = Tm − 0.2228 + 1.3009 τm 
,
T 



m 




τ 
Td = 0.3953Tm  m 
 Tm 
1.137
11
12
13
τ 
Td = 0.482Tm  m 
 Tm 
τ 
Td = 0.550Tm  m 
 Tm 
0.948
τ 
Td = 0.552Tm  m 
 Tm 
0.851
.
.
.
0.8469
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum ISE –
14
Ho et al. (1998).
Ti
Kc
Model: Method 1
0.947
0.738
Minimum ITAE
Tm  τ m 
1.357  Tm 




– Murrill (1967),
K m  τm 
0.842  Tm 
pp. 358–363.
Minimum ITAE
11.80 K m
0.22Tm
– Lopez (1968),
2.59 K m
0.75Tm
p. 50.
1.39 K m
1.15Tm
Minimum ITAE
– Arrieta Orozco
(2006),
pp. 90–92.
14
16
0.116
 τm 
1.0722 φm −


Kc =
0.8432 

K m Am
 Tm 
−0.908
1.2497Tm φm
A m 0.2099
Td =
300 ≤ φm ≤ 600 .
Td
0.1 ≤ τm Tm ≤ 1 ;
Model: Method 5
0.03Tm
τm Tm = 0.10
0.19Tm
τm Tm = 0.50
0.37Tm
τm Tm = 1.00
Td
2 ≤ Am ≤ 4 ;
Model:
Method 10
15
1.0082
, Ti =
2 ≤ Am ≤ 5 ,
Td
Ti
Kc
Comment
Td
Ti
 τm 


T 
 m
0.3678
0.4763Tm φm −
Given A m , ISE is minimised when φ m = 46.5489A m
87
Am
0.2035
0.0961
,
0.328
1.0317
 τm 


T 
 m
, 0. 1 ≤
τm
≤ 1.0 ;
Tm
(τ m Tm )0.3693 ;
2 ≤ A m ≤ 5 ; 0.1 ≤ τ m Tm ≤ 1.0 (Ho et al., 1999).
15
16
τ 
Td = 0.381Tm  m 
 Tm 
0.995
.
Tuning rule continued onto p. 88.
−0.8757 − 0.0851A m + 0.0120 A m 2 

 τm 
1 
2
,

Kc =
0.6791 − 0.2272A m + 0.0253A m + x1 

Km 
Tm 



2
x1 = 1.9742 − 0.7126A m + 0.0813A m , 0.1 ≤ τm Tm ≤ 2.0 ;
−5.1852 + 4.4910 A m − 0.7891A m 2 

 τm 
2

,

Ti = Tm 7.1461 − 4.8748A m + 0.6843A m + x 2 


Tm 



2
x 2 = −5.6764 + 4.7562A m − 0.6850A m , 0.1 ≤ τm Tm < 1.0 ;
0.6969 + 0.0948 A m − 0.0231A m 2 

 τm 
2

,

Ti = Tm 0.2931 + 0.2270A m − 0.0427 A m + x 2 


Tm 



2
x 2 = 0.9924 − 0.2202A m + 0.0217 A m , 1.0 ≤ τm Tm ≤ 2.0 .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
88
Rule
Kc
Minimum ISTSE
– Zhuang (1992),
Zhuang and
Atherton (1993).
Ti
Td
17
Kc
Ti
Td
18
Kc
Ti
Td
Comment
Model: Method 1 or Method 5 or Method 6 or Method 15.
Model: Method 1
Ti
0.144Tu
K
19
20
c
0.960
Model:
Method 37
τ
0.1 ≤ m ≤ 1.0
Tm
∧
Ti
Kc
0.15 T u
0.746
Tm  τ m 
1.531  Tm 
23




Minimum ISTES
Td
K
τ
0
.971  Tm 
m  m 
– Zhuang (1992),
0.705
0.597
Zhuang and
τ
Tm  τ m 
1.1 ≤ m ≤ 2.0
Atherton (1993). 1.592  Tm 
24


T
T




d
m
K m  τm 
0.957  Tm 
Model: Method 1 or Method 5 or Method 6 or Method 15.
(
1.8232 − 0.5092 A m − 0.0721A m 2
2  τm 
(
)
)

Td = Tm 0.4718 − 0.1251A m + 0.0202A m 

 Tm 
Kc =
1.468  Tm 


K m  τm 
0.970
, Ti =
0.730
Tm  τm 


0.942  Tm 
0.725
τm
< 1.0 ;
Tm
, 1.0 ≤
τm
≤ 2.0 .
Tm
, 0. 1 ≤
τm
≤ 1.0 .
Tm
1.4576 − 0.4119 A m + 0.0813A m 2
τ 
Td = Tm 0.5312 − 0.1662A m + 0.0271A m 2  m 
 Tm 
17
, 0.1 ≤
τ 
, Td = 0.443Tm  m 
 Tm 
0.939
0.847
0.598
τ 
τ
, 1.1 ≤ m ≤ 2.0
, Td = 0.444Tm  m 
Tm
 Tm 
τ
4.434K m K u − 0.966
1.751K m K u − 0.612
19
Kc =
K u , Ti =
Tu , 0.1 ≤ m ≤ 2.0 .
Tm
5.12K m K u + 1.734
3.776K m K u + 1.388
Tm  τm 


0.957  Tm 
18
Kc =
1.515  Tm 


K m  τm 
20
Kc =
τ
6.068K m K u − 4.273 ∧
1.1622K m K u − 0.748 ∧
K u , Ti =
T u , 0. 1 ≤ m ≤ 2. 0 .
∧
∧
Tm
5.758K m K u − 1.058
2.516K m K u − 0.505
, Ti =
∧
23
24
τ 
Td = 0.413Tm  m 
 Tm 
∧
0.933
τ 
Td = 0.414Tm  m 
 Tm 
.
0.850
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Minimum error –
step load change
– Gerry (1998).
Nearly minimum
IAE, ISE, ITAE
– Hwang (1995).
Model: Method
44; decay ratio =
0.15.
0.3
Km
0.5τ m
Tm
τm Tm > 5 ;
Model: Method 1
Hwang and Fang
(1995).
25
26
Kc
Ti
26
Kc
Ti
27
Kc
Ti
28
Kc
Ti
29
Kc
25
3 ≤ ε1 < 20
Nearly minimum
IAE, ITAE.
Model: Method 30; decay ratio = 0.12.
Td
[
]
2
2

0.674 1 − 0.447ωH1τm + 0.0607ωH1 τm 
,
K c =  K H1 −


K m (1 + K H1K m )


τ
K c (1 + K H1K m )
Ti =
, 0. 1 ≤ m ≤ 2. 0 .
2
2
Tm
ωH1K m 0.0607 1 + 1.05ωH1τm − 0.233ωH1 τm

K c =  K H1 −


[
(
2
2
0.778 1 − 0.467ωH1τm + 0.0609ωH1 τm
K m (1 + K H1K m )
[
[
)
] ,


(
K c (1 + K H1K m )
ωH1K m 0.0309 1 + 2.84ωH1τm − 0.532ωH12 τm 2
]
2
ω τ

1.31(0.519 ) H1 m 1 − 1.03 ε1 + 0.514 ε1 
,
K c =  K H1 −


K m (1 + K H1K m )


K c (1 + K H1K m )
(
ωH1K m 0.0603(1 + 0.929 ln[ωH1τm ]) 1 + 2.01 ε1 − 1.2 ε12
]
2
2

1.14 1 − 0.482ωH1τm + 0.068ωH1 τm 
,
K c =  K H1 −


K m (1 + K H1K m )


Ti =
29
2.4 ≤ ε1 < 3
ε1 ≥ 20
Ti
Ti =
28
ε1 < 2.4
0.471K u
K m ωu
Ti =
27
89
(
K c (1 + K H1K m )
ωH1K m 0.0694 − 1 + 2.1ωH1τm − 0.367ωH12 τm 2
2

τ  
τ
K c = 0.802 − 0.154 m + 0.0460 m   K u ,
Tm

 Tm  

Kc
Ti =
,
K u ωu 0.190 + 0.0532(τm Tm ) − 0.00509(τm Tm )2
[
]
2

τ 
τ
Ku
τ
Td = 0.421 + 0.00915 m − 0.00152 m  
, 0.1 ≤ m ≤ 2.0 .
T
Tm
T
ω
K


m
 m  u c

).
).
).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
90
Rule
Kc
O’Connor and
Denn (1972).
Model:
Method 1;
K m = Tm .
Comment
Td
Ti
∞
∫[
Minimum 0.5 x 2 y( t ) + (du ( t ) dt )
2
2
] dt .
0
30 x 2 τ m
2
Syrcos and
Kookos (2005).
Model: Method 1
Minimum IE –
Devanathan
(1991).
Model:
Method 1;
coefficients of
K c , Ti provided
are deduced from
graphs.
31
τm Tm < 0.2
x1τm
2
+ 2 x1
( 2 + x1 ) τ m
x 2 τm + 2 x1
2τ m x 2
τm x 2 + 2 x1
Ti
Td
Kc
2
2 ≤ τm Tm ≤ 5
Minimum performance index with constraints.
32
0.32Tu
0.08Tu
x 2 Tu
x 3Tu
Kc
τ m Tm
Coefficient values:
x3
τ m Tm
x2
x2
0.2
0.4
0.6
0.8
1.0
0.31
0.08
1.2
0.26
0.29
0.07
1.4
0.26
0.29
0.07
1.6
0.24
0.29
0.07
1.8
0.24
0.28
0.07
Minimum performance index: servo tuning
x1 K m
x 2 (Tm + τ m )
x 3 (Tm + τ m )
x3
0.07
0.07
0.06
0.06
Minimum IAE –
Representative coefficient values (deduced from graphs):
Gallier and Otto
τ
T
x1
x2
x3
τ m Tm
x1
x2
x3
(1968).
m
m
Model:
0.053
12.3
0.95 0.0215 0.67
1.45
0.75
0.155
Method 1
0.11
6.8
0.93
0.041
1.50
0.85
0.63
0.21
0.25
3.4
0.88
0.083
4.0
0.57
0.53
0.19
0.869
Minimum IAE –
T
m
1.086  Tm 
33


Model: Method 5
Rovira et al.
τ
Td
K m  τm 
0.740 − 0.13 m
(1969).
Tm
30
x1 =
x 2 τm 2 − 2(τm Tm ) + 2 (τm Tm )2 + 2τm 2 x 2
2 + (τm Tm )
; recommended
0. 6
τm
2
≤ x2 ≤
1
τm 2
.
31
Kc =
2.2


 Tm  
1 
Tm 
τm 




T
T
0
.
777
0
.
45
,
0
.
31
0
.
6
,
+
=
+
T
T
0
.
44
0
.
56
=
−

 i
 d
m
m
τ  .
Tm 
Km 
τm 


 m 

32
Kc =
ξ cos tan −1 (1.57 D R − (0.16 D R ))
.
K m cos tan −1 (6.28Tm Tu )
33
[
[
τ 
Td = 0.348Tm  m 
 Tm 
]
0.914
, 0.1 <
]
τm
≤1.
Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Marlin (1995),
pp. 301–307.
Model:
Method 1
Minimum IAE –
Sadeghi and
Tych (2003).
Minimum IAE –
Arrieta Orozco
(2006).
Wang et al.
(1995a).
Kc
Ti
Td
Comment
1.3 K m
0.93τ m
0.02τ m
τ m Tm = 0.25
1.0 K m
0.80τ m
0.05τ m
τ m Tm = 0.43
0.8 K m
0.71τ m
0.06τ m
τ m Tm = 0.67
0.7 K m
0.73τ m
0.09τ m
τ m Tm = 1.0
0.55 K m
0.64τ m
0.12τ m
τ m Tm = 1.5
0.48 K m
0.56τ m
0.15τ m
τ m Tm = 2.33
0.4 K m
0.52τ m
0.21τ m
τ m Tm = 4.0
91
Coefficients of K c , Ti , Td estimated from graphs; robust to ±25%
process model parameter changes.
Model: Method 1
1.45933τ m
34
Ti
τ
τm
Kc
0.1 ≤ m ≤ 1.0 .
+ 3.27873
T
Tm
m
35
Kc
Ti
Td
pp. 23–24. Model: Method 10
36
Kc
Tm + 0.5τ m
0.5Tm τ m
Tm + 0.5τ m
0.05 < τm Tm < 6;
Model: Method 1
34
Kc =


1 
T 
τ
 0.26266 + 0.82714 m  , Ti = Tm  0.28743 m + 1.35955  .


K m 
τm 
T
m


35
Kc =
0.8456 
0.9971 

τ 
T 
1 
,
 , Ti = Tm 0.9781 + 0.3723 m 
0.3295 + 0.7182 m 
T 


Km 

 τm 
 m




τ 
Td = 0.3416Tm  m 
 Tm 
0.9414
, 0.1 ≤
τm
≤ 2.0 .
Tm

x2 
 x1 +
(Tm + 0.5τm )


τ
m Tm 

36
, x1 = 0.7645 , x 2 = 0.6032 , Minimum IAE;
Kc =
K m (Tm + τm )
x1 = 0.9155 , x 2 = 0.7524 , Minimum ISE.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
92
Rule
Kc
Comment
Td
Ti
0.897
τ
1.048  Tm 
0.1 ≤ m ≤ 1.0
37


Minimum ISE –
T
T
d
Tm
i
Zhuang (1992), K m  τ m 
0.567
Zhuang and
τ
1.1 ≤ m ≤ 2.0
Atherton (1993). 1.154  Tm 
38
T
Ti
d
Tm
K m  τ m 
Model: Method 1 or Method 5 or Method 6 or Method 15.
Minimum ISE –
2 ≤ Am ≤ 5 ,
39
Ho et al. (1998).
T
T
Kc
i
d
300 ≤ φm ≤ 600 .
Model: Method 1
Minimum ISE –
40
Model: Method 1
Xing et al.
Ti
Td
Kc
(2001).
Minimum ISE –
1.93576τ m
τ
0.1 ≤ m ≤ 1.0 ;
41
Sadeghi and
Ti
τm
Kc
Tm
+ 3.83528
Tych (2003).
Tm
Model: Method 1
37
τ 
Ti =
, Td = 0.489Tm  m 
τm
 Tm 
1.195 − 0.368
Tm
0.888
τ 
, Td = 0.490Tm  m 
τm
 Tm 
1.047 − 0.220
Tm
0.708
Tm
38
Ti =
39
Kc =
Tm
0.9471
.
.
1.0264
 τm 


,
0.0845
T 
Am
 m
τ
0.0211Tm [1 + 0.3289A m + 6.4572φm + 25.1914(τm Tm )]
Ti =
, 0.1 ≤ m ≤ 1.0 ;
Tm
1 + 0.0625A m − 0.8079φm + 0.347(τm Tm )
0.0821
 Tm 
1.8578 φm


0.9087 

K m Am
 τm 
, Td =
0.4899Tm φm
0.1457
Given A m , with 2 ≤ A m ≤ 5 and 0.1 ≤ τ m Tm ≤ 1.0 , ISE is minimised when
φ m = 29.7985 +
40
62.1189 40.3182 τ m 76.2833τ m
+
−
(Ho et al., 1999).
Am
Tm
A m Tm
2

 τm  
 τm 

,




Kc =
, Ti = Tm 1.126 + 0.168
+ 0.043
2
Tm 
Tm  

 τm 
 τm 




 − 0.293

0.022 + 1.558
T 

 Tm 
 m
Km
[
]
Td = Tm 0.005 + 0.202(τm Tm ) − 0.016(τm Tm ) .
41
Kc =


1 
T 
τ
 0.40455 + 0.96441 m  , Ti = Tm  0.43770 m + 1.39588  .


K m 
τm 
T
m


2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
0.85
Minimum ITAE
0.965  Tm 


– Rovira et al.
Km  τm 
(1969).
Minimum ITAE
43
– Wang et al.
Kc
(1995a).
Minimum ITAE
44
– Sadeghi and
Kc
Tych (2003).
0.855
Modified
1.2  Tm 
minimum ITAE


K m  τm 
– Cheng and
Hung (1985).
0.855
Modified
0.965  Tm 


minimum ITAE
– Smith (2003). K m  τ m 
Minimum ITAE 1.034Tm 0.8733
– Zhang et al.
K m τm 0.8823
(2005).
42
Ti
Td
Comment
42
Ti
Td
Model: Method 5
Tm + 0.5τ m
0.5Tm τ m
Tm + 0.5τ m
Model: Method 1
Ti
1.55237 τ m
τm
+ 4.00000
Tm
0.1 ≤ τm Tm ≤ 1;
Model: Method 1
ξ = 0.707;
Ti
Td
Model:
Method 14
1.26Tm
0.308τm
Model: Method 1
Td
Model: Method 1
45
46
Ti
τ 
Tm
Ti =
, Td = 0.308Tm  m 
0.796 − 0.1465(τm Tm )
 Tm 
0.929
, 0. 1 ≤
τm
≤1.
Tm

0.5307 
 0.7303 +
(Tm + 0.5τm )

τm Tm 
τ

43
, 0.05 < m < 6 .
Kc =
Tm
K m (Tm + τm )


1 
T 
τ
 0.20360 + 0.80451 m  , Ti = Tm  0.29349 m + 1.29110  .




Km 
τm 
Tm


44
Kc =
45
Ti =
46
Ti = 1.6013Tm
τ 
Tm
, Td = 0.308Tm  m 
0.796 − 0.147(τm Tm )
 Tm 
0.9011
τm
0.0884
0.929
.
, Td = 0.3088Tm 0.1131τm 0.9047 , 0.02 ≤ τm Tm ≤ 4 .
93
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
94
Rule
Kc
Minimum ITAE
– Arrieta Orozco
(2006),
pp. 90–92.
Minimum ITAE
– Barberà (2006).
47
17-Mar-2009
Ti
Td
Comment
Td
2 ≤ Am ≤ 4 ;
Model:
Method 10
Td
Model: Method 1
47
Kc
Ti
48
Kc
−1.1734
1.3167e
τm
Tm
−1.3612 + 0.2192 A m − 0.0342 A m 2 

 τm 
1 
2
,

Kc =
1.5985 − 0.7918A m + 0.1088A m + x1 

Km 
Tm 



2
x1 = 0.7655 + 0.0142A m − 0.0253A m , 0.1 ≤ τm Tm ≤ 2.0 ;
−4.9021+ 4.2515 A m − 0.7519 A m 2 

 τm 
2
,


Ti = Tm − 0.8444 + 1.4211A m − 0.2677 A m + x 2 


Tm 



2
x 2 = 2.3292 − 1.4155A m + 0.2428A m , 0.1 ≤ τm Tm < 1.0 ;
4.9240 −1.8437 A m + 0.1863A m 2 

 τm 
2

,

Ti = Tm 1.3028 + 0.1528A m − 0.0837 A m + x 2 


Tm 



2
x 2 = 0.2535 − 0.1997 A m + 0.0678A m , 1.0 ≤ τm Tm ≤ 2.0 .
(
1.0743 − 0.2489 A m + 0.0595 A m 2
2  τm 
(
2  τm 
)

Td = Tm 1.1385 − 0.5597 A m + 0.0839A m 

 Tm 
)
, 0.1 ≤
−0.7838 +1.1971A m − 0.1797 A m 2

Td = Tm 1.1532 − 0.5945A m + 0.0929A m 

 Tm 
1
48
Kc =
,
K m 2.2132(τm Tm )2 + 1.0802(τm Tm ) + 0.001045
[
, 1.0 ≤
τm
< 1.0 ;
Tm
τm
≤ 2.0 .
Tm
]


τ 
τ
τ 
Td = 2.2132 m  + 1.0802 m + 0.001045 0.2371 − 0.2088 m  .
T
T
T


m
m
 m


2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum ISTSE
– Zhuang (1992),
Zhuang and
Atherton (1993).
Ti
Td
49
Kc
Ti
Td
50
Kc
Ti
Td
95
Comment
0. 1 ≤
τm
≤ 1.0
Tm
1.1 ≤
τm
≤ 2. 0
Tm
Model: Method 1 or Method 5 or Method 6 or Method 15.
51
Model: Method 1
0.509 K u
0.125Tu
Ti
∧
0.604 K u
Minimum ISTSE
– Xing et al.
(2001).
53
Kc
Ti
0.130 T u
Model:
Method 37
Ti
Td
Model: Method 1
52
∧
0.904
τ
0.968  Tm 
0.1 ≤ m ≤ 1.0
54


Minimum ISTES
T
Ti
d
Tm
– Zhuang (1992), K m  τ m 
0.583
Zhuang and
τ
1.1 ≤ m ≤ 2.0
Atherton (1993). 1.061  Tm 
55
Td
T
T


i
m
Km  τm 
Model: Method 1 or Method 5 or Method 6 or Method 15.
Kc =
1.042  Tm 


K m  τm 
0.897
49
Kc =
1.142  Tm 


K m  τm 
0.579
50
51
Ti = 0.051(3.302K m K u + 1)Tu , 1 ≤ K m K u ≤ 16 , 0.1 ≤ τm Tm ≤ 2.0 .
52
53
τ 
Tm
, Td = 0.385Tm  m 
0.987 − 0.238(τm Tm )
 Tm 
0.906
, Ti =
τ 
Tm
, Td = 0.384Tm  m 
0.919 − 0.172(τm Tm )
 Tm 
0.839
, Ti =
.
.
∧

∧
Ti = 0.04 4.972K m K u + 1 T u , 0.1 ≤ τm Tm ≤ 2.0 .


2

 τm  
 τm 

,




, Ti = Tm 1.154 + 0.193
Kc =
+ 0.042
2
Tm 
Tm  

 τm 
 τm 




 − 0.272

0.019 + 1.439
T 

 Tm 
 m
Km
[
]
Td = Tm 0.003 + 0.236(τm Tm ) − 0.022(τm Tm ) .
54
Ti =
τ 
Tm
, Td = 0.316Tm  m 
0.977 − 0.253(τm Tm )
 Tm 
55
Ti =
τ 
Tm
, Td = 0.315Tm  m 
0.892 − 0.165(τm Tm )
 Tm 
0.892
.
0.832
.
2
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
96
Rule
Kc
Minimum ISTES
– Xing et al.
(2001).
Xing et al.
(2001).
Model: Method 1
Kc =
Ti
Td
Comment
Model: Method 1
56
Kc
Ti
Td
57
Kc
Ti
Td
Kc
Ti
59
Kc
Ti
60
Kc
Ti
Minimise
∞
6 2
∫ t e (t)dt .
0
Nearly minimum
IAE, ISE, ITAE
– Hwang (1995).
Model:
Method 44
56
17-Mar-2009
58
Km
0.028 + 1.254(τm Tm ) − 0.239(τm Tm )2
ε1 < 2.4
0.471K u
K m ωu
2.4 ≤ ε1 < 3
3 ≤ ε1 < 20
,
[
]
T = T [0.002 + 0.274(τ T ) − 0.032(τ T ) ].
Ti = Tm 1.191 + 0.243(τm Tm ) + 0.042(τm Tm ) ,
2
2
d
57
58
Kc =
m
m
m
m
m
2

 



1.329 + 0.413 τm  + 0.027 τm   ,
T
T
,
=
i
m
2
T  
T 

τ 
τ 
 m 
 m

0.030 + 1.036 m  − 0.210 m 
 Tm 
 Tm 

K c =  K H1 −


Km
[
2
2
0.822 1 − 0.549ωH1τm + 0.112ωH1 τm
K m (1 + K H1K m )
]
ωH1K m 0.0142 1 + 6.96ωH1τm − 1.77ωH12 τm 2
).


[
K c (1 + K H1K m )
(
]
2
2

0.786 1 − 0.441ωH1τm + 0.0569ωH1 τm 
K c =  K H1 −
,


K m (1 + K H1K m )


Ti =
60
2
] ,
Ti =
59
[
Td = Tm 0.014 + 0.246(τm Tm ) − 0.031(τm Tm ) .
[
]

1.28(0.542 )ωH1τ m 1 − 0.986 ε1 + 0.558 ε12 
,
K c =  K H1 −


K m (1 + K H1K m )


Ti =
(
K c (1 + K H1K m )
ωH1K m 0.0172 1 + 4.62ωH1τm − 0.823ωH12 τm 2
K c (1 + K H1K m )
(
ωH1K m 0.0476(1 + 0.996 ln[ωH1τm ]) 1 + 2.13 ε1 − 1.13 ε12
).
).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
61
Hwang (1995) –
continued.
Kc
Ti
Td
Comment
Ti
0.471K u
K m ωu
ε1 ≥ 20
97
Decay ratio = 0.1; 0.1 ≤ τm Tm ≤ 2.0 .
Nearly minimum
IAE, ITAE –
Hwang and Fang
(1995).
62
Ti
Kc
Model:
Method 30
Td
0.1 ≤ τm Tm ≤ 2.0 ; decay ratio = 0.03.
63
Minimum performance index: other tuning
Ti
Td
Kc
Hwang and Fang
Nearly minimum IAE, ITAE – simultaneous servo/regulator tuning.
(1995).
Decay ratio = 0.05. Model: Method 30
Servo or
regulator tuning
Model:
Tm
– minimum IAE 0.36 + 0.76 τ
Method 46;
0.47Tm τ m
0.47τ m + Tm
m
– Huang and
τm Tm < 0.33
0.47τ m + Tm
K
m
Jeng (2003).
61
[
]
2
2

1.14 1 − 0.466ωH1τm + 0.0647ωH1 τm 
K c =  K H1 −
,


K m (1 + K H1K m )


Ti =
62
[
(
]
K c = 0.537 − 0.0165(τm Tm ) + 0.00173(τm Tm ) K u ,
Ti =
2
[
Kc
K c (1 + K H1K m )
ωH1K m 0.0609 − 1 + 1.97ωH1τm − 0.323ωH12 τm 2
K u ωu 0.0503 + 0.163(τm Tm ) − 0.0389(τm Tm )2
],
2

 τ   Ku
τ
Td = 0.350 − 0.0344 m + 0.00644 m  
.
Tm

 Tm   ωu K c

63
[
]
K c = 0.713 − 0.176(τm Tm ) + 0.0513(τm Tm ) K u ,
Ti =
2
[
Kc
K u ωu 0.149 + 0.0556(τm Tm ) − 0.00566(τm Tm )2
],
2

 τm   K u
τm
τm




Td = 0.371 − 0.0274
+ 0.00557
  ω K , 0.1 ≤ T ≤ 2.0 .
Tm
T

m
 m  u c

).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
98
Rule
Huang and Jeng
(2003) –
continued.
Kc
64
Kc
Ti
Td
Comment
Ti
Td
τm Tm ≥ 0.33
x 1 τ m + x 2 Tm x 3 τ m + x 4 Tm
x 6 Tm τ m
τm
Åström and
τ m + α 5 Tm
K mτm
τ
m + x 7 Tm
Hägglund (2004).
Model:
x1
x2
x3
x4
x5
x6
x7
Method 1
0.057 0.139 0.400 0.923 0.012 1.59 4.59
Coefficient
values given.
M max = 1.1
0.103 0.261 0.389 0.930 0.040
1.62
4.44
M max = 1.2
0.139 0.367 0.376 0.900 0.074
1.66
4.39
M max = 1.3
0.168 0.460 0.363 0.871 0.111
1.70
4.37
M max = 1.4
0.191 0.543 0.352 0.844 0.146
1.74
4.35
M max = 1.5
0.211 0.616 0.342 0.820 0.179
1.78
4.34
M max = 1.6
0.227 0.681 0.334 0.799 0.209
1.81
4.33
M max = 1.7
0.241 0.740 0.326 0.781 0.238
1.84
4.32
M max = 1.8
0.254 0.793 0.320 0.764 0.264
1.87
4.31
M max = 1.9
0.264 0.841 0.314 0.751 0.288
1.89
4.30
M max = 2.0
Direct synthesis: time domain criteria
Tm τ m
T 
1 
 0.5 + m 
Van der Grinten
Step disturbance.
Tm + 0.5τ m
τ
m + 2Tm
Km 
τm 
(1963).
65
Stochastic
Model: Method 1
Ti
Td
Kc
disturbance.
64
Kc =
0.8194Tm + 0.2773τm
K m τm 0.9738Tm 0.0262
, Ti = 1.0297Tm + 0.3484τm ,
 0.4575Tm + 0.0302τm 
τm .
Td = 

 1.0297Tm + 0.3484τm 
65
Kc =

e − ωd τ m 
T
1 − 0.5e − ωd τ m + m e − ωd τ m  ,


τm
Km 

Ti =
(
)

1 − 0.5e− ωd τ m Tm
τm 
T
1 − 0.5e− ωd τ m + m e− ωd τ m  , Td =
− ωd τ m 

τm
1 − 0.5e − ωd τ m + Tm τm e − ωd τ m
e


(
)
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
66
Regulator –
Ti
Td
τm Tm < 2
Kc
Gorecki et al.
(1989).
Pole is real and has maximum attainable multiplicity.
Model: Method 1
Saito et al.
0.315Tm τ m
τm Tm < 1
(1990).
0.215τ m + Tm
0.315τ m + Tm
0.315τ m + Tm
Model:
1.37 K m τ m
67
1 ≤ τm Tm < 10
Td
Method 22
68
Suyama (1992).
OS=10%
Tm + 0.309 τ m
Td
Kc
Model: Method 1
Fruehauf et al. 0.56Tm K m τm
≤ 0.5τ m
5τ m
τm Tm < 0.33
(1993).
≤ 0.5τ m
0.5Tm K m τm
Tm
τm Tm ≥ 0.33
Model: Method 2
69
Nomura et al.
‘Kitamori’.
Tm + 0.315τm
Td
Kc
(1993).
Model:
70
‘Butterworth’.
Tm + 0.3109τm
Td
Kc
Method 1;
τ
0.01 ≤ m ≤ 10 .
71
Minimum ITAE.
Tm
Tm + 0.3610τm
Td
Kc
66
τm
2
 τ   τ   x1 − 3− 2 Tm
2Tm 
τ
6 + m x1 − 9 −  m  −  m   e
,
K m τm 
2Tm
 2Tm   2Tm  

Kc =
Ti = τm
[6 + (τm 2Tm )]x1 − 9 − (τm 2Tm ) − (τm 2Tm )2
[21 + 3(τm Tm ) + (τm 2Tm )2 ]x1 − 36 − 4.5(τm Tm ) − 1.5(τm Tm )2 − (τm 2Tm )3 ,
Td = 0.5τm
2
 τ 
, x 1 = 3 +  m  .
2
[6 + (τm 2Tm )]x1 − 9 − 0.5(τm Tm ) − (τm 2Tm )
 2Tm 
x1 − 1
2
67
Td =
0.315τm Tm + 0.003τm
.
0.315τm + Tm
68
Kc =

2.236Tm τm
1 
Tm
.
+ 0.2236 , Td =
0.7236
7.236Tm + 2.236τm
Km 
τm

69
Kc =
0.0027 τm + 0.315Tm
0.73 
T 
 0.315 + m  , Td =
τm .
τm 
0.315τm + Tm
K m 
70
Kc =
0.0082τm + 0.3109Tm
0.73 
T 
 0.3109 + m  , Td =
τm .


τm 
0.3109τm + Tm
Km 
71
Kc =
0.0690τm + 0.3610Tm
0.73 
T 
 0.3610 + m  , Td =
τm .
τm 
0.3610τm + Tm
K m 
99
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
100
Rule
Kc
Ti
Td
Comment
72
Kc
Tm + 0.4860τm
Td
‘Binomial’.
73
Kc
Juang and Wang
(1995).
74
Kc
Ti
Td
Abbas (1997).
75
Kc
Tm + 0.5τ m
Tm τ m
2Tm + τ m
Model: Method 1
Tm + τm
K mTm τm
4Tm τ m
Tm + τ m
Tm τ m
Tm + τ m
Model: Method 1
Nomura et al.
(1993) –
continued.
Gonzalez (1994),
p. 119.
Model: Method 1
Camacho et al.
(1997).
72
Kc =
73
Kc =
Kc =
Tm Ti x 2
(
2
Kc =
m
1
4
x1 = 0.2 ;
x 3 = 0.21
(p. 121).
Model: Method 1
TCL = x1Tm .
− x 3Tm + x 32Tm 2 + Tm (τm − Ti ) − x1Ti 2
2
K m 1 + x 2 x1Ti
2
)
, x2 =
Tm (τm − Ti ) − x1Ti 2
1
1 + (2π log e [b a ])
2
,
x1 + (τm Tm ) + 0.5(τm Tm )2
K m (x1 + (τm Tm ))
2
b
= desired closed loop response decay ratio.
a
x1 + (τm Tm ) + 0.5(τm Tm )
,
x1 + (τm Tm )
2
, Ti = Tm
Td =
75
4x1
] τ [1 − 1 − 4x ]
0.1329τm + 0.4860Tm
0.73 
T 
 0.4860 + m  , Td =
τm .


τm 
0.4860τm + Tm
Km 
with x 3 =
74
[
τ m 1 − 1 − 4 x1
0.5Tm τm 2 (x1 + (τm Tm ) − 0.5x1 (τm Tm ))
(x1 + (τm Tm ))(x1 + (τm Tm ) + 0.5(τm Tm )2 )
1.002
τ
0.177 + 0.348(Tm τm )
, 0 ≤ V ≤ 0. 2 , 0. 1 ≤ m ≤ 5. 0 .
0.713
Tm
K m (0.531 − 0.359V
)
, 0 < x1 < 1 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Cluett and Wang
(1997), Wang
and Cluett
(2000).
Model:
Method 1;
τ
0.01 ≤ m ≤ 10 .
Tm
76
Kc =
Kc =
Kc =
Kc
Ti
Td
TCL = 4τ m
77
Kc
Ti
Td
TCL = 2τm
78
Kc
Ti
Td
TCL = 1.33τ m
79
Kc
Ti
Td
TCL = τ m
80
Kc
Ti
Td
TCL = 0.8τ m
81
Kc
Ti
Td
TCL = 0.67τ m
−0.0069905τm + 0.029480Tm
τm , 7.97 ≤ A m ≤ 8.56 , 79.67 0 ≤ φm ≤ 79.700 .
0.029773τm + 0.29907Tm
0.16440τm + 0.99558Tm
0.055548τm + 0.33639Tm
τm ,
, Ti =
K m τm
0.98607 τm − 1.5032.10− 4 Tm
Kc =
Kc =
Kc =
−0.030407τ m + 0.27480Tm
τm , 3.30 ≤ A m ≤ 3.56 , 65.860 ≤ φm ≤ 68.500 .
0.25285τm + 1.0132Tm
0.26502τm + 0.94291Tm
0.16051τm + 0.57109Tm
τm ,
, Ti =
K m τm
0.89868τm + 6.9355.10− 2 Tm
Td =
81
−0.024442τm + 0.17669Tm
τm , 3.81 ≤ A m ≤ 4.16 , 69.840 ≤ φm ≤ 70.700 .
0.17150τm + 0.80740Tm
0.24145τm + 0.96751Tm
0.12786τm + 0.51235Tm
τm ,
, Ti =
K m τm
0.93566τm + 2.2988.10− 2 Tm
Td =
80
−0.016651τm + 0.093641Tm
τm , 4.84 ≤ A m ≤ 5.31 , 73.90 ≤ φm ≤ 74.140 .
0.093905τm + 0.56867Tm
0.20926τm + 0.98518Tm
0.092654τm + 0.43620Tm
τm ,
, Ti =
K m τm
0.96515τm + 4.2550.10− 3 Tm
Td =
79
Comment
76
Td =
78
Td
0.099508τm + 0.99956Tm
0.019952τm + 0.20042Tm
τm ,
, Ti =
K m τm
0.99747 τm − 8.7425.10−5 Tm
Td =
77
Ti
101
−0.035204τm + 0.38823Tm
τm , 3.00 ≤ A m ≤ 3.19 , 60.600 ≤ φm ≤ 67.210 .
0.33303τm + 1.1849Tm
0.19067 τm + 0.61593Tm
0.28242τm + 0.91231Tm
τm ,
, Ti =
K m τm
0.85491τm + 0.15937Tm
Td =
−0.039589τm + 0.51941Tm
τm , 2.80 ≤ A m ≤ 2.95 , 52.350 ≤ φm ≤ 66.450 .
0.40950τm + 1.3228Tm
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
102
Rule
Kc
Valentine and
Chidambaram
(1997a).
Morilla et al.
(2000).
Model:
Method 33
Mann et al.
(2001).
Model:
Method 37 or
Method 44.
82
17-Mar-2009
Ti
Td
Comment
Ti
Td
ξ = 0.707 ;
Model: Method 1
82
Kc
83
τm
x1τm
x 1 = 0. 1 ;
Kc
1 + 1 − 4 x1
1 + 1 − 4 x1
0.2 ≤ x 3 ≤ 0.5 .
84
Kc
Ti
Td
OS < 5%;
0 < τ m Tm < 1 .
85
Kc
Ti
Td
OS < 5%;
1 ≤ τ m Tm < 2 .
Kc =
2

 τ 
τ  
1 
τ
0.746 − 1.242 ln m  , Ti = Tm 0.3106 + 1.372 m − 0.545 m   ,
K m 
Tm

 Tm 
 Tm  

Td =
Tm
.
16.015Tm − 11.702τm
2
±1% TS = 2.5Tm , 0.1 ≤ τm Tm ≤ 0.5 ; ±1% TS = 3.0Tm , τm Tm = 0.6 ;
±1% TS = 3.75Tm , τm Tm = 0.7; ±1% TS = 4.3Tm , τm Tm = 0.8;
±1% TS = 5.0Tm , τm Tm = 0.9 .
83
Kc =
− x 3Tm + x 32Tm 2 + Tm (τm − Ti ) − x1Ti 2
Ti x 2
, x2 =
K m [2 x 3 + x 2 (τm − Ti )]
Tm (τm − Ti ) − x1Ti 2
with x 3 =
84
1
1 + (2π log e [b a ])
2
,
b
= desired closed loop response decay ratio.
a
[0.770 + 0.245(τ T ) ]T , T = 1.262 + 0.147 τ 
0.854
Kc =
m
m
m
m
i
K m τm


0.854 
 Tm ,


T 
 m
Td =
85
0.770 + 0.245(τm Tm )0.854
τm .
[0.603 + 0.275(T τ ) ]T , T = 1.1618 + 0.165 T  T ,
2.4
2 .4
Kc =
0.262 + 0.147(τm Tm )0.854
m
K m τm
m
m
i
m


τ 
 m


Td =
m
0.1618 + 0.165(Tm τm )2.4
0.603 + 0.275(Tm τm )2.4
τm .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Chen and Seborg
86 K c
(2002).
τ
Chidambaram
−1.763 m
Tm
(2002), p. 155. 4.105 e
Km
Vítečková and
Víteček (2002).
Model: Method 1
86
88
Ti
Td
Comment
Ti
Td
Model: Method 1
Ti
Td
Model: Method 1
Ti
Td
87
Kc
For 0.05 < τm Tm < 1.6 , Ti = 1.2Tm ; overshoot is under 2%
(Vítečková and Víteček, 2003).
(
)
1 2Tm τm + 0.5τm 2 (3TCL + 0.5τm ) − 2TCL 3 − 3TCL 2 τm
,
Km
2TCL3 + 3TCL 2 τm + 0.5τm 2 (3TCL + 0.5τm )
Kc =
(2T τ + 0.5τ )(3T + 0.5τ ) − 2T
2
Ti =
m m
m
CL
3
CL
2
− 3TCL τm
,
3TCL τm Tm + 0.5Tm τm (3TCL + 0.5τm ) − 2(Tm + τm )TCL
2
(2T τ + 0.5τ )(3T + 0.5τ ) − 2T
2
m m
88
m
τm (2Tm + τm )
2
Td =
87
103
m
CL
m
CL
3
2
− 3TCL τm
3
T s(1 + 0.5τms )e
 y
= i
;  
K c (TCLs + 1)3
 d desired
− sτ m
.
2

τ  
Tm
τ
Ti = Tm 0.311 + 1.372 m − 0.545 m   , Td =
.
Tm
16.016 − 11.702(τm Tm )

 Tm  

Kc =
[
(
]
)
eτ m x1
3
0.5
2
3
2
2
τm Tm x1 + 3τm Tm + τm x1 + τm x1 − 1 , x 1 = −
−
+
τ m Tm
Km
(
)
 τ 2T x 3 + 3τ T + τm 2 x12 + τm x1 − 1 
Ti = −2  m m 13 2 m m
,
2
x1 τm Tm x1 + 2τm Tm + τm


(
)
(
3
τm2
+
)
)
0.25
Tm 2
;
 τ 2T x 2 + 4τm Tm + τm 2 x1 + 2τm + 2Tm 
Td = −0.5 m 2 m 1 3
.
2
2
 τm Tm x1 + 3τm Tm + τm x1 + τm x1 − 1 
(
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
104
Rule
Kc
Gorez (2003). (1 − x1 )τm + Tm
Model: Method 1
x 2 K m τm
Sree et al.
(2004).
Model: Method 1
Kukal (2006).
89
17-Mar-2009
For 0 ≤
Ti
Comment
Td
(1 − x1 )τm + Tm
(1 − x1 )τmTm
(1 − x1 )τm + Tm
90
Kc
Tm + 0.5τ m
Td
91
Kc
Ti
Td
0.1 ≤ τm Tm ≤ 1
92
Kc
Ti
Td
Model: Method 1
τm
τ T + Tm 2 + 0.5τm 2
,
≤ τ m , x1 = m m
τ m + Tm
(τm + Tm )2
x2 =
For τ m ≤
1
(1.3M s 2 − 1) 1.56τm 2 (0.5τm + 3Tm )
+
;
2M s (M s − 1) 2M s (M s − 1)
(τm + Tm )3
τm
0.65M s
τ T + Tm 2 + 0.5τm 2
, x2 =
≤ 1 , x1 = m m
.
τ m + Tm
Ms − 1
(τm + Tm )2
90
Kc =

0.5τm (Tm + 0.1667 τm )
1  Tm

+ 0.5  , Td =
.
Tm + 0.5τm
K m  τm

91
Kc =
1.377  Tm 


K m  τm 
92
Kc =
2


12(Tm τm )2 + 1 − 1  x1
T 
1 
T
6 12 m  + 1 − 18 m − 1 +
e ,

Km 
2Tm τm
τm
 τm 


x1 =
89
0.8422
τ 
, Ti = 1.085Tm  m 
 Tm 
12(Tm τm )2 + 1 − 1
2(Tm τm )
− 3 ; Ti = τm
4
0.4777


τ
, Td = Tm 0.3899 m + 0.0195 .
Tm


x 2 + x 3 12(Tm τm )2 + 1
3
27(2(Tm τm ) + 1)4
,
2
T 
T 
T 
T
x 2 = 864 m  + 432 m  + 252 m  + 72 m + 5 ,
τm
 τm 
 τm 
 τm 
3
2
T 
T 
T
x 3 = 216 m  + 60 m  + 18 m + 5 ;
τm
τ
τ
 m
 m
Td = τm
3
2
2
  T 2 
T 
T 
T 
T
72 m  + 8 m  + 10 m + 1 + 12 m  + 1 12 m  + 1
τm
  τm 

 τm 
 τm 
 τm 


2
  T 3

 Tm 
Tm
m 





+
+
+
4 108
36
20
5
τ 
τm
  τm 

m 



.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ti
Td
Comment
1.282Tm
0.321Tm
τm
> 0.368
Tm
Kc
Vítečková
(2006).
Model: Method 9
93
Gorecki et al.
(1989).
94
Kc
Kc
Direct synthesis: frequency domain criteria
Model: Method 1
Ti
Td
Regulator – low frequency part of magnitude Bode diagram is flat.
95
x1Td
Td
Kc
Li et al. (1994).
Model:
Method 48
∧
4hx 2
πA p
93
Kc ≥
1.282Tm
.
K m (2.718τm − Tm )
94
Kc =
1
,
2K m (τm Ti )(1 + (Tm τm )) − 2K m
Ti = τm
Td = τm
95
Kc =
∧
0.318 T u
x 2 given in
footnote 95.
0.080 T u
7 + 42(Tm τm ) + 135(Tm τm )2 + 240(Tm τm )3 + 180(Tm τm )4
,
1 + 7(Tm τ m ) + 27(Tm τm )2 + 60(Tm τm )3 + 60(Tm τm )4
.
[
15[2(Tm τm ) + 1]1 + 3(Tm τm ) + 6(Tm τm )2
]
7 + 42(Tm τm ) + 135(Tm τm )2 + 240(Tm τm )3 + 180(Tm τm )4
4h
πµ
x 2 cos φm
2
Ap − µ
µ
2

4 
+
− 0.5υ + υ2 + 
2
x

1 
υ + υ + (4 x1 )

, µ = hysteresis value,
2
tan φm −  µ A p 2 − µ 2 

4 
2

.
Td = 0.080 T u  υ + υ +  , υ =
2
x1 

2 

1 +  µ Ap − µ 


The values of x 1 and x 2 are given below.
∧
φm
x1
150
2.8
200
3.2
250
3.5
300
3.8
350
4.0
400
4.2
450
4.6
500
4.9
550
5.2
600
5.4
650
5.5
x2
0.5
0.6
0.6
0.6
0.7
0.7
0.8
0.8
0.8
0.9
0.9
105
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
106
Rule
Kc
96
Lee et al. (1992).
Model: Method 1
Kc
Td
Comment
Ti
Td
M s = 1.25
1.1
97
,
τm
τ
< 2.52 ; x1 = 1 , m ≥ 2.52 .
Tm
Tm
x 2τm
Kc
x 3τ m
τ m Tm
x2
Coefficient values:
x3
τ m Tm
x2
x3
0.0375
0.1912
0.3693
0.5764
0.8183
1.105
1.449
3.57
3.33
3.13
2.94
2.78
2.63
2.50
0.71
0.67
0.63
0.59
0.56
0.53
0.50
2.38
2.27
2.17
2.08
2.00
1.92
1.85
0.48
0.45
0.43
0.42
0.40
0.38
0.37
1.869
2.392
3.067
3.968
5.263
7.246
10.870
[3.08(T τ ) − 4 + 9.92x (T τ ) + 0.77(4 + 2(τ T ))(T τ ) ] ,
K [1.54(τ T ) + 4 + 4.96 x (τ T ) ]
0.1
Kc =
Ti
τ 
x1 = 0.55 + 0.163 m 
 Tm 
Somani et al.
(1992).
Model:
Method 1;
suggested A m :
1.75 ≤ A m ≤ 3.0 .
96
17-Mar-2009
m
0.55
m
1
m
m
0.1
m
m
0.9
m
m
0.45
m
1
m
m
m
m
0 .1
0.55
 τ
3.08(Tm τ m ) − 4 + 9.92 x1 (Tm τm ) 
Ti = Tm 0.5 m +
,
1 .1
1.54(4 + 2(τm Tm ))(Tm τm )
 Tm

Tm
Td =
.
2Tm
1.54(Tm τm )1.1 (4 + 2(τm Tm ))
+
0.1
0.55
τm
3.08(Tm τm ) − 4 + 9.92 x1 (Tm τm )
97
For
τm
0.7809
< 1 , Kc ≈
Tm
K mAm
4
( 0.803 + 4(τ T ) + 0.896)
2
m
2
Kc ≈
+ 1 or
m
2
T 
T 
τ
0.7809
0.7809
1 + 0.803 m  ; K c ≈
1 + 0.455 m  , m > 1 .
T
τ
τ
KmAm
K
A
m
m
m
m
m




b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ti
Td
Comment
Minimum ISTSE 98 mK cos(φ )
u
m
– Zhuang and
Atherton (1993).
99
Model: Method 1 mK u cos(φ m )
Ti
Ti
x1
A m = 2,
φ m = 60 0 .
Chidambaram
(1995a).
Ti
Td
Model: Method 1
98
Kc
100
Kc
(
)
tan (φm ) +
4
+ tan 2 (φm )
x1
m = 0.614(1 − 0.233e −0.347 K m K u ) , φ m = 33.8 0 1 − 0.97e −0.45K m K u , 0.1 ≤ τm Tm ≤ 2.0 ,
x1 = 0.413(3.302K m K u + 1) , Ti = x1
99
100
2ωu
, Model: Method 1.
∧
∧
∧


m = 0.613(1 − 0.262e −0.44 K m K u ) , φ m = 33.2 0 1 − 1.38e −0.68 K m K u  , x1 = 1.687 K m K u ,


0.1 ≤ τm Tm ≤ 2.0 , Model: Method 37.
Kc ≈
Ti ≈
Td ≈

1 
K mAm 


1.17 


(
2

 or 0.85 1 + 4.45 Tm  ;
+
0
.
85
2
τ 
 KmAm
 m
4.45 + 4(τm Tm ) − 2.11

5Tm
5Tm
or
;
2
2

 Tm 
3.42
 − 0.15
4.45
+ 0.85 − 1
2
 τm 

4.45 + 4(τm Tm ) − 2.11

(
3.42
)
)
0.8Tm

1.17 


2
(

3.42
 −1
+
0
.
85
2

4.45 + 4(τm Tm ) − 2.11

)
or
0.8Tm
2
T 
4.45 m  − 0.15
 τm 
.
107
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
108
Rule
Chidambaram
(1995a) –
continued.
Kc
Ti
Td
Comment
x1 K m A m
x2τm
x 3τ m
Alternative.
τm Tm
x1
x2
0.062 29.770
0.083 22.100
0.150 12.470
0.196 9.670
0.290 6.686
0.339 5.784
1.20Tm K m τm
2.34
0.37
2.33
0.37
2.29
0.37
2.27
0.36
2.23
0.36
2.21
0.35
2.4 τ m
Chidambaram
(1995a).
1.03Tm K m τm
Model: Method 1
0.90Tm K m τm
101
Åström and
Hägglund (1995),
pp. 208–210.
τ
0.14 ≤ m ≤ 5.5.
Tm
102
104
Coefficient values:
x3
τm Tm
Kc
Kc
0.389
0.543
1.03
2.92
3.69
x1
x2
x3
5.104
3.781
2.262
1.209
1.105
2.19
2.14
2.00
1.72
1.67
0.35
0.34
0.32
0.28
0.27
0.38τ m
A m = 1.5
2.4 τ m
0.38τ m
A m = 1.75
2.4 τ m
0.38τ m
A m = 2.0
Ti
Td
M s = 1.4
103
Ti
Td
Ti
Td
105
Td
Ti
M s = 2.0
Model: Method 5 or Method 17.
Ku
cos φ m
Am
Tan et al. (1996).
Model:
Method 36
Kφ
107
Am
101
x1Td
106
Td
Ti
x1 chosen
arbitrarily.
Td
Arbitrary A m ,
φ m at ωφ .


1
Tuning rules converted from formulae developed for G c (s) = K c  [1 − α ] +
+ Tds  .
T
s
i


2
2
2
1.52e −8.22 τ +10.1τ Tm
, Ti = 2.08τme −2.32 τ +1.4 τ , Td = 2.23τm e −0.55τ − 6.9 τ .
K m τm
102
Kc =
103
Ti = 0.184Tm e 2.98τ + 0.7 τ , Td = 0.193Tm e 4.82 τ − 7.6 τ .
104
Kc =
105
Ti = 0.06Tme 4.45τ −1.549 τ , Td = 0.345Tm e −2.75τ −1.151τ .
106
Td = Tu
2
2
2
107
2
2
1.85e −8.95 τ + 9.851τ Tm
, Ti = 0.704τm e −0.85τ − 0.879 τ , Td = 3.91τme −2.55τ − 0.491τ .
K m τm
2
Ti =
tan φm +
(4 x1 ) + tan 2 φm
4π
(
r2 K φ ωu 2 − ωφ 2
ωu ωφ
2
2
2
2
)
K u − r2 K φ
2
, Td =
; recommended A m = 2 , φ m = 450 .
ωu K u 2 − r2 2 K φ 2
(
r2 K φ ωu 2 − ωφ 2
Ku
) , r = 0.1 + 0.9 K .
2
φ
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Friman and
Waller (1997).
Model:
Method 1;
Am > 2
Kc
Ti
Td
0.25K u
1.1879Tu
0.2970Tu
2.6064
ω1500
0.6516
ω1500
0.4830
(
G p jω1500
)
109
Comment
τ m Tm < 0.25 ,
φ m > 60 0 .
τm
≤ 2.0,
Tm
0.25 ≤
φ m > 450 .
Branica et al.
(2002).
Model:
Method 1;
M s = 1.8
108
Kc
Ti
Td
109
Kc
Ti
Td
Kc
Ti
Td
x 2 − x1
x 2K m
(x 2 − x1 )τm
(1 − x1 ) T
(x 2 − x1 ) m
110
111
Gorez (2003).
Model: Method 1
Åström and
Hägglund (2006),
pp. 261–262.
108
109
110
111
112
Kc =
113
Kc
(1)
Ti
(1)
T 
1 
T 
 0.021 + 0.788 m  , Ti = 1.534τ m  m 
τ 
τm 
K m 
 m
0.326
T 
1 
T 
 0.292 + 0.671 m  , Ti = 1.239τm  m 
Kc =
τ 
τm 
K m 
 m
0.554
T 
1 
T 
 0.338 + 0.623 m  , Ti = 1.228τm  m 


τ 
τm 
Km 
 m
0.480
Kc =
(1)
τm
≤ 0.5
Tm
0.5 <
τm
≤ 1.1
Tm
1.1 <
τm
≤ 2.0
Tm
112
Model:
Method 5;
M s = M t = 1. 4 .
T 
, Td = 0.233τ m  m 
 τm 
T 
, Td = 0.230τm  m 
 τm 
T 
, Td = 0.231τm  m 
 τm 
0.055
.
0.069
.
0.120
.


1
Tuning rules converted from formulae developed for G c (s) = K c  [1 − α ] +
+ Tds  .
T
s
i


For 0 ≤
τm
τ T + Tm 2 + 0.5τm 2
≤ τ m , x1 = m m
τm + Tm
(τm + Tm )2
x2 =
For τ m ≤
113
Td
0.1 ≤
K c (1) =
1
(1.3M s 2 − 1) 1.56τm 2 (0.5τm + 3Tm )
+
;
2M s (M s − 1) 2M s (M s − 1)
(τm + Tm )3
τm
0.65M s
τ T + Tm 2 + 0.5τm 2
.
≤ 1 , x1 = m m
, x2 =
2
τ m + Tm
Ms − 1
(τm + Tm )
0.4τm + 0.8Tm
0.5Tm τm
1 
Tm 
(1)
(1)
τm , Td =
.
0.2 + 0.45  , Ti =
τm 
0.3τm + Tm
Km 
τm + 0.1Tm
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
110
Rule
Kc
Åström and
Hägglund (2006),
pp. 261–262.
114
Kc
( 2)
Ti
Td
Comment
( 2)
Td
( 2)
τm Tm > 0.11
Ti
Model: Method 5; detuned ‘AMIGO’ tuning rule.
(5)
(5)
τm Tm < 0.11
115
T
T
K
( 5)
i
c
114
Kc
( 2)
= Kc
(3)
( 2)
K c Td
+
( 2)
(1)
K c Td (1)
(K
(1)
− Kc
c
( 4)
d
), K
( 3)
c
= x1K c
( 4)
, x1 = 0.5,0.1 or 0.01;
K c ( 4) =
τmTm  Tm
0.15 
+ 0.35 −
;

K m 
(τm + Tm )2  K m τm
Kc
115
FA
Ti
( 2)
Ti
( 4)
Kc
(5)
=
Kc
( 2)
( 2) 
(1)
( 4) 
 Kc − Kc 
+
( 3)
(1) (1) 
(1)
( 4) 
Ti
K c Td  Ti
Ti 
Kc
( 3)
( 2)
K c Td
= 0.35τm +
= Kc
13τm Tm
Tm 2 + 12Tm τm + 7 τm
(5)
( 6)
K c Td
+
2
(5)
K c (1)Td (1)
(K
(1)
c
− Kc
; Td
2
(7)
, Ti
( 3)
( 2)
=
), K
K c(7) ≥
= Ti
(6)
K m + 1 − Ms
( 4) K c
Ti
Kc
( 4)
K c K m + 1 − Ms
(1)
c
( 4)
( 3)
0.1K c Td
(7)
( 3)
(1)
or Td
K c ( 2)
= x1K c
( 4)
( 2)
Ti
(5)
Td
( 5)
=
( 6)
(5)
K c Td
(1)
=
0.1K c Td
Kc
(5)
(1)
(5)
(5) 
or Td (5) =
,
(1)
=
0.01K c Td
(1)
.
K c ( 2)
2K c ( 4 ) (τm + Tm )
1
+
−1 ;
2
( 4)
( 4)
−1
M


s
M s  M s + M s − 1 Ti 1 − M s + K c K m


(1)
(7) 
 Kc − Kc 
+
(6)
(1) (1) 
(1)
( 4) 
Ti
K c Td  Ti
Ti 
Kc
−1
, x1 = 0.5,0.1 or 0.01;
(
K c ( 4)
Kc
−1
, Ti ( 6) = Ti
0.01K c (1) Td (1)
K c ( 5)
.
( 4) K c
( 6)
Ti ( 4 )
)
K m + 1 − M s −1
K c ( 4 ) K c ( 6 ) K m + 1 − M s −1
;
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Åström and
Hägglund (2006),
pp. 261–262 –
continued.
116
Kc
( 8)
= Kc
K c (10) <
Ti
(8 )
=
(9)
+
( 8)
116
Kc
K c Td
(8 )
(8 )
(1)
(1)
K c Td
Ti
Td
Comment
(8 )
Td
(8 )
τm Tm < 0.11
(10 )
, x1 = 0.5,0.1 or 0.01;
Ti
(K
(1)
c
− Kc
(10 )
), K
(9 )
c
= x1K c
2K c ( 4 ) (τm + Tm )
1
+
−1 ;
2
( 4)
( 4)
−1
M


s
M s  M s + M s − 1 Ti 1 − M s + K c K m


(
)
K c (8 )
,
(9)
( 8) (8 )
(1)
(10 )
Kc
K c Td  K c
K c 
+
−
Ti (9)
K c (1) Td (1)  Ti (1)
Ti ( 4) 
Ti (9) = 2K c (9) K m
Td
(8 )
(1)
=
111
0.1K c Td
Kc
( 8)
(1)
or Td
( 8)
(1)
=
0.01K c Td
Kc
(8 )
(1)
.
τm + Tm
;
2
2

M s  M s + M s + 1  K c (9) K m + 1 − M s −1


(
)
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
112
Rule
Kc
King (2006).
Model: Method 1
117
Kc
Ti
Td
Ti
Td
Comment
0.2 ≤
τm
≤ 10 ;
Tm
1.4 ≤ M s ≤ 1.9 .
Robust
Rivera et al.
Tm + 0.5τ m
(1986).
K m (λ + 0.5τ m )
Model: Method 1
Brambilla et al. 118 Tm + 0.5τ m
(1990).
K m (λ + τ m )
Model: Method 1
117
Tm + 0.5τ m
λ > 0.1Tm ,
Tm τ m
2Tm + τ m
λ ≥ 0.8τ m .
0.5τ m ≤ λ ≤ 3τ m (Zou et al., 1997).
Tm + 0.5τ m
Tm τ m
2Tm + τ m
0.1 ≤
τm
≤ 10
Tm
No model uncertainty: λ ≈ 0.35τ m .
4
3
2



 τm  
 τm 
 τm   
1  
  + x 2 log10 



Kc =
x1 log10 

 T  + x 3 log10  T   
K m  
 Tm  
 m 
 m   



+

 τm 
1 
 + x 5  ,
x 4 log10 

K m 
T

 m
x1 = −0.724M s 2 + 2.767 M s − 1.987 , x 2 = 0.329M s 2 − 2.513M s + 1.707 ,
x 3 = −0.509M s 2 + 3.697 M s − 2.9131 , x 4 = 1.166M s 2 − 5.389M s + 4.264 ,
x 5 = −0.753M s 2 + 3.216M s − 2.407 ;
  τ 2

τ 
Ti = Tm  x 6  m  + x 7  m  + x 8  , x 6 = −0.0486M s 2 + 0.1603M s − 0.1327 ,
  Tm 

 Tm 


x 7 = 0.2061M s 2 − 0.7414M s + 0.9609 , x 8 = −0.1759M s 2 + 0.5994M s + 0.4937 ;
2

  τ 3
 τm 
 τm 
m 





 + x12  ,
+
+
Td = Tm x 9 
x
x
10
11
T 
T 
  Tm 

 m
 m


x 9 = −0.0165M s 2 + 0.0518M s − 0.0387 , x10 = 0.1733M s 2 − 0.5468M s + 0.3938 ,
x11 = −0.2998M s 2 + 0.7705M s − 0.1951 , x 12 = −0.0326M s 2 + 0.1475M s − 0.1426 .
118
0.1Tm ≤ λ ≤ 0.5Tm , τm Tm ≤ 0.25 ;
λ = 1.5(τm + Tm ),0.25 < τm Tm ≤ 0.75 ; λ = 3(τm + Tm ), τm Tm > 0.75 (Leva, 2001).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Lee et al. (1998).
Model: Method 1
Kc
Ti
Td
Ti
119
Td
K m (λ + τ m )
Comment
TCL = λ ; recommended TCL = 0.5τm (Lee et al., 2006).
Kc
Ti
Td
Tm
K m (λ + 0.5τ m )
Tm
0.5τ m
120
Gerry (1999).
Model:
Method 11
Ti
113
λ = 2τ m (aggressive, less robust tuning);
λ = 2(Tm + τ m ) (more robust tuning).
Gong (2000).
Model: Method 1
121
Kc
Wang (2003),
x1 K m
pp. 16–17.
τm Tm
x1
Model:
0.05
13.2
Method 1.
0.11
5.3
Regulator;
0.18
4.3
x1 , x 2 , x 3
0.25
3.3
deduced from
2.6
graphs; robust to 0.33
0.43
2.0
±25%
0.54
1.6
uncertainty in
0.67
1.4
process model
0.82
1.3
parameters.
1.0
1.1
119
Ti = Tm +
120
Kc =
x 2 (τm + Tm )
0.3866τm
τ
1 + 0.3866 m
Tm
x 3 (τm + Tm )
x2
x3
τm Tm
x1
x2
x3
0.18
0.33
0.43
0.49
0.51
0.56
0.59
0.61
0.61
0.61
0
0
0
0
0.044
0.074
0.091
0.106
0.120
0.124
1.2
1.5
1.9
2.3
3.0
4.0
5.7
9.0
19.0
0.9
0.8
0.7
0.6
0.5
0.5
0.4
0.4
0.4
0.60
0.59
0.57
0.56
0.51
0.50
0.47
0.46
0.46
0.136
0.139
0.144
0.146
0.147
0.147
0.148
0.149
0.149
τm 2
τm 2 
τ 
1 − m  .
, Td =

2(λ + τm )
2(λ + τm )  3Ti 
Ti
T 2 + x1τm − 0.5τm 2
, Ti = Tm + x1 − CL
,
K m (2TCL + τm − x1 )
2TCL + τm − x1
Tm x1 −
Td =
Tm + 0.3866τm
0.167 τm 3 − 0.5x1τm 2
T 2 + x1τm − 0.5τm 2
2TCL + τm − x1
− CL
,
Ti
2TCL + τm − x1
2
τm
 T  −
x1 = Tm − Tm 1 − CL  e Tm .
Tm 

121
Kc =
τ 
0.7556Tm 
1 + 0.3866 m  .
K m τm 
Tm 
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
114
Rule
Kc
Ti
x 2 (τm + Tm )
Wang (2003),
x1 K m
pp. 15–16.
τm Tm
x1
Model:
0.05
2.89
Method 1.
0.11
2.61
Servo; ±10%
2.28
overshoot, step 0.18
0.25
1.96
input; x1 , x 2 , x 3
0.33
1.58
deduced from
1.40
graphs; robust to 0.43
0.54
1.19
±25%
0.67
1.04
uncertainty in
0.82
0.90
process model
1.0
0.85
parameters.
Shamsuzzoha et
122
al. (2006c).
Kc
Model: Method 1
122
FA
Kc =
x 3 (τm + Tm )
x2
x3
τm Tm
x1
x2
x3
0.81
0.86
0.86
0.87
0.85
0.84
0.78
0.77
0.73
0.74
0
0
0
0.034
0.043
0.066
0.075
0.094
0.100
0.120
1.2
1.5
1.9
2.3
3.0
4.0
5.7
9.0
19.0
0.72
0.68
0.56
0.50
0.43
0.38
0.34
0.32
0.29
0.68
0.65
0.60
0.55
0.52
0.48
0.44
0.44
0.40
0.130
0.142
0.149
0.140
0.137
0.136
0.122
0.116
0.096
Ti
Td
Ti
λ2 + x1τm − 0.5τm 2
, Ti = Tm + x1 −
,
K m (2λξ + τm − x1 )
2λξ + τm − x1
Tm x1 −
Td =
Comment
Td
0.167 τm 3 − 0.5x1τm 2
λ2 + x1τm − 0.5τm 2
2λξ + τm − x1
,
Ti
2λξ + τm − x1
(
)

λ2 − 2λξTm + Tm 2 e − τ m Tm 
x1 = Tm 1 −
.
2
Tm


λ , ξ not
defined.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Td
λ = x1Tm
123
Ti
Td
Kc
Shamsuzzoha
Coefficients of x1 (deduced from graph):
and Lee (2007a).
Model: Method 1 M s = 1.6 M s = 1.7 M s = 1.8 M s = 1.9 M s = 2.0
123
Kc =
0.11
0.10
0.08
0.07
0.06
0.20
0.17
0.15
0.14
0.12
τm = 0.1Tm
0.35
0.31
0.27
0.25
0.22
τm = 0.2Tm
0.46
0.41
0.37
0.34
0.30
τm = 0.3Tm
0.55
0.49
0.44
0.40
0.36
τm = 0.4Tm
0.62
0.55
0.50
0.46
0.42
τm = 0.5Tm
0.68
0.60
0.55
0.51
0.47
τm = 0.6Tm
0.72
0.65
0.59
0.55
0.50
τm = 0.7Tm
0.77
0.69
0.63
0.59
0.53
τm = 0.8Tm
0.81
0.72
0.66
0.62
0.56
τm = 0.9Tm
0.84
0.76
0.69
0.65
0.59
τm = 1.0Tm
0.91
0.82
0.75
0.70
0.64
τm = 1.25Tm
τm = 0.05Tm
0.97
0.87
0.80
0.75
0.70
τm = 1.5Tm
undefined
0.91
0.84
0.78
0.73
τm = 1.75Tm
undefined
0.96
0.87
0.81
0.76
τm = 2.0Tm
Ti
3λ2 + 2x 2 τm − 0.5τm 2 − x 2 2
, Ti = Tm + 2 x 2 −
,
K m (3λ + τm − 2x 2 )
3λ + τm − 2 x 2
2Tm x 2 + x 2 2 −
Td =

x 2 = Tm 1 −

λ3 + 0.167 τm3 − x 2 τm 2 + x 2 2 τm
3λ2 + 2x 2 τm − 0.5τm 2 − x 2 2
3λ + τm − 2 x 2
,
Ti
3λ + τm − 2 x 2
3


λ  − τ m Tm 
1 −
 e
 T 
.
m 


115
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
116
Rule
Kc
Ti
Td
Comment
Tuning rules
developed from
K u , Tu .
Ultimate cycle
McMillan
(1984).
Model: Method 2
or Method 55.
Kuwata (1987).
x 1 , x 2 deduced
from graphs.
Kc
Ti
0.25Ti
x 1K u
x 2 Tu
x 3 Tu
124
x1
x2
x3
τm
Tu
x1
x2
x3
τm
Tu
x1
x2
x3
τm
Tu
0.44 0.80 0.08 0.28 0.37 0.26 0.06 0.39 0.28 0.18 0.03 0.50
0.42 0.43 0.08 0.32 0.33 0.22 0.05 0.43
0.40 0.32 0.07 0.35 0.30 0.18 0.04 0.47
Geng and Geary
τm
0.94Tm
< 0.167
(1993).
2τ m
0.5τ m
Tm
Kmτm
Model: Method 1
Wojsznis and
1.3 ≤ x1 ≤ 1.6 ;
Tm τ m
Tm + 0.5τm
Blevins (1995).
Tm + 0.5τ m
2Tm + τ m
Model:
x1K m τm
Method 45
Perić et al.
^
Recommended
(1997).
x1Td
Td
125
K u cos φ m
Model:
x1 = 4 .
Method 49
Matsuba et al.
τ
0.1 ≤ m ≤ 1.0
126
(1998).
Ti
Td
Kc
Tm
Model: Method 1
127
Wojsznis et al.
Model: Method 1
x1Ti
K u cos φ m
Ti
(1999).
A
m




0.65
  T
 

1.415 Tm 
1
 
124
m

=
τ
+
T
1
Kc =
,

i
m
0.65 

 .
K m τm   T
 
  Tm + τm  
m
 
1 + 

  Tm + τm  
125

Td =  tan φm +


126 1.31  Tm 
0.9
^
T
4
+ tan 2 φm  u .
 4π
x1

2.19  Tm 


≤ Kc ≤
K m  τm 
0.9
T 
, Ti = 1.59τm  m 
 τm 
T
127
Ti =  tan φ m + 4 x1 + tan 2 φ m  u .

 4πx1


K m  τm 
0.097
T 
, Td = 0.40τm  m 
 τm 
0.097
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Td
Comment
Ti
0.15Ti
Default values.
0.38K u
1.2Tu
0.18Tu
0.27 K u
0.87Tu
0.13Tu
Kc
Wojsznis et al.
(1999) –
continued.
Ti
0.5K u cos φ m
128
φ m = 450 ;
τ m Tm < 0.2 .
Am = 3 ,
φ m = 330 ;
τ m Tm ≈ 0.2 5 .
Wojsznis et al.
(1999).
Model:
Method 45
Gu et al. (2003).
128
129
130
129
Ti
Kc
0.125Ti
0.3 ≤ x1 ≤ 0.4 ;
0.25 ≤ x 2 ≤ 0.4 ;
0.2 ≤
130
Ti
Kc
τm
≤ 0.7 .
Tm
Model: Method 1
Td
Ti = 0.53Tu  tan φm + 0.6 + tan 2 φm  .












0.6
0.6



.
K c = K u x 2 + 0.251.0 − x1 −
,
T
T
x
=
+

i
u
1
T
 
T



−  u − 7.0  
−  u − 7.0  


τ
τ

 
 

1+ e  m
1+ e  m




Representative tuning rule: 0.6K u ≤ K c ≤ K u , Ti = 0.5Tu , Td = 0.125Tu ,
with K u ≈
Tu ≈ 2π
τm 3 + 5τm 2Tm + 12τm Tm 2 + 12Tm3
[
(
K m τm τm 2 + 5τm Tm + 8Tm 2
(
)
,
)
τm K m K u τm τm 2 + 6τm Tm + 12Tm 2 + τm 3 + 6τm 2Tm + 18τm Tm 2 + 24Tm 3
(
12(K m K u + 1) τm 2 + 4τm Tm + 6Tm 2
)
].
117
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
118
3.3.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
R(s)
E(s)
−
+


1
K c 1 +
+ Td s 
Ti s


1
1 + Tf s
U(s)
Y(s)
K m e − sτ
1 + sTm
m
Table 11: PID controller tuning rules – FOLPD model G m (s) =
Rule
Kc
Lim et al. (1985).
Schaedel (1997).
Model:
Method 25
1
2
Kc
Kc
Ti
K m e − sτ m
1 + sTm
Comment
Td
Direct synthesis: time domain criteria
0
Model: Method 1
Tm
Direct synthesis: frequency domain criteria
2
2
Tf = Td N ;
T1 − T2
T2 2 T33
− 2
5
≤ N ≤ 20 .
T1 − Td
T1 T2
2
1
Kc =
TCL 2
Tm
.
, Tf =
2ξTCL 2 + τ m
K m (2ξTCL 2 + τm )
2
Kc =
0.375Ti
Tm
, T1 =
+ τm ,
K m (T1 + (Td N ) − Ti )
1 + 3.45 τam Tm
(
2
T2 = 1.25Tm τ am +
T1 =
0.7Tm
2
Tm − 0.7 τ am
T3 3 =
(
τam
Tm
2
τ
+
0
.
5
τ
,
T
=
0
,
0
<
≤ 0.104 ;
3
m
m
Tm
1 + 3.45 τam Tm
(
0.7Tm
2
+ τ m , T2 = Tm τ am +
)
2
Tm − 0.7 τ am
+ 0.5τ m 2 ,
) + T τ τ + 0.35T τ
0.952Tm 2 τ am − 0.1
Tm − 0.7 τ am
)
a
m m m
2
2
m
a
Tm − 0.7 τ m
m
+ 0.167τ m 3 ,
τ am
> 0.104 .
Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kristiansson and
Lennartson
(2002b).
Kc =
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
3
0.2 ≤ τm Tm ≤ 5 , 1.65 ≤ M max ≤ 1.85 .
Kristiansson and
Lennartson
(2006).
3
Kc
4
Kc
Ti
Td
Model: Method 1
5
Kc
Ti
Td
Model:
Method 12
0.05 ≤ τm Tm ≤ 2 , 1.65 ≤ M max ≤ 1.85 .
[
]
1.8 0.13 + 0.5(τm Tm ) − 0.04(τm Tm )2
,
τ


0.12
K m  m − 0.05 0.7 +
(τm Tm ) + 0.05 
 Tm

2


 τ  
τ
0.12
Ti = 2Tm 0.13 + 0.5 m − 0.04 m   0.7 +
(τm Tm ) + 0.05 
Tm

 Tm   

2
2
2


 τm  
 τm  
τm
τm








0.5Tm 0.13 + 0.5
− 0.04
0.9Tm 0.13 + 0.5
− 0.04
Tm
Tm  
Tm
Tm  





 ,T =

 .
Td =
f



 τm


0.12
Tm
,25
− 0.05 min 5 + 2
0.7 +

(τm Tm ) + 0.05 
τm



 Tm









0
.
54
T
(
)
0
.
12
+
τ
0
.
12
4
m
m
0.7 +
 , Ti = 0.6(τm + Tm )0.7 +
,
Kc =
τm
τm
τ



+ 0.05 
+
0
.
05
K m τm  m − 0.05 


T
T
m
m
T




 m

Td =
5
Kc =
0.15(τm + Tm )


0.12
0.7 +

(
)
τ
T
+
0
.
05
m
m


[
, Tf =
0.081(τm + Tm )2
τ
, 0.7 ≤ m ≤ 4 .
 τm

Tm


T
− 0.05 min 5 + 2 m ,25

T
τ
m
 m



2[1.1(Tm τm ) − 0.1] 0.06 + 0.68(τm Tm ) − 0.12(τm Tm )2
[
K m 0.68 + 0.84(τm Tm ) − 0.25(τm Tm )
2
[
]
[0.68 + 0.84(τ T ) − 0.25(τ T ) ] ,
2Tm 0.06 + 0.68(τm Tm ) − 0.12(τm Tm )
]
],
2
Ti =
2
m
m
m
m
2
2

 τ  
τ  
τ
τ
Td = 0.5Tm 0.06 + 0.68 m − 0.12 m   0.68 + 0.84 m − 0.25 m   ,

Tm
Tm
 Tm   
 Tm  

[
]
T 0.06 + 0.68(τm Tm ) − 0.12(τm Tm ) [1.1(Tm τm ) − 0.1]
Tf = m
.
min{5 + 2(Tm τm ),25}
2 2
119
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
120
Rule
Kristiansson and
Lennartson
(2006).
Kc
Ti
Td
Comment
Kc
Ti
Td
Model:
Method 12
6
0.7 < τm Tm < 2 ; 1.65 ≤ M max ≤ 1.8 .
Robust
Tm + 0.5τ m
K m (λ + τ m )
Horn et al.
(1996).
Model: Method 1
Tm + 0.5τ m
Tm τ m
2Tm + τ m
Tf =
λτ m
,
2(λ + τ m )
λ ∈ [τ m , Tm ]
(
)
λ = max 0.25τ m ,0.2Tm (Luyben, 2001); λ > 0.25τ m (Bequette,
2003); λ > [0.1Tm ,0.8τm ] (‘aggressive’ tuning), λ > [Tm ,8τm ]
(‘moderate’ tuning), λ > [10Tm ,80τm ] (‘conservative’ tuning) (Cooper,
2006b).
7
H ∞ optimal –
Tm + 0.5τ m
τ m Tm
Kc
τ m + 2Tm
Tan et al.
(1998b).
λ = 2 : ‘fast’ response; λ = 1 : ‘robust’ tuning; λ = 1.5 : recommended.
Model: Method 1
Rivera and Jun
Tm
τmλ
Tf =
;
(2000).
0
Tm
K m (2 τ m + λ )
2τ m + λ
Model: Method 1
λ not specified.
 T

0.6667(Tm + τm )1.1 m − 0.1
0.6667(Tm + τm )
 τm

6
Kc =
, Ti =
,
2
2






τ
τ
τ
τ
0.68 + 0.84 m − 0.25 m  
K m τm 0.68 + 0.84 m − 0.25 m  
T  
Tm
Tm  
Tm



 m 





(Tm + τ m )2 1.1 Tm − 0.1
Tf =
7
Kc =

τm

T 
9Tm  5 + 2 m 
τm 

2

 , T = 0.1667(τ + T )0.68 + 0.84 τm − 0.25 τm   .
d
m
m
T  
Tm

 m 


τm
0.265λ + 0.307  Tm


 τ + 0.5  , Tf = 5.314λ + 0.951 .
Km
 m

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
Tf = Td .
Tm + 0.5τ m
K m (λ + τ m )
Tm + 0.5τ m
Tm
2Tm + τ m
Lee and Edgar
(2002).
Huang et al.
(2002).
Model: Method 1
8
Tf =
λτ m
2(λ + τ m )
λ = 0.65τ m : minimum ISE; λ = 0.5τ m : overshoot to a step input
≤ 5% , A m = 3 . In general, A m = 2(λ τ m + 1) .
Zhang et al.
(2002b).
9
Vilanova (2006).
Model: Method 1
10
Tang et al.
(2007).
Model: Method 1
121
Kc
Tm + 0.5τ m
Tm τ m
2Tm + τ m
Kc
Tm + 1.75τm
1.72τm Tm
Tm + 1.75τm
τm + 2Tm
K m (4λ + τm )
0.5τm + Tm
Tm τm
τm + 2Tm
Model: Method 1
φm ≥ 450
Tf =
2λ2
4λ + τm
Labelled the H ∞ Smith predictor; 0.3 ≤ λ τm ≤ 0.8 .
τm + 2Tm
2K m (λ + τm )
0.5τm + Tm
Tm τm
τm + 2Tm
Tf =
λτ m
2(λ + τm )
Labelled the H 2 Smith predictor or the Dahlin controller;
0.3 ≤ λ τm ≤ 0.8 .
2Tm + τm
3K m τm
8
Kc =
2
Kc =
10
Kc =
Recommended
λ = 0.5 ;
Tf = 0.167 τm .
2


τm 2
1
3Tm − τm
Tm + τm
,
+ τm
+
K m (λ + τm ) 
2(λ + τm )
6(λ + τm ) 4(λ + τm )2 


Ti = Tm +
9
Tm τm
τm + 2Tm
Tm + 0.5τm
2
2
τm
3Tm − τm
τm
3Tm − τm
τm
+ τm
+
, Td = τm
+
.
2
2(λ + τm )
6(λ + τm ) 4(λ + τm )
6(λ + τm ) 4(λ + τm )2
0.1Tm τ m
1  Tm + 0.5τm 
λ2

 , Tf =
.
or Tf =
2λ + 0.5τ m
τ m + 2Tm
K m  2λ + 0.5τm 
0.377(Tm + 1.75τm )
, Tf = 1.72τm .
K m τm
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
122



Td s 
1

+
3.3.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + s Td 


N 

R(s)
E(s)
−
+




T
s
1
d

+
K c 1 +
Td 

Ti s
1+ s 

N

U(s)
m
Table 12: PID controller tuning rules – FOLPD model G m (s) =
Rule
Kc
Ti
Y(s)
K m e − sτ
1 + sTm
K m e − sτ m
1 + sTm
Comment
Td
Minimum performance index: regulator tuning
Ti
Td
1
K
Minimum IAE –
c
Alfaro Ruiz
Model: Method 10; N = 10.
(2005a).
Minimum IAE –
Ti
Td
2
Kc
Arrieta Orozco
Model: Method 10; N = 10. Also given by Arrieta Orozco and Alfaro
(2003).
Ruiz (2003).
1
Kc =
T 
1 
0.2068 + 1.1597 m 
Km 
 τm 

1.0158 
0.5022 



 , Ti = Tm  − 0.2228 + 1.3009 τm 
,
T 



 m



τ 
Td = 0.3953Tm  m 
 Tm 
2
Kc =
0.8469
, 0.05 ≤
τm
≤ 2.0 .
Tm
0.9946 
0.4796 

T 


1 
 , Ti = Tm − 0.2512 + 1.3581 τm 
,
0.1050 + 1.2432 m 
T 
Km 
τm 



m 







τ 
Td = Tm  − 0.0003 + 0.3838 m 

 Tm 

0.9479 
 , 0.1 ≤ τm ≤ 1.2 .
Tm


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Ti
Td
3
τ
Kc
0.1 ≤ m ≤ 1.2
Minimum ITAE
Tm
– Arrieta Orozco
Model:
Method
10
;
N
=
10.
Also
given
by
Arrieta
Orozco
and
Alfaro
(2003).
Ruiz (2003).
Minimum performance index: servo tuning
Tavakoli and
Minimum IAE.
Ti
4
Kc
Tavakoli (2003).
0.0111Tm
Minimum ISE.
Ti
5
Model:
Kc
Method 1;




τ




0.1 ≤ m ≤ 2 ;


T
m
1
0
.
8
 τ m  0.3 +

Tm
 τ  0.06  Minimum ITAE.

m

τm 

τm
K m  τm

N = 10
+ 0.1 
+ 0.04 



 Tm
 Tm

3
T 
1 
Kc =
0.1230 + 1.1891 m 
Km 
 τm 

1.0191 
0.4440 



 , Ti = Tm  − 0.3173 + 1.4489 τm 
,
T 



m 




0.9286 

τ 
 (Arrieta Orozco, 2003);
Td = Tm 0.0053 + 0.3695 m 
Tm 






τ 
Td = Tm − 0.0053 + 0.3695 m 

 Tm 

4
0.9286 
 (Arrieta Orozco and Alfaro Ruiz, 2003).


τ



 



 0.3 m + 1.2  

1 
1
0.06 
Tm
2



Kc =
, Ti = τm
.
 τm
  τm

K m  τm + 0.2 
+
0
.
08
+
0
.
04



 

 Tm

 Tm
  Tm

τ




 0.3 m + 0.75 


1
1
T
5



.
m
, Ti = 2.4τm
Kc =
 τm

K m  τm + 0.05 
+
0
.
4




T
T
m


 m

123
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
124
Rule
Kc
Ti
Comment
Td
Minimum IAE –
Ti
Td
6
Kc
Alfaro Ruiz
Model: Method 10; N = 10.
(2005a).
Minimum IAE –
Ti
Td
7
Kc
Arrieta Orozco
Model: Method 10; N = 10. Also given by Arrieta Orozco and Alfaro
(2003).
Ruiz (2003).
Minimum ITAE
T
Td
8
i
Kc
– Arrieta Orozco
Model: Method 10; N = 10. Also given by Arrieta Orozco and Alfaro
(2003).
Ruiz (2003).
6
Kc =
T 
1 
0.3295 + 0.7182 m 
Km 
 τm 

0.9971 
0.8456 



 , Ti = Tm 0.9781 + 0.3723 τm 
,
T 



m 




τ 
Td = 0.3416Tm  m 
 Tm 
7
Kc =
0.9414
Kc =
τm
≤ 2.0 .
Tm
0.9597 
1.0092 

T 


1 
 , Ti = Tm 1.0068 + 0.3658 τm 
,
0.2268 + 0.8051 m 
T 
τm 
Km 



m 







τ 
Td = Tm − 0.0146 + 0.3500 m 

 Tm 

8
, 0.05 ≤
T 
1 
0.1749 + 0.8355 m 
Km 
 τm 

0.8100 
 , 0.1 ≤ τm ≤ 1.2 .
Tm


0.9462 
0.6884 



 , Ti = Tm 0.9581 + 0.3987 τm 
,
T 



m 




0.7417 

 τm 

 , 0.1 ≤ τm ≤ 1.2 .


Td = Tm − 0.0169 + 0.3126

Tm
T


 m


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
K c = x1
Comment
9
12
13
1.473  Tm 


K m  τm 
T τ 
Ti = x1 m  m 
1.115  Tm 
Td
Minimum performance index: servo/regulator tuning
Td
τ
Kc
0.1 ≤ m ≤ 1.0
Ti
T
10
11
m
Kc
Td
Minimum ISE –
Arrieta and
Vilanova (2007).
Model:
Method 10;
N = 10.
9
Ti
125
Kc
Kc
0.970
0.753
τ 
Td = 0.550x1Tm  m 
 Tm 
Td
Ti
14
τm
≤ 2.0
Tm
0.897
+ (1 − x1 )
1.048  Tm 


K m  τ m 
+ (1 − x1 )
Tm
;
1.195 − 0.368(τm Tm )
0.948
Td
1.1 ≤
;
τ 
+ 0.489(1 − x1 )Tm  m 
 Tm 
0.888
;
x1 = 0.5778 − 0.5753(τm Tm ) + 0.5528(τm Tm ) .
2
10
11
12
Kc =
1.473x1 + 1.048(1 − x1 )  Tm 


τ 
Km
 m
K c = x1
1.524  Tm 


K m  τm 
Tm  τm 


1.130  Tm 
0.735
0.641
τ 
Td = 0.552x1Tm  m 
 Tm 
14
.
τ 
Td = [0.550x1 + 0.489(1 − x1 )]Tm  m 
 Tm 
Ti = x1
13
0.970 x 1 + 0.897 (1− x 1 )
Kc =
0.948 x 1 + 0.888(1− x 1 )
.
+ (1 − x1 )
1.154  Tm 


K m  τ m 
+ (1 − x1 )
Tm
0.851
0.567
1.047 − 0.220
;
τ 
+ 0.490(1 − x1 )Tm  m 
 Tm 
1.524 x1 + 1.154((1 − x1 )  Tm 


τ 
Km
 m
;
τm
Tm
0.708
T 
; x1 = 0.2382 + 0.2313 m 
 τm 
0.735 x 1 + 0.567 (1− x 1 )
τ 
Td = [0.552 x1 + 0.490(1 − x1 )]Tm  m 
 Tm 
.
0.851x 1 + 0.708(1− x 1 )
.
7.1208
.
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
126
Rule
Kc
Minimum ISTSE
– Arrieta and
Vilanova (2007).
Model:
Method 10;
N = 10.
15
17-Mar-2009
K c = x1
1.468  Tm 


K m  τm 
T τ 
Ti = x1 m  m 
0.942  Tm 
15
Kc
16
Kc
18
Kc
19
Kc
0.970
0.725
τ 
Td = 0.443x1Tm  m 
 Tm 
Ti
Td
Ti
Td
17
Ti
τm
≤ 1.0
Tm
1.1 ≤
τm
≤ 2.0
Tm
Td
0.897
+ (1 − x1 )
1.042  Tm 


K m  τ m 
+ (1 − x1 )
Tm
;
0.987 − 0.238(τm Tm )
0.939
0.1 ≤
Td
Td
20
Comment
;
τ 
+ 0.385(1 − x1 )Tm  m 
 Tm 
0.906
;
x1 = 0.5778 − 0.5753(τm Tm ) + 0.5528(τm Tm ) .
2
16
17
18
Kc =
1.468x1 + 1.042(1 − x1 )  Tm 


τ 
Km
 m
K c = x1
1.515  Tm 


K m  τm 
Tm  τm 


0.957  Tm 
0.730
0.598
τ 
Td = 0.444x1Tm  m 
 Tm 
20
.
τ 
Td = [0.443x1 + 0.385(1 − x1 )]Tm  m 
 Tm 
Ti = x1
19
0.970 x 1 + 0.897 (1− x 1 )
Kc =
+ (1 − x1 )
+ (1 − x1 )
0.847
0.939 x 1 + 0.906 (1− x 1 )
.
1.142  Tm 


K m  τ m 
0.579
Tm
0.919 − 0.172
;
τm
Tm
τ 
+ 0.384(1 − x1 )Tm  m 
 Tm 
1.515x1 + 1.142(1 − x1 )  Tm 


τ 
Km
 m
;
0.839
T 
; x1 = 0.2382 + 0.2313 m 
 τm 
0.730 x 1 + 0.579 (1− x 1 )
τ 
Td = [0.440x1 + 0.384(1 − x1 )]Tm  m 
 Tm 
.
0.847 x 1 + 0.839 (1− x 1 )
.
7.1208
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum ISTES
– Arrieta and
Vilanova (2007).
Model:
Method 10;
N = 10.
21
K c = x1
1.531  Tm 


K m  τm 
T τ 
Ti = x1 m  m 
0.971  Tm 
21
Kc
22
Kc
24
Kc
25
Kc
0.960
0.746
τ 
Td = 0.413x1Tm  m 
 Tm 
Ti
Td
Ti
Td
23
Ti
26
0.1 ≤
τm
≤ 1.0
Tm
1.1 ≤
τm
≤ 2.0
Tm
Td
0.904
+ (1 − x1 )
0.968  Tm 


K m  τ m 
+ (1 − x1 )
Tm
;
0.977 − 0.253(τm Tm )
0.933
Comment
Td
Td
127
;
τ 
+ 0.316(1 − x1 )Tm  m 
 Tm 
0.892
;
x1 = 0.5778 − 0.5753(τm Tm ) + 0.5528(τm Tm ) .
2
22
23
24
Kc =
1.531x1 + 0.968(1 − x1 )  Tm 


τ 
Km
 m
K c = x1
1.592  Tm 


K m  τm 
Tm  τm 


0.957  Tm 
0.705
0.597
τ 
Td = 0.414x1Tm  m 
 Tm 
26
.
τ 
Td = [0.413x1 + 0.316(1 − x1 )]Tm  m 
 Tm 
Ti = x1
25
0.960 x 1 + 0.904 (1− x 1 )
Kc =
0.933 x 1 + 0.892 (1− x 1 )
.
0.583
+ (1 − x1 )
1.061  Tm 


K m  τ m 
+ (1 − x1 )
T 
, x1 = 0.2382 + 0.2313 m 
τ
 τm 
0.892 − 0.165 m
Tm
0.850
Tm
τ 
+ 0.315(1 − x1 )Tm  m 
 Tm 
1.592 x1 + 1.061(1 − x1 )  Tm 


τ 
Km
 m
;
0.832
.
0.705 x 1 + 0.583(1− x 1 )
τ 
Td = [0.414 x1 + 0.315(1 − x1 )]Tm  m 
 Tm 
.
0.850 x 1 + 0.832 (1− x 1 )
.
7.1208
;
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
128
Rule
Kc
Davydov et al.
(1995).
Model: Method 6
Kuhn (1995).
Model:
Method 17;
N = 5.
Schaedel (1997).
Ti
27
Kc
28
Kc
Comment
Td
Direct synthesis: time domain criteria
Ti
0.25Ti
ξ =0.9;
0
.
2
≤
τm Tm ≤ 1.
T
0.4T
i
i
1 Km
0.66(τ m + Tm )
0.167(τ m + Tm ) ‘Normal tuning’.
2 Km
0.8(τ m + Tm )
0.194(τ m + Tm )
‘Rapid tuning’.
T2 2 T33
−
T1 T2 2
Model:
Method 25
29
2
2
T1 − T2
Kc
T1 − Td
27
Kc =


1
τ
, Ti =  0.186 m + 0.532 Tm , N = K m .
T
K m (1.552(τm Tm ) + 0.078)
m


28
Kc =


1
τ
, Ti =  0.382 m + 0.338 Tm , N = K m .
T
K m (1.209(τm Tm ) + 0.103)
m


29
Kc =
Tm
0.375Ti
, T1 =
+ τm ,
K m (T1 + (Td N ) − Ti )
1 + 3.45 τam Tm
(
2
T2 = 1.25Tm τ am +
T1 =
0.7Tm
2
Tm − 0.7 τ am
T3 3 =
N=
(
Tm
τa
τm + 0.5τm 2 , T3 = 0 , 0 < m ≤ 0.104 ;
a
Tm
1 + 3.45 τm Tm
(
0.7Tm
2
+ τ m , T2 = Tm τ am +
)
2
Tm − 0.7 τ am
a
m m m
Td
 a + τm − Ti 
−
+
2


(a + τm − Ti )2 + 0.375 TiTd
4
+ 0.5τ m 2 ,
) + T τ τ + 0.35T τ
0.952Tm 2 τ am − 0.1
Tm − 0.7 τ am
)
2
2
m
+ 0.167τ m 3 ,
Tm − 0.7τ am
m
τ am
> 0.104 .
Tm
, 0.05 ≤ a ≤ 0.2 , K v = prescribed
Kv
overshoot in the manipulated variable for a step response in the command variable.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Goodwin et al.
(2001).
Latzel (1988).
Model: Method 1
Latzel (1988).
Model: Method 2
30
Kc =
Ti =
Ti
Td
p. 426;
Model: Method 1
Direct synthesis: frequency domain criteria
0.84Tm
0.067Tm
φm = 450
Td
Kc
0.84Tm
0.067Tm
φm = 600
33
Kc
0.76Tm
0.13Tm
φm = 450
34
Kc
0.76Tm
0.13Tm
φm = 600
Kc
31
Kc
32
(4ξTCL 2 + τm )(τm + 2Tm ) − 4TCL 2 2
(
K m 16ξ2TCL 2 2 + 8ξTCL 2 τm + τm 2
),
(4ξTCL 2 + τm )(τm + 2Tm ) − 4TCL 2 2
(
(
2 16ξ 2TCL 2 2 + 8ξTCL 2 τm + τm 2
2
Td = 16ξ 2TCL 2 + 8ξTCL 2 τm + τm
2
)
[(4ξT
) (4ξT
CL 2 + τ m
),
)2 τ m Tm − 2TCL2 2 (4ξTCL2 + τ m )(τ m + 2Tm ) + 8TCL2 4 ] ,
(4ξTCL2 + τ m )3 [(4ξTCL2 + τ m )(τ m + 2Tm ) − 4TCL2 2 ]
CL 2 + τ m
N=
Comment
Ti
30
129
4ξTCL 2 + τm
2TCL 2 2
Td with G CL (s) =
1
TCL 2 2 s 2 + 2ξTCL 2 s + 1
31
Kc =
0.66Tm
, N = 8.38; G p = G m
K m (τm − 0.02Tm )
32
Kc =
0.44Tm
, N = 8.38; G p = G m
K m (τm − 0.02Tm )
33
Kc =
K pe p
0.60Tm
, N = 6.19; G p =
.
K m (τm − 0.07Tm )
(1 + sTp1 ) 2
34
Kc =
K pe p
0.40Tm
, N = 6.19; G p =
.
K m (τm − 0.07Tm )
(1 + sTp1 ) 2
− sτ
− sτ
.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
130
Rule
Latzel (1988).
Model: Method 2
Kc
Ti
Td
Comment
35
Kc
0.74Tm
0.14Tm
φm = 450
36
Kc
0.74Tm
0.14Tm
φm = 600
Tm τ m
2Tm + τ m
N = 10.
Robust
Chien (1988).
Model: Method 1
Tm + 0.5τ m
K m (λ + 0.5τ m )
Tm + 0.5τ m
λ ∈ [τm , Tm ] , Chien and Fruehauf (1990);
λ > [0.8τm ,0.2Tm ] , Yu (2006), p. 19.
Morari and
Zafiriou (1989).
Model: Method 1
Gong et al.
(1996).
Maffezzoni and
Rocco (1997).
37
Kc
Tm + 0.5τ m
38
Kc
Tm + 0.3866τ m
39
Kc
Ti
λ > 0.25τ m ,
Tm τ m
2Tm + τ m
λ > 0.2Tm .
3 ≤ N ≤ 10 ;
0.3866Tm τ m
Tm + 0.3866τ m Model: Method 1
Model:
Method 14
Td
− sτ
35
Kc =
K pe p
0.58Tm
, N = 5.83; G p =
K m (τm − 0.08Tm )
(1 + sTp1 )3
36
Kc =
K pe p
0.39Tm
, N = 5.83; G p =
K m (τm − 0.08Tm )
(1 + sTp1 )3
37
Kc =
2T (λ + τ m )
1  Tm + 0.5τm 

, N= m
.
λ (2Tm + τ m )
K m  λ + τm 
38
Kc =
39
Kc =
− sτ
(0.1388 + 0.1247 N )Tm + 0.0482 Nτ m τ .
Tm + 0.3866τm
, λ=
m
0.3866( N − 1)Tm + 0.1495Nτ m
K m (λ + 1.0009τm )
2Tm (τm + x1 ) + τm 2
2K m (τm + x1 )2
τm
τm 2 [2Tm (τm + x1 ) − τm x1 ]
, Td =
,
2(τm + x1 )
2(τm + x1 ) 2Tm (τm + x1 ) + τm 2
2
, Ti = Tm +
2Tm (τ m + x 1 ) − τ m x 1
[
]
τ
N=
. x 1 = 0.25τ m , uncertainty on τ m ; x1 > 0.1Tm , m < 0.4 ,
2
Tm
x 1 2Tm (τ m + x 1 ) + τ m
[
]
uncertainty on the minimum phase dynamics within the control band.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
40
Gong et al.
(1998).
Model:
Method 1;
λ = x1τm ; x1
values deduced
from graph.
Kc =
41
Comment
Ti
Td
N = 3, 5 or 10.
x1
τm Tm
x1
τm Tm
x1
τm Tm
1
2
3
4
1
2
3
4
1
2
3
4
0.46
0.44
0.43
0.41
0.41
0.40
0.39
0.38
0.37
0.36
0.36
0.35
5
6
7
8
5
6
7
8
5
6
7
8
0.41
0.40
9
10
N = 3.
0.38
0.37
9
10
N = 5.
0.35
0.35
9
10
N = 10.
Kc
Ti
Td
42
Kc
Ti
Td
43
Kc
Ti
Td
41
Robust to 20%
change in plant
parameters.
Robust to 30%
change in plant
parameters.
Robust to 40%
change in plant
parameters.
(Tm + 0.3866τm )(λ + τm ) − (0.3866λ − 0.1247τm )τm ,
K m (λ + τm )2
Ti = Tm + 0.3866τm −
Td =
Td
0.63
0.57
0.51
0.48
0.52
0.48
0.45
0.43
0.42
0.40
0.38
0.38
Kasahara et al.
(1999).
Model:
Method 1;
N = 10;
0 < τm Tm < 1 .
40
Kc
Ti
131
0.3866λ − 0.1247 τm
τm ,
λ + τm
0.3866Tm τ m
0.3866λ − 0.1247 τ m
−
τm .
Tm + 0.3866τ m
λ + τm
K c = 0.6K u [0.718 − 0.057(τm Tm )] , Ti = 0.5Tu [0.296 + 0.838(τm Tm )] ,
Td = 0.125Tu [0.635 − 1.091(τm Tm )] .
42
K c = 0.6K u [0.690 − 0.076(τm Tm )] , Ti = 0.5Tu [0.274 + 0.788(τm Tm )] ,
Td = 0.125Tu [0.526 − 0.057(τm Tm )] .
43
K c = 0.6K u [0.331 + 0.149(τm Tm )] , Ti = 0.5Tu [0.041 + 0.857(τm Tm )] ,
Td = 0.125Tu [0.495 − 0.064(τm Tm )] .
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
132
Rule
Kc
Kasahara et al.
(1999) –
continued.
Leva and
Colombo (2000).
44
Kc
45
Kc
Leva (2001).
Model: Method 1
46
Kc
Leva et al.
(2003), (2006).
47
Kc
48
Kc
Ti
Td
Ti
Td
Comment
Robust to 50%
change in plant
parameters.
λ not specified;
Model: Method 1
2
Zhang et al.
(2002b).
Model: Method 1
44
17-Mar-2009
Tm +
τm
2(λ + τ m )
Td
Tm +
τm2
2(λ + τ m )
Td
Tm +
τm2
2(λ + τ m )
Td
Model: Method 1
τm Tm Td
−
2Ti
N
λ > 0.0735τm for
stability (Ou et
al., 2005c).
Ti
K c = 0.6K u [0.195 + 0.266(τm Tm )] , Ti = 0.5Tu [− 0.013 + 0.731(τm Tm )] ,
Td = 0.125Tu [0.489 − 0.065(τm Tm )] .
45
46
Kc =
2Tm (λ + τ m )
Tm (λ + τm )
1 2(λ + τm )Tm + τm
,N=
.
, Td =
2
Km
2( λ + τ m ) 2
2(λ + τm )Tm + τm
λ 2(λ + τ m )Tm + τ m 2
Kc =
2Tm (λ + τ m )
1 2(λ + τm )Tm + τm
, N=
−1,
Km
2( λ + τ m ) 2
λ 2(λ + τ m )Tm + τ m 2
2
[
]
2
2
Td = τm 2
2
[
2λTm + (2Tm − λ )τm
[
2(λ + τm ) 2Tm (λ + τm ) + τm 2
[
]
]
] . 0.1T ≤ λ ≤ 0.5T , τ T ≤ 0.25 ;
m
m
m
m
λ = 1.5(τ m + Tm ) , 0.25 < τ m Tm ≤ 0.75 ; λ = 3(τ m + Tm ) , τm Tm > 0.75 .
47
Kc =
2
τm Tm (λ + τm )
1 2(λ + τm )Tm + τm
, Td =
,
Km
2( λ + τ m ) 2
2(λ + τm )Tm + τm 2
2Tm (λ + τ m )
[
]
2
N=
[
λ 2(λ + τ m )Tm + τ m 2
] . 0.1T ≤ λ ≤ 0.5T , τ T ≤ 0.33 ;
m
m
m
m
λ = 1.5(τ m + Tm ) , 0.33 < τm Tm ≤ 3 ; λ = 3(τ m + Tm ) , τm Tm > 3 .
48
Kc =
λ2
0.5τm + Tm − (Td N )
T T
or N = 10.
, Ti = 0.5τm + Tm − d , d =
K m (2λ + 0.5τm )
N N 2λ + 0.5τm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Vilanova and
Balaguer (2006).
Ti
K m (x1 + x 2 )
50
Tang et al.
(2007).
Model:
Method 1;
Td N = Tf .
49
Kc
Ti
49
Ti
Ti
x2
Td
Comment
x1 + x 3
N
x1 + x 2
Model: Method 1
133
Td
Labelled the H ∞ Smith predictor.
51
Kc
Ti
Td
Labelled the H 2 Smith predictor or the Dahlin controller.
2(3Tm + τm )
9K m τm
Tm + 0.333τm
(6Tm − τm )τm
6(3Tm + τm )
Recommended
λ = 0.5 ;
Tf = 0.167 τm .
 x + x3 
T x x + x2
, N= m 1 1
Ti = Tm + τm + x 3 − x1 − x 2  1
−1 .

Ti τm x1 + x 3
 x1 + x 2 
For minimum ISE, servo response: x 3 = τm ;
for minimum IE, regulator response: x 2 = τm ; x1 = real constant.
(τm + 2Tm )(4λ + τm ) − 4λ2 , T = 0.5τ + T − 2λ2 ,
i
m
m
4λ + τ m
K m (4λ + τm )2
2
Tm τm (4λ + τm )
2λ
2λ2
λ
Td =
−
T
=
,
; 0.3 ≤
≤ 0.8 .
f
2
4λ + τm
τm
(τm + 2Tm )(4λ + τm ) − 4λ 4λ + τm
(τ + 2Tm )(λ + τm ) − λτm , T = 0.5τ + T − λτm ,
51
Kc = m
i
m
m
2(λ + τm )
2K m (λ + τm )2
λτ m
Tm τ m (λ + τ m )
λτ m
λ
,T =
−
Td =
≤ 0.8 .
; 0.3 ≤
(τ m + 2Tm )(λ + τ m ) − λτ m 2(λ + τm ) f 2(λ + τm )
τm
50
Kc =
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
134



1  1 + Td s 


3.3.5 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

E(s)
R(s)
−
+



 U(s)

1  1 + Td s 


K c 1 +
Td 
Ti s 

s
1 +
N 

Y(s)
K m e − sτ
1 + sTm
m
Table 13: PID controller tuning rules – FOLPD model G m (s) =
Rule
Kc
Kraus (1986).
Model:
Method 23
0.833Tm K m τm
Witt and
Waggoner
(1990).
Comment
Td
Process reaction
1.5τ m
0.25τm
N=∞
Foxboro EXACT controller pre-tuning. Also given by Hang et al.
(1993b), p. 76.
x1Tm K m τm
τm
τm
10 ≤ N ≤ 20 ;
0.6 ≤ x1 ≤ 1.0 .
Model: Method 2. ‘Equivalent to’ Ziegler and Nichols (1942).
1
Ti
Td
10 ≤ N ≤ 20
Kc
Witt and
Waggoner
(1990).
1
Ti
K m e − sτ m
1 + sTm
Model: Method 2. ‘Preferred’ tuning.
Tuning ‘equivalent to’ Cohen and Coon (1953).
1.350
Kc =
τ 
Tm
T
τ
+ 0.25 + m 0.7425 + 0.0150 m + 0.0625 m 
τm
τm
Tm
 Tm 
2K m
Ti =
2
,
Tm
τ 
τ
T
T
1.350 m + 0.25 − m 0.7425 + 0.0150 m + 0.0625 m 
τm
τm
Tm
 Tm 
2
,
Tm
Td =
T
T
1.350 m + 0.25 + m
τm
τm
τ 
τ
0.7425 + 0.0150 m + 0.0625 m 
Tm
 Tm 
2
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
2
Witt and
Kc
Waggoner (1990)
– continued.
St. Clair (1997),
Tm K m τm
p. 21.
Model: Method 0.5Tm K m τm
2; N ≥ 1 .
Harrold (1999).
1 Km
Model:
0.5 K m
Method 11;
0.25 K m
N not specified.
Tan et al.
0.6Tm
(1999a), p. 25.
K mτm
Shinskey (2000).
Model: Method 2
Ti
Td
Ti
Td
135
Comment
‘Alternate’ tuning. 10 ≤ N ≤ 20 .
5τ m
0.5τ m
5τ m
0.5τ m
Tm
≤ 0.25Tm
‘Aggressive’
tuning.
‘Conservative’
tuning.
τ m Tm ≤ 0.25
τ m Tm ≈ 0.5
τ m Tm ≥ 1
0.889Tm
K mτm
τm
τm
N =∞;
Model: Method 2
1.75τ m
0.70τ m
τm Tm = 0.167 ;
N not specified.
x1Tm K m τm
x 2τm
x 3τ m
N=∞
O’Dwyer
Representative results: equivalent to Chien et al. (1952) – regulator.
(2001b).
x2
x3
Model: Method 2 x 1
0.7236 1.8353 0.5447
0% overshoot; 0.1 < τ m Tm < 1 .
0.84
1.350
2
Kc =
1.4
0.6
20% overshoot; 0.1 < τ m Tm < 1 .
τ 
Tm
T
τ
+ 0.25 − m 0.7425 + 0.0150 m + 0.0625 m 
τm
τm
Tm
 Tm 
2K m
Ti =
2
,
Tm
τ 
τ
T
T
1.350 m + 0.25 + m 0.7425 + 0.0150 m + 0.0625 m 
τm
τm
Tm
 Tm 
Td =
2
,
Tm
τ 
τ
T
T
1.350 m + 0.25 − m 0.7425 + 0.0150 m + 0.0625 m 
τm
τm
Tm
 Tm 
2
.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
136
Rule
O’Dwyer
(2001b).
Model:
Method 2;
N =∞.
Faanes and
Skogestad
(2004).
Minimum ITAE
with OS ≤ 8% –
Fertik (1975).
Model:
Method 3;
N = 11.
Kc
Ti
Td
Comment
3
Kc
Ti
Td
0% overshoot;
τ m Tm < 0.5 .
4
Kc
Ti
Td
20% overshoot;
τ m Tm < 0.7234
Representative results: equivalent to Chien et al. (1952) – servo.
Model:
0.47Tm
Method
1;
τ
τ
m
m
K m τm
N = 10.
Minimum performance index: regulator tuning
8.1 K m
0.29(τm + Tm )
0.13(τm + Tm )
τm Tm = 0.11
3.8 K m
1.85 K m
0.93 K m
0.56 K m
0.46(τm + Tm )
0.23(τm + Tm )
0.46(τm + Tm )
0.40(τm + Tm )
0.50(τm + Tm )
0.40(τm + Tm )
0.33(τm + Tm )
0.44(τm + Tm )
τm Tm = 0.25
τm Tm = 0.43
τm Tm = 0.67
τm Tm = 1.00
Coefficients of K c , Ti , Td deduced from graphs and converted to this
equivalent controller architecture.
0.982
Minimum IAE –
N = 8;
0.817  Tm 
5
Huang and Chao
Model: Method 1


Td
Ti
K m  τm 
(1982).
Minimum IAE –
Model: Method
6
Kaya and Scheib
5; N = 10;
Ti
Td
Kc
(1988).
0 < τm Tm ≤ 1 .
T 
2τ 
0.3Tm 
2τ 
T 
2τ 
1 − 1 − m  Ti = m 1 + 1 − m  Td = m 1 − 1 − m 
K m τm 
Tm 
2 
Tm 
2 
Tm 
,
,

τ 
τ 
0.475Tm 
4
Kc =
1 + 1 − 1.3824 m  Ti = 0.68Tm 1 + 1 − 1.3824 m 
K m τm 
Tm 
Tm 

,
,
3
Kc =

τ 
Td = 0.68Tm 1 − 1 − 1.3824 m 
T

m 

5
6
τ 
Ti = 0.903Tm  m 
 Tm 
Kc =
0.780
0.98089  Tm 


K m  τm 
τ 
, Td = 0.602Tm  m 
 Tm 
0.76167
0.954
.
1.05211
, Ti =
Tm  τm 


0.91032  Tm 
τ 
, Td = 0.59974Tm  m 
 Tm 
0.89819
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Witt and
Waggoner
(1990).
Kc
Ti
Td
7
Kc
Ti
Td
8
Kc
Ti
Td
Comment
0.1 < τm Tm ≤ 0.258 ; 10 ≤ N ≤ 20 ; Model: Method 2.
0.95Tm K m τ m
1.43τ m
0.52τ m
τ m Tm = 0.2
1.17 τ m
0.48τ m
τ m Tm = 0.5
1.03τ m
0.40τ m
τ m Tm = 1
0.77τ m
0.35τ m
τ m Tm = 2
Minimum IAE –
Shinskey (1996), 0.96Tm K m τ m
p. 119.
1.43τ m
0.52τ m
Model:
Method 1;
τ m Tm = 0.2 .
Minimum IAE –
Edgar et al.
0.94Tm K m τ m
(1997), pp. 8-14,
8-15.
1.5τ m
0.55τ m
Minimum IAE –
Shinskey (1988), 0.95Tm K m τ m
p. 143.
1.14Tm K m τ m
Model: Method 1
1.39Tm K m τ m
7
‘Preferred’ tuning. K c =
0.718  Tm 


K m  τm 
0.921 
1 + 1 − 1.693 τm 
T 

 m

Model:
Method 1;
Time constant
dominant;
N = 10.
−1.886 
,


1.137
Ti =
8
137
‘Alternate’ tuning. K c =
0.718  Tm 


K m  τm 
τ 
0.964Tm  m 
 Tm 
1.886
τ 
1 − 1 − 1.693 m 
 Tm 
0.921 
1 − 1 − 1.693 τm 
T 

 m

1.137
, Td =
τ 
0.964Tm  m 
 Tm 
1.886
τ 
1 − 1 + 1.693 m 
 Tm 
1.886
.
τ 
1 + 1 + 1.693 m 
 Tm 
−1.886 
,


1.137
Ti =
τ 
0.964Tm  m 
 Tm 
1.137
, Td =
τ 
0.964Tm  m 
 Tm 
1.886
τ 
1 + 1 − 1.693 m 
 Tm 
.
b720_Chapter-03
Rule
Kc
Minimum IAE –
Edgar et al.
0.88Tm K m τ m
(1997), p. 8–15.
Minimum IAE –
Smith and
Tm
Corripio (1997),
K mτm
p. 345.
Minimum IAE – 0.89Tm K m τm
Shinskey (2003).
0.56K u
Minimum IAE –
0.49 K u
Shinskey (1988),
0.51K u
p. 148.
Model: Method 1
0.46K
u
Minimum IAE –
K u τm
Shinskey (1994), 3τ − 0.32T
m
u
p. 167.
Minimum ISE – 1.101  T  0.881
 m
Huang and Chao
K m  τ m 
(1982).
Minimum ISE –
Kaya and Scheib
(1988).
11
Kc
Minimum ITAE 0.745  T 1.036
 m 
– Huang and
K
m
 τm 
Chao (1982).
10
11
12
FA
Handbook of PI and PID Controller Tuning Rules
138
9
17-Mar-2009
Comment
Ti
Td
1.8τ m
0.70τ m
Tm
0.5τ m
1.75τm
0.70τ m
Model: Method 2
0.39Tu
0.14Tu
τ m Tm = 0.2
0.34Tu
0.14Tu
τ m Tm = 0.5
0.33Tu
0.13Tu
τ m Tm = 1
0.28Tu
0.13Tu
τ m Tm = 2
9
Ti
0.14Tu
10
Ti
Td
Ti
12
Td
Td
Ti
Model:
Method 2;
N = 10.
Model:
Method 1;
τ
0.1 ≤ m ≤ 1.5 .
Tm
Model:
Method 1;
N not specified.
Model:
Method 1;
N = 8.
Model:
Method 5;
0 < τm Tm ≤ 1 ;
N = 10.
Model:
Method 1;
N = 8.


T
Ti = Tu  0.15 u − 0.05  .
τ
m


τ 
Ti = 1.134Tm  m 
 Tm 
Kc =
0.883
1.11907  Tm 


K m  τm 
τ 
Ti = 0.771Tm  m 
 Tm 
τ 
, Td = 0.563Tm  m 
 Tm 
0.89711
0.595
, Ti =
0.881
.
Tm  τm 


0.7987  Tm 
0.9548
1.006
τ 
, Td = 0.597Tm  m 
 Tm 
.
τ 
, Td = 0.54766Tm  m 
 Tm 
0.87798
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum ITAE
– Kaya and
Scheib (1988).
Minimum ITAE
– Witt and
Waggoner
(1990).
13
Kc
Ti
Td
Comment
Ti
Td
0 < τm Tm ≤ 1
N = 10; Model: Method 5.
14
Kc
Ti
Td
Preferred tuning.
15
Kc
Ti
Td
Alternate tuning.
Model: Method 2; 10 ≤ N ≤ 20 .
0.738
0.947
Minimum ITAE
Tm  τ m 
1.357  Tm 
16




– Ou and Chen
Td
0.842  Tm 
K m  τm 
(1995).
0.907
Minimum ITSE –
 
17
Huang and Chao 0.994  Tm 
Td
Ti
Km  τm 
(1982).
1.06401
13
Kc =
0.77902  Tm 


K m  τm 
14
Kc =
0.679  Tm 


K m  τm 
, Ti =
Tm  τm 


1.14311  Tm 
0.947 
1 + 1 − 1.283 τm 
T 

 m

Ti =
15
0.679  Tm 


Kc =
K m  τm 
0.947 
1 − 1 − 1.283 τm 
T 

 m

Ti =
16
17
139
τ 
Td = 0.381Tm  m 
 Tm 
τ 
Ti = 1.032Tm  m 
 Tm 
0.995
0.869
, N=±
0.70949
Model:
Method 57
Model:
Method 1;
N = 8.
1.03826
τ 
, Td = 0.57137Tm  m 
 Tm 
.
−1.733 
 , 0.1 < τ m < 0.379 ;

Tm

τ 
0.762Tm  m 
 Tm 
0.995
1.733
τ 
1 − 1 − 1.283 m 
 Tm 
, Td =
τ 
0.762Tm  m 
 Tm 
0.995
1.733
.
τ 
1 + 1 + 1.283 m 
 Tm 
−1.733 
,


τ 
0.762Tm  m 
 Tm 
0.995
1.733
τ 
1 − 1 + 1.283 m 
 Tm 
, Td =
0.75K m K cTd
, N>0.
Ti + K m K c (Td + Ti − τm − Tm )
τ 
, Td = 0.570Tm  m 
 Tm 
0.884
.
τ 
0.762Tm  m 
 Tm 
0.995
1.733
τ 
1 + 1 − 1.283 m 
 Tm 
.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
140
Rule
Kc
Minimum ITAE
with OS ≤ 8% –
Fertik (1975).
Model:
Method 3;
N = 11.
5.0 K m
Ti
Td
Comment
Minimum performance index: servo tuning
0.63(τm + Tm )
0.13(τm + Tm )
τm Tm = 0.11
2.4 K m
1.2 K m
0.69 K m
0.51 K m
0.57(τm + Tm )
0.23(τm + Tm )
0.51(τm + Tm )
0.33(τm + Tm )
0.46(τm + Tm )
0.40(τm + Tm )
0.40(τm + Tm )
0.44(τm + Tm )
τm Tm = 0.25
τm Tm = 0.43
τm Tm = 0.67
τm Tm = 1.00
Coefficients of K c , Ti , Td deduced from graphs and converted to this
equivalent controller architecture.
1.00
Minimum IAE –
Model:


0.673 Tm
18


Huang and Chao
Method
1;
T
Ti
d
K m  τm 
(1982).
N = 8.
1.04432
Minimum IAE –
0.65  Tm 
Kaya and Scheib


K m  τm 
(1988).
Minimum IAE –
Smith and
Corripio (1997),
p. 345.
0.83Tm
K mτm
Ti
Td
Tm
0.5τ m
19
1.032
18
Ti =
19
Ti =
τ 
Tm
, Td = 0.502Tm  m 
τ 
 Tm 
0.148 m  + 0.979
T
 m
.
1.08433
τ 
, Td = 0.50814Tm  m 
τm
 Tm 
0.9895 + 0.09539
Tm
Tm
.
Model:
Method 5;
0 < τm Tm ≤ 1 ;
N = 10.
Model:
Method 1;
τ
0.1 ≤ m ≤ 1.5 ;
Tm
N not specified.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum IAE –
Witt and
Waggoner
(1990).
Kc =
1.086  Tm 


K m  τm 
Td
Comment
20
Kc
Ti
Td
Preferred tuning.
21
Kc
Ti
Td
Alternate tuning.
0.1 ≤ τm Tm ≤ 1 ; 10 ≤ N ≤ 20 ; Model: Method 2.
Minimum ISE – 0.787  T  0.964
 m
Huang and Chao
K m  τ m 
(1982).
20
Ti
22
0.869 
1 + 1 − 1.392 τm 
T 

 m

Ti =
Ti
0.914
Kc =
1.086  Tm 


K m  τm 
0.869 


τm  
0.74 − 0.13   ,
Tm 


τ 
0.696Tm  m 
 Tm 
τ 
1 − 1 − 1.392 m 
 Tm 
1 − 1 − 1.392 τm 
T 

 m

Ti =
0.914
0.869
1.028
T 
Ti = 1.678Tm  m 
 τm 
τ 
0.696Tm  m 
 Tm 
τ 
1 + 1 − 1.392 m 
 Tm 
0.869
0.914
.

τm 
0.74 − 0.13 
Tm 



τm  
0.74 − 0.13   ,
Tm 


τ 
0.696Tm  m 
 Tm 
τ 
1 + 1 − 1.392 m 
 Tm 
τ 
, Td = 0.594Tm  m 
 Tm 
0.914

τm 
0.74 − 0.13 
T
m

0.869
0.971
.
0.914
,

τm 
0.74 − 0.13 
T
m

Td =
22
Model:
Method 1;
N = 8.
Td
Td =
21
141
τ 
0.696Tm  m 
 Tm 
τ 
1 − 1 − 1.392 m 
 Tm 
0.869
0.914

τm 
0.74 − 0.13 
Tm 

.
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
142
Rule
Kc
Minimum ISE –
23
Kaya and Scheib
Kc
(1988).
Model: Method 5
0.995
Minimum ITAE
0.684  Tm 
– Huang and


K m  τm 
Chao (1982).
Minimum ITAE
25
– Kaya and
Kc
Scheib (1988).
Model: Method 5
0.85
Minimum ITAE
0.965  Tm 


– Ou and Chen
K m  τm 
(1995).
1.03092
23
17-Mar-2009
Kc =
0.71959  Tm 


K m  τm 
, Ti =
Ti
Td
Ti
Td
Ti
Td
Ti
Td
24
26
Td
Ti
Comment
τm
≤ 1;
Tm
N = 10.
0<
Model:
Method 1;
N = 8.
τ
0 < m ≤ 1;
Tm
N = 10.
Model:
Method 57
τ 
, Td = 0.54568Tm  m 
τm
 Tm 
1.12666 − 0.18145
Tm
Tm
0.86411
.
1.049
24
τ 
Tm
Ti =
, Td = 0.491Tm  m 
 τm 
 Tm 
 + 0.986
0.114

 Tm 
25
Kc =
26
Ti =
1.12762  Tm 


K m  τm 
0.80368
, Ti =
1.0081
τ 
, Td = 0.42844Tm  m 
τm
 Tm 
0.99783 + 0.02860
Tm
Tm
τ 
, Td = 0.308Tm  m 
τ
 Tm 
0.796 − 0.1465 m
Tm
Tm
.
.
0.929
,
N=±
0.75K m K cTd
, N>0.
Ti + K m K c (Td + Ti − τm − Tm )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum ITAE
– Witt and
Waggoner
(1990).
Kc
0.965  Tm 


Kc =
K m  τm 
Td
Comment
27
Kc
Ti
Td
Preferred tuning.
28
Kc
Ti
Td
Alternate tuning.
0.1 ≤ τm Tm ≤ 1 ; 10 ≤ N ≤ 20 ; Model: Method 2.
1.00
Minimum ITSE –
0.718  Tm 


Huang and Chao
K m  τm 
(1982).
27
Ti
29
0.85 
1 + 1 − 1.232 τm 
T 

 m

Ti =
Ti
0.929
0.965  Tm 


Kc =
K m  τm 
0.85 


τm  
0.796 − 0.1465   ,
Tm 


τ 
0.616Tm  m 
 Tm 
τ 
1 − 1 − 1.232 m 
 Tm 
1 − 1 − 1.232 τm 
T 

 m

Ti =
0.929
0.85
,
τ 
0.616Tm  m 
 Tm 
τ 
1 + 1 − 1.232 m 
 Tm 
0.85
0.929
.

τm 
0.796 − 0.1465 
T
m



τm  
0.796 − 0.1465   ,
Tm 


τ 
0.616Tm  m 
 Tm 
τ 
1 + 1 − 1.232 m 
 Tm 
0.85
τ 
Tm
, Td = 0.596Tm  m 
τ 
 Tm 
0.063 m  + 1.061
T
 m
0.929
,

τm 
0.796 − 0.1465 
T
m

1.028
Ti =
0.929

τm 
0.796 − 0.1465 
T
m

Td =
29
Model:
Method 1;
N = 8.
Td
Td =
28
143
.
τ 
0.616Tm  m 
 Tm 
τ 
1 − 1 − 1.232 m 
 Tm 
0.85
0.929

τm 
0.796 − 0.1465 
T
m

.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
144
Rule
Kc
x1Tm K m τm
Tsang et al.
(1993).
Model:
Method 19
x1
ξ
1.6818
1.3829
1.1610
0.0
0.1
0.2
x1
ξ
Comment
Td
Ti
Direct synthesis: time domain criteria
Tm
0.25τ m
Coefficient values: N = 2.5.
x1
ξ
x1
ξ
0.9916
0.3
0.6693
0.6
0.8594
0.4
0.6000
0.7
0.7542
0.5
0.5429
0.8
Coefficient values: N = ∞ .
x1
ξ
x1
ξ
x1
ξ
0.4957
0.4569
0.9
1.0
x1
1.8194
0.0
1.0894
0.3
0.7482
0.6
0.5709
1.5039
0.1
0.9492
0.4
0.6756
0.7
0.5413
1.2690
0.2
0.8378
0.5
0.6170
0.8
Tsang and Rad 0.809Tm K m τm
Tm
0.5τ m
(1995).
Overshoot = 16%; N = 5; Model: Method 15.
ξ
0.9
1.0
Smith and
0.5τ m
0.5Tm K m τm
Tm
Corripio (1997),
Servo – 5% overshoot; N not specified; Model: Method 1.
p. 346.
2
Schaedel (1997).
T
T1 2 − 2T2 2
T1 − 2
30
Model:
N not defined.
Kc
T1
Method 25
Wang et al.
Tm
1
(2002).
Labelled ‘IMC’.
0.5τ m



τ
τ 
Model:
K m 1 + m  K m 1 + m 
2Tm 
2Tm 


Method 1;
N = 10.
30
Kc =
T1 =

T2
0.375 T1 − 2 

T1 

 T 2 − 2T 2

2
T

2
2 
2
Km  1
+ 2 − T1 − 2T2 
N
T1




Tm
1 + 3.45
T1 =
0.7Tm
τ am
Tm
2
Tm − 0.7 τ am
+ τ m , T2 2 = 1.25Tm τ am +
,
Tm
1 + 3.45
2
+ τ m , T2 = Tm τ am +
0.7Tm 2
Tm − 0.7 τ am
τ am
Tm
τ m + 0.5τ m 2 , 0 <
+ 0.5τ m 2 ,
τ am
Tm
τ am
> 0.104 .
Tm
≤ 0.104 ;
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Wang et al.
(2002) –
continued.
Kc
0.65  Tm 


K m  τ m 
145
Ti
Td
Comment
31
Ti
Td
Labelled ‘IAE
setpoint’.
1.04432
32
Kc
Ti
Td
33
Kc
Ti
Td
34
Kc
Ti
Td
35
Kc
Ti
Td
36
Kc
Ti
Td
Labelled ‘IAE
load’.
Labelled ‘ISE
setpoint’.
Labelled ‘ISE
load’.
Labelled ‘ITAE
setpoint’.
Labelled ‘ITAE
load’.
Åström and
1
Tm
Hägglund (2006), K 0.5τ + λ
Model: Method 1
Tm
0.5τm
m
m
pp. 188–189.
λ = Tm (aggressive tuning), λ = 3Tm (robust tuning). N = ∞ .
31
32
33
34
35
36
1.08433
τ 
, Td = 0.50814 m 
Ti =
τm
 Tm 
0.9895 + 0.09539
Tm
Tm
0.98089  Tm 


K m  τ m 
0.76167
0.71959  Tm 


Kc =
K m  τ m 
1.03092
1.11907  Tm 


K m  τ m 
0.89711
1.12762  Tm 


Kc =
K m  τ m 
0.80368
Kc =
Kc =
Kc =
0.77902  Tm 


K m  τ m 
1.06401
.
1.05211
τ 
, Ti = 1.09851Tm  m 
 Tm 
τ 
, Td = 0.59974Tm  m 
 Tm 
0.89819
.
τ 
, Ti =
, Td = 0.54568 m 
τm
 Tm 
1.12666 − 0.18145
Tm
0.86411
0.95480
0.87798
Tm
τ 
, Ti = 1.2520Tm  m 
 Tm 
τ 
, Td = 0.54766Tm  m 
 Tm 
.
.
1.0081
τ 
, Ti =
, Td = 0.42844 m 
τm
 Tm 
0.9978 + 0.02860
Tm
Tm
τ 
, Ti = 0.87481Tm  m 
 Tm 
0.70949
.
1.03826
τ 
, Td = 0.57137Tm  m 
 Tm 
.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
146
Rule
Hougen (1979) –
p. 335.
O’Dwyer
(2001a).
Model: Method 1
Huang et al.
(2005a).
Model:
Method 51
Kc
37
Td
Ti
Comment
Direct synthesis: frequency domain criteria
Tm
0.45τm
Kc
Model: Method 1; maximise crossover frequency; 10 ≤ N ≤ 30 .
x1Tm K m τm
Tm N
Tm
A m = π 2 x 1 N ; φ m = 0.5π − x 1 N ; representative result below.
0.079Tm
K mτm
0.1Tm
Tm
0.65Tm K m τm
Tm
0.4 τ m
A m = 2.0;
φ m = 450 .
N = 20, A m = 2.7 , φ m = 650 .
The above is a representative tuning rule (also given by Huang et al.
(2003), N not defined, Model: Method 37). Other rules may be deduced
from a graph provided by the authors for other A m , φ m values.
Huang and Jeng
(2005).
0.65Tm K m τm
Harris and
Tyreus (1987).
Model: Method 1
Tm
K m (τ m + λ )
τm
N = 40;
Model: Method 1
0.5τ m
N = (τ m + λ ) λ
Tm
Robust
Chien (1988).
Model: Method 1
Tm
λ ≥ maximum of [0.45τ m ,0.1Tm ]
Tm
K m (λ + 0.5τ m )
Tm
0.5τ m
0.5τ m
K m (λ + 0.5τ m )
0.5τ m
Tm
Tm
0.55τm
0.5τ m
1.1Tm
Tm
Chien (1988). K (λ + 0.5τ )
m
m
Model: Method 1
0.5τ m
K m (λ + 0.5τ m )
λ ∈ [τ m , Tm ]
(Chien and
Fruehauf, 1990);
N = 10.
λ ∈ [τ m , Tm ]
(Chien and
Fruehauf, 1990);
N = 11.
Tuning rules converted to this equivalent controller architecture.
37
K c = 9.0 K m , τm Tm = 0.1 ; K c = 4.2 K m , τm Tm = 0.2 ; K c = 2.8 K m , τm Tm = 0.3 ;
K c = 2.1 K m , τm Tm = 0.4 ; K c = 1.7 K m , τm Tm = 0.5 ; K c = 1.45 K m , τm Tm = 0.6 ;
K c = 1.2 K m , τm Tm = 0.7 ; K c = 1.1 K m , τm Tm = 0.8 ; K c = 0.95 K m , τm Tm = 0.9 ;
K c = 0.85 K m , τm Tm = 1.0 ; values deduced from graph.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Zhang et al.
38
(1996b).
Kc
Model:
39
Kc
Method 47
40
Zhang et al.
Kc
(2002b).
Shi and Lee
41
(2002).
Kc
Model: Method 1
Lee and Shi
42
(2002).
Kc
Model: Method 1
Faanes and
0.77Tm K m τm
Skogestad
0.5Tm K m τm
(2004). N = 10.
Tm
Tang et al.
K m (2λ + 0.5τm )
(2007).
τm
Model: Method 1
K m (4λ + τm )
Comment
Ti
Td
0.5τ m
Tm
Tm
0.5τ m
≤ 1. 2 τ m .
Tm
0.5τ m
Model: Method 1
Tm
 ωg τ m 
1

tan
ωg
 2 
Suggested
ωg = 0.6 τm .
Tm
43
Ti
0.5τ m
Tm
0.5τ m
8τm
0.5τ m
Tm
0.5τm
0.5τm
Tm
0.2τm ≤ λ
Suggested
ωg = 0.6 τm .
Model: Method 1
Tf =
2λ2
,
4λ + τm
0.3 ≤
λ
≤ 0.8 .
τm
Tf =
λτ m
,
2(λ + τm )
0.3 ≤
λ
≤ 0.8 .
τm
Labelled the H ∞ Smith predictor.
Tm
K m (λ + τm )
Tm
0.5τm
τm
2K m (λ + τm )
0.5τm
Tm
Labelled the H 2 Smith predictor or the Dahlin controller.
T (2λ + 0.5τ m )
0.5τm
, N= m
.
K m (0.5τm + 2λ )
λ2
38
Kc =
39
Kc =
0.5τ m (2λ + 0.5τ m )
Tm
, N=
.
K m (0.5τm + 2λ )
λ2
40
Kc =
Tm
λ2
.
, N = 10 or N =
0.5τ m (2λ + 0.5τ m )
K m (2λ + 0.5τm )
41
Kc =
 ωg τ m 
2ω bw
ωbw Tm
.
tan
, N = 1+

ωg
K m 1 + 2ωbw ωg tan 0.5ωg τm
 2 
42
Kc =
 ωg τ m 
2ω bw
ωbw Tm
.
tan
, N = 1+

ωg
K m 1 + 2ωbw ωg tan 0.5ωg τm
 2 
43
Ti =
[ (
[ (
) (
) (
T
1
Tm
.
, 1 < x1 < 1 + m +
x1
τm ωbw τm
)]
)]
147
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
148
Rule
Kc
Ti
Td
Comment
Tang et al.
(2007) –
continued.
0.667Tm K m τm
Tm
0.5τm
0.333 K m
0.5τm
Tm
Recommended
λ = 0.5 ;
Tf = 0.167 τm .
Pessen (1994).
Model: Method 1
0.35K u
Ultimate cycle
0.25Tu
0.25Tu
44
Huang et al.
(2005a).
Model:
Method 51
Kc
Ti
N =∞;
0.1 ≤ τm Tm ≤ 1 .
Td
N = 20, A m = 2.7 , φ m = 650 .
The above is a representative tuning rule; other rules may be deduced
from a graph provided by the authors for other A m , φ m values.


2


 ^ 


 K u  − 1
2
^
0.65 
 ^ 

 
44
, Ti = 0.159 Tu  K u  − 1 ,
Kc =


2


Km 
 
^ 
−1  

π
−


tan
K

u  −1 

  



 

^ 
Td = 0.064 Tu π − tan −1


2

 ^ 
 K u  − 1  .

 

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
149
3.3.6 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) E(s)
+
−




2
T
s
1
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
2
 Ti s
T  1 + a f 1s + a f 2 s
1+ d s 

N 

U(s)
K m e − sτ
1 + sTm
m
Table 14: PID controller tuning rules – FOLPD model G m (s) =
Rule
Tsang et al.
(1993).
Model:
Method 19
Kristiansson
(2003).
Model:
Method 12
1
Kc
Ti
Y(s)
K m e − sτ m
1 + sTm
Comment
Td
Direct synthesis: time domain criteria
0
x1Tm K m τm
Tm
2
2
b f 0 = 1 , b f 1 = 0.5τm , b f 2 = 0.0833τm , a f 1 = 0.2 τ m , a f 2 = 0.01τ m .
x1
ξ
x1
ξ
1.851
1.552
1.329
0.0
1.160
0.3
0.841
0.6
0.622
0.1
1.028
0.4
0.768
0.7
0.553
0.2
0.925
0.5
0.695
0.8
Direct synthesis: frequency domain criteria
0.9
1.0
1
Kc
ξ
x1
Ti
Equations continued into the footnote on the next page;
2
 T

τ  
τ
21.1 m − 0.1 0.06 + 0.68 m − 0.12 m  
Tm
 τm
 
 Tm  
Kc =
,
2



τ
τ
K m 0.68 + 0.84 m − 0.25 m  
Tm

 Tm  

ξ
x1
Td
0.05 ≤
τm
≤2;
Tm
1.6 ≤ M s ≤ 1.9 .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
150
Rule
Kristiansson
(2003) –
continued.
Shamsuzzoha
and Lee (2007b).
Kc
Ti
Td
2
Kc
Ti
Td
3
Kc
0.5τm
0.167 τm
Comment
Model: Method 1
2
2


τ  
τ  
τ
τ
2Tm 0.06 + 0.68 m − 0.12 m  
0.5Tm 0.06 + 0.68 m − 0.12 m  
Tm
Tm


 Tm  
 Tm  


Ti =
, Td =
,
2
2


 τm  
 τm  
τ
τ
m
m
0.68 + 0.84
0.68 + 0.84
 
 
− 0.25
− 0.25
Tm
Tm  
Tm
Tm  








N = ∞ , b f 0 = 1 , b f 1 = 0 , b f 2 = 0 , a f 1 = 0.8Tf , a f 2 = Tf 2 with
Tf =
2
Kc =
Td =
[
Kc =
2 2
0.6667(Tm + τm )[1.1(Tm τm ) − 0.1]
0.6667(Tm + τm )
, Ti =
,
2
2


 τm 
 τm  
τ
τ
m
m
0.68 + 0.84
 
 
K m τm 0.68 + 0.84
− 0.25
− 0.25
Tm
Tm  
Tm
Tm  








0.1667(Tm + τm )
, N = ∞ , b f 0 = 1 , b f 1 = 0 , b f 2 = 0 , a f 1 = 0.8Tf ,
2

 τm  
τ
m
0.68 + 0.84
 
− 0.25
Tm
Tm  




a f 2 = Tf 2 with Tf =
3
]
Tm 0.06 + 0.68(τm Tm ) − 0.12(τm Tm ) [1.1(Tm τm ) − 0.1]
.
min{5 + 2(Tm τm ),25}
(Tm + τm )2 [1.1(Tm τm ) − 0.1] ; 0.7 < τ m < 2 ; 1.6 ≤ M ≤ 1.9 .
s
Tm
9Tm (5 + 2(Tm τm ))
2
 
τm
λ  − τ m Tm 
 e
, bf 2 = 0 ,
, N = ∞ , b f 0 = 1 , b f 1 = Tm 1 − 1 −
2K m (2λ − b f 1 + τm )
  Tm 



af1 =
0.5b f 1τm + λτ m + λ2
− Tm , a f 2 = 0 ; λ = x1Tm , λ values deduced from a graph
2λ − b f 1 + τm
for M s = 1.4, 1.5, 1.6, 1.8 and 1.9; λ values defined for 0.01 ≤ τm Tm ≤ 5 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Model:
Method 1;
λ > τ m , λ < Tm .
151
Robust
Horn et al.
(1996).
Lee and Shi
(2002).
Model: Method 1
Shamsuzzoha et
al. (2004).
Model: Method 1
Shamsuzzoha
and Lee (2006a).
Model: Method 1
4
Kc
Tm + 0.5τ m
τ m Tm
τ m + 2Tm
5
Kc
Tm
x1
0
6
Kc
Tm + 0.5τm
Tm τm
2Tm + τm
0.5τm
K m (λ + τm )
0.5τm
0.167 τm
af1 =
1 < x1 <
2Tm
τm
λ not explicitly
specified.
2
τmλ
τm λ
, af 2 =
, b f 0 = 1 , b f 1 = Tm ,
2(τm + λ )
12(τm + λ )
b f 2 = 0 , N = ∞ . λ = x1τm ; x1 = 1.360 , M s = 1.4 ; x1 = 0.677 ,
M s = 1.6 ; x1 = 0.372 , M s = 1.8 ; x1 = 0.337 , M s = 2.0 .
Yu (2006), p. 18.
Model: Method 1
4
Kc =
0.6K u
Ultimate cycle
0
0.5Tu
0.2 < τm Tm < 2
b f 0 = 0 , b f 1 = 0.125Tu , b f 2 = 0 , a f 1 = 0.0125Tu , a f 2 = 0 .
2Tm + τm
λ2 τm + 2Tm τm (τm − λ ) 2λ (2Tm − λ )
, bf 0 = 1 , bf 1 =
+
,
(τ m + 2λ )
2(2λ + τm − b f 1 )K m
Tm (τm + 2λ )
bf 2 = 0 , a f 1 =
2λτ m + 2λ2 + b f 1 τ m
λ2 τ m
, af 2 =
, N =∞.
2(2λ + τ m − b f 1 )
2(2λ + τ m − b f 1 )
ωbw Tm
; N = ∞ ; b f 0 = 1 , b f 1 = Tm + 0.5τm ;
 2ωbw
 ωg τm  

K m (ωbw x1τm + 1)1 +
tan 

ωg

 2  
τ + 2ωbw Tm τm + 2Tm
Tm τm
0. 6
; af 2 =
; ωg =
b f 2 = 0.5τm Tm , a f 1 = m
.
2(ωbw x1τm + 1)
2(ωbw x1τm + 1)
τm
5
Kc =
6
Kc =
2
2Tm + τm
2T (2ξλ + τm ) + τm − 2λ2
, bf 0 = 1 ; bf 1 = m
, bf 2 = 0 ,
2K m (2ξλ + τm − bf 1 )
2(τm + Tm )
af1 =
2λξτ m + 2λ2 + bf 1τm
λ2 τm
, af 2 =
, N =∞.
2(2ξλ + τm − b f 1 )
2(2ξλ + τm − bf 1 )
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
152
3.3.7 Two degree of freedom controller 1








T
s
T
s
β
1
d
d
E (s) − K c  α +
R (s)
+
U (s) = K c 1 +
Td 
Td 


Ti s
1+
s
1+
s


N 
N 






β
T
s
d
α +
K
Td  c

1+ s 

N 

E(s)
+
R(s)
−




T
s
1
d

+
K c 1 +
Td 

Ti s
+
s
1


N 

−
U(s)
Y(s)
K m e − sτ
1 + sTm
m
+
Table 15: PID controller tuning rules – FOLPD model G m (s) =
K m e − sτ m
1 + sTm
Rule
Kc
Hiroi and
Terauchi (1986)
– regulator.
τ
0.1 < m < 1 .
Tm
0.95Tm
K mτm
2.38τ m
0.42τ m
0% overshoot.
1.2Tm
K mτm
2τ m
0.42τ m
20% overshoot.
VanDoren
(1998).
1.5Tm K m τm
Ti
Td
Comment
Process reaction
ABB (2001).
OMEGA Books
(2005).
α = 0.6 , β = 1 ; Model: Method 2.
2.5τ m
0.4 τ m
Model: Method 2
α = 0 , β =1, N = ∞ .
1.25Tm K m τm
2τ m
0.5τ m
Model: Method 2
α = 0 , β =1, N = ∞ .
Tm K m τm
2.5τ m
0.4 τ m
Model: Method 2
α = 0 , β =1, N = ∞ .
Minimum performance index: regulator tuning
Minimum IAE –
τ m Tm = 0.1 ;
Shinskey (1996), 1.32Tm K m τ m
1.80τ m
0.44τ m
Model: Method 1
p. 117.
α = 0 , β =1, N = ∞ .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ti
Td
Comment
1.77 τ m
0.41τ m
τ m Tm = 0.2
1.43τ m
0.41τ m
τ m Tm = 0.5
1.17 τ m
0.37τ m
τ m Tm = 1
0.92τ m
0.32τ m
τ m Tm = 2
1.8τ m
0.45τ m
Model: Method 1
2.1τ m
0.63τ m
Model: Method 2
Kc
Minimum IAE – 1.32Tm K m τ m
Shinskey (1988),
p. 143. Model: 1.35Tm K m τ m
Method 1;
1.49Tm K m τ m
α = 0 , β =1,
1.82Tm K m τ m
N =∞.
Minimum IAE – 1.30Tm K m τ m
Edgar et al.
1.33Tm K m τ m
(1997),
pp. 8–14, 8–15.
α = 0 , β =1, N = ∞ .
2
∞
 du 
Kotaki et al. Minimise (ISTSE+w.ISTC), ISTC =   dt , w is chosen so that
0  dt 
(2005a).
Model: Method 1
ISTSE
= 0.6 . p = % allowed perturbation on individual model
w.ISTC
parameters; α = 1 , β = 1 , N = ∞ .
∫
x1 K m
x1
Kotaki et al.
(2005a), (2005b).
Model:
Method 1;
coefficients of
K c , Ti , Td and
p obtained from
plots.
5.9988
3.0722
1.2389
0.6885
0.4305
x1 K m
x 2Tm
x 3Tm
τm Tm
p
0.3338
0.0018
0.1
0.5594
0.0013
0.2
0.7901
0.00072
0.4
0.9000
0.00007
0.6
0.8715
0.00026
0.8
x 2Tm
x 3Tm
29
30
44
61
89
x2
x3
x1
x2
x3
p
6.0
5.4
4.2
3.3
2.3
1.7
1.1
0.6
4.1
3.1
2.3
1.7
1.4
1.2
1.0
0.8
0.5
0.35
0.35
0.4
0.4
0.5
0.5
0.55
0.6
0.55
0.55
0.6
0.6
0.6
0.65
0.65
0.65
0.65
0
0
0
0
0
0
0
0
0.01
0
0
0
0
0
0
0
0
29
33
42
50
63
72
83
100
20
30
42
53
61
67
73
81
100
τm Tm
0.1
0.2
153
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
154
Rule
Kotaki et al.
(2005a), (2005b)
– continued.
Kc
Ti
Td
x1 K m
x 2Tm
x 3Tm
x1
2.3
1.7
1.4
0.9
0.8
0.7
0.6
0.4
0.4
2.0
1.7
1.4
1.0
0.8
0.7
0.5
0.4
1.7
1.1
0.8
0.7
0.6
0.4
0.4
1.5
1.0
0.8
0.6
0.6
0.5
0.4
0.4
x2
x3
0.85
0.02
0.9
0
0.8
0
0.75
0
0.8
0
0.75
0
0.75
0
0.75
0
Kotaki et al. (2005a).
0.6
0
Kotaki et al. (2005b).
1.0
0.14
1.0
0
1.0
0
1.0
0
0.9
0
0.9
0
0.85
0
0.7
0
1.1
0.24
1.2
0
1.1
0
1.05
0
1.05
0
0.90
0
0.85
0
1.25
0.32
1.35
0
1.25
0
1.2
0
1.1
0
1.05
0
0.95
0
0.95
0
Comment
p
20
30
41
55
61
74
82
100
τm Tm
0.4
100
20
30
40
50
61
74
82
100
21
30
43
52
66
83
100
22
30
42
55
60
74
83
100
0.6
0.8
1.0
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kotaki et al.
(2005b).
Model:
Method 1;
α = 1, β = 1 ,
N =∞.
Kc
2.0
7.5
30
180
40
200
800
1900
800
2000
8000
14000
2000
8000
20000
38000
4000
20000
80000
20000
38000
80000
95000
Kc
1.2787
Kc =
0.5249  Tm 
1 +

K m 
τm 
∞
∫ (du dt ) dt . p = % allowed
2
0
perturbation on individual model parameters.
p
w
p
τm Tm
w
1
Comment
Td
Minimise (ISTSE+w.ISTC), ISTC =
Madhuranthakam
et al. (2008).
Model: Method 1
1
Ti
33
42
50
63
30
42
53
61
31
40
55
61
30
41
50
61
30
43
52
35
44
55
60
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.6
0.6
0.6
0.6
0.8
0.8
0.8
1.0
1.0
1.0
1.0
Ti
155
τm Tm
750
3800
42000
72
83
100
0.1
0.1
0.1
8000
20000
60000
73
81
100
0.2
0.2
0.2
40000
56000
160000
74
82
100
0.4
0.4
0.4
80000
105000
200000
73
81
100
0.6
0.6
0.6
95000
165000
250000
190000
400000
450000
66
83
100
74
99
100
0.8
0.8
0.8
1.0
1.0
1.0
Td
0.1 ≤
τm
≤2
Tm

 τm 
 ,
, Ti = τm  2.1356 − 1.9167

 τm + Tm  

2

 τm 
 τm 





Td = Tm 1.1321
0
.
1788
+
 τ + T  , N = 10, α = 0 , β = 1 .
τ m + Tm 

m
m 




b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
156
Rule
Minimum ISE –
Argelaguet et al.
(1997), (2000).
Kc
Ti
Comment
Td
Minimum performance index: servo tuning
2Tm + τ m
Tm τ m
Model: Method 1
Tm + 0.5τ m
2K m τ m
2Tm + τ m
α = 1, β = 1 , N = ∞ .
Madhuranthakam
et al. (2008).
Model: Method 1
2
Ti
Kc
x1 K m
1.2299
Kc =
0.4967  Tm 

1 +
τm 
K m 
τm
≤2
Tm
Minimum performance index: other tuning
x 2Tm
x 3Tm
N=∞
Araki (1985) –
τm
servo/regulator
α
x1
x 2 x3
β
T
m
optimisation.
Model: Method 1 12.5 0.22 0.04 0.68 0.75 0.1
6.1 0.41 0.08 0.63 0.70 0.2
4.1 0.57 0.11 0.62 0.70 0.3
3.1 0.71 0.15 0.59 0.69 0.4
2.5 0.83 0.18 0.58 0.69 0.5
x1 K m
x 2Tm
Taguchi et al.
τm
(1987) –
α
x1
x 2 x3
β
Tm
servo/regulator
optimisation. 6.30 0.40 0.08 0.60 0.63 0.2
Model: Method 1 3.20 0.69 0.16 0.56 0.60 0.4
2.18 0.92 0.23 0.51 0.57 0.6
1.67 1.10 0.30 0.47 0.54 0.8
1.38 1.25 0.36 0.43 0.52 1.0
1.18 1.38 0.42 0.39 0.51 1.2
1.05 1.50 0.48 0.36 0.50 1.4
Minimum IAE –
0.77 K u
0.48Tu
Shinskey (1988),
0.70K u
0.42Tu
p. 148. Model:
Method 1;
0.66K u
0.38Tu
α = 0 , β =1,
0.60K u
0.34Tu
N =∞.
2
0.1 ≤
Td
x1
x2
x3
α
β
τm
Tm
2.11 0.94 0.21 0.56 0.69 0.6
1.82 1.05 0.24 0.54 0.69 0.7
1.61 1.13 0.28 0.51 0.68 0.8
1.44 1.22 0.31 0.48 0.69 0.9
1.33 1.26 0.34 0.49 0.66 1.0
x 3Tm
N=∞
x1
x2
x3
α
β
τm
Tm
0.95 1.61 0.54 0.34 0.50 1.6
0.87 1.72 0.59 0.31 0.51 1.8
0.81 1.82 0.64 0.30 0.52 2.0
0.71 2.07 0.75 0.26 0.57 2.5
0.64 2.32 0.85 0.24 0.63 3.0
0.56 2.82 1.00 0.20 0.73 4.0
0.51 3.33 1.09 0.15 0.78 5.0
0.11Tu
τ m Tm = 0.2
0.12Tu
τ m Tm = 0.5
0.12Tu
τ m Tm = 1
0.12Tu
τ m Tm = 2
1.317
 T 
, Ti = 0.6739τm 1 + m 
τm 

,
2

 τm  
 τm 





+
Td = Tm 1.138
0
.
1992
 τ + T  , N = 10, α = 0 , β = 1 .
τm + Tm 

m
m 




b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Shinskey (1994),
p. 167.
Taguchi and
Araki (2000).
Model: Method 1
3
Kc
Ti
Kc
0.125Tu τm
2
157
Td
Comment
0.12Tu
Model: Method 1
α = 0 , β =1, N = ∞ .
4
Kc
Ti
0
5
Kc
Ti
Td
τ m Tm ≤ 1.0
Servo/regulator optimisation; overshoot (servo step) ≤ 20% .
6
Model: Method 7
Ti
Td
K
ABB (2001).
τm Tm ≥ 0.5 .
c
α = 0 , β =1, N = ∞ .
x1 K m
x 2Tm
Taguchi and
α
x1
x 2 x3
β
Araki (2002) –
servo/regulator 4.38 1.13 0.091 0.03 0.38
optimisation. 6.36 0.44 0.078 0.62 0.71
Model: Method 1 6.32 0.40 0.081 0.61 0.64
N=∞
x 3Tm
x4
x1
x2
x3
α
β
x4
0.1 6.68 0.31 0.089 0.65 0.55 1.5
0.5 7.18 0.23 0.097 0.68 0.38 2.0
1.0
Load disturbance model = K m e −sτ m (1 + sx 4Tm ) ; τm Tm = 0.2 .
3
Kc =
T
T
Ku
Ku
, u < 2.7 ; K c =
, u ≥ 2.7 .
3.73 − 0.69(Tu τm ) τ m
2.62 − 0.35(Tu τm ) τ m
4
Kc =

1 
0.7382
,
 0.1098 +
K m 
(τm Tm ) − 0.002434 
(
)
Ti = Tm 0.06216 + 3.171(τm Tm ) − 3.058(τm Tm ) + 1.205(τm Tm ) ,
2
α = 0.6830 − 0.4242(τm Tm ) + 0.06568(τm Tm ) .
3
2
5
Kc =

1 
1.224
,
 0.1415 +
K m 
(τm Tm ) − 0.001582 
2
3

τ 
τ  
τ
Ti = Tm  0.01353 + 2.200 m − 1.452  m  + 0.4824 m   ,
Tm
 Tm 
 Tm  

2

τ  
τ
Td = Tm  0.0002783 + 0.4119 m − 0.04943 m   , N fixed (but not specified);
Tm
 Tm  

2
α = 0.6656 − 0.2786
6
Kc =
1.3570  Tm 


K m  τm 
2
τ 
τ 
τm
τ
+ 0.03966  m  , β = 0.6816 − 0.2054 m + 0.03936  m  .
Tm
Tm
 Tm 
 Tm 
0.947
τ 
, Ti = 1.1760Tm  m 
 Tm 
0.738
τ 
, Td = 0.3810Tm  m 
 Tm 
0.995
.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
158
Rule
Tavakoli et al.
(2005).
Model: Method 1
Minimum ITAE
– Setiawan et al.
(2000).
Model: Method 1
7
Kc
Ti
Td
Comment
Kc
Ti
0
M max = 2
Servo/regulator optimisation – minimum IAE; 0.1 ≤ τm Tm ≤ 2 .
x1Tm K m τm
τm
Tm
x1
x2
0.5
0.75
1.0
1.5
2.0
0.554
0.570
0.594
0.645
0.720
1.805
1.373
1.117
0.822
0.679
Shen (2002).
Model:
Method 5;
N = ∞ ,β = 0.
8
Kc
Kuwata (1987).
9
Kc
0
x 2τm
Coefficient values:
x1
x2
τm
Tm
τm
Tm
x1
x2
3
4
5
6
7
8
9
10
1.740
1.930
2.120
2.410
0.413
0.398
0.385
0.389
0.900
1.090
1.290
1.520
∞
Minimise
∫
α =1
0.547
0.480
0.445
0.428
∞
r ( t ) − y( t ) dt +
0
∫ d( t) − y(t) dt ; M ≤ 2 .
s
0
Ti
Td
0 < τm Tm < ∞
Direct synthesis: time domain criteria
Model: Method 1
0
Ti
7
Kc =
0.450(τ m Tm ) + 1.083
1 
Tm 
τ
, α = 0.417 − 0.225 m .
0.273 + 0.571  , Ti =
Km 
τm 
(τ m Tm ) + 0.176
Tm
8
Kc =
2

 τm  
 τm 
Tm
 ,
 + 11.15
exp 2.94 − 11.63

τ +T  
K m τm

m 
 m
 τm + Tm 


2

 τm  
 τm 
 ,
 + 0.86
Ti = τm exp 1.88 − 3.63

τ +T  

m 
 m
 τm + Tm 


2

 τm  
 τm 

,




Td = τm exp − 0.25 − 0.06
− 1.99
τm + Tm 
τm + Tm  





2

 τm 
 τm  

.




α = 1 − exp − 0.22 − 0.90
+ 1.45
τ m + Tm 
τ m + Tm  





9
Kc =
 0.833τm (2Tm + τm )  1.667 τm (2Tm + τm )
0.8(Tm + τm )
1

−
, Ti = 1 −

K m (Tm + τm − x1 ) K m
Tm + τm
(Tm + τm )2 

with x1 =
(Tm + τm )2 − 0.267τm 2 (3Tm + τm ) , α = 1 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Kuwata (1987),
Suyama (1993).
10
Shigemasa et al.
(1987),
Suyama (1993).
α = 1, β = 1 ,
N =∞.
11
Kc
Ti
Td
Ti
Td
159
Comment
Model: Method 1
th
Kc
Closed loop transfer function is 4 order.
Model: Method 1
Ti
Td
Closed loop transfer function is 4th order Butterworth.
12
Ti
Td
Kc
Toshiba AdTune
th
Closed loop transfer function is 4 order ITAE.
TOSDIC 211D8
13
Ti
Td
product.
Kc
Closed loop transfer function is 4th order Bessel.
14
Ti
Td
Kc
Closed loop transfer function is 4th order Binomial.
10
Kc =
3
2
2
3
1  0.2τm + 1.2τm Tm + 5.4τm Tm + 9.6Tm 
 , α = 1, β = 1 , N = ∞ ;

2
K m 
τm (τm + 3Tm )

Ti = 1.667 τm
3
τm + 3Tm
2 (τ m + 3Tm )
− 1.389τm
,
τm + 2Tm
(τm + 2Tm )4
Td =
11
Kc =
1.3319(τm + 2Tm )3
−
2
K m τm (τm + 3Tm )
Kc =
2.6242(τm + 2Tm )3
−
2
K m τm (τm + 3Tm )
Kc =
0.9450(τm + 2Tm )3
−
2
K m τm (τm + 3Tm )
Kc =
0.5622(τm + 2Tm )3
−
2
K m τm (τm + 3Tm )
1.5095(τm + 2Tm )2 − (τm + Tm )(τm + 3Tm )
1.3319(τm + 2Tm )3 − τm (τm + 3Tm )2
2.3130(τm + 2Tm )2 − (τm + Tm )(τm + 3Tm )
.
2.6242(τm + 2Tm )3 − τm (τm + 3Tm )2
.
3
1
τ + 3Tm
2 (τ m + 3Tm )
, Ti = 3.3333τm m
− 3.527 τm
,
Km
τm + 2Tm
(τm + 2Tm )4
Td = τm (τm + 3Tm )
14
.
3
1
τ + 3Tm
2 (τ m + 3Tm )
, Ti = 1.8898τm m
− 0.720τm
,
Km
τm + 2Tm
(τm + 2Tm )4
Td = τm (τm + 3Tm )
13
1.2(τm + 2Tm )3 − τm (τm + 3Tm )2
3
1
τ + 3Tm
2 (τ m + 3Tm )
, Ti = 2.2532τm m
− 1.692τm
,
Km
τm + 2Tm
(τm + 2Tm )4
Td = τm (τm + 3Tm )
12
Tm 2 τm (τm + 3Tm )
1.3444(τm + 2Tm )2 − (τm + Tm )(τm + 3Tm )
1.9450(τm + 2Tm )3 − τm (τm + 3Tm )2
.
3
1
τ + 3Tm
2 (τ m + 3Tm )
, Ti = 5.3337 τm m
− 9.488τm
,
Km
τm + 2Tm
(τm + 2Tm )4
Td = τm (τm + 3Tm )
1.1244(τm + 2Tm )2 − (τm + Tm )(τm + 3Tm )
0.5622(τm + 2Tm )3 − τm (τm + 3Tm )2
.
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
160
Rule
Kc
Kasahara et al.
(1997).
Model: Method 1
Chien et al.
(1999).
Kc =
Ti
Ti
Kc
Ti
17
Kc
Ti
Td
18
Kc
Ti
0
16
Comment
Td
Kc
15
Nomura et al.
(1993), Kuwata
(1987).
15
17-Mar-2009
Model:
Method 1;
τ
0.01 ≤ m ≤ 10 .
Tm
0
Closed loop
transfer function
is 4th order.
Model: Method 1
 T + τ m − x1 
0.8(Tm + τm )(Tm + 0.5τm )
1
,
−
, Ti = 2.5(1.25x1 − 0.25) m

K m τm (Tm + 0.333τm )
Km
 Tm + τ m 
with x1 = 0.2τm 2 + 0.4τmTm + Tm 2 ; α = 1 .
16
Kc =
17
Kc =
(1 + (τm Tm ))2 − 1.667 τm (1 + 0.5(τm Tm )) ,
1.667 K m τm (1 + 0.5(τm Tm ))
2
 3.333τm (1 + 0.5(τm Tm ))

10(1 + 0.5(τm Tm ))
, α = 1.
Ti = 1 −
2
1 + (τm Tm )
 (3Tm + τm )(1 + (τm Tm )) 
3
2
2
3
1  0.2τm + 1.2τm Tm + 5.4τm Tm + 9.6Tm 
,

2
K m 
τm (τm + 3Tm )

Ti = 1.667 τm
3
τm + 3Tm
2 (τ m + 3Tm )
− 1.389τm
,
τm + 2Tm
(τm + 2Tm )4
Tm 2 τm (τm + 3Tm )
2  τ m + 3Tm 
2
1

, N =∞,
Td =
, β = 1 − 0.261τm 
3
2

τ
+
2
T
T
1.2(τm + 2Tm ) − τm (τm + 3Tm )
m 
i Td
 m
−1
 τ + 3Tm  
 τ + 3Tm 
τ 2 (τ + 3Tm )3 
 1.667 τ m  m
 − 1.389 m m
α = 1 − 0.723τ m  m
 .
(τ m + 2Tm )4 
 τ m + 2Tm  
 τ m + 2Tm 
18
Kc =
− TCL 2 2 + 1.414TCL 2Tm + τm Tm
(
K m TCL 2 2 + 1.414TCL 2 τm + τm
2
, Ti =
2
)
− TCL 2 + 1.414TCL 2Tm + Tm τm
;
Tm + τm
Underdamped system response: ξ = 0.707 ; τ m > 0.2Tm ; α = 1 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Chien et al.
(1999).
Chidambaram
(2000a).
Kasahara et al.
(2001).
Model: Method 1
19
Kc
Ti
Td
Comment
Ti
Td
Model: Method 1
161
α = 1, β = 1 , N = ∞ .
Tm Ti
20
TCL 2 + Ti τm
Ti
0
Model:
Method 1;
choose TCL , ξ .
21
Kc
Ti
Td
OS = 0%
22
Kc
Ti
Td
OS = 10%
α = 1, β = 1 , N = ∞ .
19
Underdamped system response: ξ = 0.707 . τ m > 0.2Tm .
Kc =
1.414TCL 2Tm + τmTm + 0.25τm 2 − TCL 2 2
(
K m TCL 2 2 + 0.707TCL 2 τm + 0.25τm 2
2
Ti =
) ,
2
1.414TCL 2Tm + τmTm + 0.25τm − TCL 2
,
Tm + 0.5τm
0.707TmTCL 2 τm + 0.25Tm τm 2 − 0.5τmTCL 2 2
Td =
Tm τm + 0.25τm 2 + 1.414TCL 2Tm − TCL 2 2
.
2
Tm τm + 2TCL ξ − TCL
T − ξTCL
K K [T + τm ] − Ti
, α= i
or α = c m i
.
Tm + τm
Ti
2K c K m Ti
20
Ti =
21
Kc =
0.281(τm + 2Tm )3
K m τm (τm + 3Tm )
2
−
3
1
τ + 3Tm
2 (τ m + 3Tm )
, Ti = 5.33τm m
− 18.98τm
,
Km
τm + 2Tm
(τm + 2Tm )4
Td = τm (τm + 3Tm )
22
Kc =
0.562(τm + 2Tm )2 − (τm + Tm )(τm + 3Tm )
0.281(τm + 2Tm )3 − τm (τm + 3Tm )2
.
1.066Tm − 0.467 τm
4.695τm (1.066Tm − 0.467 τm )
, Ti =
,
K m τm
τm + 2Tm
 0.331Tm − 0.334τm 
.
Td = τm 

 1.066Tm − 0.467 τm 
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
162
Rule
Ogawa and
Katayama
(2001).
Srinivas and
Chidambaram
(2001).
Srinivas and
Chidambaram
(2001).
Chidambaram
(2002),
pp. 157–158.
23
17-Mar-2009
Kc
23
Kc
Ti
Td
Comment
Ti
Td
N = 10
Minimum ISE: servo. α = 1 , β = 1 ; Model: Method 1.
24 0.9Tm
K mτm
25
3.33τ m
0
Ti
Td
2τ m
0.5τ m
Kc
26 1.2Tm
K m τm
Desired closed loop response =
e −sτCL
. Kc =
Model: Method 1
Model:
Method 1;
N=∞.
Model:
Method 2;
β =1, N = ∞ .
1  (τCL Tm ) − 2(TCL Tm ) + 4 

,
K m  (τCL Tm ) + 2(TCL Tm ) 
(1 + sTCL )
 ((τ T ) + 2(TCL Tm ))((τCL Tm ) − 2(TCL Tm ) + 4 ) 
,
Ti = Tm  CL m

2(τCL Tm ) + 4


 (τCL Tm )((τCL Tm ) + 4(TCL Tm ) − 2(τCL Tm )2 ) 
 ; 0.01 ≤ TCL ≤ 1.00 ;
Td = Tm 
 ((τCL Tm ) + 2(TCL Tm ))((τCL Tm ) − 2(TCL Tm ) + 4 ) 
Tm


2
2
τ 
τ 
TCL
τ
= −0.1902 CL  + 0.6974 CL  + 0.007393 , 0.05 ≤ CL ≤ 1.00 .
Tm
T
T
Tm
 m 
 m 
24
Sample K c , Ti taken by the authors correspond to the process reaction curve
tuning rule of Ziegler and Nichols (1942); α =
25
this tuning rule.
Sample K c , Ti , Td taken by the authors correspond to the process reaction tuning
rule of Ziegler and Nichols (1942); α =
β=
26
τm
1
τ
−
= 0.30 − 1.11 m for
Ti K c K m
Tm
τm
1
τ
−
= 0.5 − 0.83 m ,
Ti K c K m
Tm
2
1 
Tm
τ 
− m  = −0.16 for this tuning rule.
τm −
Td 
K c K m 2Ti 
α = 0.6762 − 0.4332(τm Tm ) , τm Tm ≤ 0.8 ;
or α = 0.207 + 3.149(τm Tm ) − 8.405(τm Tm )2 + 8.431(τm Tm )3 , τm Tm < 0.5 ;
α = 0.9416 − 0.44(τm Tm ) , 0.5 ≤ τm Tm ≤ 0.9 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
27
Kc
Haeri (2002).
Ozawa et al.
(2003).
27
Kc =
Td
Comment
Ti
Td
Model: Method 1
α = 0 , β =1, N = ∞ .
Kc
Ti
Td
x1 K m
x 2 Tm
x 3Tm
28
Kim et al.
(2004).
Model: Method 1
Ti
163
τ m Tm
Model:
Method 1;
0% ≤ OS ≤ 10%.
Coefficient values:
x2
x3
x1
α
β
0.1
12.5
0.22
0.04
0.68
0.75
0.2
6.1
0.41
0.08
0.63
0.70
0.3
4.1
0.57
0.11
0.62
0.70
0.4
3.1
0.71
0.15
0.59
0.69
0.5
2.5
0.83
0.18
0.58
0.69
0.6
2.11
0.94
0.21
0.56
0.69
0.7
1.82
1.05
0.24
0.54
0.69
0.8
1.61
1.13
0.28
0.51
0.68
0.9
1.44
1.22
0.31
0.48
0.69
1.0
1.33
1.26
0.34
0.49
0.66
OS < 20% (servo step); settling time ≤ that of corresponding rule of
Chien et al. (1952); a cost function is minimised.

1 
6.84
+ 0.64 ,

0.7
3.5
K m 1 + 2.33(τm Tm ) + 7.82(τm Tm )

[
]
T = τ [2.15 − 0.76(τ T ) + 0.33(τ T ) ] , 0.29 < τ T < 4 ;
Ti = τm 0.95 + 2.58(τm Tm ) + 3.57(τm Tm ) , 0 < τm Tm ≤ 0.29 ,
2
2
i
m
m
m
m
m
m
m
2.8

 τm  
 τm 
 τm 
τ
  , 0 < m ≤ 1.79 ;
 + 3.94
 − 4.65
Td = τm 0.29

T +τ  
T +τ 
T
T
+
τ

m
m 
m 
m 
 m
 m
 m


2
[
Td = τm 0.87(τm Tm ) − 0.49(τm Tm ) + 0.09(τm Tm )
2
1.6193(τm + 2Tm )
2.8
] , 1.79 < τ T < 4 .
m
m
3
1
τm + 3Tm
2 (τ m + 3Tm )
28
Kc =
−
,
T
=
2
.
7051
τ
−
1
.
6706
τ
,
i
m
m
τm + 2Tm
(τm + 2Tm )4
K m τm (τm + 3Tm )2 K m
3
Td = τm (τm + 3Tm )
1.7793(τm + 2Tm )2 − (τm + Tm )(τm + 3Tm )
1.6193(τm + 2Tm )3 − τm (τm + 3Tm )2
, α = 1, β = 1 , N = ∞ .
b720_Chapter-03
Rule
Kotaki et al.
(2005a).
Model:
Method 1;
α = 1, β = 1 ,
N =∞.
Kc =
Kc
Ti
x1 K m
x 2Tm
Td
x 3Tm
Closed loop transfer function is 4 order; p = % allowed perturbation
on individual model parameters.
p
x1
x2
x3
τm Tm
6.8016
3.2091
1.4202
0.8298
0.5383
0.3661
29
Kc
30
Kc
31
0.3482
0.0243
0.1
32
0.6001
0.0453
0.2
36
0.9000
0.0754
0.4
46
1.0194
0.0850
0.6
59
1.0293
0.0656
0.8
77
0.9685
0.0042
1.0
100
Direct synthesis: frequency domain criteria
0
Ti
M s = 1.25
Ti
0
0.7Tm
0
Kc
0.4Tm
K mτm
0.1 ≤
τm
≤2
Tm
α = 0.5; Model: Method 5 or 17.
(
K m 4 + 4 x1x 2 (τm Tm ) + x 2 2 (τm Tm )2
)
,
2 x 2 2 (τm Tm ) − 4 + x 2 (x 2 (τm Tm ) + 4x1 )((τm Tm ) + 2 − 2 x1x 2 (τm Tm ))
2 x 2 2 (τm Tm ) − x 2 4 (τm Tm )2 + 2 x 2 2 ((τm Tm ) + 2 − 2 x1x 2 (τm Tm ))
x1 = 0.5 +
0.25
x2
2
,
0.486 + 0.675(Tm τm )
τm
τ
;
< 1.91 ; x1 = 1 , m ≥ 1.91 ; x 2 =
1 + 0.0972(τm Tm )
Tm
Tm
,
α = 0.488 − 0.985(τm Tm ) , τm Tm ≤ 0.495 ; α = 0 , τm Tm > 0.495 .
2
2
2
0.29e −2.7 τ + 3.7 τ Tm
, Ti = 8.9τm e−6.6 τ + 3.0 τ or 0.79Tm e −1.4 τ+ 2.4 τ ,
K m τm
2
α = 1 − 0.81e 0.73τ+1.9 τ , M s = 1.4.
2
31
Model: Method 5
or 17;
τ
0.14 ≤ m ≤ 5.5.
Tm
2 x 2 2 (τm Tm ) − 4 + x 2 (x 2 (τm Tm ) + 4 x1 )((τm Tm ) + 2 − 2x1x 2 (τm Tm ))
Ti = Tm
Kc =
Comment
th
Lee et al. (1992).
Model: Method 1
Dominant pole
design – Åström
and Hägglund
(1995), pp. 204–
208.
Modified
Ziegler–Nichols
– Åström and
Hägglund
(1995), p. 208.
30
FA
Handbook of PI and PID Controller Tuning Rules
164
29
17-Mar-2009
2
0.78e −4.1τ + 5.7 τ Tm
, α = 1 − 0.44e 0.78 τ−0.45τ , M s = 2.0.
Kc =
K m τm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Huang et al.
(2000).
Model: Method 1
Kc
λ (Tm + 0.4τm )
K m τm
α=
Ti
Td
Comment
Tm + 0.4 τ m
0.4Tm τ m
Tm + 0.4τ m
For λ = 0.80 ,
A m = 2.13 .
Tm
− 1 , β = 0 , N = min[20,20Td ] .
Tm + ατ m
Hägglund and
Åström (2002).
Model:
Method 5;
M s = 1.4;
0.35Tm 0.6
−
K mτm
Km
7τ m
0.35Tm 0.6
−
K mτm
Km
0.8Tm
0 < α < 0.5 .
0.25Tm
K mτm
0.8Tm
Hägglund and
Åström (2002).
32
Leva and
Colombo (2004).
33
τm
< 0.11
Tm
0
0
Ti
Kc
0.11 <
τm
< 0.17
Tm
0.17 <
τm
< 0.2
Tm
τm Tm < 0.5
M s = 1.4; 0 < α < 0.5 , Model: Method 1.
Robust
Ti
Kc
Model:
Method 50
α = 0 , β =1,
N =∞.
Td
Tm + 0.5τm
Tm + 0.5τm
Tm τm
Cooper (2006a). K (λ + 0.5τ )
2Tm + τm
m
m
Model: Method 1
λ > [0.1Tm ,0.8τm ] (‘aggressive’ tuning); λ > [Tm ,8τm ] (‘moderate’
tuning); λ > [10Tm ,80τm ] (‘conservative’ tuning).
32
Kc =
6.8τm Tm
1 
T 
 0.14 + 0.28 m  , Ti = 0.33τm +
.
τm 
10τm + Tm
K m 
33
Kc =
2
2


1
τm
τm
,
 , Ti = Tm +
Tm +
K m (τm + λ ) 
2(τm + λ ) 
2(τm + λ )
Td =
τm Tm (τm + λ )
2Tm (τm + λ ) + τm
−
2
2Tm (τ m + λ )2
λτ m
,N=
−1 .
2(τm + λ )
λ 2Tm (τ m + λ ) + τ m 2
[
]
3∆τ m
, ∆τ m = maximum variation in the time delay,
π
with only variation in the time delay considered (Leva and Colombo, 2004); λ
α not specified; β = 1 . λ ≥
^
chosen so that nominal cut-off frequency = ωu (Leva, 2005).
165
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
166
Rule
Kc
Ti
Comment
Td
34
Ti
Td
Kc
Shamsuzzoha
and Lee (2007a). M s = 1.6 M s = 1.7 M s = 1.8 M s = 1.9 M s = 2.0
Model:
0.11
0.10
0.08
0.07
0.06
Method 1;
0.20
0.17
0.15
0.14
0.12
N =∞,
0.35
0.31
0.27
0.25
0.22
α = 0.6 , β = 0 ;
0.41
0.37
0.34
0.30
coefficients of x1 0.46
(deduced from
graph) indicated
in columns.
Kc =
λ = x1Tm
τm = 0.05Tm
τm = 0.1Tm
τm = 0.2Tm
τm = 0.3Tm
0.55
0.49
0.44
0.40
0.36
0.62
0.55
0.50
0.46
0.42
τm = 0.5Tm
0.68
0.60
0.55
0.51
0.47
τm = 0.6Tm
0.72
0.65
0.59
0.55
0.50
τm = 0.7Tm
0.77
0.69
0.63
0.59
0.53
τm = 0.8Tm
0.81
0.72
0.66
0.62
0.56
τm = 0.9Tm
0.84
0.76
0.69
0.65
0.59
τm = 1.0Tm
0.91
0.82
0.75
0.70
0.64
τm = 1.25Tm
0.97
0.87
0.80
0.75
0.70
τm = 1.5Tm
τm = 0.4Tm
-
0.91
0.84
0.78
0.73
τm = 1.75Tm
-
0.96
0.87
0.81
0.76
τm = 2.0Tm
Ultimate cycle
0
x 2 Tu
x 1K u
Kuwata (1987);
x 1 , x 2 deduced
from graphs;
α = 1.
34
FA
x1
x2
τm
Tu
x1
x2
τm
Tu
x1
x2
τm
Tu
0.37
0.32
0.29
0.26
0.03
0.07
0.08
0.09
0.25
0.28
0.30
0.33
0.24
0.22
0.21
0.20
0.10
0.11
0.12
0.13
0.35
0.38
0.40
0.43
0.20
0.20
0.14
0.14
0.45
0.48
2
2
3λ2 + 2x1τm − 0.5τm − x1
Ti
,
, Ti = Tm + 2 x1 −
K m (3λ + τm − 2x1 )
3λ + τm − 2x1
2
2Tm x1 + x1 −
Td =
x1 = Tm 1 −

λ3 + 0.167 τm 3 − x1τm 2 + x12 τm
2
2
3λ2 + 2x1τm − 0.5τm − x1
3λ + τm − 2 x1
,
Ti
3λ + τm − 2x1
(1 − (λ Tm ))3 e− τ T  .
m
m

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
167
Comment
Kuwata (1987);
x 1K u
x 2 Tu
x 3 Tu
x 1 , x 2 deduced
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
from graphs;
Tu
Tu
Tu
α = 1, β = 1 ,
0.69
0.63
0.08
0.25
0.38
0.28
0.07
0.36
0.20
0.14
0.01
0.48
N =∞.
0.57 0.48 0.08 0.28 0.31 0.20 0.05 0.40 0.20 0.14 0 0.50
0.47 0.37 0.08 0.32 0.26 0.18 0.04 0.42
35
Hang and
0.5Tu
0.125Tu
0. 6 K u
Åström (1988a).
36
Ti
0.125Tu
0. 6 K u
Model:
Method 2;
τm Tm > 1.0 ;
β = 1 , N = 10 .
0. 6 K u
0.335Tu
0.125Tu
α = 0.2 .
Hang et al.
(1991) – servo.
37
0. 6 K u
0.5Tu
0.125Tu
38
0. 6 K u
0.222 K ' Tu
0.125Tu
Hang and Cao
(1996).
Model:
Method 37
0. 6 K u
39
Ti
Td
Model:
Method 2;
β = 1 , N = 10 .
0.1 ≤
τm
< 0.5 ;
Tm
N = 10; β = 1 .
τ
τ
1.66τm τ m
,
< 0.3 ; α = 1 − 2OS − m , 0.3 ≤ m < 0.6 ;
Tm
Tm
Tm
Tm
OS = % overshoot.


τ
τ
τ
τ
36
Ti = 0.51.5 − 0.83 m Tu . α = m − 0.6 , 0.6 ≤ m < 0.8 ; α = 0.2 , 0.8 ≤ m < 1.0 .
Tm
Tm
Tm
Tm 

35
α = 1 − 2(OS − 0.1) −
37
0.16 ≤
τm
15 − K '
< 0.57 ; α = 1 −
, 10% overshoot;
Tm
15 + K '
α = 1−
38
39
0.57 ≤
 11[τ m Tm ] + 13 
36
 .
, 20% overshoot with K ' = 2
'
27 + 5K
 37[τ m Tm ] − 4 
τm
8 4

< 0.96 ; α = 1 −  K ' + 1 , 20% overshoot, 10% undershoot.
17  9
Tm



τ 
τ T
Ti =  0.53 − 0.22 m Tu , Td =  0.53 − 0.22 m  u . α equals 1.0, 0.2 and
Tm  4
Tm 


0.40(τ m Tm ) − 0.05(τ m Tm ) + 0.58 in different circumstances.
2
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
168
3.3.8 Two degree of freedom controller 2




T
s
1
d
 1 + b f 1s (F(s) R (s) − Y(s) ) − K Y(s) ,
U(s) = K c 1 +
+
0
 Ti s
T  1 + a f 1s
1+ d s 

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5 s 4
R(s)
F(s)
+
−




T
s
1
d
 1 + b f 1s
K c 1 +
+
 Ti s
Td  1 + a f 1 s
1+
s

N 

+ U(s)
−
K m e − sτ
1 + sTm
m
K0
Table 16: PID controller tuning rules – FOLPD model G m (s) =
Rule
Kc
Ti
Td
Y(s)
K m e − sτ m
1 + sTm
Comment
Direct synthesis: time domain criteria
0.375(τ m + 2Tm )
N=∞
Tm τ m
Normey-Rico et
Tm + 0.5τ m
K mτm
2Tm + τ m
al. (2000).
a
=
0
.
13
τ
,
b
=
0
;
a
=
0. 5τ m , b f 2 = 0. 2 τ m ;
f1
m
f1
f2
Model: Method 1
a f 3 = 0 , a f 4 = 0 , a f 5 = 0 , bf 3 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
Robust
Lee and Edgar
(2002).
Model: Method 1
1
Kc
0
Ti
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , a f 4 = 0 ,
a f 5 = 0 , b f 3 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = 0.25K u .
1
2
Kc =
1 + 0.25K u K mTi
T − 0.25K u K m τm
τm
.
, Ti = m
+
K m (λ + τm )
1 + 0.25K u K m
2(λ + τm )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Lee and Edgar
(2002).
Model: Method 1
2
Kc
Ti
Td
Comment
Kc
Ti
Td
N=∞
169
a f 1 = Td , b f 1 = 0 ; a f 2 = 0 , b f 2 = 0 ; a f 3 = 0 , a f 4 = 0 ,
a f 5 = 0 , b f 3 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = 0.25K u .
Zhang et al.
(2002c).
0.1τm ≤ λ1 ≤ τm ,
0.1τm ≤ λ 2 ≤ τm .
Tm
K m (λ 2 + τm )
0
Tm
Model: Method 1
a f 1 = 0.5τm λ 2 (λ 2 + τm ) , b f 1 = 0.5τm ; a f 2 = λ1 , b f 2 = λ 2 ; a f 3 = 0 ,
a f 4 = 0 , a f 5 = 0 , bf 3 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
0.5τm
0.167 τm
0 ≤ x1 ≤ 1
Kc
Shamsuzzoha
and Lee (2007c). a f 2 = b f 1 , b f 2 = x1bf 1 ; a f 3 = 0 , a f 4 = 0 , a f 5 = 0 , b f 3 = 0 , b f 4 = 0 ,
Model: Method 1 b f 5 = 0 , K 0 = 0 . λ is given as a multiple of Tm (from a graph, for
3
0.01 ≤ τm Tm ≤ 5 ), for M s = 1.4,1.5,1.6,1.8 and 1.9.
Zhang et al.
(2003).
Model: Method 1
4
Ultimate cycle
0.5Tu
0.125Tu
0.6K u
N=∞
a f 1 = 0 , b f 1 = 0 ; a f 2 = Ti , b f 2 = x 2Ti ; a f 3 = Ti Td , b f 3 = x1Ti Td ,
a f 4 = 0 , a f 5 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
2
Kc =
2

1 + 0.25K u K m  Tm − 0.25K u K m τm
τm
+
+ Td  ,

K m (λ + τm )  1 + 0.25K u K m
2(λ + τm )

Ti =
Tm − 0.25K u K m τm
τm
+
+ Td ,
1 + 0.25K u K m
2(λ + τm )
2
2
 0.25K u K m
τm
τm
(T − 0.25K u K m τm )τm 2 
Td = τm 
−
+
+ m

2
2(1 + 0.25K u K m )(λ + τm ) 
 2(1 + 0.25K u K m ) 6(λ + τm ) 4(λ + τm )
3
Kc =
τm 
 
λ  − Tm 
τm
e
, b f 1 = Tm 1 − 1 −
,
  Tm 

2K m (2λ − b f 1 + τm )


af1 =
4
0.5b f 1τm + λτ m + λ2
− Tm , N = ∞ .
2λ − b f 1 + τ m
T + K m K c [Ti − τm ]
2Tm Ti + 2K m K cTi [Td − τm ] + K m τm K c
.
, x2 = i
2K m K cTi Td
K m K c Ti
2
x1 =
0.5
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
170
3.3.9 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
Y(s)
Model
−
F2 (s)
Table 17: PID controller tuning rules – FOLPD model G m (s) =
K m e − sτ m
1 + sTm
Rule
Kc
Hiroi and
Terauchi (1986)
– regulator.
Model:
Method 2;
τ
0.1 < m < 1 .
Tm
0.95Tm K m τm
Process reaction
2.38τm
0.42τm
0% overshoot
1.2Tm K m τm
2τm
0.42τm
20% overshoot
Ti
Td
Comment
α = 0.6 ; β = 1 or β = −1.48 ; χ = 0 ; δ = 0.15 ; N not specified;
bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 ;
af 4 = 0 , K0 = 0 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kaya and Scheib
(1988).
Model:
Method 5;
τ
0 < m ≤ 1.
Tm
Kc
Comment
Td
Ti
Minimum performance index: regulator tuning
Minimum IAE.
x1K c
Kc
0
2
Minimum ISE.
x1K c
Kc
1
3
Minimum ITAE.
x1K c
Kc
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 , K 0 = 1 ; b f 3 = 0 ; b f 4 = x 2 ; b f 5 = 0.1x 2 .
x 1  Tm 


K m  τ m 
Kaya and Scheib
(1988).
Model: Method 5
x2
Tm  τ m 


x 3  Tm 
x4
0<
0
τm
≤1
Tm
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 0 ; b f 2 = x 5Tm (τm Tm )x 6 ; a f 3 = 0.1bf 3 ; a f 4 = 0 ; K 0 = 0.
Coefficient values:
x1
x2
x3
x4
x5
x6
Minimum IAE
Minimum ISE
Minimum ITAE
0.91
1.1147
0.7058
0.7938
0.8992
0.8872
0.8826
1
Kc =
1.31509  Tm 


K m  τm 
Kc =
1.3466  Tm 


K m  τm 
0.9308
2
Kc =
1.3176  Tm 


K m  τm 
0.7937
3
1.01495
0.9324
1.03326
1.3756
, x1 =
Tm  τm 


1.2587  Tm 
1.25738
, x1 =
Tm  τm 


1.6585  Tm 
, x1 =
Tm  τm 


1.12499  Tm 
1.00403
0.8753
0.99138
0.5414
0.56508
0.60006
τ 
, x 2 = 0.5655Tm  m 
 Tm 
0.4576
τ 
, x 2 = 0.79715Tm  m 
 Tm 
1.42603
0.7848
0.91107
0.971
.
0.41941
τ 
, x 2 = 0.79715Tm  m 
 Tm 
.
0.41941
.
171
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
172
Rule
Kc
Kaya and Scheib
(1988).
Model:
Method 5;
τ
0 < m ≤1
Tm
4
Kc
5
Kc
6
Kc
Ti
Comment
Td
Minimum performance index: servo tuning
Minimum IAE.
x1K c
0
Minimum ISE.
x1K c
Minimum ITAE.
x1K c
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 , K 0 = 1 ; b f 3 = 0 ; b f 4 = x 2 ; b f 5 = 0.1x 2 .
x 1  Tm 


K m  τ m 
Kaya and Scheib
(1988).
Model: Method 5
Tm
x2
τ
x3 − x4 m
Tm
0<
0
τm
≤1
Tm
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 0 ; b f 2 = x 5Tm (τm Tm )x 6 ; a f 3 = 0.1bf 3 ; a f 4 = 0 ; K 0 = 0.
Coefficient values:
x1
x2
x3
x4
x5
x6
Minimum IAE
Minimum ISE
Minimum ITAE
0.81699
1.1427
0.8326
Minimum ISE –
Zhuang (1992),
Zhuang and
Atherton (1993).
7
Kc
1.09112
0.99223
1.00268
Ti
8
Kc
Ti
0.22387
0.35269
0.00854
0
0.44278
0.97186
0.35308
0.78088
0.44243
1.11499
0.1 ≤ τ m Tm ≤ 1
1.1 ≤ τm Tm ≤ 2
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 , K 0 = 1 ; b f 3 = 0 ; b f 4 = x1 ; b f 5 = 0.1x1 .
Model: Method 1 or Method 5 or Method 6 or Method 15.
0.81314
4
Kc =
1.13031  Tm 


K m  τm 
5
Kc =
1.26239  Tm 


K m  τm 
6
1.004
0.9365
0.7607
, x1 =
τ 
Tm
, x 2 = 0.32175Tm  m 
5.7527 − 5.7241(τm Tm )
 Tm 
, x1 =
τ 
Tm
, x 2 = 0.47617Tm  m 
6.0356 − 6.0191(τm Tm )
 Tm 
0.8388
0.98384  Tm 


Kc =
K m  τm 
0.49851
, x1 =
0.17707
.
0.24572
.
Tm
,
2.71348 − 2.29778(τ m Tm )
x 2 = 0.21443Tm (τm Tm )
0.16768
7
Kc =
1.260  Tm 


K m  τm 
8
Kc =
1.295  Tm 


K m  τm 
0.887
0.886
, Ti =
τ 
Tm
, x1 = 0.375Tm  m 
0.701 − 0.147(τm Tm )
 Tm 
, Ti =
τ 
Tm
, x1 = 0.378Tm  m 
0.661 − 0.110(τm Tm )
 Tm 
0.619
.
0.756
.
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Kc
Ti
Kc
Ti
9
Minimum ISTSE
– Zhuang (1992),
Zhuang and
Atherton (1993).
10
Comment
Td
0
173
0.1 ≤ τ m Tm ≤ 1
1.1 ≤ τm Tm ≤ 2
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 , K 0 = 1 ; b f 3 = 0 ; b f 4 = x1 ; b f 5 = 0.1x1 .
Model: Method 1 or Method 5 or Method 6 or Method 15.
11
0.1 ≤ τ m Tm ≤ 1
Ti
Kc
0
Minimum ISTES
12
Ti
1.1 ≤ τm Tm ≤ 2
Kc
– Zhuang (1992),
Zhuang and
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
Atherton (1993).
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 , K 0 = 1 ; b f 3 = 0 ; b f 4 = x1 ; b f 5 = 0.1x1 .
Model: Method 1 or Method 5 or Method 6 or Method 15.
13
Model: Method 1
Ti
Kc
0
Minimum ISTSE
∧
∧
14
Model:
Kc
– Zhuang (1992),
0.271 K u T u K m
Method 37
Zhuang and
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
Atherton (1993).
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 , K 0 = 1 ; b f 3 = 0 ; b f 4 = x1 ; b f 5 = 0.1x1 .
0.930
9
Kc =
1.053  Tm 


K m  τm 
10
Kc =
1.120  Tm 


K m  τ m 
11
Kc =
0.942  Tm 


K m  τm 
12
13
1.001  Tm 


Kc =
K m  τm 
Kc =
τ 
Tm
, x1 = 0.349Tm  m 
0.736 − 0.126(τm Tm )
 Tm 
0.907
τ 
Tm
, x1 = 0.350Tm  m 
0.720 − 0.114(τm Tm )
 Tm 
0.811
Ti =
, Ti =
τ 
Tm
, x1 = 0.308Tm  m 
0.770 − 0.130(τm Tm )
 Tm 
, Ti =
0.625
0.933
0.624
τ 
Tm
, Ti =
, x1 = 0.308Tm  m 
0.754 − 0.116(τm Tm )
 Tm 
.
.
0.897
.
0.813
.
4.437 K m K u − 1.587
K u , Ti = 0.037(5.89K m K u + 1)Tu , x1 = 0.112Tu
8.024K m K u − 1.435
0.1 ≤ τm Tm ≤ 2.0 .
∧
14
Kc =
∧
τ
2.354K m K u − 0.696 ∧
K u , x1 = 0.116 T u , 0.1 ≤ m ≤ 2.0 .
∧
Tm
3.363K m K u + 0.517
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
174
Rule
Kc
Ti
Comment
Td
Minimum performance index: other tuning
15
Åström and
Ti
Td
Kc
Hägglund (2004).
Model: Method 1 α = 0 , τm Tm ≤ 1 ; α = 1 , τm Tm > 1 ; β = 1 ; χ = 0 ; δ = 0 ; N = ∞ ;
bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 ; K 0 = 0 .
16
Åström and
Ti
Td
Kc
Hägglund (2004).
α = 0 , β = 1 ; χ = 0 ; δ = 0 ; 4 ≤ N ≤ 10 ; b f 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
Model:
Method 56
ε = 0 ; φ = 0 ; ϕ = 0 ; b = 0 ; a = 2T N ; a = T 2 N 2 ; K = 0 .
f2
15
Kc =
f3
d
f4
d
0
0.4τm + 0.8Tm
0.5τm Tm
1 
Tm 
τm ; Td =
.
0.2 + 0.45  , Ti =
Km 
τm 
τm + 0.1Tm
0.3τm + Tm
2
a f 3 = 0.2τm , a f 4 = 0.01τm (Åström and Hägglund, 2004);
a f 3 = 0.17 τm , a f 4 = 0 (Eriksson and Johansson, 2007);
2
a f 3 = 0.333δmax , a f 4 = 0.028δmax , τm < Tm ,
δmax = jitter margin (Eriksson and Johansson, 2007);
a f 3 = 4.6δmax − 6τm (with a f 3 ≥ 1 ), a f 4 = (2.3δ max − 3τm ) , τm > Tm
(Eriksson and Johansson, 2007).


[
]
1
T
0
.
5
T
N
+
16
m
d
Kc =
0.2 + 0.45
,
Km 
τm + 0.5[Td N ] 
0.4τm + 0.8Tm + 0.6[Td N ]
Ti =
(τm + 0.5[Td N ]) ,
τm + 0.1Tm + 0.55[Td N ]
2
Td =
0.5(τm + 0.5[Td N ])(Tm + 0.5[Td N ]) τ m
>1.
;
Tm
0.3τm + Tm + 0.65[Td N ]
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Majhi and
Atherton (1999),
Atherton and Boz
(1998).
Model: Method 1
Kc
m m m
α = 0 ; β = 1 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ;
x1
(2Tm + τ m )3 x  , b = 1 , b = x 5 , a = 0 .
1 
− 1 −
3
f3
f5
f4
Tm
K m 
2Tm 2 τ m

Coefficient values (deduced from graphs). Model: Method 1
x2
x3
x4
x1
x2
x3
x4
1.2
2.6
4.5
6.4
Minimum ISTE – 1.8
servo – Atherton 4.2
and Boz (1998).
6.9
10.0
Minimum ITSE – 1.8
servo – Majhi
4.2
and Atherton
6.9
(1999).
10.0
Minimum ISTSE 2.3
– servo –
5.2
Atherton and Boz 8.4
(1998).
12.4
Minimum ISTSE 2.3
– servo – Majhi
5.2
and Atherton
8.7
(1999).
12.4
17
Comment
Td
Direct synthesis: time domain criteria
τm
(2Tm + τm )3 x1 τmTm
17
≤ 0.8
x2
0
2
T
2
T
+
τ
m
m
m
2K τ T
K0 =
Minimum ISE –
servo – Atherton
and Boz (1998).
Ti
0.58
0.91
0.89
0.98
0.17
0.22
0.25
0.26
0.17
0.22
0.25
0.26
0.08
0.11
0.14
0.13
0.08
0.11
0.12
0.13
-0.81
-0.55
-0.30
-0.22
-0.31
-0.16
-0.11
-0.08
-0.29
-0.16
-0.11
-0.08
-0.16
-0.10
-0.07
-0.04
-0.16
-0.10
-0.06
-0.04
2.36
2.49
2.18
2.23
1.08
0.96
0.95
0.92
1.05
0.96
0.95
0.92
0.71
0.65
0.68
0.63
0.69
0.65
0.62
0.64
8.5
10.8
13.3
16.0
13.0
16.2
20.3
24.0
13.0
16.8
20.3
1.02
1.03
1.02
1.00
0.28
0.31
0.29
0.30
0.28
0.27
0.29
-0.16
-0.14
-0.12
-0.09
-0.07
-0.06
-0.04
-0.04
-0.06
-0.05
-0.04
2.18
2.16
2.13
2.10
0.94
0.99
0.93
0.95
0.94
0.90
0.97
16.5
20.4
25.2
31.2
16.5
20.4
25.2
0.14
0.15
0.15
0.14
0.14
0.15
0.15
-0.04
-0.03
-0.02
-0.02
-0.03
-0.03
-0.02
0.64
0.65
0.64
0.61
0.64
0.67
0.65
Equations developed from information provided by Majhi and Atherton (1999).
 (2T + τ )2

m
m

x 4 − 2(Tm + τ m ) 
T 
Tm

x5 = m 
.
3
2
(2Tm + τm ) x 3


−1−
2


2Tm τ m
175
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
176
Rule
Kc
18
Chidambaram
(2000a).
Model: Method 1
Kc
19 1.2 τ m
Comment
Ti
Td
Ti
Td
0.5τ m
0.15τ m
K m Tm
2
K m Tm
β = 1 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = α ;
φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = K c ; bf 3 = 1 ;
0.8(Tm + 0.4 τ m )
Huang et al.
Kmτm
(2000).
(
0
.
6
T
m + 0.4 τ m )
Model: Method 1
Kmτm
bf 4 = 0 ; a f 5 = 1 .
Regulator tuning.
Tm + 0.4 τ m
0
Servo tuning.
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 0 ; bf 2 =
af 3 =
18
Kc =
0.4Tm τm
+ af 3 ,
Tm + 0.4τm
0.4Tm τm
; af 4 = 0 ; K0 = 0 .


(Tm + 0.4τm )min 20, 0.4Tm τm 
 Tm + 0.4τm 
2
τ  
1 
τ
4.114 − 6.575 m + 3.342 m   ,
Km 
Tm
 Tm  

2

τ  
K cTi
τ
Ti = Tm 0.311 + 1.372 m − 0.545 m   , Td =
;
[
Tm
T
16
.
016
−
11.7(τm Tm )]


m
 


α = 0.207 + 3.149(τm Tm ) − 8.405(τm Tm ) + 8.431(τm Tm ) , τm Tm ≤ 0.5 ,
2
3
α = 0.9416 − 0.44(τm Tm ) , 0.5 ≤ τm Tm ≤ 0.9 ; K 0 = K c .
19
α = 0.6762 − 0.4332
τ
τm τ m
1. 2 τ m
,
.
≤ 0.8 ; b = 0.1493 , m = 0.9 ; K 0 =
Tm
Tm Tm
K m Tm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
20
Lee et al. (1992).
Model: Method 1
Ti
Kc
177
Comment
Td
Direct synthesis: frequency domain criteria
Ti
Td
M s = 1.25
β = 1 ; χ = 0 ; δ = 0 ; N not specified; b f 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 0 .
Åström and
Hägglund (2006),
pp. 252, 265.
Model:
Method 56
21
Kc
Ti
Td
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
2
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = x1 , a f 4 = 0.5x1 ; K 0 = 0 .
Padhy and Majhi
(2006a).
Model:
Method 39
22
Kc
x1
1 + x1x 2 τm
0
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 2Tm τm K m ;
b f 3 = 1 ; b f 4 = 0.5τm ; a f 5 = 0 .
20
Kc =
2 x 2 2 (τm Tm ) − 4 + 8x1x 2 + 0.5(τm Tm )x 2 2 (4 + 2 τm Tm )
[
]
K m x 2 2 (τm Tm )2 + 4 + 4 x1x 2 (τm Tm )
,


2 τ

2 x 2 m − 4 + 8x1x 2 


Tm
τ
Tm
,
Ti = Tm  0.5 m +
 , Td =
T


τ
(4 + 2 τ m Tm )x 2 2
Tm
m

 4 + 2 m x 22 
+
2



Tm 
τ m 2 x 2 2 [τ m Tm ] − 4 + 8x1x 2



x1 = 0.5 +
0.25
x2
2
,
0.416 + 0.956 Tm τm
τm
τ
;
≤ 2.51 ; x1 = 1 , m > 2.51 ; x 2 =
1 + 0.0498 τm Tm
Tm
Tm
α = 1 − 0.517(τm Tm )
0.279
, τm Tm ≤ 10.64 ; α = 0 , τm Tm > 10.64 .
0.4τm + 0.8Tm + 0.6 x1
1 
Tm + 0.5x1 
21
Kc =
(τm + 0.5x1 ) ,
0.2 + 0.45
 , Ti =
Km 
τm + 0.1Tm + 0.55x1
τm + 0.5x1 
0.5(τm + 0.5x1 )(Tm + 0.5x1 )
T
T
Td =
, d ≤ x1 ≤ d .
0.3(τm + 0.5x1 ) + (Tm + 0.5x1 ) 30
3
22
Kc =
T − 0.7071 T τ
[
T − 0.7071 T τ ] , x =
and
2K τ (A − 1)
1.4142 T τ + 1
2φm + π(A m − 1)
2
m m
m
m m
1
m
m m
m
m
m
 2φ + π(A m − 1)   2A m  2φm + π(A m − 1) 
x 2 = 0.7854A m  m
 1 −

 .
2
π  2 A m 2 − 1 
 2 A m − 1  
(
)
(
)
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
178
Rule
Kc
Ti
Td
Comment
0.1 ≤ τm ≤ 10 ,
23
Eriksson and
Ti
Td
Kc
0.1 ≤ Tm ≤ 10 .
Johansson
α
=
1
,
τ
T
≤
1
,
α
=
0
,
τ
T
>
1
;
β
=
1
;
χ
=
0
;
δ
=0 ; N =∞;
(2007).
m
m
m
m
Model: Method 2
bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 ,
a f 3 = 0.1 ωg , a f 4 = 0.0025 ωg 2 , τm Tm ≤ 0.25 ; a f 3 = 0.2τm ,
2
a f 4 = 0.01τm , τm Tm > 0.25 , ωg = gain crossover frequency;
K0 = 0 .
Robust
Tm
K m (0.5τ m + λ )
Harris and
Tyreus (1987).
Model: Method 1
0
Tm
λ ≥ maximum
[0.8τ m , Tm ]
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 0 ; b f 2 = 0.5τm ; a f 3 = x1b f 3 , x1 not specified; a f 4 = 0 ;
K 0 = 0.
24
Ho et al. (2001).
Model: Method 1
Kc
0
Tm
1.551Tm
KmAmτm
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 0 ; b f 2 = 0.5τm ; a f 3 = x1b f 3 , x1 not specified; a f 4 = 0 ;
K 0 = 0.
25
Lee and Edgar
(2002).
Model: Method 1
0
Ti
Kc
α = 0 ; β = 1 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 1 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 0.25Tu , b f 3 = 1 ;
bf 4 = 0 ; a f 5 = 0 .
23
Kc =
Ti =

0.01Tm (0.4Tm + 11)
1  0.4Tm − 0.04

,
+ 0.16  , Td =
(
(
0
.
4
Tm − 0.04 ) τm ) + 0.16
K m 
τm

100((0.4Tm − 0.04) τ m ) + 0.16
(0.35T + 4T + 50)τ − (0.11T − 1.5T + 1.5)
2
m
3
m
m
m
2
τm 2 .
m
Tm
24
Kc =
, TCL = −0.5τ m + 0.25τ m 2 + ωg −2 ,
K m (0.5τm + TCL )
ωg = frequency at which the Nyquist curve has a magnitude of unity.
25
Kc =
(1 + 0.25K u K m )Ti , T = Tm − 0.25K u K m τm + τm 2 .
i
K m (λ + τm )
1 + 0.25K u K m
2(λ + τm )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
26
Lee and Edgar
(2002).
Model: Method 1
Kc
Ti
Td
Ti
Td
Comment
α = 0 ; β = 1 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 0.25Tu ,
bf 3 = 1 , bf 4 = 0 , a f 5 = 0 .
27
Visioli (2002).
Model: Method 1
Tm + 0.5τ m
Kc
Tm τ m
2Tm + τ m
α = 0 , β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 =
0.05 ≤
τm
≤1
Tm
Tm
,
1 + K0
 λτ m

λτ m Tm
; ε = 0;φ = 0; ϕ = 0;
af1 = 
+ Tm  , a f 2 =
2(λ + τm )
 2(λ + τm )

b f 2 = b f 1 , a f 3 = a f 1 , a f 4 = a f 2 ; for minimum IAE (regulator),
K 0 = 0.2171(Tm τm )
1.481
; b f 3 = 1 ; b f 4 = 0 ; a f 5 = Tm .
Tm
Cooper (2006a), K (λ + 0.5τ )
Tm
0.5τm
m
m
(2006b).
α = −0.5τm Tm , χ = 0 , a f 1 = 0 (Cooper, 2006a);
Model: Method 1
Tm λ
(Cooper, 2006b).
α = 0 , χ = −0.5τm Tm , a f 1 =
2(λ + τm )
Tm + 0.5τm
K m (λ + 0.5τm )
Tm + 0.5τm
α = 0 , χ = 0 , af1 =
Tm τm
2Tm + τm
Cooper (2006b)
Tm λ
(Cooper, 2006b).
2(λ + τm )
β = 1 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 2 = 0 ; a f 3 = 0 ; ε = α ; φ = χ ;
ϕ = 0 ; bf 2 = 0 , a f 3 = a f 1 , a f 4 = 0 ; K 0 = 0 .
λ > [0.1Tm ,0.8τm ] (‘aggressive’ tuning); λ > [Tm ,8τm ] (‘moderate’
tuning); λ > [10Tm ,80τm ] (‘conservative’ tuning).
26
2
K c = x1Ti , Ti =
1 + 0.25K u K m
Tm − 0.25K u K m τm
τm
+
, x1 =
1 + 0.25K u K m
2(λ + τm )
K m (λ + τm )
3
4
2
 0.25K u K m τm 2
τm
τm
τ (T − 0.25K u K m τm ) 
Td = x1 
−
+
+ m m
.
2
 2(1 + 0.25K K ) 6(λ + τ ) 4(λ + τ )
2(1 + 0.25K u K m )(λ + τm ) 
u m
m
m

2Tm + τm
1
27
Kc =
2K m (λ + τm ) (1 + K 0 )
179
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
180
3.4 FOLPD Model with a Zero
G m (s ) =
K (1 − sTm 4 )e −sτ m
K m (1 + sTm 3 )e − sτm
or G m (s) = m
1 + sTm1
1 + sTm1

1 

3.4.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
−
+

1 

K c 1 +

T
is 

Y(s)
U(s)
Model
Table 18: PI controller tuning rules – FOLPD model with a zero
K (1 + sTm3 )e −sτ m
K (1 − sTm 4 )e −sτ m
G m (s ) = m
or G m (s) = m
1 + sTm1
1 + sTm1
Rule
Slätteke (2006).
Model: Method 3
Kc
Comment
Ti
Minimum performance index: regulator tuning
Minimum IE, subject
x1 (Tm1 + 0.333τm )
x T + x 4 τm
x 2 τm 3 m1
to M s .
K m Tm 3τm
x 5Tm1 + x 6 τm
x1
x2
x3
x4
x5
x6
Ms
0.09
0.16
0.23
0.28
4
5
1
1
6
23
100
88
1
4
17
15
1
9
11
12
21
105
94
85
1.1
1.2
1.3
1.4
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
1
3
3
Kc =
Ti
Model: Method 1
Tm1
K m (τm + Tm3 )
2
Direct synthesis: frequency domain criteria
Model: Method 1;
Ti
4
Kc
Tm1 > Tm 4 .
Tm1 + 0.5τm
(λ + τm )K m
Marchetti and Scali
(2000).
Model: Method 1
2
x1Tm1
K mTm 4
4Tm1
Desbiens (2007),
p. 90.
Kc =
Comment
Direct synthesis: time domain criteria
‘Smaller’ τm Tm 4 .
Kc
Tm1
2
‘Larger’ τm Tm 4 .
Kc
Chidambaram (2002),
p. 157.
Model: Method 1
Sree and
Chidambaram
(2003a).
Slätteke (2006).
Model: Method 3
1
Ti
Tm1 + 0.5τm
(λ + τm + 2Tm 4 )K m
1.571
(
)
.
(
)
.
K m τm 1 + 3.142 Tm 4 τm 2
2.358
K m τm 1 + 4.712 Tm 4 τm 2
Robust
Tm1 + 0.5τm
Negative zero.
Tm1 + 0.5τm
Positive zero.
x1 = value of the ‘inverse jump’ of the closed loop system; x1 < K m Tm 4 Tm1 .
Ti =
(x1Tm1 Tm 4 )[Tm 4 (1 − x 2 ) − 0.5τm (1 + x 2 )] ;
(x1Tm1 Tm 4 )(1 − x 2 ) − x 2
T
0.98x1Tm1
0.95x1Tm1
≤ x2 ≤
, 0.1 ≤ m 4 ≤ 0.3 ;
x1Tm1 + Tm 4
x1Tm1 + Tm 4
Tm1
0.3x1Tm1
T
0.1x1Tm1
≤ x2 ≤
, m4 > 1 .
x1Tm1 + Tm 4 Tm1
x1Tm1 + Tm 4
4
Kc =
Ti ω
Km
2
Tm1 ω2 + 1
, with ω given by solving (for
(TiTm 4 ) ω4 + (Ti 2 + Tm 42 )ω2 + 1
φm = 58.13 ): 1.015 = 0.5π + tan −1 (Ti ω) − tan −1 (Tm 4ω) − tan −1 (Tm1 ω) − τ m ω ;
2
Ti = Tm1 + 0.175τ m , τm Tm1 < 2 ; Ti = 0.65Tm1 + 0.35τ m , τ m T m1 > 2 .
181
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
182
3.4.2 Ideal controller in series with a first order lag

 1
1
+ Td s 
G c (s) = K c 1 +
Ti s

 1 + Tf s
E(s)
R(s)
−
+

 1
1
K c 1 +
+ Td s 
 Ti s
 1 + Tf s
U(s)
Model
Y(s)
Table 19: PID controller tuning rules – FOLPD model with a zero
K (1 + sTm 3 )e −sτm
K (1 − sTm 4 )e −sτ m
G m (s) = m
or G m (s) = m
1 + sTm1
1 + sTm1
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2003a).
Jyothi et al.
(2001).
Model: Method 1
1
Kc
2
Kc
3
Kc
0
Tm1
Model: Method 1
Direct synthesis: frequency domain criteria
τm Tm3 < 1
0
Tm1
τm Tm3 > 1
Robust
Chang et al.
Tm1
(1997).
K m (TCL + τ m )
Model: Method 2
1
Kc =
2
Kc =
Tm1
T (λ − τ m )
.
, Tf = m 4
K m (2Tm 4 + λ + τm )
2Tm 4 + λ + τm
1.57Tm1
K m τm
3
Kc =
Tm1
T 
1 + 9.870 m3 
 τm 
0.79Tm1
T 
K m τm 1 + 2.467 m3 
 τm 
2
2
.
.
0
Tf = Tm 3
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
K m e − sτ m
3.5 SOSPD model
2
Tm1 s 2 + 2ξ m Tm1s + 1
or
183
K m e −sτ m
(1 + Tm1s )(1 + Tm 2 s )

1 

3.5.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
+
−

1 

K c 1 +
Ti s 

U(s)
Y(s)
SOSPD
model
Table 20: PI controller tuning rules – SOSPD model
K m e − sτ m
K m e − sτ m
or
(1 + Tm1s)(1 + Tm 2 s)
Tm1 2 s 2 + 2ξ m Tm1s + 1
Rule
Kc
Comment
Ti
Minimum performance index: regulator tuning
Model: Method 1
x1 K m
x 2Tm1
Minimum IAE –
Lopez (1968),
pp. 63, 69–74.
Coefficients of K c and Ti deduced from graphs. These are
representative results.
0.5
0.6
0.8
1.0
1.5
2.0
4.0
ξm
x1
x2
τm Tm1 = 0.1
4.8 4.2 5.7 3.4 7.8 2.8 9.7 2.3 15 1.7 21 1.4 35
x1
x2
x1
x2
x1
x2
x1
x2
x1
x2
x1
x2
-
τm Tm1 = 0.2
2.2 3.3 2.7 3.0 3.9 2.7 5.1 2.4 8.3 1.9 11.5 1.7 27 1.2
τm Tm1 = 0.5
0.76 2.1 1.0 2.3 1.6 2.4 2.1 2.4 3.7 2.4 5.4 2.4 12.5 2.4
τm Tm1 = 1.0
0.33 1.2 0.50 1.6 0.82 2.2 1.2 2.5 2.1 2.8 3.0 3.3 6.6 3.7
τm Tm1 = 2.0
0.23 1.2 0.34 1.6 0.52 2.2 0.70 2.8 1.15 3.8 1.65 4.4 3.4 5.9
τm Tm1 = 5.0
0.32 2.6 0.34 2.9 0.38 3.3 0.46 3.8 0.62 5.0 0.80 6.3 1.5 9.6
τm Tm1 = 10.0
0.34 5.0 0.35 5.3 0.38 5.6 0.39 5.9 0.46 7.1 0.52 8.3 0.90 -
Minimum IAE –
Murata and Sagara
(1977).
Model: Method 4;
K c , Ti deduced from
graphs.
x1 K m
Tm1 = Tm 2
x 2Tm1
x1
x2
τm Tm1
x1
x2
τm Tm1
2.6
1.3
1.0
2.5
2.5
2.6
0.2
0.4
0.6
0.8
0.7
2.7
2.8
0.8
1.0
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
184
Rule
Minimum IAE –
Harriott (1988).
Model: Method 1;
coefficients of Ti
deduced from graphs.
Minimum IAE –
Harriott (1988).
Model: Method 1;
coefficients of Ti
deduced from graphs.
Minimum IAE –
Harriott (1988).
Model: Method 1
Minimum IAE –
Shinskey (1994),
p. 158.
Minimum IAE –
Shinskey (1996),
p. 48.
Model: Method 1;
τm Tm1 = 0.2 .
1
17-Mar-2009
Kc
Ti
Comment
0.5K u
0.4Tu
0.1 ≤ τm Tm1 ≤ 2 .
0.5K u
x 2Tu
Alternative.
Tm1 = Tm 2 ;
x2
τm Tm1
x2
τm Tm1
1.10
0.85
1.45
1.10
1.75
1.25
0.1
0.2
0.1
0.2
0.1
0.2
0.65
0.52
0.75
0.55
0.90
0.5
1.0
0.5
1.0
0.5
0.5K u
τm Tm1
x2
Tm 2 Tm1 = 0.2
Tm 2 Tm1 = 0.5
Tm 2 Tm1 = 1.0
x 2Tu
τm Tm1
x2
1.35
0.1
0.65
0.5
Tm 2 Tm1 = 0.2
0.85
0.2
2.00
0.1
0.80
0.5
Tm 2 Tm1 = 0.5
1.10
0.2
0.60
1.0
2.25
0.1
1.00
0.5
Tm 2 Tm1 = 1.0
1.25
0.2
Disturbance input subsequent to the smaller time constant and
delay terms.
Tm1 = Tm 2 ;
0.45K u
1.1Tu
τ T = 0.2 .
m
m1
Random load disturbance through a filter with time constant =
2Tm1 .
Kc
Ti
Model: Method 1
0.77Tm1 K m τm
2.83(τ m + Tm 2 )
Tm 2 Tm1 = 0.1
1
0.70Tm1 K m τm
0.80Tm1 K m τm
0.80Tm1 K m τm
2.65(τ m + Tm 2 )
2.29(τ m + Tm 2 )
1.67(τ m + Tm 2 )
Tm 2 Tm1 = 0.2
Tm 2 Tm1 = 0.5
Tm 2 Tm1 = 1.0
3Tm1



−

(τ m + Tm 2 )  

Kc =
, Ti = τ m  0.5 + 3.5 1 − e
.
Tm1  

 



−




τ
+
T


K m (τm + Tm 2 ) 50 + 551 − e m m 2  






100Tm1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IAE –
Huang et al. (1996).
Model: Method 1
2
2
Kc
Ti
Kc
Ti
Comment
0 < Tm 2 Tm1 ≤ 1 ;
0.1 ≤ τm Tm1 ≤ 1 .
Note: equations continued into the footnote on p. 186.
τm
τ T 
1 
T
− 3.491 m 2 − 25.3143 m m2 2 
Kc =
6.4884 + 4.6198
K m 
Tm1
Tm1
Tm1 
+
−0.9077
−0.063
0.5961 
 τm 
 τm 
τ 
1 

0.8196 m 




5
.
2132
7
.
2712
−
−
T 
T 
T 
Km 

 m1 
 m1 
 m1 


+
0.7204
1.0049
1.005 
 Tm 2 
 Tm 2 
T 
1 

 − 18.0448 m 2 




13
.
9108
5
.
3263
+
+
T 
T 
T 
Km 

 m1 
 m1 
 m1 


+
0.8529
0.5613 
T
T τ 
Tm 2  τ m 
1 

0.4937 m 2 + 19.1783 m 2  m 


12
.
2494
+
Km 
Tm1  Tm1 
Tm1  Tm1 
τm



+
0.557
1.1818 
τ m  Tm 2 
τ T 
1 

8.4355 m  m 2 


17
.
6781
−
Km 
Tm1  Tm1 
Tm1  Tm1 



+
τ m Tm 2 
Tm 2
τm

2
1 
− 0.7241e Tm1 − 2.2525e Tm1 + 5.4959e Tm1  ;

Km 


2

τ  
T
τ
Ti = Tm1 0.0064 + 3.9574 m + 4.4087 m 2 − 6.4789 m  

Tm1
Tm1
 Tm1  

2
3

T 
τ  
τ T
+ Tm1  − 12.8702 m m2 2 − 1.5083 m 2  + 9.4348 m  

Tm1
 Tm1 
 Tm1  

2
2
3

T  
T τ 
τ T 
+ Tm1 17.0736 m 2  m  + 15.9816 m  m 2  − 3.909 m 2  
Tm1  Tm1 
Tm1  Tm1 

 Tm1  

4
3
2
2

 τ  T  
τ 
T τ 
+ Tm1 − 10.7619 m  − 10.864 m 2  m  − 22.3194 m   m 2  
Tm1  Tm1 

 Tm1   Tm1  
 Tm1 

3
4
5

T 
τ  
τ T 
+ Tm1 − 6.6602 m  m 2  + 6.8122 m 2  + 7.5146 m  
Tm1  Tm1 

 Tm1 
 Tm1  

4
2
3
2
3

 τ m   Tm 2  
 Tm 2   τ m 
Tm 2  τ m 












+ 11.1207
+ 11.4666
+ Tm1 2.8724
Tm1  Tm1 
Tm1   Tm1 
Tm1   Tm1  





185
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
186
Rule
Minimum IAE –
Huang et al. (1996).
Model: Method 1
3
Kc
Ti
Comment
Kc
Ti
0.05 ≤ τm Tm1 ≤ 1 .
0.4 ≤ ξ m ≤ 1 ;
4
5
6

τ  
T 
 τ  T 
+ Tm1  − 1.2174 m  m 2  − 4.3675 m 2  − 2.2236 m  

 Tm1  
 Tm1 
 Tm1  Tm1 

5
6
4
2

 τ  T  
T 
T τ 
+ Tm1  − 0.112 m 2  m  + 1.0308 m 2  − 1.9136 m   m 2  
Tm1  Tm1 

 Tm1   Tm1  
 Tm1 

3
3
2
4
5

 τ  T 
 τ  T 
τ T  
+ Tm1 − 3.4994 m   m 2  − 1.5777 m   m 2  + 1.1408 m  m 2   .
Tm1  Tm1  

 Tm1   Tm1 
 Tm1   Tm1 


3
Note: equations continued into the footnote on p. 187.
τm
τ 
1 
− 5.5175ξ m − 26.5149ξ m m 
Kc =
 − 10.4183 − 20.9497
Km 
Tm1
Tm1 
1.4439
0.1456
0.3157 
τ 
 τm 
 τm 
1 
42.7745 m 





+
+
10
.
5069
15
.
4103
T 
T 
T 
Km 

 m1 
 m1 
 m1 


1
3.7057
4.5359
1.9593
+
34.3236ξ m
− 17.8860ξ m
− 54.0584ξ m
Km
+
[
τ 
1 
22.4263ξ m  m 
+
T 
Km 
 m1 

]
−0.0541
τ 
+ 2.7497ξ m  m 
 Tm1 
4.7426 



+
T 
τ
1 
1.8288  τ m 

 − 17.1968 m ξ m 2.7227 + 1.0293ξ m m1 
50.2197ξ m
K m 
Tm1
τ m 
 Tm1 
+
τ
τm
ξm m 
1 
− 16.7667e Tm1 + 14.5737e ξm − 7.3025e Tm1  ,
Km 



2

τ 
τ 
τ
Ti = Tm1 11.447 + 4.5128 m − 75.2486ξm − 110.807 m  − 12.282ξ m m 
Tm1
Tm1 

 Tm1 


3
2

τ 
τ  
+ Tm1 345.3228ξ m 2 + 191.9539 m  + 359.3345ξ m  m  

 Tm1 
 Tm1  

4

 τm  
τm
2
3




+ Tm1 − 158.7611
ξ m − 770.2897ξ m − 153.633
Tm1
Tm1  




b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Minimum IAE –
τm Tm1 = 0.2 ,
Shinskey (1996),
0.48K u
0.83Tu
Tm 2 Tm1 = 0.2 .
p. 121.
Model: Method 1
Minimum ISE –
x1 K m
x 2τm
McAvoy and Johnson
Coefficient values:
(1967).
Model: Method 1; ξ m Tm1 x 1 x 2 ξ m Tm1 x 1 x 2 ξ m Tm1 x 1 x 2
τm
τm
τm
coefficients of K c
1
0.5
0.8
1.82
4
0.5
4.3
3.45
7
0.5 7.8 3.85
and Ti deduced from
1 4.0 5.7 12.5 4 4.0 27.1 6.67 7 4.0 51.2 5.88
graphs.
1 10.0 13.6 25.0
3
2


τ 
τ 
τ
+ Tm1  − 412.5409ξ m  m  − 414.7786ξ m 2  m  + 485.0976 m ξ m 3 
Tm1


 Tm1 
 Tm1 


5
4

τ  
τ 
+ Tm1 864.5195ξ m 4 + 55.4366 m  + 222.2685ξ m  m  

 Tm1  
 Tm1 

3
2


τ 
τ 
τ 
+ Tm1 275.116ξ m 2  m  + 205.2493 m  ξ m 3 − 479.5627 m ξ m 4 


 Tm1 
 Tm1 
 Tm1 


6
5


τ 
τ 
+ Tm1  − 473.1346ξ m 5 − 6.547 m  − 43.2822ξ m  m  + 99.8717ξ m 6 


 Tm1 
 Tm1 


4
3
2


τ 
τ 
τ 
+ Tm1  − 73.5666 m  ξ m 2 − 56.4418 m  ξ m 3 − 37.497 m  ξ m 4 


 Tm1 
 Tm1 
 Tm1 




τ
+ Tm1 160.7714 m ξ m 5  .
T
m1


187
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
188
Rule
Kc
Ti
Comment
Minimum ISE –
Lopez (1968),
pp. 63, 69–74.
x1 K m
x 2Tm1
Model: Method 1
Coefficients of K c and Ti deduced from graphs. These are
representative results.
0.5
0.6
0.8
1.0
1.5
2.0
4.0
ξm
x2
x1
x2
τm Tm1 = 0.1
6.5 4.8 7.7 4.2 10.5 3.4 13 2.9 20.5 2.1 28 1.6
x1
x2
x1
x2
x1
x2
x1
-
-
τm Tm1 = 0.2
3.1 4.2 3.9 3.8 5.4 3.3
7
x2
x1
x2
x1
2.9 11 2.4 15 2.0 33 1.4
τm Tm1 = 0.5
1.25 2.9 1.55 2.9 2.2 2.9 2.9 2.9 4.8 2.9 6.7 2.7 14.5 2.5
τm Tm1 = 1.0
0.63 2.2 0.83 2.5 1.2 2.9 1.65 3.1 2.7 3.7 3.8 3.8
τm Tm1 = 2.0
0.42 1.9 0.54 2.4 0.75 3.0 1.0 3.6 1.6 4.5 2.3 5.9 4.5 6.9
8
4.2
τm Tm1 = 5.0
0.45 3.5 0.48 3.8 0.56 4.4 0.65 5.3 0.85 6.7 1.05 7.7 2.0 11.6
τm Tm1 = 10.0
0.46 6.3 0.48 6.7 0.53 7.4 0.56 8.0 0.63 9.1 0.75 10.6 1.15 16.1
Minimum ITAE –
Lopez (1968),
pp. 63, 69–74.
x1 K m
Model: Method 1
x 2Tm1
Coefficients of K c and Ti deduced from graphs. These are
representative results.
0.5
0.6
0.8
1.0
1.5
2.0
4.0
ξm
x2
x1
x2
τm Tm1 = 0.1
2.9 3.0 3.8 2.7 5.5 2.3 7.4 2.0 11.5 1.5 16.5 1.2
x1
x2
x1
x2
x1
x2
x1
x2
x1
x2
x1
-
0.8
τm Tm1 = 0.2
1.35 2.4 1.9 2.4 2.8 2.2 3.8 2.0 6.5 1.7 9.5 1.5 23 1.1
τm Tm1 = 0.5
0.42 1.3 0.65 1.6 1.15 1.9 1.7 2.0 3.0 2.1 4.5 2.1 10.5 2.0
τm Tm1 = 1.0
0.21 0.8 0.34 1.2 0.64 1.8 0.93 2.1 1.7 2.7 2.5 2.9 5.6 3.4
τm Tm1 = 2.0
0.18 0.9 0.26 1.3 0.42 1.9 0.58 2.4 0.98 3.3 1.4 4.0 3.2 5.4
τm Tm1 = 5.0
0.25 2.3 0.29 2.5 0.34 2.9 0.38 3.4 0.52 4.1 0.66 5.6 1.4 8.7
τm Tm1 = 10.0
0.28 4.3 0.30 4.5 0.32 4.9 0.33 5.6 0.38 6.3 0.46 7.4 0.77 -
Minimum ITAE –
Lopez et al. (1969).
Model: Method 8;
coefficients of K c
x1 K m
ξm
τm
Tm1
x1
x 2Tm1
x2
and Ti deduced from 0.5 0.1 3.0 2.86
0.5 1.0 0.2 0.83
graphs.
0.5 10.0 0.3 4.0
Coefficient values:
ξm τ m x1 x 2
Tm1
ξm
τm
Tm1
1
1
1
4
4
4
0.1 40.0 0.83
1.0 6.0 3.33
10.0 0.75 10.0
0.1 7.0 2.00
1.0 0.95 2.22
10.0 0.35 5.00
x1
x2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum ITAE –
Chao et al. (1989).
Model: Method 1
Minimum ITAE –
Hassan (1993).
Model: Method 8
4
Kc =
4
Kc
Ti
Kc
Ti
Comment
0.7 ≤ ξ m ≤ 3 ; 0.05 ≤ 0.5τm ξ m Tm1 ≤ 0.5 .
5
0.5 ≤ ξ m ≤ 2 ,
Ti
Kc
0.09578 + 0.6206ξ m − 0.1069ξ m 2  τm 


 2ξ T 
Km
 m m1 
0.1 ≤ τm Tm1 ≤ 4 .
−1.108 + 0.2558ξ m − 0.0579 ξ m 2
,
(
Ti = 2ξ m Tm1 1.31 − 0.0914ξ m + 0.07464ξ m
5
189
)
τm 


 2ξ T 
 m m1 
2 
−0.6441+ 0.7626 ξ m − 0.1193ξ m 2
.
Formulae correspond to graphs of Lopez et al. (1969). K c is obtained as follows:
log[K m K c ] = −0.0099458 + 1.9743700ξm − 3.8984310
τm
− 1.1225270ξ m 2
Tm1
2
τ 

τ
2 τ
+ 2.3493280 m  + 1.9126490ξ m m + 0.0754568ξ m  m 
T
T
T
m1
 m1 
 m1 
2
2
τ 
2 τ
3
− 0.5594610ξ m  m  − 0.7930846ξ m m + 0.2412770ξ m
T
T
m1
 m1 
3
3
τ 
τ 

2 τ
− 0.3567954 m  − 0.0024730ξ m  m  + 0.0478593ξ m  m 
T
T
T
 m1 
 m1 
 m1 
2
2
− 0.1354322ξ m
3
3


τm
3 τ
3 τ
− 1.1756470ξ m  m  − 0.0096974ξ m  m  ;
Tm1
T
T
 m1 
 m1 
Ti is obtained as follows:
 T 
τ
log  i  = 0.9321658 − 0.7200651ξ m − 3.4227010 m + 0.0432084ξ m 2
T
T
m1
 m1 
2
τ 

τ
2 τ
+ 1.4965440 m  + 5.3636520ξ m m − 0.0848431ξ m  m 
T
T
T
m1
 m1 
 m1 
2
2
τ 
2 τ
3
− 1.6011510ξ m  m  − 2.1777800ξ m m + 0.0404586ξ m
T
T
m1
 m1 
3
3
τ 
τ 

2 τ
− 0.1769621 m  + 0.0912008ξ m  m  + 0.1501474ξ m  m 
T
T
T
 m1 
 m1 
 m1 
2
+ 0.3033341ξ m
3
2
3


τm
3 τ
3 τ
+ 0.1753407ξ m  m  − 0.0622614ξ m  m  .
Tm1
T
T
 m1 
 m1 
b720_Chapter-03
Rule
Minimum ITSE –
Chao et al. (1989).
Model: Method 1
Nearly minimum
IAE, ISE, ITAE –
Hwang (1995).
Kc =
6
Kc
Ti
Kc
Ti
Comment
0.7 ≤ ξ m ≤ 3 ; 0.05 ≤ 0.5τm ξ m Tm1 ≤ 0.5 .
7
Decay ratio = 0.2;
Model: Method 14
Ti
Kc
0.3366 + 0.6355ξ m − 0.1066ξ m 2  τm 


 2ξ T 
Km
 m m1 
−1.0167 + 0.1743ξ m − 0.03946 ξ m 2
,
(
Ti = 2ξ m Tm1 1.9255 − 0.3607ξ m + 0.1299ξ m
7
FA
Handbook of PI and PID Controller Tuning Rules
190
6
17-Mar-2009
0.2 ≤ τm Tm1 ≤ 2.0 , 0.6 ≤ ξ m ≤ 4.2 .
[
)
τm 


 2ξ T 
 m m1 
2 
−0.5848 + 0.7294 ξ m − 0.1136 ξ m 2
.
]
 0.622 1 − 0.435ωH τ m + 0.052(ωH τm )2 
K H ,
K c = 1 −


K H K m (1 + K H K m )


Ti =
[
(
0.0697ωH K m 1 + 0.752ωH τm − 0.145ωH 2 τm 2
]
 0.724 1 − 0.469ωH τm + 0.0609(ωH τm )2 
K H ,
K c = 1 −


K H K m (1 + K H K m )


Ti =
[
K c (1 + K H K m )
K c (1 + K H K m )
(
0.0405ωH K m 1 + 1.93ωH τm − 0.363ωH 2 τm 2
]
) , ε < 2.4 ;
) , 2.4 ≤ ε < 3 ;
 1.26(0.506)ωH τ m 1 − 1.07 ε + 0.616 ε 2 
K H ,
K c = 1 −


K H K m (1 + K H K m )


K c (1 + K H K m )
Ti =
, 3 ≤ ε < 20 ;
0.0661ωH K m (1 + 0.824 ln[ωH τm ]) 1 + 1.71 ε − 1.17 ε 2
[
(
]
 1.09 1 − 0.497ωH τm + 0.0724(ωH τm )2 
K H ,
K c = 1 −


K H K m (1 + K H K m )


Ti =
(
)
K c (1 + K H K m )
0.054ωH K m − 1 + 2.54ωH τm − 0.457ωH 2 τm 2
) , ε > 20 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
8
Kc
Comment
Ti
Minimum performance index: servo tuning
x1 K m
x 2 (Tm1 + Tm 2 + τ m )
Tm1 = Tm 2
Minimum IAE –
Gallier and Otto
(1968).
Model: Method 25.
Representative coefficient values (deduced from graphs):
τm 2Tm1
x1
x2
τm 2Tm1
x1
x2
Minimum IAE –
Murata and Sagara
(1977).
Model: Method 4;
K c , Ti deduced from
graphs.
Minimum IAE –
Huang et al. (1996).
Model: Method 1
x 2Tm1
0.053
3.6
0.11
2.3
0.25
1.35
x1 K m
1.35
1.17
0.93
0.67
1.50
4.0
0.76
0.72
0.53
0.60
0.43
0.51
Tm1 = Tm 2
x1
x2
τm Tm1
x1
x2
τm Tm1
1.4
1.0
0.8
2.3
2.3
2.4
0.2
0.4
0.6
0.6
0.5
2.4
2.5
0.8
1.0
8
Kc
Ti
0 < Tm 2 Tm1 ≤ 1 ;
0.1 ≤ τm Tm1 ≤ 1 .
Note: equations continued into the footnote on p. 192.
1 
T
τm
τ T 
Kc =
+ 2.6647 m 2 + 9.162 m m2 2 
− 13.0454 − 9.0916
K m 
Tm1
Tm1
Tm1 
+
−1.0169
3.5959
3.6843 
 τm 
τ 
 τm 
1 
0.3053 m 





+
−
1
.
1075
2
.
2927
T 
T 
T 
Km 

 m1 
 m1 
 m1 


+
0.8476
2.6083
2.9049 
 Tm 2 
T 
 Tm 2 
1 
− 31.0306 m 2 





−
+
13
.
0155
9
.
6899
T 
T 
T 
Km 

 m1 
 m1 
 m1 


+
−0.2016
1.3293 
T
T τ 
Tm 2  τ m 
1 
 − 0.6418 m 2 + 18.9643 m 2  m 



−
39
.
7340
τm
Km 
Tm1  Tm1 
Tm1  Tm1 



+
0.801
3.956 
τ T 
τ m  Tm 2 
1 
28.155 m  m 2 



2
.
0067
−
Km 
Tm1  Tm1 
Tm1  Tm1 



+
τ m Tm 2 
τm
Tm 2

2
1 
4.8259e Tm1 + 2.1137e Tm1 + 8.4511e Tm1  ,

Km 


2

τ 
τ T 
T
τ
Ti = Tm1 0.9771 − 0.2492 m + 0.8753 m 2 + 3.4651 m  − 3.8516 m m2 2 

Tm1
Tm1
Tm1 
 Tm1 


191
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
192
Rule
Minimum IAE –
Huang et al. (1996).
Model: Method 1
9
Kc
Ti
Kc
Ti
Comment
0.4 ≤ ξ m ≤ 1 ;
0.05 ≤ τm Tm1 ≤ 1 .
2
3
2

T 
τ 
T τ  
+ Tm1 7.5106 m 2  − 7.4538 m  + 11.6768 m 2  m  
Tm1  Tm1  

 Tm1 
 Tm1 


2
3
4

τ  
T 
τ T 
+ Tm1  − 10.9909 m  m 2  − 16.1461 m 2  + 8.2567 m  
Tm1  Tm1 

 Tm1  
 Tm1 

3
2
2
3

 τ  T 
T τ 
τ T  
+ Tm1  − 18.1011 m 2  m  + 6.2208 m   m 2  + 21.9893 m  m 2  
Tm1  Tm1 
Tm1  Tm1  

 Tm1   Tm1 


4
5
4

T 
τ 
T τ  
+ Tm1 15.8538 m 2  − 4.7536 m  + 14.5405 m 2  m  
Tm1  Tm1  

 Tm1 
 Tm1 


2
3
2
3

 τ  T  
T   τ 
+ Tm1  − 2.2691 m 2   m  − 8.387 m   m 2  

 Tm1   Tm1  
 Tm1   Tm1 

4
5
6

τ  
 τ  T 
T 
+ Tm1 − 16.651 m  m 2  − 7.1990 m 2  + 1.1496 m  

 Tm1  
 Tm1  Tm1 
 Tm1 

5
6
4
2

 τ  T  
T 
T τ 
+ Tm1 − 4.728 m 2  m  + 1.1395 m 2  + 0.6385 m   m 2  
Tm1  Tm1 

 Tm1   Tm1  
 Tm1 

3
3
2
4
5

 τ  T 
 τ  T 
τ T  
+ Tm1 1.0885 m   m 2  + 3.1615 m   m 2  + 4.5398 m  m 2   .
Tm1  Tm1  

 Tm1   Tm1 
 Tm1   Tm1 


9
Note: equations continued into the footnote on p. 193.
Kc =
+
3
τ  
τ
τ
1 
− 10.95 − 1.8845 m − 3.4123ξ m + 4.5954ξm m − 1.7002 m  
Km 
Tm1
Tm1
 Tm1  

2

τ 
τ 
1 
 − 2.1324ξ m  m  − 14.4149ξ m 2  m  − 0.7683ξ m 3 
T 
T 
Km 

 m1 
 m1 


0.421
0.1984
1.8033 
 τm 
τ 
 τm 
1 
7.5142 m 





3
.
7291
5
.
3444
+
+
T 
T 
T 
Km 

 m1 
 m1 
 m1 


1
19.5419
1.0749
1.1006
+
− 0.0819ξ m
− 3.603ξ m
+ 7.1163ξ m
Km
+
[
]
b720_Chapter-03
17-Mar-2009
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
+
−0.6753
−0.1642

τ 
 τm 
1 
1.9948  τ m 
3.206ξ m  m 





7
.
8480
11
.
3222
−
ξ
+
ξ
m
m
 T 
T 
T 
Km 
 m1 
 m1 
 m1 

+
τm
ξm τm
T 
1 
2.4239e Tm1 + 3.4137e ξm + 1.0251e Tm1 − 0.5593ξ m m1  ,
Km 
τm 


2

τ  
τ
Ti = Tm1 2.4866 − 23.3234 m + 5.3662ξm + 65.6053 m  
Tm1

 Tm1  

3

τ  
τ
+ Tm1 29.0062ξ m m − 24.1648ξ m 2 − 83.6796 m  
Tm1

 Tm1  

2


 τm 
τ



+ 43.1477 m ξ m 2 + 51.9749ξ m 3 
+ Tm1 − 135.9699ξ m 

Tm1


 Tm1 


4
3
2

 τm 
 τm 
2  τm 








+ Tm1 86.0228
+ 70.4553ξ m 
+ 153.4877ξ m 
Tm1 
Tm1 
Tm1  






5

 τm  
τm
3
4




+ Tm1 − 125.0112
ξ m − 68.5893ξ m − 62.7517
Tm1
Tm1  




4
3
2


 τm 
 τm 
2  τm 







ξm3 
+ Tm1 27.6178ξ m 
− 152.7422ξ m 
+ 20.8705





 Tm1 
 Tm1 
 Tm1 


6

 τm  
 τm  4
5






+ Tm1 54.0012
ξ m + 58.7376ξ m + 13.1193
Tm1 
Tm1  





5
4


 τm 
 τm 
6





ξm 2 
+ Tm1 20.2645ξ m 
− 23.2064ξ m − 61.6742




 Tm1 
 Tm1 


3
2


 τm 
 τm 
τ
3





ξ m 4 + 20.4168 m ξ m 5  .
+ Tm1 136.2439
ξ m − 95.4092


Tm1


 Tm1 
 Tm1 


FA
193
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
194
Rule
Kc
Comment
Ti
x1
x 2τm
Minimum ISE –
Coefficient values:
Keviczky and Csáki
0.1
0.2
0.5
1.0
ξ
(1973).
τ m Tm1
x1 x 2 x1 x 2 x1 x 2 x1 x 2
Model: Method 1;
representative K c , Ti
0.1
0.26 1.5 0.55 2 2.2 3.5 6
6
0.2
0.21 1.3 0.4 1.5 1.5 2.8 3 4.5
coefficients estimated
0.5
0.15 1.2 0.25 1.3 0.8 2
2 3.5
from graph; K m = 1 .
1.0
0.12 1.1 0.2 1.2 0.65 1.8 1.2 3.3
2.0
0.1 1.0 0.16 1.2 0.4 1.9 0.9 3.5
5.0
0.1 1.2 0.16 1.4 0.4 3.0 0.65 5.0
10.0
0.15 1.6 0.2 2.0 0.45 5.5 0.6 7.5
Other coefficient values:
τm
τm
x1
x2
ξ
x1
x2
T
T
m1
m1
0.2
0.5
0.5
1.0
1.0
Minimum ITAE –
Chao et al. (1989).
Model: Method 1
Minimum ITSE –
Chao et al. (1989).
Model: Method 1
10
Kc =
30
13
30
7
14
10
15
14
30
14
30
5.0
5.0
10.0
5.0
10.0
Kc
2.0
2.0
5.0
5.0
10.0
10.0
15
30
17
32
19
34
x2
14 9
9
8
5
7
3 6.5
1.8 7
1.0 8
0.7 10
ξ
5.0
10.0
5.0
10.0
5.0
10.0
Ti
0.7 ≤ ξ m ≤ 3 ; 0.05 ≤ 0.5τm ξ m Tm1 ≤ 0.5 .
11
Kc
Ti
0.7 ≤ ξ m ≤ 3 ; 0.05 ≤ 0.5τm ξ m Tm1 ≤ 0.5 .
2
0.2763 + 0.3532ξ m − 0.06955ξ m  τm 


 2ξ T 
Km
 m m1 
(
−0.3772 − 0.2414 ξ m + 0.03342 ξ m 2
,
Ti = 2ξ m Tm1 0.9953 + 0.07857ξ m + 0.005317ξ m
11
4
8
1.9
3.4
1.1
2.0
2.0
x1
2
0.3970 + 0.4376ξ m − 0.08168ξ m  τm 


Kc =
 2ξ T 
Km
 m m1 
(
)
τm 


 2ξ T 
 m m1 
2 
−0.3276 + 0.3226 ξ m − 0.05929 ξ m 2
.
−0.5629 − 0.1187 ξ m + 0.01328ξ m 2
,
)
 τm 

Ti = 2ξ m Tm1 1.3414 − 0.1487ξ m + 0.07685ξ m 2 

 2ξ m Tm1 
−0.4287 + 0.1981ξ m − 0.01978 ξ m
2
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
12
Nearly minimum
IAE, ISE, ITAE –
Hwang (1995).
Model: Method 14
12
195
Comment
Ti
Ti
Kc
2
For ξ m ≤ 0.776 + 0.0568
τ 
τm
+ 0.18 m  :
Tm1
 Tm1 
Coefficient values:
x3
x4
x5
x6
x7
-0.549
x9
0.122
x 10
0.0142
x 11
6.96
x 12
-1.77
x 13
0.786
x 14
-0.441
x 15
0.0569
x 16
0.0172
x 17
4.62
x 18
-0.823
x 19
1.28
x 20
0.542
x 21
-0.986
x 22
0.558
x 23
0.0476
x 24
0.996
x 25
2.13
x 26
-1.13
1.14
-0.466
0.0647
0.0609
1.97
-0.323
x1
x2
0.822
x8
Decay ratio = 0.1; 0.2 ≤ τm Tm1 ≤ 2.0 ; 0.6 ≤ ξ m ≤ 4.2 .
[
]
 x 1 + x 2ωH τm + x 3 (ωH τm )2 
K H ,
K c = 1 − 1


K H K m (1 + K H K m )


Ti =
[
]
K c (1 + K H K m )
(
x 4ωH K m 1 + x 5ωH τm + x 6ωH 2 τm 2
 x 1 + x 8ωH τm + x 9 (ωH τm )2 
K H ,
K c = 1 − 7


K H K m (1 + K H K m )


Ti =
[
]
K c (1 + K H K m )
(
x10ωH K m 1 + x11ωH τm + x12ωH 2 τm 2
) , ε < 2.4 ;
) , 2.4 ≤ ε < 3 ;
 x x ωH τ m 1 + x15 s + x16 ε 2 
K H ,
K c = 1 − 13 14


K H K m (1 + K H K m )


Ti =
[
K c (1 + K H K m )
, 3 ≤ ε < 20 ;
x17 ωH K m (1 + x18 ln[ωH τm ]) 1 + x19 s + x 20 s 2
(
]
 x 1 + x 22ωH τm + x 23 (ωH τm )2 
K H ,
K c = 1 − 21


K H K m (1 + K H K m )


Ti =
(
)
K c (1 + K H K m )
x 24ωH K m − 1 + x 25ωH τm + x 26ωH 2 τm 2
) , ε > 20 .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
196
Rule
Kc
Comment
Ti
2
Nearly minimum
IAE, ISE, ITAE –
Hwang (1995) –
continued.
For ξ m > 0.889 + 0.496
τ 
τm
+ 0.26 m  :
Tm1
 Tm1 
Coefficient values:
x3
x4
x5
x6
x7
-0.541
x9
0.126
x 10
0.0078
x 11
8.38
x 12
-1.97
x 13
0.738
x 14
-0.415
x 15
0.0575
x 16
0.0124
x 17
4.05
x 18
-0.63
x 19
1.15
x 20
0.564
x 21
-0.959
x 22
0.773
x 23
0.0335
x 24
0.947
x 25
1.9
x 26
-1.07
1.07
-0.466
0.0667
0.0328
2.21
-0.338
x1
x2
0.794
x8
2
τ 
τ
For ξ m > 0.776 + 0.0568 m + 0.18 m  and
Tm1
 Tm1 
2
τ 
τ
ξ m ≤ 0.889 + 0.496 m + 0.26 m  :
Tm1
 Tm1 
Coefficient values:
x3
x4
x5
x6
x7
-0.527
x9
0.11
x 10
0.009
x 11
9.7
x 12
-2.4
x 13
0.76
x 14
-0.426
x 15
0.0551
x 16
0.0153
x 17
4.37
x 18
-0.743
x 19
1.22
x 20
0.55
x 21
-0.978
x 22
0.659
x 23
0.0421
x 24
0.969
x 25
2.02
x 26
-1.11
1.11
-0.467
0.0657
0.0477
2.07
-0.333
x1
x2
0.789
x8
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Minimum ISTSE –
Fukura and Tamura
(1983).
Model: Method 1
13
Comment
Ti
Tm 2 ≤ Tm1 ;
Ti
Kc
197
0.05 ≤ τm Tm1 ≤ 1 .
Direct synthesis: time domain criteria
13.9 K m
0.140(τm + Tm1 )
τm Tm1 = 0.22
Ream (1954).
Model: Method 1;
Tm1 = Tm 2 .
0.268(τm + Tm1 )
3.61 K m
0.368(τm + Tm1 )
1.69 K m
τm Tm1 = 2.11
0.462(τm + Tm1 )
0.82 K m
Bryant et al. (1973).
Model: Method 1
τm Tm1 = 1.27
0.420(τm + Tm1 )
1.14 K m
Decay ratio ≈ 33% .
τm Tm1 = 0.60
undefined
14
τm Tm1 = 3.92
G c = 1 (Tis ) ;
x 2 K m Tm1
Tm1 > Tm 2 .





1 
Tm1
1
1
Tm 2 
13
+ 0. 2  
+
Kc =
0.56
,
1.5
τm
Km 
 Tm1  Tm1 
  1 + 2 Tm 2


2 + 0.2



τm
 τm 


T

0.3 m1 


  τ m 

 

3.6
Tm 2 
1
1
Tm 2  
1 +

+
Ti = [Tm1 + 0.36τm ]

1.5
τm
T

 Tm1  Tm1  
m
1
 1 + 2 Tm 2
+ 0.05



2 + 0.2
T



m1
τm


 τm 


14
0.25
.
Representative x 2 values, summarised as follows, are deduced from graphs:
τ m Tm1
x 2 value
ξm
0.5
1.0
2.0
3.0
4.0
5.0
6.0
0.4
0.6
0.8
0.9
1.0
1.1
1.2
1.5
1.9
7.94
8.93
9.80
12.2
15.4
5.13
5.99
5.81
9.01
9.90
10.8
13.3
16.7
5.81
6.94
7.30
7.30
11.5
12.3
13.2
15.4
18.9
7.46
8.40
9.17
10.0
13.9
14.5
15.4
18.2
21.3
9.17
10.0
11.9
14.1
16.4
16.9
17.9
20.0
23.8
10.9
11.8
15.4
19.6
18.9
19.6
20.4
22.7
25.6
12.7
14.1
20.0
28.6
-
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
198
Rule
Bryant et al. (1973)
– continued.
Kc
Ti
Comment
x1 K m τ m
Tm1
Tm1 > Tm 2
τ m Tm1
Coefficient values (deduced from graph):
x1
τ m Tm1
x1
0.33
0.40
0.50
0.67
0.33
0.40
0.50
0.67
0.08
0.09
0.09
0.11
0.14
0.16
0.18
0.23
15 x 1
Kuwata (1987).
Model: Method 1
15
FA
1.0
2.0
10.0
0.15
0.24
0.33
Critically damped
dominant pole.
1.0
2.0
10.0
0.31
0.47
0.64
Damping ratio
(dominant pole) =
0.6.
Km
x 2 K m Tm1
Tm1 > Tm 2
Tm1 = Tm 2
16
Kc
Ti
17
Kc
Ti
Representative x 1 values, summarised as follows, are deduced from graphs:
τ m Tm1
x 1 value
ξm
1.0
2.0
3.0
4.0
5.0
0.4
0.006
0.076
0.103
0.115
0.6
0.039
0.093
0.114
0.122
0.8
0.055
0.110
0.127
0.114
0.093
0.9
0.139
0.147
0.122
0.093
0.070
Representative x 2 values, summarised as follows, are deduced from graphs:
6.0
0.122
0.120
0.075
0.052
τ m Tm1
x 2 value
5.0
6.0
0.4
5.81
7.46
9.17
10.9
0.6
5.13
6.94
8.40
10.0
11.8
0.8
5.99
7.30
9.17
11.9
15.4
0.9
5.81
7.30
10.0
14.1
19.6
0
.
4
2
T
+
τ
0
.
5
(
)
16
m1
m
Kc =
−
, Ti = 1.25x1 - 0.25(2Tm1 + τm ) , with
K m (2Tm1 + τm − x1 ) K m
12.7
14.1
20.0
28.6
ξm
1.0
2.0
3.0
x1 =
17
Kc =
4.0
(2Tm1 + τm )2 − 0.267τm [6Tm12 + 6Tm1τm + τm 2 ] .
0.4(2ξ m Tm1 + τm )
0. 5
−
, Ti = 1.25x1 - 0.25(2ξm Tm1 + τm ) , with
K m (2ξ m Tm1 + τm − x1 ) K m
x1 =
(2ξmTm1 + τm )2 − 0.267τm [6Tm12 + 6ξmTm1τm + τm 2 ] .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Rotach (1995).
Model: Method 9
3.35 K m
3.32τm
Pomerleau and Poulin
(2004).
Model: Method 6
Vítečková (2006).
Model: Method 5
Damping factor for oscillations to a disturbance input = 0.75.
Tm1 = Tm 2 ;
Tm1
1.5Tm1
K m (Tm1 + τ m )
OS < 10%.
18
19
Kc ≥
20
Five criteria are
fulfilled.
Ti
Kc
1.571Tm1
.
K m (2.718τm + 1.5Tm1 )
2


x1 
1  0.7Tm 2 (Tm1 + Tm 2 ) + Tm12  
τ 
, Ti = (Tm1 + 0.7Tm 2 )1 + 0.1 m  ;
Kc =
1+




Km
Tm1Tm 2 
Tm1 + 0.7Tm 2
Tm1 

 

x 1 values are obtained as follows:
τ m Tm1
x 1 value
20
Tm1 = Tm 2
1.571Tm1
Kc
Direct synthesis: frequency domain criteria
Maximise crossover
19
frequency.
Ti
Kc
Hougen (1979),
pp. 345–346.
Model: Method 1
Hougen (1988).
Model: Method 1
18
Comment
Tm 2 Tm1
0.1
0.2
0.3
0.4
0.5
0.1
0.3
0.5
1.0
0.31
0.6
0.65
0.7
0.19
0.42
0.5
0.6
0.15
0.35
0.45
0.5
τ m Tm1
0.11
0.28
0.46
0.45
0.09
0.23
0.32
0.38
Tm 2 Tm1
0.6
0.7
0.8
0.9
1.0
0.1
0.3
0.5
1.0
0.085
0.2
0.29
0.34
0.075
0.18
0.26
0.32
0.07
0.16
0.24
0.31
0.065
0.155
0.23
0.29
0.06
0.15
0.22
0.28
Equations for K c deduced from graph;


T 
0.73 log10  m 2  + 0.65 
 τm 



T 
0.48 log10  m 2  + 0.05 
 τm 


1
Kc =
10 
Km

1
Kc =
10 
Km
Ti = Tm1 + 0.7Tm 2 + 0.12τm .

 Tm 2 




 Tm 2 



 0.61 log10 
 + 0.29 
T
T
1
 τm 

, m 2 = 0.1 ; K c =
10 
, m 2 = 0.2 ;
Tm1
Tm1
Km
 0.41 log10 
 − 0.06 
T
T
1
 τm 

, m 2 = 0.5 ; K c =
10 
, m2 = 1 .
Tm1
Tm1
Km
199
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
200
Rule
Kc
1.75 ≤ A m ≤ 3.0
Comment
Ti
Kc
Ti
x1 K m A m
x 2τm
21
Somani et al. (1992).
Model: Method 1;
suggested A m :
τm
Tm 2
τm
Tm1
x1
Alternative.
Coefficient values:
τm
τm
x2
Tm 2
Tm1
0.1
0.147 11.707 12.5
0.1
0.440 10.091 8.33
0.1
0.954 10.315 6.25
0.1
1.953 11.070 5.00
0.1
4.587 12.207 4.17
0.1
13.89 13.337 3.70
0.125 0.121 11.318 12.5
0.125 0.404 8.613 8.33
0.125 0.897 8.510 6.25
0.125 1.842 8.997 5.00
0.125 4.219 9.840 4.17
0.125 11.628 10.707 3.70
0.25 0.064 14.494 11.11
21
FA
1.00
1.00
1.00
1.00
1.67
1.67
1.67
1.67
1.67
2.5
2.5
2.5
2.5
x1
0.082 12.389
0.437 3.462
1.016 2.370
2.075 2.087
0.169 6.871
0.581 2.773
1.242 1.930
2.445 1.624
4.651 1.957
0.156 7.607
0.338 4.015
0.559 2.797
1.182 1.848
x2
6.25
5.00
4.17
3.57
5.00
4.17
3.57
3.13
3.13
4.55
4.17
3.85
3.33
For 25Tm1Tm 2 Ti << 1 ,
2
T
T  
T 
0.9806
Kc ≈
1 +  m1  2.944 − tan −1  m1 + m 2 
τ m 
KmAm
 τm
 τ m  
2
2
2
T
T  
T 
1 +  m 2  2.944 − tan −1  m1 + m 2  or
τ m 
 τm
 τ m  
2
T  
T
T 
0.9806
Kc ≈
1 +  m1  2.944 − m1 − m 2 
τ
KmAm
τ
τm 
m
 m  
2
T 
0.9806
For 25Tm1Tm 2 Ti >> 1 , K c ≈
1 +  m1  x 1 2
KmAm
 τm 
2
2
2
T  
T
T 
1 +  m 2  2.944 − m1 − m 2  ;
τ
τ
τm 
m
 m  
2
T 
1 +  m 2  x 1 2 , with
 τm 
2


τ
τ
τ
τ 
τ 
τ 
x 1 = 0.981 + 0.5 m + m  + 0.945 + 0.25 m + m  + 0.945 m + m  


T
Tm 2 
 Tm1 Tm 2 
 Tm1 Tm 2  
  m1

2


τ
τ
τ
τ 
τ 
τ 
+ 0.5 m + m  + 0.945 − 0.25 m + m  + 0.945 m + m  


T
Tm 2 
 Tm1 Tm 2 
 Tm1 Tm 2  
  m1

0.333
0.333
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Somani et al. (1992)
– continued.
Ti
x1 K m A m
x 2τm
Coefficient values:
τm
τm
x2
Tm 2
Tm1
τm
Tm1
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
0.256 6.504
0.667 5.136
1.406 4.961
3.021 5.174
6.452 5.502
0.062 14.918
0.376 4.353
0.909 3.274
1.880 3.025
3.401 3.038
Tan et al. (1996).
Model: Method 2
x1
8.33
6.25
5.00
4.17
3.70
8.33
6.25
5.00
4.17
3.70
Ti
Tm1
K m (Tm1 + τ m )
Tm1
−ωTm1 τm
Schaedel (1997).
Model: Method 1
22
Kc =
Ti =
(
)
x1Ti ωφ 1 + x1Tm1ωφ 2
(
A m 1 + x1Ti ωφ
5.0
5.0
5.0
5.0
5.0
10.0
10.0
10.0
10.0
10.0
Kc
22
Poulin et al. (1996).
Model: Method 1
)
Comment
Kc
τm
Tm 2
2
23
x1
x2
0.075 16.187 4.17
0.238 5.623 3.85
0.433 3.448 3.57
0.667 2.52
3.33
0.951 2.014 3.13
0.073 17.650 3.85
0.235 5.996 3.57
0.424 4.524 3.33
0.649 2.641 3.13
0.917 2.093 2.94
Tm1 = Tm 2
Tm1 > 5Tm 2 ;
minimum φ m = 58 0 .
Ti
Minimum φ m = 250
24
Kc
Ti
‘Normal’ design.
25
Kc
Ti
‘Sharp’ design.
, x1 = 0.8,
201
τm
τ
< 0.5 ; x1 = 0.5, m > 0.5 ; ωφ < ωu ;
Tm1
Tm1
1
.
x ω tan [− 2 tan x T ω − x τ ω − φ ]
1
φ
−1
1 m
φ
1 m
φ
m
4Tm1 (τm + Tm 2 )
23
Ti =
, 0.16Tm1 ≤ Tm 2 + τ m ≤ 0.3Tm1 ; ω = frequency
1.3Tm1 − 4(τm + Tm 2 )
where phase of G m ( jω)G c ( jω) is maximum; G m =
− K m e − sτ m
.
(1 + Tm1s )(1 + Tm 2s )
(2ξmTm1 + τm )2 − 2(Tm12 + 2ξmTm1τm + 0.5τm 2 ) .
24
Kc =
0.5Ti
, Ti =
K m (2ξ m Tm1 + τm − Ti )
25
Kc =
0.375 4ξm 2Tm12 + 2ξ mTm1τm + 0.5τm 2 − Tm12
,
Km
Tm12 + 2ξ m Tm1τm + 0.5τm 2
2
Ti =
2
2
2
4ξ m Tm1 + 2ξ m Tm1τm + 0.5τm − Tm1
.
2ξm Tm1 + τm
b720_Chapter-03
Rule
Leva et al. (2003).
Model: Method 1
Comment
Kc
Ti
Tm1
2 K m (Tm 2 + τ m )
4(Tm 2 + τ m )
Hägglund and
Åström (2004).
Model: Method 1;
Tm1 = Tm 2 .
Kc =
FA
Handbook of PI and PID Controller Tuning Rules
202
26
17-Mar-2009
26
Kc
Ti
27
Kc
Ti
28
Kc
Ti
29
Kc
Ti
30
Kc
Ti
2.01 − 0.80φ
Tm1 >> Tm 2 + τ m ;
symmetrical optimum
principle.
1.920 < φ < 2.356 ;
M s = 1.2 .
φ = 2.09 radians
(‘good’ choice).
2.094 < φ < 2.443 ;
M s = 1.4 .
φ = 2.269 radians
(‘reasonable’ choice).
2.356 < φ < 2.705 ;
M s = 2. 0 .
6.283(1.72φ − 2.55)
, Ti =
.
2

G p jωφ 
 ωφ
1 + (3.44φ − 5.20 )
Km 



0.33
6.61
27
Kc =
, Ti =
.
2

G p jωφ 

G p jωφ 
1 + 2.26
 G p jωφ
 ωφ
1 + 2.01
Km 

Km 





2
.
50
0
.
92
−
φ
6
.283(1.72φ − 3.05)
28
Kc =
, Ti =
.
2

G p jωφ 

G p jωφ 
1 + (10.75 − 4.01φ)
 G p jωφ
 ωφ
1 + (3.44φ − 6.10 )
Km 

Km 





0.41
5.36
29
Kc =
, Ti =
.
2

G p jωφ 

G p jωφ 
1 + 1.65
 G p jωφ
 ωφ
1 + 1.71
Km 

Km 





3
.
43
1
.
15
−
φ
6
.283(0.86φ − 1.50)
30
Kc =
, Ti =
.
2

G p jωφ 

G p jωφ 
1 + (11.30 − 4.01φ)
 G p jωφ
 ωφ
1 + (1.72φ − 2.90)
Km 

Km 





( )

G jω 
1 + (15.45 − 6.30φ) p φ  G p jωφ
Km 



( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Hägglund and
Åström (2004) –
continued.
Desbiens (2007),
p. 90.
31
Kc
32
Kc
Ti
Comment
Ti
φ = 2.53 radians
(‘good’ choice).
Tm1 > Tm 2 ;
Model: Method 1
Ti
Robust
Tm1 + Tm 2 + 0.5τ m
K m τ m (2λ + 1)
Brambilla et al.
(1990).
Model: Method 1;
λ values obtained
from graph.
31
32
Kc =
0.1
0.2
0.5
1.0
2ξ mTm1 + 0.5τm
K m (2λ + τm )
Kc =
0.52
( )

G jω 
1 + 1.15 p φ  G p jωφ
Km 



Ti
Km
( )
0.1 ≤
τm
≤ 10
Tm1 + Tm 2
Coefficient values:
τm
λ
Tm1 + Tm 2
τm
Tm1 + Tm 2
Marchetti and Scali
(2000).
Model: Method 1
Tm1 + Tm 2 + 0.5τ m
, Ti =
3.0
1.8
1.0
0.6
2.0
5.0
10.0
λ
0.4
0.2
0.2
2ξ m Tm1 + 0.5τm
4.25
( )
2

G jω 
1 + 1.45 p φ  ωφ
Km 



.
(Tm1Tm 2 )2 ω6 + (Tm12 + Tm 22 )ω4 + ω2 , with ω given by solving (for
Ti 2ω2 + 1
φm = 58.13 ): 1.015 = 0.5π + tan −1 (Ti ω) − tan −1 (Tm 2ω) − tan −1 (Tm1 ω) − τ m ω .
2

T 
τ
T  τ
Ti = Tm1 1 + 0.175 m + 0.3 m 2  + 0.2 m 2  , m < 2 ;
Tm1
Tm1
Tm1
 Tm1 


2

 Tm 2 
τm
Tm 2  τ m



+ 0.3
+
>2.
0
.
2
Ti = Tm1  0.65 + 0.35
,


Tm1  Tm1
Tm1
 Tm1 


203
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
204
Rule
Kc
Comment
Ti
Kristiansson (2003).
Model: Method 1
33
Kc
34
Kc
Panda et al. (2004).
Model: Method 1
35
Kc
Ti
37
Kc
Ti
x 1K u
Ultimate cycle
x 2 Tu
Kuwata (1987);
x 1 , x 2 deduced from
graphs. ξ m = 0.5 .
Kuwata (1987);
x 1 , x 2 deduced from
graphs. ξ m = 0.7 .
Kuwata (1987);
x 1 , x 2 deduced from
graphs. ξ m = 1.5 .
2ξ m Tm1
M max = 1.7
36
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.08
0.09
0.03
0.32
0.14
0.03
x 1K u
0.05
0.10
0.15
0.07
0.13
0.18
0.04
0.08
0.10
x 2 Tu
0.25
0.30
0.35
0.21 0.12
0.225 0.14
0.225 0.155
0.40
0.45
0.50
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.01
0.04
0.08
0.12
0.29
0.19
0.15
0.14
x 1K u
0.05
0.10
0.15
0.20
0.16
0.18
0.21
0.22
0.14
0.15
0.15
0.15
x 2 Tu
0.25
0.30
0.35
0.40
0.225 0.155
0.225 0.155
0.45
0.50
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.21
0.25
0.26
1.13
0.70
0.43
0.15
0.20
0.25
0.25 0.29
0.23 0.21
0.225 0.17
0.30
0.35
0.40
0.225 0.155
0.225 0.155
0.45
0.50
33
Kc =
2ξ m Tm1 
1 
T 
1 
 x1 − x12 − 1 +
 , x1 = 1 + m 2 1 − 1 −
.
2
K m τm 
τm 
M max 
M max 2 
34
Kc =
2ξ m Tm1 
T
T
T 2
1 + 0.1913 m 2 − 0.346 + 0.3826 m 2 + 0.0366 m 22  .
K m τm 
τm
τm
τm 


35
Kc =
4ξ T + ξ m τ m + 0.5Tm1
8ξm Tm1 + 2ξ m τm + Tm1
, Ti = m m1
.
2λK m
2ξ m
2
2


T
λ ≥ maximum 0.828 + 0.812 m 2 + 0.172Tm1e − (6.9Tm 2 / Tm1 ) ,1.7 τm  .
T
m1


Tm 2
0
.
558
T
T
m 2 m1
+ 0.172Tm1e − (6.9Tm 2 / Tm1 ) +
0.828 + 0.812
0.5τ m
Tm1
Tm1 + 1.208Tm 2
37
+
,
Kc =
λK m
λK m
36
Ti = 0.828 + 0.812
Tm 2
0.558Tm 2Tm1
+ 0.172Tm1e − (6.9Tm 2 / Tm1 ) +
+ 0.5τ m .
Tm1
Tm1 + 1.208Tm 2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ti
Comment
Kc
2Tm1
Tm1 = Tm 2 ;
Model: Method 20
Kc
Other tuning
1.95
tan (0.5φ)
ωφ
0.413 G p ( jω2.27 )
4.182 ω 2.27
Kc
Thyagarajan and Yu
(2003).
38
39
Hägglund and
Åström (2004).
Model: Method 1
3

T 
 T 
2 0.0200 m1  + 0.2714 m1 

 Tu 
 Tu 
38
.
Kc = 
2
 Tm1 
 +1
K m 0.2947

 Tu 
2.31
39
Kc =
.
2
1 + tan (0.5φ) G p ( jωφ )
[
]
Tm1 = Tm 2 ;
Tm1 >> τ m .
φ = 2.27 radians
(‘reasonable’ choice).
205
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
206


1
+ Td s 
3.5.2 Ideal PID controller G c (s) = K c 1 +
Ti s


E(s)
R(s)
+
−

 U(s)
1
K c 1 +
+ Td s 
Ti s


Table 21: PID tuning rules – SOSPD model G m (s) =
G m (s ) =
Rule
Auslander et al.
(1975).
1
Kc
1
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )
K m e −sτ m
Tm1 2 s 2 + 2ξ m Tm1s + 1
Ti
Comment
Td
Process reaction
x1 +2τm
0.25Ti
Kc
Y(s)
SOSPD
model
Model:
Method 3
Tm 2
Tm 1



1.2
Tm1Tm 2
Tm1   Tm 2  Tm1 −Tm 2  Tm 2  Tm1 −Tm 2 




Kc =
{τm +
ln
−


T 
K m (Tm1 − Tm 2 ) 
Tm1 − Tm 2 Tm 2   Tm1 
 m1 


Tm 2
Tm1


 Tm 2  Tm1 −Tm 2  Tm 2  Tm1 −Tm 2 
−


(Tm1 − Tm 2 )2  Tm1 
 Tm1 


2
1
−
1+
x1 =
2Tm1Tm 2  Tm1 
 −
ln
Tm1 − Tm 2  Tm 2 
Tm1
 Tm1 −Tm 2
 Tm 2
Tm 2


Tm1 − Tm 2  Tm1 
−
Tm 2
 Tm1 −Tm 2
 Tm 2
Tm1


Tm1 − Tm 2  Tm1 
Tm 2
Tm1


2
 Tm 2  Tm1 −Tm 2  Tm 2  Tm1 −Tm 2 
−

T 
(Tm1 − Tm 2 )  Tm1 
 m1 


1+
Tm1
 Tm1 −Tm 2
 Tm 2
Tm 2


Tm1 − Tm 2  Tm1 
−
Tm 2
 Tm1 −Tm 2
 Tm 2
Tm1


Tm1 − Tm 2  Tm1 
.
}−1 ,
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Alfaro Ruiz
(2005a).
2
ξm
τm Tm1 = 0.1
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
Tm1 = Tm 2 ; 1.0 ≤ x1 ≤ 1.67 .
Minimum performance index: regulator tuning
Representative
5.8
tuning values;
0.36Tu
0.21Tu
Km
Tm 2 = τ m
5
= 0.1Tm1 .
0.29Tu
0.29Tu
Km
Minimum IAE –
Wills (1962b)
– deduced from
graph.
Model: Method 1
Minimum IAE –
Lopez (1968),
pp. 79–90.
207
x1 K m
x 2Tm1
Model: Method 1
x 3Tm1
Coefficients of K c , Ti and Td deduced from graphs. These are
representative results.
0.5
0.6
0.8
x1
x2
x3
x1
x2
x3
x1
x2
x3
27
-
0.28
28
-
0.26
30
-
0.26
τm Tm1 = 0.2
9.5
0.61
0.48
10.5
0.59
0.45
11.5
0.57
0.41
τm Tm1 = 0.5
2.25
0.97
0.92
2.6
1.00
0.82
3.2
1.05
0.69
τm Tm1 = 1.0
0.78
1.11
1.40
1.0
1.25
1.20
1.4
1.47
0.94
τm Tm1 = 2.0
0.39
1.27
1.40
0.52
1.56
1.30
0.77
1.92
1.15
τm Tm1 = 5.0
0.42
2.7
1.40
0.45
2.9
1.50
0.53
3.0
1.70
τm Tm1 = 10.0
0.38
4.9
1.15
0.41
5.3
1.40
0.47
5.7
1.90
1.0
ξm
1.5
2.0
4.0
x1
x2
x3
x1
x2
x3
x1
x2
x3
x1
x2
x3
τm Tm1 = 0.1
31
-
0.24 35
-
0.22 40
-
-
68
-
-
τm Tm1 = 0.2
13.0 0.59 0.43 16.0 0.56 0.30 19.5 0.56 0.25 47 0.53
τm Tm1 = 0.5
4.0 1.06 0.59 6.0 1.11 0.46 7.8 1.14 0.39 16.5 1.14 0.29
τm Tm1 = 1.0
1.85 1.56 0.82 3.0 1.75 0.68 4.3 1.85 0.60 9.0 1.92 0.52
τm Tm1 = 2.0
1.05 2.3 1.10 1.65 2.6 1.05 2.3
2.9 1.00 4.8
τm Tm1 = 5.0
0.62 3.6 1.90 0.85 4.3 2.10 1.1
4.8 2.15 2.15 6.5
τm Tm1 = 10.0
0.52 6.1 2.35 0.60 6.9
-
3.3 0.98
2.3
2.9 0.70 7.4 3.45 1.2 10.0 4.0
τ 
τ 


 16.57 + 20.83 m 
 2.65 + 3.33 m 


x
2
.
0
T
T
T
2

m1
m1 
m1 
K c = 1 0.70 +
τ , T =
τ .
 , Ti = 
 m d 
τm
τm  m
Km 
τm 
1
11
.
36
1
11
.
36
+
+




Tm1 
Tm1 


b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
208
Rule
Kc
Ti
Td
Comment
Minimum IAE –
Shinskey (1988),
p. 151.
Model: Method 2
0.62 K u
0.38Tu
0.15Tu
Tm 2
= 0.25
Tm 2 + τ m
0.68K u
0.33Tu
0.19Tu
Tm 2
= 0.5
Tm 2 + τ m
0.79 K u
0.26Tu
0.21Tu
Tm 2
= 0.75
Tm 2 + τ m
Ti
Td
Model: Method 1
Minimum IAE –
Kang (1989).
T
0.05 ≤ L ≤ 7.0.
Tm1
Minimum ISE –
Lopez (1968),
pp. 79–90.
ξm
3
Kc
x1 , x 2 …. x14 , x15 values are specified on pp. 127–165 of Kang
(1989), for τm Tm1 = 0.1, 0.2 ….. 0.9, 1.0 with Tm 2 Tm1 = 0.1 ,
0.2…..0.9, 1.0.
x1 K m
Model: Method 1
x 3Tm1
Coefficients of K c , Ti and Td deduced from graphs. These are
representative results.
0.5
0.6
0.8
x1
3
x 2Tm1
x2
x3
x1
x2
x3
x1
x2
x3
τm Tm1 = 0.1
29
0.21
0.34
30
0.21
0.33
31
0.21
0.31
τm Tm1 = 0.2
10.0
0.38
0.56
10.5
0.38
0.54
12.0
0.38
0.48
τm Tm1 = 0.5
2.4
0.67
1.10
2.8
0.69
1.10
3.2
0.74
0.83
τm Tm1 = 1.0
0.86
0.87
1.70
1.1
0.95
1.45
1.55
1.11
1.20
τm Tm1 = 2.0
0.45
1.1
2.00
0.57
1.3
1.80
0.85
1.6
1.60
τm Tm1 = 5.0
0.44
2.4
2.00
0.49
2.6
2.20
0.57
2.9
2.40
τm Tm1 = 10.0
0.45
5.3
1.50
0.48
5.6
1.85
0.53
5.9
2.50
Kc =
Ti =
T


−x2 L 


1 
T 
T 

x1 − e Tm1 x 3 cos x 4 L  − x 5 sin  x 4 L  ,
Km 

 Tm1 
 Tm1 

Tm1
T
T

x8 L 
x 10 m 2


T

Tm1 
+ x 9e TL sin  x11 L + x12 
x 6 + x 7 1 − e

T


m1




1
Load disturbance model =
.
1 + sTL
, Td =
T

x 15 L 
1 
x13 + x14e Tm1  ,

Tm1 


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
209
Rule
Kc
Ti
Td
Comment
Minimum ISE –
Lopez (1968),
pp. 79–90 –
continued.
ξm
x1 K m
x 2Tm1
x 3Tm1
Model: Method 1
Coefficients of K c , Ti and Td deduced from graphs. These are
representative results.
1.0
x1
τm Tm1 = 0.1
1.5
x2
x3
x1
2.0
x2
x3
x1
x2
4.0
x3
x1
x2
x3
32 0.21 0.30 38 0.21 0.25 42 0.21 0.23 70 0.21
-
τm Tm1 = 0.2
13 0.38 0.44 17 0.38 0.36 21 0.38 0.31 39 0.38 0.20
τm Tm1 = 0.5
4.2 0.77 0.74 6.2 0.80 0.57 8.5 0.82 0.50 17.5 0.83 0.37
τm Tm1 = 1.0
2.0 1.18 1.05 3.2 1.33 0.85 4.4 1.39 0.77 9.5 1.49 0.66
τm Tm1 = 2.0
1.1
2.6
1.2
τm Tm1 = 5.0
0.66 3.1
2.6 0.90 3.7
2.8 1.20 4.2 2.85 2.25 5.3
3.0
τm Tm1 = 10.0
0.58 5.9
3.0 0.67 6.3
4.0 0.80 6.7
-
Minimum ITAE
– Lopez (1968),
pp. 79–90.
x1 K m
x 2Tm1
x 3Tm1
ξm
1.8
1.5
1.8
2.1 1.35 2.9
2.3 1.30 5.2
-
1.25 8.3
Model: Method 1
Coefficients of K c , Ti and Td deduced from graphs. These are
representative results.
0.5
0.6
0.8
x1
x2
x3
x1
x2
x3
x1
x2
x3
τm Tm1 = 0.1
24
-
0.25
24
-
0.25
24
0.50
0.225
τm Tm1 = 0.2
8.8
0.71
0.44
9.2
0.74
0.41
10.0
0.74
0.35
τm Tm1 = 0.5
2.1
1.15
0.84
2.5
1.15
0.74
3.2
1.22
0.60
τm Tm1 = 1.0
0.72
1.22
1.20
0.93
1.39
1.00
1.35
1.61
0.82
τm Tm1 = 2.0
0.36
1.30
1.15
0.48
1.59
1.10
0.75
2.04
1.00
τm Tm1 = 5.0
0.40
2.7
1.20
0.44
2.9
1.30
0.52
3.2
1.45
τm Tm1 = 10.0
0.34
4.3
0.98
0.38
5.0
1.30
0.43
-
1.75
1.0
ξm
x1
x2
1.5
x3
2.0
4.0
x1
x2
x3
x1
x2
x3
x1
x2
x3
τm Tm1 = 0.1
26 0.53 0.20 31
-
0.175 36
-
0.15 68
-
0.1
τm Tm1 = 0.2
11.3 0.77 0.32 14.5 0.71 0.25 18.2 0.68 0.205 36 0.57 0.14
τm Tm1 = 0.5
3.8 1.25 0.52 5.8 1.28 0.40 7.7 1.21 0.34 16.2 1.21 0.26
τm Tm1 = 1.0
1.8 1.75 0.70 2.9 1.92 0.58 4.0 2.00 0.54 8.7 2.13 0.46
τm Tm1 = 2.0
0.36 2.4 0.96 0.48 2.9 0.92 0.73 3.2 0.88 0.97 3.6 0.84
τm Tm1 = 5.0
0.40 3.6
1.6 0.44 4.5
1.7 0.53 5.3 1.85 0.58 6.9
2.0
τm Tm1 = 10.0
0.34 5.9
-
-
-
0.38 6.9
0.43 7.7
-
0.48
-
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
210
Rule
Minimum ITAE
– Lopez et al.
(1969).
Model:
Method 23
Bohl and
McAvoy
(1976b).
Minimum ITAE
– Hassan (1993).
4
17-Mar-2009
Comment
Kc
Ti
Td
x1 K m
x 2 Tm1
x 3 Tm1
Representative coefficient values (from graphs):
x1
x2
x3
ξm
τ m Tm1
25
0.7
0.35
25
1.8
9.0
0.5
1.3
5
0.5
1.7
2
0.25
1.2
1.0
0.2
0.7
0.45
0.5
0.5
0.5
1.0
1.0
4.0
0.1
1
10
0.1
1
1
4
Kc
Ti
Td
Minimum ITAE;
Model: Method 1
5
Kc
Ti
Td
Model: Method 8
Tm 2 Tm1 = 0.12,0.3,0.5,0.7,0.9 ; τm Tm1 = 0.1,0.2,0.3,0.4,0.5 .
 10 τ m   
 T 
 10 τ m  



−1.2096 + 0.1760 ln 
0.1044 + 0.1806 ln  10 m 2  − 0.2071 ln 


 Tm1    10Tm 2 
 Tm1 
 Tm1  
10.9507  10τm 




Kc =

 
,


K m  Tm1 
  Tm1 


 

 10 τ m   
 10 Tm 2 
 10 τ m  


 + 0.0081 ln 

0.7750 − 0.1026 ln 
0.1701+ 0.0092 ln 


 T 
 10τm 
 Tm1    10Tm 2 
 Tm1 
 m1 



Ti = 0.2979Tm1 
 
,


 Tm1 
  Tm1 


 

 10 τ m   
 10 Tm 2 
 10 τ m  


 + 0.0128 ln 

0.6025 − 0.0624 ln 
0.4531− 0.0479 ln 


 T 
 10τm 
 Tm1    10Tm 2 
 Tm1 
 m1 



Td = 0.1075Tm1 
 
.


 Tm1 
  Tm1 


 

5
Note: equations continued into the footnote on p. 211.
0.5 ≤ ξ m ≤ 2 ; 0.1 ≤ τm Tm1 ≤ 4 . K c is obtained as follows:
log[K m K c ] = 1.9763370 − 0.6436825ξm − 5.1887660
τm
+ 0.4375558ξ m 2
Tm1
2
τ 

τ
2 τ
+ 2.9005550 m  + 3.1468010ξ m m − 0.1697221ξ m  m 
T
T
T
m1
 m1 
 m1 
2
2
τ 
τ
3
− 0.8161808ξ m  m  − 1.2048220ξ m 2 m − 0.0810373ξ m
T
T
m1
 m1 
3
3
τ 
τ 

2 τ
− 0.4444091 m  + 0.0319431ξ m  m  + 0.1054399ξ m  m 
T
T
T
 m1 
 m1 
 m1 
2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
2
+ 0.1652807ξ m
3
3


τm
3 τ
3 τ
+ 0.1175991ξ m  m  − 0.0375245ξ m  m  ;
Tm1
T
T
 m1 
 m1 
Ti is obtained as follows:
 T 
τ
log  i  = −0.7865873 + 0.6796885ξm + 2.1891540 m − 0.3471095ξ m 2
T
T
m1
 m1 
2
τ 

τ
2 τ
− 1.9003610 m  − 0.7007801ξ m m + 0.3077857ξ m  m 
T
T
T
m1
 m1 
 m1 
2
2
τ 
τ
3
+ 0.8566974ξ m  m  − 0.2535062ξ m 2 m + 0.0412943ξ m
T
T
m1
 m1 
3
3
τ 
τ 

2 τ
+ 0.3484161 m  − 0.1626562ξ m  m  − 0.0661899ξ m  m 
T
T
T
 m1 
 m1 
 m1 
2
2
+ 0.2247806ξ m
3
3


τm
3 τ
3 τ
− 0.2470783ξ m  m  + 0.0493011ξ m  m  ,
Tm1
T
T
 m1 
 m1 
Td is obtained as follows:
T 
τ
log  d  = −0.6726798 − 0.2072477ξ m + 2.6826330 m + 0.0807474ξm 2
T
T
m1
 m1 
2
τ 

τ
2 τ
− 1.7707830 m  − 1.6685140ξ m m + 0.0845958ξ m  m 
T
T
T
m1
 m1 
 m1 
2
2
τ 
τ
3
+ 0.7159307ξ m  m  + 0.5631447ξ m 2 m − 0.0225269ξ m
T
T
m1
 m1 
3
3
τ 
τ 

2 τ
+ 0.2821874 m  − 0.0616288ξ m  m  − 0.0626626ξ m  m 
T
T
T
 m1 
 m1 
 m1 
2
− 0.0372784ξ m 3
2
3


τm
3 τ
3 τ
− 0.0948097ξ m  m  + 0.0272541ξ m  m  .
Tm1
T
T
 m1 
 m1 
211
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
212
Rule
Minimum ITAE
– Sung et al.
(1996).
6
17-Mar-2009
Kc =
6
Kc
Ti
Td
Comment
Kc
Ti
Td
Model:
Method 11
2.001
0.766
 τ
T 
T 
1 
ξ m  , m < 0.9 or
+ 2.189 m1 
− 0.67 + 0.297 m1 
Km 
 Tm1
 τm 
 τm 


T 

τ
1 
− 0.365 + 0.260 m − 1.4  + 2.189 m1 
Km 
T
 τm 

 m1

2
Kc =
0.766
 τ
ξ m  , m ≥ 0. 9 ;
 Tm1

0.520

 τ
τ 
− 0.3 , m < 0.4 or
Ti = Tm1 2.212 m 

 Tm1
 Tm1 


2

τ
τ
Ti = Tm1{−0.975 + 0.910 m − 1.845  + x1} , m ≥ 0.4 with
T
T
m1

 m1
ξm


−
τ
2

0.15 + 0.33 m  
τ
 
Tm1  
x1 = 1 − e
5.25 − 0.88 m − 2.8   ;


 Tm1
 




Td =
Tm1
;
ξm
1.171 
0.530



−
1.121




T
T
1 − e − 0.15 + 0.939(Tm1 τ m )  1.45 + 0.969 m1 
 − 1.9 + 1.576 m1 
τ 
τ 



m 

 m 

 

0.05 <
τ
τm
≤ 2 (Sung et al., 1996); 0 < m < 2 (Park et al., 1997).
Tm1
Tm1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Nearly minimum
IAE, ISE, ITAE
– Hwang (1995).
Model:
Method 14
213
Comment
Kc
Ti
Td
7
Kc
Ti
8
Kc
Ti
9
Kc
Ti
3 ≤ ε 2 < 20
10
Kc
Ti
ε 2 ≥ 20
ε 2 < 2.4
2.4 ≤ ε 2 < 3
Td
Decay ratio = 0.2; 0.2 ≤ τ m Tm1 ≤ 2.0 and 0.6 ≤ ξ m ≤ 4.2 .
Minimum performance index: servo tuning
Representative
tuning values;
6.5 K m
1.45Tu
0.14Tu
Tm 2 = τ m
Minimum IAE –
Wills (1962b)
– deduced from
graph.
Model: Method 1
7
7 Km
0.95Tu
[
]
(
)
2
2

0.622 1 − 0.435ωH 2 τm + 0.052ωH 2 τm 
Kc =  KH2 −
,


K m (1 + K H 2 K m )


K c (1 + K H 2 K m )
Ti =
,
ωH 2 K m 0.0697 1 + 0.752ωH 2 τm − 0.145ωH 2 2 τm 2
Td =
8
[
1.45(1 + K u K m )  1.16 
1 −
 1 − 0.612ω u τ m + 0.103ω u 2 τ m 2 .


ε
K m 2ωu
0


[
(
K c (1 + K H 2 K m )
ωH 2 K m 0.0405 1 + 1.93ωH 2 τm − 0.363ωH 2 2 τm 2
]

1.26(0.506 )ωH 2 τ m 1 − 1.07 ε 2 + 0.616 ε 2 2 
Kc =  KH2 −
,


K m (1 + K H 2 K m )


[
)
]
Ti =
10
(
2
2

0.724 1 − 0.469ωH 2 τm + 0.0609ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
9
= 0.1Tm1 .
0.22Tu
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0661(1 + 0.824 ln[ωH 2 τm ]) 1 + 1.71 ε 2 − 1.17 ε 2 2
]
2
2

1.09 1 − 0.497ωH 2 τm + 0.0724ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
(
K c (1 + K H 2 K m )
ωH 2 K m 0.054 − 1 + 2.54ωH 2 τ m − 0.457ωH 2 2 τ m 2
).
).
).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
214
Rule
Minimum IAE –
Gallier and Otto
(1968).
Model:
Method 1
Minimum ITAE
– Wills (1962a) –
deduced from
graph.
Minimum ITAE
– Sung et al.
(1996).
Kc
x1 K m
τm
2Tm1
Ti
Td
Comment
11
Td
Tm1 = Tm 2
Ti
Representative coefficient values – deduced from graphs:
τm
x1
x2
x3
x1
x2
x3
2Tm1
0.053
0.11
0.25
6.7
4.15
2.35
0.89
0.84
0.77
18
Km
12
Kc
0.24
0.24
0.24
0.67
1.50
4.0
1.05
0.70
0.52
≈ Tu
≈ 0.2Tu
Ti
Td
11
Ti = x 2 (Tm1 + Tm 2 + τm ) , Td = x 3 (Tm1 + Tm 2 + τm ) .
12
Kc =
0.64
0.24
0.55
0.26
0.50
0.20
Tm1 = Tm 2 ;
τ m = 0.1Tm1 ;
Model: Method 1
Model:
Method 11
−0.983 



τ 
1 
 ξ m  , ξ m ≤ 0.9 or
− 0.04 + 0.333 + 0.949 m 
Km 

 
 Tm1 

 

Kc =
−0.832

τ 
τ
1 
ξ m  , ξ m > 0.9 .
− 0.544 + 0.308 m + 1.408 m 
Km 
Tm1

 Tm1 


Ti = Tm1 [2.055 + 0.072(τm Tm1 )]ξ m , τ m Tm1 ≤ 1 or
Ti = Tm1[1.768 + 0.329(τm Tm1 )]ξ m , τ m Tm1 > 1 .
Td =
Tm1
;
1.090 
(τ m Tm1 )1.060 ξ m  

−


0.870
1 − e
 0.55 + 1.683 Tm1 

τ 



 m 



0.05 <
τ
τm
≤ 2 (Sung et al., 1996); 0 < m < 2 (Park et al., 1997).
Tm1
Tm1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Nearly minimum
IAE, ISE, ITAE
– Hwang (1995).
Model:
Method 14
13
Ti
Kc
Ti
15
Kc
Ti
16
Kc
Ti
17
Kc
Ti
13
215
Comment
Td
14
Decay ratio =
0.1;
τ
0.2 ≤ m ≤ 2.0 ;
Tm1
0.471K u
K m ωu
0. 6 ≤ ξ m ≤ 4. 2 .
[
]
2
2

0.822 1 − 0.549ωH 2 τm + 0.112ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0142 1 + 6.96ωH 2 τm − 1.77ωH 2 2 τm 2
).
2
14
15
ξ ≤ 0.613 + 0.613
τ 
τm
+ 0.117 m  .
Tm1
 Tm1 
[
]
2
2

0.786 1 − 0.441ωH 2 τm + 0.0569ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
16
[
]
2
ω τ

1.28(0.542) H 2 m 1 − 0.986 ε 2 + 0.558 ε 2 
,
Kc =  K H2 −


K m (1 + K H 2 K m )


Ti =
17
[
(
K c (1 + K H 2 K m )
ωH 2 K m 0.0172 1 + 4.62ωH 2 τm − 0.823ωH 2 2 τm 2
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0476(1 + 0.996 ln[ωH 2 τm ]) 1 + 2.13 ε 2 − 1.13 ε 2 2
]
2
2

1.14 1 − 0.466ωH 2 τm + 0.0647ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
(
K c (1 + K H 2 K m )
ωH 2 K m 0.0609 − 1 + 1.97ωH 2 τ m − 0.323ωH 2 2 τ m 2
).
).
).
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
216
Rule
Kc
Ti
Kc
Ti
20
Kc
Ti
21
Kc
Ti
22
Kc
Ti
18
Hwang (1995) –
continued.
18
17-Mar-2009
Comment
Td
19
Decay ratio =
0.1;
τ
0.2 ≤ m ≤ 2.0 ;
Tm1
0.471K u
K m ωu
0. 6 ≤ ξ m ≤ 4. 2 .
[
]
2
2

0.794 1 − 0.541ωH 2 τm + 0.126ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0078 1 + 8.38ωH 2 τm − 1.97ωH 2 2 τm 2
),
2
19
20
ξ > 0.649 + 0.58
τ 
τm
− 0.005 m  .
Tm1
 Tm1 
[
]
2
2

0.738 1 − 0.415ωH 2 τm + 0.0575ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
21
[
]

1.15(0.564 )ωH 2 τ m 1 − 0.959 ε 2 + 0.773 ε 2 2 
Kc =  KH2 −
,


K m (1 + K H 2 K m )


Ti =
22
[
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0124 1 + 4.05ωH 2 τm − 0.63ωH 2 2 τm 2
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0335(1 + 0.947 ln[ωH 2 τm ]) 1 + 1.9 ε 2 − 1.07 ε 2 2
]
2
2

1.07 1 − 0.466ωH 2 τm + 0.0667ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
(
K c (1 + K H 2 K m )
ωH 2 K m 0.0328 − 1 + 2.21ωH 2 τm − 0.338ωH 2 2 τm 2
).
).
).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Kc
Ti
25
Kc
Ti
26
Kc
Ti
27
Kc
Ti
23
Hwang (1995) –
continued.
23
Ti
Comment
Td
24
Decay ratio =
0.1;
τ
0.2 ≤ m ≤ 2.0 ;
Tm1
0.471K u
K m ωu
0. 6 ≤ ξ m ≤ 4. 2 .
[
]
2
2

0.789 1 − 0.527ωH 2 τm + 0.11ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
K c (1 + K H 2 K m )
(
ωH 2 K m 0.009 1 + 9.7ωH 2 τm − 2.4ωH 2 2 τm 2
2
24
25
ξ ≤ 0.649 + 0.58
2
[
]
2
2

0.76 1 − 0.426ωH 2 τm + 0.0551ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


[
[
(
K c (1 + K H 2 K m )
ωH 2 K m 0.0153 1 + 4.37ωH 2 τ m − 0.743ωH 2 2 τ m 2
]

1.22(0.55)ωH 2 τ m 1 − 0.978 ε 2 + 0.659 ε 2 2 
Kc =  KH2 −
,


K m (1 + K H 2 K m )


Ti =
27
).
τ 
τ 
τm
τ
− 0.005 m  , ξ > 0.613 + 0.613 m + 0.117 m  .
Tm1
T
T
m
1
m
1


 Tm1 
Ti =
26
217
K c (1 + K H 2 K m )
(
ωH 2 K m 0.0421(1 + 0.969 ln[ωH 2 τm ]) 1 + 2.02 ε 2 − 1.11 ε 2 2
]
2
2

1.111 − 0.467ωH 2 τm + 0.0657ωH 2 τm 
,
Kc =  KH2 −


K m (1 + K H 2 K m )


Ti =
(
K c (1 + K H 2 K m )
ωH 2 K m 0.0477 − 1 + 2.07ωH 2 τm − 0.333ωH 2 2 τm 2
).
).
).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
218
Rule
Kc
Ti
Comment
Td
Minimum performance index: other tuning
Minimum
Wilton (1999).
Model: Method 1
∫ [e (t) + x K (y(t) − y ) ] dt ; T > T .
∞
2
2
2
0
x1
Km
Tm1 + Tm 2
2
∞
m
2
m1
m2
Tm 2
1 + Tm 2 Tm1
Coefficient values (obtained from graphs):
Tm 2 Tm1 = 0.25 Tm 2 Tm1 = 0.5 Tm 2 Tm1 = 0.75
x1
x2
x1
x2
x1
x2
1250.1 0.0001
22.946 0.04 20.396 0.04 22.946 0.04
4.8990
0.2
4.8990
0.2
4.8990
0.2
2.1213
1
2.1213
1
2.1213
1
180.01 0.0001 230.01 0.0001 300.01 0.0001
8.1584 0.04 9.1782 0.04 10.708 0.04
2.9394
0.2
3.1843
0.2
3.4293
0.2
1.2728
1
1.3435
1
1.4142
1
90.004 0.0001 100.00 0.0001 112.01 0.0001
4.5891 0.04 4.6911 0.04
5.354
0.04
2.0331
0.2
2.0821
0.2
2.1311
0.2
0.8768
1
1.0324
1
1.0748
1
T
T
28
i
d
K
τ m Tm1 = 0.1
τ m Tm1 = 0.5
τ m Tm1 = 1
Keane et al.
c
(2000).
Model: Method 1 Minimum ITAE servo plus ITAE regulator, with minimum M max and
with good noise attenuation; Tm1 = Tm 2 .
Huang and Jeng
(2003).
28
29
Kc =
29
2ξ m Tm1
Kc
(ln K u )[Tu + Tm1 (1 + ln K u )] , T =
d
Tu K m
ξ m ≤ 1.1
Model:
Method 17
Td
Tu Tm1
,
Tu + Tm1 (1 + ln K u )
Ti =
(ln K u )[Tu + Tm1 (1 + ln K u )]
.
(ln K u )(1 + ln K u ) + [ln K u + ln(1 + eT − K )][ln(K u + 1.33419τm ) − 1]
Kc =
1.2858Tm1ξ m  τm 


T 
K m τm
 m1 
m
u
0.0544
,
Td =
[(− 0.0349ξm + 1.0064)Tm1 + (0.4196ξm − 0.1100)τm ]2 .
2Tm1ξm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Huang and Jeng
(2003) –
continued.
30
Kc
Ti
Td
Comment
Ti
Td
ξ m > 1.1
Servo or regulator tuning – minimum IAE.
x1 K m
Direct synthesis: time domain criteria
x 2 Tu
x 3 Tu
Wills (1962a).
Representative coefficient values (deduced from graphs):
Model: Method 1
x
x2
x3
x1
x2
x3
x1
x2
x3
1
Servo response;
2.5
2.9 0.035 1.6
1.4 0.143 0.2
0.48 0.143
ξ =1.
2.75
2.9
0.073
16
1.4
0.28
8
0.48 0.36
Tm1 = Tm 2 ;
3.2
2.9 0.143
10
1.4
0.72 0.09 0.28 0.073
τ m = 0.1Tm1 .
20
2.9 0.285 0.42 0.70 0.073 0.1
0.28 0.143
12
2.9
0.57
0.4
0.70 0.143 0.11 0.28 0.28
1.4
1.4 0.035
10
0.70 0.36
1.5
1.4 0.073
2
0.70 0.70
Tm1 + Tm 2 +
31
Step disturbance.
Van der Grinten
Td
Kc
0.5τm
(1963).
Stochastic
Model: Method 1
32
disturbance.
Ti
Td
Kc
Pemberton
(1972b).
30
2(Tm1 + Tm 2 )
3K m τ m
0.5890  τm 


Kc =
K m τm  Tm 2 
0.0030
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
Model: Method 1
2


 0.0052 Tm 2 + 0.8980Tm 2 + 0.4877 τm + Tm1  ,


τ
m


2
Ti = 0.0052
Tm 2
+ 0.8980Tm 2 + 0.4877 τm + Tm1 ,
τm
2


 0.0052 Tm 2 + 0.8980Tm 2 + 0.4877 τm 


τm
Td = Tm1 
.
2
T
 0.0052 m 2 + 0.8980T + 0.4877 τ + T 
m2
m
m1 

τm


31
Kc =
(T + T )τ + 2Tm1Tm 2 .
1 
T +T 
 0.5 + m1 m 2  , Td = m1 m 2 m


τm + 2(Tm1 + Tm 2 )
Km 
τm

32
Kc =
T + Tm 2 − ωd τ m
τ
e − ωd τm
; Ti = − ωmτ x1 ,
x 1 , x1 = 1 − 0.5e− ωd τ m + m1
e
Km
τm
e d m
− ωd τ m 

1 − 0.5e − ωd τ m + Tm1Tm 2e
(T + T )

(Tm1 + Tm 2 )τm  m1 m 2

.
Td =
x1
219
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
220
Rule
Kc
Ti
Td
Pemberton
(1972a),
(1972b).
Model: Method 1
(Tm1 + Tm 2 )
K mτm
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
Pemberton
(1972b).
Model: Method 1
2(Tm1 + Tm 2 )
3K m τ m
Tm1 + Tm 2
λTm1 + Tm 2
K m (1 + λτ m )
Tm1 + Tm 2
Chiu et al.
(1973).
Model: Method 1
Comment
Tm1 + Tm 2
4
Tm1Tm 2
Tm1 + Tm 2
0.1 ≤
Tm1
≤ 1.0 ,
Tm 2
0.2 ≤
τm
≤ 1.0 .
Tm 2
0.1 ≤
Tm1
≤ 1.0 .
Tm 2
0.2 ≤
τm
≤ 1.0 .
Tm 2
λ variable;
suggested values
are 0.2, 0.4, 0.6
and 1.0.
Appropriate for
“small τ m ”.
Mollenkamp et
2ξ m Tm1
2ξ m Tm1
Tm1
al. (1973).
K m (TCL + τ m )
2ξ m
Model: Method 1
Smith et al.
Tm1 > Tm 2
λTm1
(1975).
T
T
m
1
m
2
(
)
K m 1 + λτ m
Model: Method 1
λ = pole of specified FOLPD closed loop response.
Suyama (1992).
Tm1 + Tm 2
Tm1Tm 2
Model: Method 1
OS = 10%
T
+
T
m1
m2
2K m τ m
Tm1 + Tm 2
Rotach (1995).
Model: Method 9
Wang and
Clements (1995).
33
Kc =
1.06τm
Damping factor for oscillations to a disturbance input = 0.75.
2ξ m Tm1
2λξ m Tm1
Tm1
K m (1 + λτ m )
2ξ m
Gorez and Klàn
(2000).
Model: Method 1
Vítečková
(1999),
Vítečková et al.
(2000a).
Model:
Method 1
1.84τm
8.47 K m
33
Kc
Model: Method 22; underdamped response.
Non-dominant
2ξ m Tm1
Tm1
time delay.
2ξ m
x 1 (Tm1 + Tm 2 )
Kmτm
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
x1
OS (%)
x1
OS (%)
x1
OS (%)
0.368
0.514
0.581
0.641
0
5
10
15
0.696
0.748
0.801
0.853
20
25
30
35
0.906
0.957
1.008
40
45
50
2ξ m Tm1
.
K m (2ξ mTm1 + τm )
Closed loop
overshoot
(OS) defined.
Overdamped
process;
Tm1 > Tm 2 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Vítečková
(1999),
Vítečková et al.
(2000a) –
continued.
Skogestad
(2004b).
Model: Method 1
35
Kc =
Kc =
Td
x 1 ξ m Tm1
K mτm
2ξ m Tm1
Tm1
2ξ m
Comment
OS (%)
x1
OS (%)
x1
OS (%)
1.392
1.496
1.602
1.706
20
25
30
35
1.812
1.914
2.016
40
45
50
x1
2ξ m Tm1
Recommended
TCL = τ m .
Tm1
2ξ m
0.74Tm1
K mτm
2Tm1
0.5Tm1
Tm1 = Tm 2
Kc
2ξ des
m Tm1
0.5Tm1 ξdes
m
1.0128ξ m Tm1
K mτm
1.9747 K m τ m
0.5064Tm1
K mτm
Model:
Method 1
Model:
Method 10
Ti
Td
34
35
Kc
2
2ξdes
m Tm1
K m τm
Underdamped
process;
0. 5 < ξ m ≤ 1 .
A m = 3.14 , φ m = 61.4 0 , M max = 1.59
Chen and Seborg
(2002).
34
Ti
0.736
0
1.028
5
1.162
10
1.282
15
2ξ m Tm1
K m (TCL + τ m )
Vítečková et al.
(2000b).
Model: Method 5
Arvanitis et al.
(2000a).
Bi et al. (2000).
Kc
( 2ξ + 1) .
des
m
1 [(Tm1 + Tm 2 )τm + Tm1Tm 2 ](3TCL + τm ) − TCL3 − 3TCL 2 τm
,
Km
(TCL + τm )3
[(Tm1 + Tm 2 )τm + Tm1Tm 2 ](3TCL + τm ) − TCL3 − 3TCL 2τm ,
Tm1Tm 2 + (Tm1 + Tm 2 + τm )τm
2
3T T T + Tm1Tm 2 τm (3TCL + τm ) − (Tm1 + Tm 2 + τm )TCL 3
Td = CL m1 m 2
,
[(Tm1 + Tm 2 )τm + Tm1Tm 2 ](3TCL + τm ) − TCL3 − 3TCL 2τm
Ti =
Tise −sτ m
 y
=
.
 
3
 d desired K c (TCLs + 1)
Model:
Method 1
221
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
222
Rule
Kc
Chen and Seborg
(2002) –
continued.
Chidambaram
(2002), p. 156.
Skogestad
(2004c), Manum
(2005).
Model: Method 1
36
Ti
Td
Ti
Td
2ξ m Tm1
0.5Tm1
ξm
4(λ + τm )
Tm 2
Td
Kc
2
1.333ξ m Tm1
K m τm
Tm1
K m (λ + τm )
37
Kc
4(λ + τm ) + Tm 2
38
Kc
Ti
39
Kc
Ti
Comment
Model: Method 1
0.5Tm1 ξ m
τm
x1 (Tm1 + Tm 2 )
Tm1Tm 2
≤2
Trybus (2005).
T
+
T
m
1
m
2
Tm
K m τm
Tm1 + Tm 2
Model: Method 1
x1 OS x1 OS x1 OS x1 OS x1 OS x1 OS
Tm1 > Tm 2
0.34 0% 0.54 5% 0.64 10% 0.74 15% 0.82 20% 0.90 25%
36
Kc =
Ti =
(
)
1 2ξ mTm1τm + Tm12 (3TCL + τm ) − TCL 3 − 3TCL 2 τm
,
Km
(TCL + τm )3
(2ξ T τ + T )(3T + τ ) − T
m m1 m
2
m1
Tm12 +
CL
m
CL
3
− 3TCL 2 τm
Tise −sτ m
 y
,  
=
,
3
 d desired K c (TCLs + 1)
(2ξmTm1 + τm )τm
(
) (
)
(
)(
)

T T + 4(λ + τm )
Tm 2 
37
K c = m1 m 2
, Td = Tm 2 1 +
.
2
4K m
(λ + τm )
 4(λ + τm ) 
 2Tm1ξ m
Tm1 [ξ m (Tm1 + 4(λ + τm )ξ m ) + 2Tm1 (1 − ξ m )]
38
K c = max 
,
 , ξm < 1 ;
2
(
)
K
λ
+
τ
 m

4K m (λ + τ m )
m
Ti = max{2Tm1ξ m , ξ m Tm1 + 4(λ + τ m )(2 − ξ m )} .
2
3T T 2 + Tm12 τm 3TCL + τm − 2Tm1ξm + τm TCL 3
Td = CL m1
.
2ξm Tm1τm + Tm12 3TCL + τm − TCL 3 − 3TCL 2 τm



Tm1 Tm1 + 4(λ + τm ) ξ m + ξm 2 − 1  
 2T ξ


 
39

m1 m
K c = max 
,
 , ξm > 1 ;
4K m (λ + τm )2

 K m (λ + τm )


Ti = max{2Tm1ξm , Tm1 + 4(λ + τm )} .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc

x1  Tm1

+ 0.5 
Trybus (2005) –
Tm1 + 0.5τm
K m  τm

continued.
x1 OS x1 OS x1 OS
Boudreau and
McMillan
(2006).
Td
Comment
0.5Tm1τm
Tm1 + 0.5τm
τm
>2
Tm
Ti
x1
OS
x1
OS
x1
223
OS
0.34 0% 0.54 5% 0.64 10% 0.74 15% 0.82 20% 0.90 25%
Tm1
40
Model: Method 1
Tm 2
Ti
K m (λ + τm )
λ = τm (maximum load rejection capability); otherwise, λ is a
multiple of Tm .
Vítečková
(2006).
Model: Method 5
≥
Sample results:
A m = 2.0 ,
2Tm1
0.5Tm1
1.0472Tm1
K mτm
2Tm1
0.5Tm1
Ti
Td
τ m / Tm < 2ξ m
Tm 2
Tm1 > Tm 2
41
Kc
ω p Tm1
42
Ti
φ m = 45 o .
A m = 3. 0 ,
φ m = 60 o .
AmKm
2
Ti = Tm1 ; for an overdamped response, Ti >
Kc =
Tm1 = Tm 2
0.5Tm1
1.5708Tm1
K mτm
Ho et al. (1994).
Model: Method 1
Ho et al. (1995a).
Model: Method 1
41
2Tm1
Direct synthesis: frequency domain criteria
πTm1
2Tm1
0.5Tm1
Tm1 = Tm 2
AmK mτm
Hang et al.
(1993a).
Model:
Method 10;
τm
> 0.3
Tm1
(Yang and
Clarke, 1996).
40
0.736Tm1
K m τm
4Tm1
λ + τm
1
 T

1 +  m1 
λ
+
τ
m 

2
2
 πξm


2ωp Tm1  πξm
2

+ π − 2ωp τm  , Ti = Tm12 
+ π − 2ωp τm  ,
 Tm1ωp


πA m  ωpTm1
π



Td =
42
.
1
Ti =
2ωp −
4ωp 2 τ m
π
1
+
Tm1
.
πTm1

 πξ
2 m + πTm1 − 2Tm1ωp τm 

 ωp


.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
224
Rule
Kc
Ho et al. (1995a)
– continued.
0.7854Tm1
K mτm
Tm1
Tm 2
0.5236Tm1
K mτm
Tm1
Tm 2
Ti
Comment
Td
Sample results:
A m = 2.0 ,
φ m = 45 o .
A m = 3. 0 ,
φ m = 60 o .
Ho et al. (1997).
43
Kc
Ti
Td
Model: Method 1
Leva et al.
(1994).
44
Kc
Ti
0.25Ti
Model:
Method 21
43
Kc =

τ 
2
2
 πξm + π − 2 m  , Ti = Tm1 (πξm + π − 2τm ) ,

πA m K m 
Tm1 
π
Td =
2
τ
τ
πTm1
; m ≤ 1 , 2ξ m ≥ m ;
Tm
2(πξ mTm1 + πTm1 − 2τm ) Tm


 π + π 2 + 8πτ m ξ m  A m 2 − 1 − 2 πA m (A m − 1)

Tm1 
φm < 
4A m
(
44
Kc =
ωcn Ti
Km
(1 + ω T ) + 4ξ ω T
(1 − T T ω ) + T ω
2
cn
2 2
m1
2
i d
cn
2
m
2
m1
cn
2 2
2
i
2
,
cn
ωcn =
Ti =
)
1 
 2ξ m τ m Tm1 (0.5π − φ m ) 
4.07 − φ m + tan −1 
 ;
τm 
 (0.5π − φ m )2 Tm1 2 − τ m 2 

 
 2ξ ω T 
2
tan 0.5ωcn τm + φm − 0.5π − tan −1  m2 cn2 m1  ,
 ω T − 1  
ωcn
 
 cn m1
 

3τ m 
ξ m + ξ m 2 − 1  ); φ m = 70 0 (at least).
ξ m ≤ 1 or ξ m > 1 (with 0.5π − φ m >
Tm1 

b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Leva et al.
(1994) –
continued.
Wang et al.
(1999).
Wang and Shao
(1999a).
Model:
Method 16
Td
Kc
Ti
Td
ξ m Tm1
K mτm
2ξ m Tm1
0.5Tm1
ξm
ξ m Tm1
K mτm
2ξ m Tm1
x1
0. 5
Model:
Method 16 46
Tm1
ξm
Some coefficient values:
Comment
x1
x1
Comment
1.571
A m = 2 , φ m = 45
0
0.785
A m = 4 , φ m = 67.50
1.047
A m = 3 , φ m = 60 0
0.628
A m = 5 , φ m = 72 0
2
2
ω T
45
K c = cn m1
K m Td
Comment
Ti
45
ωcn +
1 
2ξ m ξ m 2 − 1 − 1
2 

Tm1 
2
ωcn + z 2
ωcn =
225
,
 2ξ m τ m Tm1 (0.5π − φ m ) 
1 
4.07 − φ m + tan −1 
 ,
τm 
 (0.5π − φ m )2 Tm1 2 − τ m 2 

ωcn
z=
,






ωcn Tm1
tan φ m − 0.5π + ωcn τ m + tan −1 


  ξ m + ξ m 2 − 1  

 
 
2
Tm1z +  ξm + ξ m − 1 
Tm1

, T =
Ti =
, ξm > 1
d
z ξm + ξ m 2 − 1 
Tm1z +  ξ m + ξm 2 − 1 




3τ m 
3τ m 
2

ξ m − ξ m − 1 < 0.5π − φ m ≤
ξm + ξm 2 − 1 .
with


Tm1 
Tm1 
46
ξ m > 0.7071 or 0.05 <
or 0.05 <
0.7071τ m
2
Tm1 2ξ m − 1
< 0.15 ,
ξm τm
ξ τ
< 0.15 , m m > 1, ξ m < 1 .
Tm1
Tm1
0.7071τ m
Tm1 2ξ m 2 − 1
> 1, ξ m ≥ 1
b720_Chapter-03
Rule
Kc
Ti
Td
Wang (2000).
Model:
Method 1.
ξ m Tm1 47
K mτm
2ξ m Tm1
0.5Tm1 ξ m
Chen et al.
(1999b).
Model: Method 1
Kc
49
Kc
2ξ m Tm1
0.5Tm1 ξ m
x 1ξ m Tm1
τm K m
2ξ m τ m
τm
2ξ m
x1
Am
1.00
3.14
1.22
2.58
1.34
2.34
1.40
2.24
Leva et al.
(2003).
Model: Method 1
0.05 <
Kc =
50
51
φm
φm
Ms
x1
Am
61.4
1.00
1.44
2.18
48.7
0
1.30
55.0
0
1.10
1.52
2.07
46.50
1.40
51.6
0
1.20
1.60
1.96
0
1.50
0
1.26
Kc
4(Tm 2 + τ m )
Kc
5Tm 2 + 4 τ m
Td
0.7071τm
Model:
Method 16
0
50.0
16(Tm 2 + τ m )
Tm1 (K mξ m − Tm1 )
or 0.05 <
Comment
48
Wang and Shao
(2000b).
48
FA
Handbook of PI and PID Controller Tuning Rules
226
47
17-Mar-2009
< 0.15 or
0.7071τm
Tm1 (K m ξ m −Tm1 )
Ms
44.1
> 1 , for ξm > 1 ;
ξm τm
ξ τ
< 0.15 or m m > 1 , for 0.7071 < ξ m < 1 .
Tm1
Tm1
 e − τ m x1 0.368 
2Tm1ξm
,
min 
 , x1 = 2Tm1 (K m ξm − Tm1 ) , ξm > 1 or
τm 
Km
 x1
x1 =
49
Kc =
50
Kc =
51
Kc =
1.508 
2ξ m Tm1 
 , suggested M max = 1.6.
1.451 −
K m τm 
M max 
Tm1Tm 2
8K m (Tm 2 + τm )2
, Tm1 ≥ 4(Tm 2 + τ m ) .
Tm1 (5Tm 2 + 4 τ m )
8K m (Tm 2 + τ m )2
, Td =
4Tm 2 (Tm 2 + τ m )
, Tm1 ≥ 8(Tm 2 + τ m ) .
5Tm 2 + 4τ m
Tm1
, ξm < 1 .
ξm
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Åström and
Hägglund (2006),
pp. 245–246.
Lee et al. (2006).
Model: Method 1
52
Kc
Ti
K m (λ + τm )
Ti
Td
Comment
Ti
Td
Model:
Method 1;
M s = M t = 1.4 .
53
227
Td
Ti
Desired closed loop response =
e − sτ m
(λs + 1)2
; recommended λ = 0.5τm .
Robust
54
Brambilla et al.
(1990).
Model:
Method 1
Kc
Kc =
Td
Representative coefficient values (deduced from graph):
τm
τm
τm
λ
λ
λ
Tm1 + Tm 2
Tm1 + Tm 2
Tm1 + Tm 2
0.1
0.2
0.5
52
Ti
0.50
0.47
0.39
1.0
2.0
5.0
0.29
0.22
0.16
10.0
0.14
1 
Tm1
T
T T 
+ 0.18 m 2 + 0.02 m1 m 2  ,
0.19 + 0.37
Km 
τm
τm
τm 
Tm1
T
T T
+ 0.18 m 2 + 0.02 m1 m 2
τm
τm
τm
,
Ti =
0.48
Tm1
Tm 2
T T
+ 0.03 2 − 0.0007 2 + 0.0012 m1 3m 2
τm
τm
τm
τm
0.19 + 0.37

T T  T T
 0.29τm + 0.16Tm1 + 0.20Tm 2 + 0.28 m1 m 2  m1 m 2

τm  Tm1 + Tm 2
Td = 
.
T
T
T T
0.19 + 0.37 m1 + 0.18 m 2 + 0.02 m1 m 2
τm
τm
τm
2
2
53
Ti = 2ξm Tm1 +
54
Kc =
2
τm
τm
, Td =
+
2(λ + τm )
2(λ + τm )
Tm1 −
Tm1 + Tm 2 + 0.5τm
, Ti = Tm1 + Tm 2 + 0.5τm ,
K m τm (2λ + 1)
Td =
3
τm
6(λ + τm )
.
Ti
τm
Tm1Tm 2 + 0.5(Tm1 + Tm 2 )τm
, 0.1 ≤
≤ 10 .
Tm1 + Tm 2
Tm1 + Tm 2 + 0.5τm
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
228
Rule
Kc
Lee et al. (1998).
Model: Method 1
desired closed
loop response =
Ti
K m (2λ + τm )
e − τ ms
(λs + 1)2
Td
55
Ti
Td
56
Ti
Td
57
Ti
Td
58
Ti
Td
Comment
λ = maximum [0.25τm ,0.2Tm1 ] (Panda et al., 2004).
Ti
K m (λ + τm )
.
Ti
Huang et al.
2ξ m Tm1
Tm1
(1998), Rivera
2ξ m Tm1
K m (τ m + λ)
2ξ m
and Jun (2000).
Model: Method 1 λ specified graphically for different OS and TR values (Huang et al.,
1998).
59
Marchetti and
Model:
T
Td
Kc
i
Method 1
Scali (2000).
Smith (2003).
Tm1
Tm1
Tm 2
λ ∈ [ τ m , Tm 2 ] ,
Model: Method 1 K (λ + τ )
Tm1 ≥ Tm 2 .
m
m
Kristiansson
(2003).
60
Kc
2ξ m Tm1
Tm1 2ξm
Model: Method 1
2λ2 − τm 2
T 2
τm 3
, Td = Ti − 2ξ mTm1 + m1 −
.
2(2λ + τm )
Ti
6Ti (2λ + τm )
55
Ti = 2ξ m Tm1 −
56
Ti = Tm1 + Tm 2 −
2λ2 − τm 2
τm 3
T T
, Td = Ti − Tm1 − Tm 2 + m1 m 2 −
.
2(2λ + τm )
Ti
6Ti (2λ + τm )

τm 3 
2

−
T
m
1

τm 2
6(λ + τm ) 
57
Ti = 2ξm Tm1 +
, Td = Ti − 2ξ m Tm1 
.
2(λ + τm )
Ti






3



 Tm1Tm 2 − τm

τ
(
λ
+
τ
)
6
58
m
m 
Ti = Tm1 + Tm 2 +
, Td = Ti − (Tm1 + Tm 2 )
.
2(λ + τm )
Ti






2ξ T + 0.5τm
T (T + ξ m τm )
59
K c = m m1
, Ti = 2ξ m Tm1 + 0.5τm , Td = m1 m1
.
K m (2λ + τm )
2ξ m Tm1 + 0.5τm
2
60
Kc =
2ξmTm1 
1 
1 −
 . Recommended values of M max : 1.4,1.7,2.0.
K m τm  M max 
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Shamsuzzoha et
al. (2006c).
Model: Method 1
Shamsuzzoha
and Lee (2007a).
Model: Method 1
61
Kc =
Ti
Td
Comment
61
Kc
Ti
Td
λ , ξ not
specified.
62
Kc
Ti
Td
λ = x1Tm
Ti
,
K m (4λξ + τm − x1 )
Ti = Tm1 + Tm 2 + x1 −
Td =
Kc
229
4λ2ξ 2 + 2λ2 − x 2 + x1τm − 0.5τm 2
,
4λξ + τm − x1
x 2 + x1 (Tm1 + Tm 2 ) + Tm1Tm 2 −
3
2
0.167 τm − 0.5x1τm + x 2 τm + 4λ3ξ
4λξ + τm − x1
Ti
−
2
τ
4λ2ξ 2 + 2λ2 + x1τm − 0.5τm 2 − x 2
,
4λξ + τm − x1
τ
2
m
2
2
 − m
2λξ  − Tm1
2 λ
2
 λ − 2λξ + 1 e Tm 2 + Tm 2 2 − Tm12
−
+
−
1
e
T
Tm1 
m
2
T 2 T

T 2 T

m1
m2
 m1

 m2

,
x1 =
Tm 2 − Tm1

2
τm

2λξ  − Tm1
 + x1Tm1 .
1
e
1
x 2 = Tm 2
−
+
−

 Tm12 Tm1




2 

62
Kc =
Td =
λ2
Ti
6λ2 − x 2 + x1τm − 0.5τm 2
,
, Ti = Tm1 + Tm 2 + x1 −
K m (4λ + τm − x1 )
4 λ + τ m − x1
x 2 + x1 (Tm1 + Tm 2 ) + Tm1Tm 2 −
3
2
0.167 τm − 0.5x1τm + x 2 τm + 4λ3
4λ + τm − x1
Ti
2
6λ2 + x1τm − 0.5τm − x 2
,
4λ + τ m − x 1
x1 =
τm
τm
4
4




λ  − Tm1 
λ  − Tm 2
2 
 e


Tm12 1 −
1
T
1
e
−
− 1
−
−
m2 




 Tm1 
 Tm 2 




Tm 2 − Tm1
,
τm
4


λ  − Tm 2
 + x1Tm 2 .
 e
x 2 = Tm 2 2 1 −
1
−

 Tm 2 


b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
230
Rule
Shamsuzzoha
and Lee (2007a)
– continued.
Wills (1962a).
Model: Method 1
Quarter decay
ratio tuning.
Tm1 = Tm 2 ;
τ m = 0.1Tm1 .
Bohl and
McAvoy
(1976b).
63
17-Mar-2009
Kc
Ti
Comment
Td
Coefficients of x1 (deduced from graph):
τm Tm
Ms
1.8
0.27
0.29
0.31
0.33
1.9
0.18
0.20
0.22
0.24
0.25
0.27
1.8
1.9
0.2
0.34
0.28
0.3
0.35
0.29
0.4
0.38
0.32
0.5
0.41
0.34
0.6
0.46
0.38
0.7
0.51
0.41
0.8
0.55
0.43
Ultimate cycle
x 2 Tu
x 3Tu
x1 K m
x1
x2
10
8
14
33
18
2.9
1.4
2.9
2.9
1.4
63
Kc
τm Tm
Ms
2.0
0.12
0.15
0.17
0.19
0.21
0.22
0.23
2.0
0.25
0.26
0.28
0.30
0.33
0.36
0.38
0.9
1.0
1.25
1.5
2.0
2.5
3.0
Coefficient values (deduced from graph):
x3
x1
x2
x3
x1
x2
0.036
0.036
0.068
0.143
0.068
28
6
2
0.6
30
Ti
1.4
0.67
0.48
0.28
0.67
0.143
0.068
0.068
0.068
0.143
Td
18
0.9
18
18
13
0.48
0.28
0.67
0.48
0.28
x3
0.143
0.143
0.24
0.24
0.28
Model: Method 1
τ 

2.0302 + 0.9553 ln  m  
τ 
 Tu   
2.2689  τm 
1.3135+ 0.1809 ln (K u K m )+ 0.5219 ln  m  
Kc =
 (K u K m )
 
 Tu   ,
K m  Tu 

 


τ 

− 0.0517 − 0.0643 ln  m  
τ 
 τm 
 Tu   
0.5914 −0.0832 ln (K u K m )+ 0.0687 ln  m  
Ti = 0.2693Tu  
 (K u K m )
 Tu   ,

 
 Tu 


τ 

− 4.2613−1.5855 ln  m  
τ 
 τm 
 Tu   
−1.1436 −0.2658 ln (K u K m )−1.1100 ln  m  

Td = 0.0068Tu 
 (K u K m )
 Tu   .


 
 Tu 


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
x 1K u
x 2 Tu
x 3 Tu
Kuwata (1987);
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x 1 , x 2 deduced
Tu
Tu
Tu
from graphs.
0.47
0.23
0.22
0.15
0.29
0.17
0.08
0.35
0.28
0.19
0.03
0.50
ξ m = 0. 5 .
0.45 0.21 0.19 0.18 0.225 0.17 0.01 0.41
0.35 0.18 0.10 0.30 0.27 0.19 0.02 0.47
x 1K u
x 2 Tu
x 3 Tu
Kuwata (1987);
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x 1 , x 2 deduced
Tu
Tu
Tu
from graphs.
0.45
0.30
0.14
0.20
0.34
0.20
0.07
0.35
0.28
0.18
0.03
0.50
ξm = 0.7 .
0.42 0.25 0.11 0.25 0.31 0.19 0.06 0.40
0.38 0.22 0.09 0.30 0.28 0.18 0.04 0.45
x 1K u
x 2 Tu
x 3 Tu
Kuwata (1987);
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x 1 , x 2 deduced
Tu
Tu
Tu
from graphs.
0.45
0.47
0.12
0.20
0.37
0.24
0.07
0.35
0.28
0.18
0.03
0.50
ξm = 1 .
0.43 0.37 0.10 0.25 0.33 0.21 0.06 0.40
0.40 0.30 0.09 0.30 0.30 0.19 0.04 0.45
x 1K u
x 2 Tu
x 3 Tu
Kuwata (1987);
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x 1 , x 2 deduced
Tu
Tu
Tu
from graphs.
0.46
0.80
0.11
0.20
0.38
0.29
0.07
0.35
0.28
0.18
0.03
0.50
ξ m = 1. 5 .
0.44 0.52 0.09 0.25 0.35 0.22 0.06 0.40
0.42 0.38 0.08 0.30 0.30 0.19 0.04 0.45
4 + x1 1
4
1
64
Landau and Voda
1 ≤ x1 ≤ 2
Kc
x1 ω1350
4 + x1 ω1350
(1992).
3K u
0.51Tu
0.13Tu
ωu τ m ≤ 0.16
Model: Method 1
1.9 K u
64
Kc =
4 + x1
x1
.
4 2 2 G p ( jω1350 )
0.64Tu
0.16Tu
0.16 < ωu τ m
≤ 0.2
231
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
232
3.5.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
R(s) E(s)
−
+
U(s)
1
Tf s + 1


1
K c 1 +
+ Td s 
Ti s


SOSPD
model
Table 22: PID controller tuning rules – SOSPD model G m (s) =
G m (s) =
Rule
Kc
Lim et al. (1985).
1
Arvanitis et al.
(2000a).
Model: Method 1
Panda et al.
(2004).
Model: Method 1
Huang et al.
(2005a).
Model:
Method 18
Huang and Jeng
(2005).
1
Kc =
2
Kc =
Tm1 2 s 2 + 2ξ m Tm1s + 1
Ti
Td
Comment
Direct synthesis: time domain criteria
Model: Method 1
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm1
Kc
Kc
ξ m Tm1
K mτm
2ξ m Tm1
Tm1
2ξ des
m
TCL 2 >
τm
2
Tm1
,
2 Nξ m
N not defined.
Direct synthesis: frequency domain criteria
ξ m Tm1
Tm1
0.025Tm1
Tf =
2ξ m Tm1
K mτm
2ξ m
ξm
Tm1
2ξ m
Tf =
A m ≈ 3 , φ m ≈ 60 0
1.1ξ m Tm1
K mτm
2ξ des
m Tm1
K m 2ξ des
m TCL 2 + τ m
)
, Tf =
0.5Tm1
ξm
2ξ m Tm1
2
TCL 2
Tm1 + Tm 2
.
, Tf =
K m (2ξTCL 2 + τ m )
2ξTCL 2 + τ m
(
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )
K m e − sτ m
2ξ des
m Tm1
2
Y(s)
(
2 2TCL 2 2 − τ m 2
2ξ des
m TCL 2 + τ m
).
Model:
Method 1;
Tf = 0.01τ m .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Hang et al.
(1993a).
Model:
Method 10
Rivera and Jun
(2000). Model:
Method 1; λ not
specified.
Lee and Edgar
(2002).
2Tm1 + τ m
2(λ + τ m )K m
Zhang et al.
(2002b).
Model:
Method 1;
5% overshoot:
λ = 0.5τ m .
3
Ti
Td
Robust
Tm1 + 0.5τ m
Tm1 τ m
2Tm1 + τ m
Model has a repeated pole (Tm1 ) .
2ξ m Tm1 λ
Comment
λ > 0.25τ m .
Tf =
λτ m
.
2(λ + τ m )
2ξ m Tm1
0.5Tm1 ξ m
2ξ m Tm1
Tm1
2ξ m
Tf =
Kc
Ti
Td
Model: Method 1
Tm1 + Tm 2
K m (τ m + 2λ )
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
2ξ m Tm1
K m (2 τ m + λ )
3
233
Tf = τ m
Tf =
τmλ
2τ m + λ
λ2
;
2λ + τ m
H ∞ method.
Kc
Tm1Tm 2
Tm1 + Tm 2
Tm1 + Tm 2
Ti
K m (2λ + τm )
5
Td
4
Ti
Tf =
λτ m
λ + 2τ m
Maclaurin
method.
2
Kc =
1
0.5τm − λ2
+
(2ξ m Tm1 +
K m (2λ + τm )
2λ + τ m
Tm 2 −

τm3
0.5τ m 2 − λ2  0.5τ m 2 − λ2
+  2ξ m Tm1 +
),
6(2λ + τ m ) 
2λ + τ m  2λ + τ m
2
Ti = 2ξm Tm1 +
0.5τm − λ2
+
2λ + τ m

τm3
0.5τ m 2 − λ2  0.5τ m 2 − λ2
+  2ξ m Tm1 +
,
6(2λ + τ m ) 
2λ + τ m  2λ + τ m
Tm 2 −
4
5

τm3
0.5τ m 2 − λ2  0.5τ m 2 − λ2
+  2ξ m Tm1 +
.
6(2λ + τ m ) 
2λ + τ m  2λ + τ m
Td =
Tm 2 −
Kc =
Tm1Tm 2
, H 2 method.
K m (Tm1 + Tm 2 )(λ + 2τm )
Ti = Tm1 + Tm 2 −
2
2
2λ − τ m
, Td =
2(2λ + τm )
τm 3
2λ2 − τm 2
12λ + 6τm
−
, Tf = 0 .
Ti
2(2λ + τm )
Tm1Tm 2 −
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
234
Rule
Kc
Ti
Td
Comment
2ξ m Tm1
Tm1
2ξ m
Model: Method 1
Kristiansson
(2003).
6
7
Kc
Panda et al.
(2004).
Model: Method 1
8
Kc
Ti
Td
9
Kc
Ti
Td
6
Kc =
7
Kc =
8
Kc =
Kc
T
2ξ m Tm1 
1 
T 
1 
 , x1 = 1 + f 1 − 1 −
 , Tf = m1 .
 x1 − x12 − 1 +
2
x2
K m τm 
τm 
M max 
M max 2 
2ξ m Tm1 
T
T
T 2
1 + 0.019 m1 − 0.346 + 0.038 m1 + 0.00036 m12  ;
K m τm 
τm
τm
τm 


for suggested M max = 1.7 , x 2 = 10 .
2
Td =
2
2ξ m Tm1 + 0.25Tm1 + 0.5ξ m τm
4ξ T + 0.5Tm1 + ξ m τm
, Ti = m m1
,
K m (λ + 2ξ m Tm1 )
2ξ m
(Tm1 + 2ξm τm )Tm1ξm
2
4ξm Tm1 + ξ m τm + 0.5Tm1
, Tf =
λ (Tm1 + 2ξ m τ m )
,
4ξ m λ + 4ξ m τ m + 2Tm1


T

λ = maximum 0.25 m1 + τm ,0.4ξ mTm1  .
 2ξ m



1
9
Kc =
Km
0.558Tm 2Tm1
Tm 2
+ 0.172Tm1e − (6.9 Tm 2 / Tm1 ) +
+ 0.5τm
Tm1 + 1.208Tm 2
Tm1
,
T
λ + 0.828 + 0.812 m 2 + 0.172Tm1e − (6.9Tm 2 / Tm1 )
Tm1
0.828 + 0.812
Ti = 0.828 + 0.812
0.558Tm 2Tm1
Tm 2
+ 0.172Tm1e− (6.9Tm 2 / Tm1 ) +
+ 0.5τm ,
Tm1 + 1.208Tm 2
Tm1


  1.116Tm 2Tm1
Tm 2
+ τm 
+ 0.172Tm1e − (6.9Tm 2 / Tm1 )  
0.828 + 0.812
T
1
.
208
T
+
T
m1
m2
,
  m1
Td = 
Tm 2
1.116Tm 2Tm1
− (6.9 Tm 2 / Tm1 )
+ 0.344Tm1e
+
+ τm
1.656 + 1.624
Tm1
Tm1 + 1.208Tm 2
λ[1.116Tm1Tm 2 + τ m (Tm1 + 1.208Tm 2 )]
,
Tf =
2(λ + τ m )(Tm1 + 1.208Tm 2 ) + 2.232Tm 2 Tm1

 0.279Tm 2Tm1
T
λ = maximum 
+ 0.25τm ,0.1656 + 0.1624 m 2 + 0.0344Tm1e− (6.9Tm 2 / Tm1 )  .
T
+
1
.
208
T
T
m2
m1

 m1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Naşcu et al.
(2006).
Model:
Method 19
Kc
Ti
Td
2ξ m Tm1
K m (2TCL 2 + τm )
2ξ m Tm1
0.5Tm1
ξm
Desired servo closed loop transfer function =
235
Comment
2
Tf =
TCL 2
2TCL 2 + τm
e − sτ m
(TCL 2s + 1)2
;
suggested TCL 2 values: 0.4ξ m Tm1 , ξm Tm1 .
Ultimate cycle
Huang et al.
(2005a).
10
K c = 0.080
10
Kc
Ti
Td
Tf = 0.05Td
A m ≈ 3 , φ m ≈ 60 0 ; Model: Method 18.
^ ^




^ ^
K u Tu
 6.283τm 
 6.283τm 
=
sin 
,
T
0
.
159
K
T
sin
i
u u


,
^
^
K m τm
 T

 T

u
u







 1 + K^ cos 6.283τm  
u


^
^ 
 T

Tu 
u

 .
Td = 0.159 ^ 




Ku 
 6.283τm 
 sin 


^
 T



u




b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
236




T
s
1
d

+
3.5.4 Controller with filtered derivative G c (s) = K c 1 +
sTd 

Ti s
1+


N 

E(s)
R(s)
−
+



 U(s)
T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

SOSPD
model
Table 23: PID controller tuning rules – SOSPD model G m (s) =
G m (s) =
Rule
Kc
Hang et al.
(1994).
Model: Method 1
AmKm
K m e −sτ m
or
(1 + sTm1 )(1 + sTm 2 )
K m e − sτ m
Tm1 2 s 2 + 2ξ m Tm1s + 1
Ti
ω p Tm1
Y(s)
Td
Comment
Direct synthesis: frequency domain criteria
1
N = 20;
Tm 2
Ti
Tm1 > Tm 2 .
0.7854Tm1
K mτm
Sample result:
Tm1
Tm 2
A m = 2.0 ,
φ m = 45 o .
Robust
Hang et al.
Tm1
(1994).
K m (TCL + τ m )
Model: Method 1
2
Zhong and Li
Kc
(2002).
1
1
Ti =
2ωp −
2
2
4ωp τm
π
1
+
Tm1
Tm1
Tm 2
N = 20;
Tm1 > Tm 2 .
Ti
Td
Model: Method 1
.
2
Kc =
2 x1 + τm
2ξ m Tm1 (2 x1 + τm ) − x1
, Ti =
,
K m ( 2 x1 + τ m ) 2
2ξm Tm1 (2 x1 + τm ) − x12
 2 2ξ T x 2 ( 2 x 1 + τ m ) − x 1 4 
2x + τ
Td = Ti Tm1 − m m1 1
 , N = 1 2 m Td .
(2x1 + τ m ) 2
x1


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Wang (2003),
pp. 50–54.
Lavanya et al.
(2006a).
Model:
Method 13;
N = 10.
3
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
2ξm Tm1
K m (λ + τm )
2ξ m Tm1
0.5ξm
Tm1
3
Ti
K m (2λ + τm )
4
λ = max [0.25τm ,0.2Tm1 ]
2
2 ξ T ( 2 x + τ ) − x1
2ξ m Tm1 (2 x1 + τm ) − x1
, Ti = m m1 1 m
,
2 x1 + τ m
K m ( 2 x1 + τ m ) 2
Td =
4
τm
< 1;
Tm1
λ not specified.
τm
>1
Tm1
Td
Ti
2
Kc =
0.1 ≤
237
Ti = 2ξm Tm1 −
2
2
Tm12 (2 x1 + τm )
−
2
2ξ m Tm1 (2x1 + τm ) − x1
2λ − τ m
, Td = Ti − 2ξ mTm1 +
2(2λ + τm )
Tm12 −
τm 3
6(2λ + τm )
.
Ti
2x + τ
x12
, N = 1 2 m Td .
2x1 + τm
x1
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
238



1  1 + Td s 


3.5.5 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

E(s)
R(s)
+
−





1  1 + Td s  U(s)

K c 1 +
Td 
Ti s 

s
1 +
N 

SOSPD
model
Table 24: PID controller tuning rules – SOSPD model G m (s) =
G m (s ) =
Rule
Kc
Y(s)
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )
K m e −sτ m
2 2
Tm1 s + 2ξ m Tm1s + 1
Ti
Td
Comment
Minimum performance index: regulator tuning
1
0.954
0.780
0.982
Approximately
Tm1 > Tm 2 ;
 x2 
 x2 
 
minimum IAE – 0.817  x1 
 
 
0
.
602
x
0
.
903
x
1
1
x 
x 
x 
N = 8.
K
 1
Huang and Chao
 1
m  2 
(1982).
Also given by Chao et al. (1989); Model: Method 1.
Tm 2
0.80Tm1
= 0.25
Minimum IAE –
(
)
(
)
1
.
5
T
+
τ
0
.
60
T
+
τ
m2
m
m2
m
K mτm
Tm 2 + τ m
Shinskey (1988),
0.77Tm1
Tm 2
p. 149.
1.2(Tm 2 + τ m ) 0.70(Tm 2 + τ m ) T + τ = 0.5
Model:
K mτm
m2
m
Method 1;
Tm 2
0.83Tm1
N not specified.
0.75(Tm 2 + τ m ) 0.60(Tm 2 + τ m ) T + τ = 0.75
K mτm
m2
m
1

τ
1.398
x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
.
T
1
.
349
(
T
T
)
+
m1
m2 
 m2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
239
Comment
Td
2
Minimum IAE –
N=8
Ti
Td
Kc
Chao et al.
0.8 ≤ ξ m ≤ 3; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
(1989).
3
Minimum IAE –
Ti
Td
Tm 2 τm ≤ 3
Kc
Shinskey (1994),
2.5Tm1 K m τm
τ m + 0.2Tm 2
τ m + 0.2Tm 2
Tm 2 τm > 3
p. 159.
Model: Method 1; N not specified.
Minimum IAE –
τm Tm1 = 0.2 ,
Shinskey (1996),
0.59 K u
0.36Tu
0.26Tu
Tm 2 Tm1 = 0.2 .
p. 121.
Model: Method 1; N not specified.
0.85Tm1 K m τm
1.98τ m
0.86τ m
Tm 2 Tm1 = 0.1
Minimum IAE –
0.87Tm1 K m τm
2.30τ m
1.65τ m
Tm 2 Tm1 = 0.2
Shinskey (1996),
1.00Tm1 K m τm
2.50τ m
2.00τ m
Tm 2 Tm1 = 0.5
p. 119.
Model: Method 1 1.25T K τ
2.75τ
2.75τ
T T = 1. 0
m1
m m
m
m
m2
m1
τm Tm1 = 0.2 ; N not specified.
Minimum ISE – 0.667Tm1 K m τm
Model: Method 1
Tm1
Tm 2
Haalman (1965).
0
Tm1 > Tm 2 . M s = 1.9, A m = 2.36, φ m = 50 ; N = ∞ .
2
2
− 0.01133 + 0.5017ξm − 0.07813ξ m  τm 


Kc =
 2ξ T 
Km
 m m1 
(
Ti = 2ξ m Tm1 1.235 − 0.4126ξ m + 0.09873ξ m
(
Td = 2ξ m Tm1 1.214 − 0.6250ξ m + 0.1358ξm
3
Kc =
−1.890 + 0.7902 ξ m − 0.1554 ξ m 2
)
τm 


 2ξ T 
 m m1 
2 
)
2 
,
τm 


 2ξ T 
 m m1 
−0.03793 + 0.3975ξ m − 0.05354 ξ m 2
,
0.5696 − 0.8484 ξ m + 0.0505ξ m 2
.
100




 48 + 57 1 − e



1.2 Tm1  

−
τ m   K m τm 
  Tm1

 Tm 2  
Tm 2
+
−
1
0
.
34
0
.
2

 

τm
 τm  

2
,
T
1.2 Tm1 
T



− m1  
−
− m2  


 


Ti = τ m 1.5 − e 1.5τ m  1 + 0.9 1 − e τm   , Td = 0.56τm 1 − e τ m  + 0.6Tm 2 .





 





 
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
240
Rule
Minimum ISE –
McAvoy and
Johnson (1967).
Kc
Ti
Td
Comment
x1 K m
x 2τm
x 3τ m
Model: Method 1
ξm
Representative coefficient values (deduced from graph):
x1
x2
x3
ξm
x1
x2
Tm1
Tm1
τm
τm
N = 20
1
1
1
0.5
4.0
10.0
0.7
7.6
34.3
0.97
3.33
5.00
0.75
2.03
2.7
N = 10
1
1
1
0.5
4.0
10.0
0.9
8.0
33.5
1.10
4.00
6.25
0.64
1.83
2.43
4
4
7
7
4
4
7
7
0.5
4.0
0.5
4.0
0.5
4.0
0.5
4.0
3.0
22.7
5.4
40.0
3.2
23.9
5.9
42.9
1.16
1.89
1.19
1.64
1.33
2.17
1.39
1.89
x3
0.85
1.28
0.85
1.14
0.78
1.17
0.78
1.04
0.881
4
0.883
0.881
Approximately
Tm1 > Tm 2 ;
 x2 
1.101  x1 
 x2 
 
minimum ISE –




1.134x1  
0.563x1  


N = 8.
Huang and Chao K m  x 2 
 x1 
 x1 
(1982).
Also given by Chao et al. (1989); Model: Method 1.
5
Minimum ISE –
N=8
Ti
Td
Kc
Chao et al.
0.8 ≤ ξ m ≤ 3; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
(1989).
1.036
6
0.595
1.006
Approximately
Tm1 > Tm 2 ;
 x2 
 x2 
0.745  x1 
 
minimum ITAE




0
.
771
x
0
.
597
x
1
1




N = 8.
Km  x2 
– Huang and
 x1 
 x1 
Chao (1982).
Also given by Chao et al. (1989); Model: Method 1.
4
5
τ

1.398
x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
.
T
1
.
349
(
T
T
)
+
m1
m2 
 m2
0.2538 + 0.3875ξ m − 0.04283ξ m 2  τm 


Kc =
 2ξ T 
Km
 m m1 
(
Ti = 2ξ m Tm1 1.8283 − 0.8083ξm + 0.1852ξ m
(
Td = 2ξ m Tm1 1.077 − 0.4952ξ m + 0.1062ξ m
6
−1.652 + 0.5416 ξ m − 0.09544 ξ m 2
)
,
τm 


 2ξ T 
 m m1 
2 
)
2 
τm 


 2ξ T 
 m m1 
0.1363+ 0.2342 ξ m − 0.01445ξ m 2
,
0.4772 + 0.0442 ξ m + 0.01694 ξ m 2
τ

1.398
x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
.
T
1
.
349
(
T
T
)
+
m1
m2 
 m2
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Bohl and
McAvoy
(1976b).
Minimum ITAE
– Chao et al.
(1989).
7
Kc
Ti
Td
Comment
7
Kc
Ti
Td = Ti
Minimum ITAE;
Model: Method 1
8
Kc
Ti
Td
0.8 ≤ ξ m ≤ 3
0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
τm Tm1 = 0.1,0.2, 0.3,0.4,0.5; Tm 2 Tm1 = 0.12,0.3 ,0.5,0.7,0.9. N = ∞ .
 τ 
 τ 
 T 

−1.1445 + 0.1100 ln  10 m   
0.1648+ 0.1709 ln  10 m 2  − 0.2142 ln  10 m  
 Tm1   
Tm 2 
 Tm 1  
 Tm1 
5.5030  τm 


Kc =
 10
10


K m  Tm1 
  Tm1 


 

 τ 
 τ 
 T 

0.6212 − 0.0760 ln  10 m   
0.3144 − 0.0062 ln  10 m 2  + 0.0085 ln  10 m  
 τm 
 Tm1   
Tm 2 
 Tm 1  
 Tm1 


Ti = 1.8681Tm1 10
 10


  Tm1 
 Tm1 


 

8
2
− 0.1033 + 0.5347ξm − 0.07995ξ m  τm 


Kc =
 2ξ T 
Km
 m m1 
(
Ti = 2ξ m Tm1 0.9096 − 0.1299ξ m + 0.04179ξm
(
)
−1.798 + 0.7191ξ m − 0.1416 ξ m 2
)
,
τm 


 2ξ T 
 m m1 
2 
τm 
2 

Td = 2ξ m Tm1 1.2226 − 0.6456ξ m + 0.1373ξ m 

ξ
2
 m Tm1 
−0.1277 + 0.5220 ξ m − 0.08629 ξ m 2
,
0.4780 − 0.03653ξ m + 0.04523ξ m 2
; N = 8.
241
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
242
Rule
Kc
Ti
Comment
Td
9
Chao et al.
Ti
Td
0.3 < ξ m < 0.8
Kc
(1989) –
N = 8; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 .
continued.
10
0.884
0.907
0.869
Approximately
Tm1 > Tm 2 ;
x 
x 
 
minimum ITSE – 0.994  x1 
0.570x1  2 
1.032x1  2 
N = 8.


 x1 
Huang and Chao Km  x2 
 x1 
(1982).
Also given by Chao et al. (1989); Model: Method 1.
11
Minimum ITSE
Ti
Td
0.8 ≤ ξ m ≤ 3
Kc
– Chao et al.
N = 8; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
(1989).
9
1.3292 − 2.8527ξm + 2.0365ξ m 2  τm 


Kc =
 2ξ T 
Km
 m m1 
−1.6159 − 0.06616 ξ m + 0.5351ξ m 2
,
(
)
 τm 

Ti = 2ξm Tm1 exp(x1 ) + 1.4094 − 4.4581ξ m + 3.4857ξ m 2 ln
 2ξ m Tm1 
(
+ 0.1160 − 0.8142ξ m + 0.7402ξ m
2
2 
 τ m 
 ,
ln
  2ξ m Tm1 
)
(
x 1 = 3.3368 − 7.7919ξ m + 4.3556ξ m
(
)
2
);
2
).
 τm 

Td = 2ξ m Tm1 exp(x 2 ) + 1.8243 − 5.6458ξ m + 4.6238ξ m 2 ln
 2ξ m Tm1 
2
τ m 
2  
 ,
+ 0.2866 − 1.4727ξ m + 1.2893ξ m ln
  2ξ m Tm1 
(
)
(
x 2 = 2.3054 − 6.4328ξ m + 3.9743ξ m
τ

1.398
10
x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
.
1.349 + (Tm1 Tm 2 ) 
 Tm 2
11
0.1034 + 0.4857ξ m − 0.0709ξ m 2  τm 


Kc =
 2ξ T 
Km
 m m1 
−1.713 + 0.6238ξ m − 0.1178ξ m 2
,
(
2 
)
0.1008 + 0.2625ξ m − 0.02203ξ m 2
(
)
0.4316 + 0.08163ξ m + 0.009173ξ m 2
Ti = 2ξ m Tm1 1.5144 − 0.6060ξ m + 0.1414ξm
τm 


 2ξ T 
 m m1 
τm 
2 

Td = 2ξ m Tm1 1.0783 − 0.4886ξ m + 0.1038ξm 

ξ
2
 m Tm1 
,
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Chao et al.
(1989) –
continued.
Approximately
minimum IAE –
Huang and Chao
(1982).
12
Kc
12
Kc
Ti
Td
Comment
Ti
Td
0. 3 < ξ m < 0. 8
243
N = 8; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 .
Minimum performance index: servo tuning
1.00
1.032
Tm1 > Tm 2 ;
0.673  x1 
 x2 
13
 
 
0
.
502
x
T
1
N = 8.


x 
i
Km  x2 
 1
Also given by Chao et al. (1989); Model: Method 1.
1.8342 − 3.8984ξ m + 2.7315ξm 2  τm 


Kc =
 2ξ T 
Km
 m m1 
(
−1.5641+ 0.1628ξ m + 0.09337 ξ m 2
,
)
 τm 

Ti = 2ξm Tm1 exp(x1 ) + 0.9475 − 3.6318ξ m + 2.9969ξ m 2 ln
 2ξ m Tm1 
(
+ − 0.06927 − 0.3875ξ m + 0.4220ξ m
2
2 
 τ m 
 ,
ln
  2ξ m Tm1 
)
(
2
)
2
).
x 1 = 3.2026 − 7.4812ξ m + 4.3686ξ m ;
(
)
 τm 

Td = 2ξm Tm1 exp(x 2 ) + 1.0983 − 1.5794ξ m + 1.0744ξ m 2 ln
 2ξ m Tm1 
(
+ 0.01553 − 0.01414ξ m − 0.009083ξ m
(
2 
2
 τ m 
 ,
ln
  2ξ m Tm1 
)
x 2 = 1.7393 − 3.7971ξ m + 1.7608ξ m



τ
1
.
398
x
13
1
.
Ti =
, x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
Tm1 
x 
 Tm 2
1
.
349
+
0.148 2  + 0.979

Tm 2 

 x1 
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
244
Rule
Kc
Ti
Comment
Td
14
Minimum IAE –
N=8
Ti
Td
Kc
Chao et al.
0.8 ≤ ξ m ≤ 3; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
(1989).
0.964
15
0.971
1.028
Approximately
Tm1 > Tm 2 ;
 x2 
0.787  x1 
 x2 
 
minimum ISE –




0
.
594
x
1
.
678
x
1
1
x 



N = 8.
K
m  2 
Huang and Chao
 x1 
 x1 
(1982).
Also given by Chao et al. (1989); Model: Method 1.
16
Minimum ISE –
N=8
Ti
Td
Kc
Chao et al.
0.8 ≤ ξ m ≤ 3; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
(1989).
14
2
− 0.1779 + 0.6763ξ m − 0.1264ξ m  τm 


Kc =
 2ξ T 
Km
 m m1 
(
−0.9941+ 0.1669 ξ m − 0.04381ξ m 2
,
x
)
 τm  1
 ,
Ti = 2ξ m Tm1 0.2857 + 0.4671ξm − 0.08353ξ m 2 

 2ξ m Tm1 
2
3
x 1 = 0.1665 − 0.3324ξ m + 0.1776ξ m − 0.02897ξ m ;
(
)
 τm 

Td = 2ξm Tm1 exp(x 2 ) + − 2.0552 + 2.786ξ m − 0.5687ξ m 2 ln
 2ξ m Tm1 
2
  τ m 
 ,
+ − 0.5008 + 0.6232ξ m − 0.1430ξ m 2 ln
  2ξ m Tm1 
(
)
(
x 2 = − 0.8776 + 0.4353ξ m − 0.1237ξ m
15
16
2
).
2
);
τ

1.398
x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
.
T
1
.
349
(
T
T
)
+
m1
m2 
 m2
0.1446 + 0.4302ξ m − 0.07501ξm 2  τm 


Kc =
 2ξ T 
Km
 m m1 
−1.214 + 0.3123ξ m − 0.06889 ξ m 2
;
(
)
 τm 

Ti = 2ξm Tm1 exp(x1 ) + − 2.2502 + 3.7015ξ m − 1.7699ξ m 2 + 0.2680ξ m 3 ln
 2ξ m Tm1 
(
)
+ − 0.4823 + 0.9479ξm − 0.4913ξ m + 0.07792ξ m [ln (0.5τm ξTm1 )] ,
(
2
)
3
(
x 1 = − 0.1256 + 0.1434ξ m − 0.03277ξ m
Td = 2ξm Tm1 0.9105 − 0.3874ξ m + 0.08662ξ m (0.5τm ξm Tm1 ) ,
2
2
x2
2
x 2 = 0.0779 + 0.2855ξm − 0.01985ξm .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
245
Comment
Td
0.995
1.049
Approximately
Tm1 > Tm 2 ;
 
 x2 
17
minimum ITAE 0.684  x1 


0
.
491
x
T
N = 8.
1
i

K m  x 2 
– Huang and
 x1 
Chao (1982).
Also given by Chao et al. (1989); Model: Method 1.
Minimum ITAE
– Chao et al.
(1989).
18
Kc
Ti
Td
0.8 ≤ ξ m ≤ 3
19
Kc
Ti
Td
0.3 < ξ m < 0.8
N = 8; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.



τ
1
.
398
x
17
1
.
Ti =
, x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
Tm1 
x 
 Tm 2
1
.
349
+
0.114 2  + 0.986

Tm 2 

 x1 
18
2
− 0.2641 + 0.7736ξ m − 0.1486ξ m  τm 


Kc =
 2ξ T 
Km
 m m1 
(
−0.7225 − 0.04344 ξ m − 0.001247 ξ m 2
;
x
)
 τm  1
 ,
Ti = 2ξ m Tm1 0.22257 + 0.7452ξ m − 0.1451ξm 2 

 2ξ m Tm1 
2
x 1 = 0.03138 − 0.04430ξ m + 0.01120ξ m ;
(
)
 τm 

Td = 2ξm Tm1 exp(x 2 ) + − 1.2256 + 1.8544ξ m − 0.3366ξ m 2 ln
 2ξ m Tm1 
2
  τ m 
 ,
+ − 0.2315 + 0.3402ξ m − 0.06757ξ m 2 ln
  2ξ m Tm1 
(
)
(
x 2 = 0.05515 − 0.7031ξ m + 0.1433ξ m
19
Kc =
1.1295 − 2.8584ξ m + 2.1176ξ m 2  τm 


 2ξ T 
Km
 m m1 
(
Ti = 2ξ m Tm1 8.6286 − 20.70ξm + 13.203ξm
2
).
2
−0.9904 − 2.5311ξ m + 2.8008ξ m 2
;
)(0.5τ ξ T ) ,
m
m m1
x1
2
(
)
x 1 = 0.7962 − 2.4809ξ m + 1.7611ξ m ;
Td = 2ξm Tm1 exp(x 2 ) + 3.2228 − 12.034ξ m + 9.2547ξ m 2 ln (0.5τm ξm Tm1 )
(
)
+ 0.6366 − 3.0208ξ m + 2.4603ξ m [ln (0.5τm ξ m Tm1 )] ,
2
(
2
2
)
x 2 = 3.9285 − 12.874ξ m + 8.6434ξ m .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
246
Rule
Kc
Ti
Td
Comment
1.00
1.028
Approximately
Tm1 > Tm 2 ;
 x2 
0.718  x1 
20
minimum ITSE –
 
 
0
.
596
x
T
1
N = 8.
 
x 
i
Huang and Chao K m  x 2 
 1
(1982).
Also given by Chao et al. (1989); Model: Method 1.
21
Minimum ITSE
Ti
Td
0.8 ≤ ξ m ≤ 3
Kc
– Chao et al.
N = 8; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 ; Model: Method 1.
(1989).



τ
1
.
398
x
20
1
.
Ti =
, x1 = Tm1 + 1.4Tm 2 , x 2 = Tm1  m + 1.039 −
Tm1 
 x2 
 Tm 2
1
.
349
+
0.063  + 1.061

Tm 2 

 x1 
21
0.0820 + 0.4471ξm − 0.07797ξ m 2  τm 


Kc =
 2ξ T 
Km
 m m1 
(
)
−0.9246 + 0.07955ξ m − 0.02436 ξ m 2
;
x
 τm  1
 ,
Ti = 2ξ m Tm1 0.5930 + 0.1457ξ m − 0.02062ξ m 2 

 2ξ mTm1 
2
x 1 = −0.2201 + 0.1576ξ m − 0.03202ξ m ;
(
)
 τm 

Td = 2ξm Tm1 exp(x 2 ) + − 1.0018 + 1.5914ξ m − 0.2831ξ m 2 ln
 2ξ m Tm1 
(
+ − 0.2291 + 0.3064ξ m − 0.0634ξ m
(
2 
2
 τ m 
 ,
ln
  2ξ m Tm1 
)
x 2 = − 0.6534 − 0.1770ξ m − 0.0240ξ m
2
).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Chao et al.
(1989) –
continued.
22
Kc
Td
Comment
Ti
Td
0.3 < ξ m < 0.8
N = 8; 0.05 ≤ 0.5τm ξm Tm1 ≤ 0.5 .
Smith et al.
(1975).
Model: Method 1
Direct synthesis: time domain criteria
Tm1
Tm 2
λ = 1 TCL ;
λTm1
K m (λτ m + 1)
N not specified.
x 1Tm1
K mτm
Smith et al.
(1975).
Model:
Method 1;
N = 10.
ξm
ρ
6
1.75
1.75
1.5
1.0
≥ 0.02
0.27
0.07
0.11
0.25
Tm1
τm
ρ=
Tm 2
τm
Tm1 + Tm 2
Coefficient values (deduced from graph):
ρ
ρ
x1
ξm
x1
ξm
0.7
0.3
0.8Tm1 Tm 2
Hougen (1979),
τm
pp. 348–349.
Model: Method 1 0.84Tm1 0.8 Tm 2 0.2
22
Ti
247
0.51
0.46
0.36
0.33
0.46
3
1.75
1.5
1.5
1.0
0.5Tm1 + Tm 2
23
0.50
0.42
0.44
0.28
0.48
≥ 0.04
0.13
0.33
0.08
0.17
3 τ
x1
0.45
0.39
0.38
0.40
0.49
N = 10
N = 30
Td
0.9666 − 2.3853ξm + 2.4096ξm 2  τm 


Kc =
 2ξ T 
Km
 m m1 
(
≥ 0.06
0.09
0.17
0.50
0.13
m Tm1 Tm 2
Ti
Ti = 2ξ m Tm1 6.3891 − 15.773ξ m + 10.916ξm
2
1.75
1.5
1.0
1.0
−1.533 − 0.05442 ξ m +10.916 ξ m 2
;
x
)
1
τm 
 ,

 2ξ T 
 m m1 
2 
2
x 1 = 0.04175 − 1.3860ξ m + 1.4053ξ m ;
(
)
 τm 

Td = 2ξm Tm1 exp(x 2 ) + 2.277 − 8.9402ξ m + 7.7176ξ m 2 ln
 2ξ m Tm1 
(
+ 0.3465 − 1.9274ξ m + 1.8030ξ m
(
2 
2
 τ m 
 ,
ln
  2ξ m Tm1 
)
x 2 = 3.2620 − 10.789ξ m + 7.6420ξ m
23
Ti = 0.53Tm1 + 1.3Tm 2 , Td = 2.4(τm Tm1Tm 2 )
0.28
.
2
).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
248
Rule
Kc
Hougen (1988).
Model: Method 1
Sklaroff (1992).
Ti
Td
Comment
N = 10;
τ m < Tm1 .
24
Kc
0.5Tm1 + Tm 2
Td
25
Kc
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
Also given by Åström and Hägglund (1995), pp. 250–251.
Model: Method 8. N = 8 – Honeywell UDC6000 controller.
26
N not defined.
Ti
Td
K
Schaedel (1997).
c
Model: Method 1
Skogestad
(2003).
0.5Tm1 K m τm
N =∞.

24
 T 
x − x 2 log10  m 2  
 Tm1  
 1
1
Kc =
10 
Km
min(Tm1 ,8τ m )
Model:
Method 24
Tm 2
. Coefficients of K c deduced from graphs:
τ m Tm 2
0.1
0.3
0.5
1
2
x1
0.9
0.42
0.24
-0.10
-0.39
x2
0.7
0.7
0.68
0.70
0.69
Td = (Tm1 + Tm 2 )10
Td = (Tm1 + Tm 2 )10
25
Kc =
26
Kc =


 τ 
 0.33 log10  m  − 0.40 


 Tm1 


 τ 
 0.31 log10  m  − 0.63 


 Tm1 
,
Tm 2
= 0.1 ;
Tm1
, 0.2 ≤
Tm 2
≤1.
Tm1
3
.


3τ m


K m 1 +
Tm1 + Tm 2 

0.375
Km
2
2
2
2
4ξ m Tm1 + 2ξ m Tm1τm + 0.5τm − Tm1
,
(2ξmTm1 + τm )2 +  1 − 1(2ξmTm1 + τm )Tm1 2(2ξm 2 − 1) − x
N 
2
2
2
2
x = 4ξ m Tm1 + 2ξ m Tm1 τ m + 0.5τ m − Tm1 ;
2
Ti =
Td =
2
2
2
4ξ m Tm1 + 2ξ m Tm1τm + 0.5τm − Tm1
;
2ξm Tm1 + τm
(2ξmTm1 + τm )2 − 2(Tm12 + 2ξmTm1τm + 0.5τm 2 ) .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ti
Td
Comment
Kc
2ξ m Tm1
Tm1 2ξm
Tm1
2K m τ m
Tm1
Tm 2
N = 8;
Model: Method 8
N not defined;
Model: Method 1
Tm 2
N =∞;
Tm1 > Tm 2 .
Kc
27
Panda et al.
(2004).
Skoczowski
(2004).
Tm1
28
Kc
Model: Method 1
Huang and Jeng
T
0.495 m1 + 0.2
(2005).
0.4τ m + 0.9Tm1
τm
Model: Method 1
Km
Skogestad
(2006b).
Model: Method 1
N =∞;

4T 
min Tm1 , m1 
Tm 2
T
m1 > Tm 2 .
Km 

Slow control; ‘acceptable’ disturbance rejection performance.
Direct synthesis: frequency domain criteria
Tm1
Tm1
Tm 2
K (T + τ )
m
m1
m
N = 5; Tm1 ≤ 5Tm 2 ; minimum φ m = 550 .
ωp Tm1
KmAm
x 1Tm1
K mτm
Ti
Tm1
Tm1
Tm 2
29
29
Tm1 = Tm 2 ;
N =∞.
A m = 1.571 x1 ;
φ m = 0.5π − x 1 .
0
Sample result ( A m = 2.0; φ m = 45 ):
0.785Tm1 K m τm
Tm1
3
.

1.5τm 

K m 1 +

 ξm Tm1 
2T
28
K c ≤ m1 1 + 2 x12 − 2 x1 1 + x12  , with x1 ≈
τm 

27
Tm 2
Tm 2
Kc =
1
Ti =
2ωp −
Tm 2
τm
1
Poulin et al.
(1996).
Model: Method 1
Yang and Clarke
(1996).
Model:
Method 10
O’Dwyer
(2001a).
Model:
Method 1;
N =∞.
N = 100
4ωp 2 τm
π
+
1
Tm1
.
ln (1 OS)
π + [ln (1 OS)]2
2
.
249
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
250
Rule
Kc
Majhi and Litz
(2003).
30
Kc
Ti
Td
Comment
Ti
Tm1
N=∞
Model: Method 10; Tm1 = Tm 2 .
Ultimate cycle
Bohl and
McAvoy
(1976b).
30
Kc =
31
2φm + π(A m − 1) Tm1
,
2
K m τm
2 Am − 1
(
)
Ti =
Tm1
.


T
Am
Am
[
]
(
)
(
(
)
)
1 + m1
2
φ
+
π
A
−
1
1
−
2
φ
+
π
A
−
1


m
m
m
m
2
τm A m 2 − 1

 π A m − 1
(
31
N =∞;
Model: Method 1
Td = Ti
Ti
Kc
)
(
)
τ 

1.2264 + 0.4568 ln  m  
τ 
 Tu   
0.5458  τm 
1.2190 − 0.0958 ln (K u K m )−0.1007 ln  m  
Kc =
 
 (K u K m )
 Tu   ,
K m  Tu 

 


τ 

−1.9314 − 0.6221 ln  m  
τ 
 τm 
 Tu   
−0.0703−0.1125 ln (K u K m )−0.2944 ln  m  
Ti = 0.0393Tu  
 (K u K m )
 Tu   .

 
 Tu 


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
251
3.5.6 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s)
E(s)
+
−




2
T
s
1
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
 Ti s
T  1 + a f 1s + a f 2 s 2
1+ d s 

N 

U(s)
SOSPD
model
Table 25: PID controller tuning rules – SOSPD model G m (s) =
G m (s) =
Rule
Huang et al.
(2003).
Model:
Method 12
Kc
0.8ξm Tm1
K m τm
Y(s)
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )
K m e − sτ m
2
Tm1 s 2 + 2ξ m Tm1s + 1
Ti
Comment
Td
Direct synthesis: time domain criteria
2ξ m Tm1
0.5Tm1
ξm
b f 0 = 1 ; b f 1 not defined; b f 2 = 0 ; N = ∞ ; a f 1 = a f 2 = 0 .
Robust
Jahanmiri and
Fallahi (1997).
Model: Method 7
2ξ m Tm1
K m (τ m + λ)
2ξ m Tm1
Tm1
2ξ m
b f 1 = 0.5τ m ,
a f1 =
λτ m
.
2( τ m + λ )
N = ∞ , b f 0 = 1 , b f 2 = 0 , a f 2 = 0 ; λ = 0.25τ m + 0.1ξ m Tm1 .
Kristiansson
(2003).
Model: Method 1
1
Kc =
1
Kc
2ξ m Tm1
Tm1
2ξ m
M max = 1.7
2
b f 0 = 1 , b f 1 = b f 2 = 0 , a f 1 = 0.08Tm1 , a f 2 = 0.01Tm1 , N = ∞ .
2ξ m Tm1 
T
T
T 2
1 + 0.019 m1 − 0.346 + 0.038 m1 + 0.00036 m12  .
K m τm 
τm
τm
τm 


b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
252
Rule
Shi and Lee
(2004).
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
0.5τm
K m (λ + τm )
0.5τm
0.167 τm
N=∞
2
Shamsuzzoha
and Lee (2006a).
Model: Method 1
af1 =
2
τmλ
τm λ
, af 2 =
, b f 0 = 1 , b f 1 = 2ξ m Tm1 ,
2(τm + λ )
12(τm + λ )
2
b f 2 = Tm1 . λ = x1τm ; x1 = 1.360 , M s = 1.4 ; x1 = 0.677 , M s = 1.6 ;
x1 = 0.372 , M s = 1.8 ; x1 = 0.337 , M s = 2.0 .
2
Kc =

1 + ω−6dB τ m
ω− 6dB
0.5 
 Tm1 + Tm 2 −
 , bf 0 = 1 , b f 1 =
,


2ω−6dB
ω− 6 dB 
K m (2 + ω− 6dBτm ) 
bf 2 =
Ti = Tm1 + Tm 2 −
τm
τm
1
, a f1 =
, af 2 =
;
4ω −6dB
2ω−6dB
2ω−6dB (1 + ω −6dB τ m )
2
0.5
T T ω
− 0.5[(Tm1 + Tm 2 )ω− 6dB − 0.5]
, Td = m1 m 2 − 6dB
,
ω− 6dB
ω− 6 dB [(Tm1 + Tm 2 )ω− 6dB − 0.5]
N=
0.5[(Tm1 + Tm 2 )ω−6dB − 0.5]
Tm1Tm 2 ω−6dB 2 − 0.5[(Tm1 + Tm 2 )ω −6dB − 0.5]
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
253
3.5.7 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1
s
+


N 

E(s)
R(s)
−
+




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
U(s)
+
SOSPD
model
Table 26: PID controller tuning rules – SOSPD model G m (s) =
Y(s)
K m e − sτ m
or
(1 + sTm ) 2
K m e − sτ
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 ) Tm1 2 s 2 + 2ξ m Tm1s + 1
m
Rule
Kc
Ti
Td
Comment
Minimum performance index: regulator tuning
1.18Tm1 K m τm
2.20τ m
0.72τ m
Tm 2 Tm1 = 0.1
Minimum IAE –
1.25Tm1 K m τm
Shinskey (1996),
1.67Tm1 K m τm
p. 119.
Model: Method 1 2.5T K τ
m1
m
m
2.20τ m
1.10τ m
Tm 2 Tm1 = 0.2
2.40τ m
1.65τ m
Tm 2 Tm1 = 0.5
2.15τ m
2.15τ m
Tm 2 Tm1 = 1.0
τm Tm1 = 0.2 ; α = 0 ; β = 1 ; N = ∞ .
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
254
Rule
Minimum IAE –
Shinskey (1996),
p. 121.
Model: Method 1
Minimum IE –
Shen (1999).
Model: Method 1
Td
Comment
Ti
Td
Tm 2 τm ≤ 3
τ m + 0.2Tm 2
τ m + 0.2Tm 2
Tm 2 τm > 3
α = 0 ;β =1; N = ∞ .
0.85K u
0.35Tu
τm Tm1 = 0.2 ,
0.17Tu
Tm 2 Tm1 = 0.2 .
α = 0 ;β =1; N = ∞ .
2
Ti
Kc
Km = 1
Td
100
Kc =
)]
(38 + 40[1 − e (
)(K τ T )(1 + 0.34[T τ ] − 0.2[T
(
)
]),
T = τ (0.5 + 1.4[1 − e
]) (1 + 0.48[1 − e
(
)
) + 0.6T .
T = 0.42τ (1 − e
i
d
2
Ti
Kc
1
Minimum IAE –
Kc
Shinskey (1994),
3.33Tm1 K m τm
p. 159.
Model: Method 1
1
FA
− 1.5 Tm1 τ m
m m
m1
− Tm1 1.5 τ m
m
m
m2
m
m2
τm ]2
),
− Tm 2 τ m
− 1.2 Tm1 τ m
m2
x1 , x 2 , x 3 and x 4 are given by the following equation:
2
3
τ  τ 
τ 
ξ τ
exp[a + b m  + c m  + d m  + e m m + fξ m + gξ m 2
Tm1
T
T
T
 m1   m1 
 m1 
3
2
3
2
τ 
τ 
τ 
ξm τm
2
2
+ i m  ξ m + j m  ξ m + k  m  ξ m ] ;
T
T
T
Tm1
 m1 
 m1 
 m1 
K c = Tm1x1 τm , Ti = τm x 2 , Td = τm x 3 , α = 1 − x 4 ; coefficients of x1 , x 2 , x 3 and x 4
+h
are given below. 1.4 ≤ M s ≤ 2 ; β = 0 ; N = ∞ .
a
b
c
d
e
f
g
h
i
j
k
x1
x2
x3
x4
1.40
-11.60
14.17
-6.44
8.28
-0.07
0.13
-4.66
-0.99
-3.03
2.89
2.43
-2.50
-4.16
2.85
-0.30
0.1
-1.72
15.51
-7.98
-8.45
4.66
1.32
-0.51
0.70
-1.06
0.02
-0.09
-7.43
1.77
2.64
4.77
-3.74
-1.44
1.27
1.34
-0.37
1
-5.97
-0.78
-10.63
18.85
-10.97
6.44
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum IE –
Shen (2000).
Model: Method 1
3
3
Kc
Ti
Td
Comment
Kc
Ti
Td
Km = 1
255
x1 , x 2 , x 3 and x 4 are given by the following equation:
2
3
 τm   τ m 
 τm 
 + c


 + eξ m + f ξ m 2
exp[a + b
  τ + T  + d τ + T 
τ
+
T
m1 
m1 
m1 
 m
 m
 m
2
3
 τm

 τm

 τm

ξ m + h 
 ξ m + i
 ξ m
+ g
τ
+
T
τ
+
T
τ
+
T
m1 
m1 
m1 
 m
 m
 m
2
3
 τm
 2
 τm

 τm

ξ m + k 
 ξ m 2 + l
 ξ m 2 ] ;
+ j
τ
+
T
τ
+
T
τ
+
T
m1 
m1 
m1 
 m
 m
 m
K c = Tm1x1 τm , Ti = τm x 2 , Td = τm x 3 , α = 1 − x 4 ; coefficients of x1 , x 2 , x 3 and x 4
are given below. M s = 2 ; β = 0 ; N = ∞ ; 0 < ξ m < 1 ; 0 ≤ τm Tm1 ≤ 1 .
a
b
c
d
e
f
g
h
i
j
k
l
x1
x2
x3
x4
1.73
-17.51
30.73
-24.69
0.15
-0.12
3.30
33.07
-37.64
2.63
-34.57
36.88
2.28
0.87
-24.00
15.09
-0.01
-0.02
-8.03
45.21
-22.48
3.89
-22.39
8.32
1.43
-1.94
14.82
-21.44
-0.25
0.16
-1.06
-43.39
51.16
-3.25
36.04
-34.95
-1.60
4.30
-12.16
26.54
1.33
-1.08
-17.56
38.13
-56.45
14.80
-39.33
51.18
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
256
Rule
Minimum IE –
Shen (2000).
Model: Method 1
Madhuranthakam
et al. (2008).
Model: Method 1
4
17-Mar-2009
4
5
Kc
Ti
Td
Comment
Kc
Ti
Td
Km = 1
Kc
Ti
Td
Tm1 > Tm 2 ;
τm < Tm1 + Tm 2 .
x1 , x 2 , x 3 and x 4 are given by the following equation:
2
3
 τm   τ m 
 τm 
 + c
 + d
 + eξ m + f ξ m 2
exp[a + b



τ +T 
m1 
 τm + Tm1   τm + Tm1 
 m
2
3
 τm

 τm

 τm

ξ m + h 
 ξ m + i
 ξ m
+ g
τ
+
T
τ
+
T
τ
+
T
m1 
m1 
m1 
 m
 m
 m
2
3
 τm
 2
 τm

 τm

ξ m + k 
 ξ m 2 + l
 ξ m 2 ] ;
+ j
τ
+
T
τ
+
T
τ
+
T
m1 
m1 
m1 
 m
 m
 m
K c = Tm1x1 τm , Ti = τm x 2 , Td = τm x 3 , α = 1 − x 4 ; coefficients of x1 , x 2 , x 3 and x 4
are given below. M s = 2 ; β = 0 ; N = ∞ ; 0.4 ≤ ξ m ≤ 1 ; 1 < τm Tm1 ≤ 15 .
5
x1
x2
x3
x4
a
b
c
d
e
f
g
h
i
j
k
l
128.9
-560.3
769.2
-338.9
-324.8
194.3
1421
-1981.6
895.0
-848.1
1186.1
-538.1
92.8
-391
521.6
-225.5
-224.5
137.5
963.9
-1310.6
574.4
-590.8
808.0
-356.7
-3.1
46.3
-107.4
63.1
5.2
-2.5
-79.6
176.0
-103.6
36.2
-78.4
45.8
-119.9
539.5
-785.1
371.8
233.9
-115.7
-1068
1560.5
-741.5
529.2
-774.6
369.2
Kc =
0.6202  Tm1 + Tm 2 
1 +


K m 
τm

0.9931
,
2
 




τm
τm
τ 
 ,
 + 13.81
Ti = τm 1 + m  4.566 − 14.906
τ +T +T  

m1
m2 
 m
 τm + Tm1 + Tm 2 
 Tm1  

Td = 0.0921(τ m + Tm 2 )
1.4849
τm 
T + Tm 2 
1 + m1


Tm1 
τm

, N = 10, α = 0 , β = 1 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Madhuranthakam
et al. (2008).
Model: Method 1
6
Ti
Kc
Comment
Td
Minimum performance index: servo tuning
Tm1 > Tm 2 ;
Ti
Td
τm < Tm1 + Tm 2 .
Minimum performance index: servo/regulator tuning
x1 K m
x 2Tm1
x 3Tm1
N=∞
Taguchi et al.
τm
τm
(1987).
α
α
x1
x 2 x3
β T
x1
x 2 x3
β T
m1
m1
Model: Method 1
11.47 0.74 0.40 0.64 0.84 0.2 0.41 1.32 1.28 -0.15 0.37 1.6
3.39 1.17 0.67 0.57 0.80 0.4 0.38 1.34 1.25 -0.24 0.27 1.8
1.70 1.35 0.89 0.47 0.75 0.6 0.35 1.38 1.21 -0.30 0.18 2.0
1.06 1.39 1.06 0.35 0.69 0.8 0.33 1.53 1.12 -0.37 -0.04 2.5
0.75 1.37 1.18 0.21 0.62 1.0 0.33 1.75 1.06 -0.37 -0.19 3.0
0.58 1.34 1.25 0.08 0.55 1.2 0.35 2.26 1.08 -0.32 -0.30 4.0
0.48 1.32 1.28 -0.05 0.46 1.4 0.37 2.82 1.19 -0.24 -0.18 5.0
0
x1K u
x 2 Tu
Minimum ITAE
Coefficient values:
– Pecharromán
α
α
x1
x2
φc
x1
x2
φc
(2000a),
0
0.280 0.512 0.281 − 730
Pecharromán and 0.147 1.150 0.411 − 146
Pagola (2000). 0.170 1.013 0.401
− 140 0 0.291 0.503 0.270 − 630
Model:
0.1713 1.0059 0.4002 − 139.7 0 0.297 0.483 0.260 − 52 0
Method 15;
Km = 1;
0.195 0.880 0.386 − 1330 0.303 0.462 0.246 − 410
Tm1 = 1 ;
0.210 0.720 0.342 − 1250 0.307 0.431 0.229 − 30 0
ξm = 1 .
0.234 0.672 0.345 − 115 0 0.317 0.386 0.171 − 19 0
0.249
0.610
0.323
− 1050
0.324
0.302
0.004
− 10 0
0.262
0.568
0.308
− 94 0
0.320
0.223
-0.204
− 60
0.274
0.545
0.291
− 84 0
1.0409
6
Kc =
0.5723  Tm1 + Tm 2 

1 +

τm
K m 

,
1.6501
Ti = 0.2476


τm
(τm + Tm1 + Tm 2 )1 + Tm1 + Tm 2 
τm
Tm1


Td = 0.0943(τ m + Tm 2 )
,
1.4636
T + Tm 2 
τm 
1 + m1


Tm1 
τm

, N = 10, α = 0 , β = 1 .
257
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
258
Rule
Kc
Ti
Td
Comment
Minimum ITAE
– Pecharromán
and Pagola
(2000).
0.7236K u
0.5247Tu
0.1650Tu
N = 10;
Model:
Method 15
Minimum ITAE
– Pecharromán
(2000a).
Model:
Method 15;
Km = 1;
Tm1 = 1 ;
β = 1 ; N = 10;
ξm = 1 ;
0.1 < τ m < 10 .
Minimum ITAE
– Pecharromán
(2000b), p. 145.
Model:
Method 15;
Km = 1;
Tm1 = 1 ;
β = 1 ; N = 10;
ξm = 1 .
α = 0.5840 , β = 1 , φc = −139.650 , K m = 1 ; Tm1 = 1 ; ξ m = 1 .
x1K u
x 2 Tu
x 3Tu
x1
Coefficient values and other data:
α
x2
x3
0.803
0.509
0.167
0.585
− 146 0
0.727
0.524
0.165
0.584
− 140 0
0.672
0.532
0.161
0.577
− 134 0
0.669
0.486
0.170
0.550
− 1250
0.600
0.498
0.157
0.543
− 1150
0.578
0.481
0.154
0.528
− 1050
0.557
0.467
0.149
0.504
− 930
0.544
0.466
0.141
0.495
− 84 0
0.537
0.444
0.144
0.484
− 730
0.527
0.450
0.131
0.477
− 630
0.521
0.440
0.129
0.454
− 52 0
0.515
0.429
0.126
0.445
0.509
0.399
0.132
0.433
− 410
0.496
0.374
0.123
0.385
− 19 0
0.480
0.315
0.112
0.286
− 10 0
0.430
0.242
0.084
0.158
− 60
Coefficient values and other data:
α
x2
x3
φc
x1K u
x1
x 2 Tu
φc
− 30 0
x 3Tu
0.7965
0.5139
0.1638
0.5854
− 146.10
0.7139
0.5275
0.1625
0.5844
− 140.00
0.6675
0.5109
0.1600
0.5771
− 134.00
0.6540
0.4240
0.1704
0.5498
− 125.00
0.5996
0.4736
0.1629
0.5428
− 115.00
0.5801
0.4660
0.1573
0.5276
− 105.00
0.5604
0.4545
0.1512
0.5042
− 93.00
0.5500
0.4520
0.1470
0.4951
− 84.00
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Minimum ITAE
– Pecharromán
(2000b), p. 145 –
continued.
Kuwata (1987).
Model: Method 1
7
Kc =
Ti
Td
x1K u
x 2 Tu
x 3Tu
Coefficient values and other data:
α
x2
x3
x1
Kuwata (1987).
Model: Method 1
φc
0.5451
0.4321
0.1491
0.4844
− 73.00
0.5312
0.4431
0.1361
0.4769
− 63.00
0.5247
0.4356
0.1325
0.4544
− 52.0 0
0.5189
0.4260
0.1281
0.4452
− 41.00
0.5153
0.3971
0.1324
0.4327
− 30.00
0.4987
0.3680
0.1227
0.3855
− 19.00
0.4846
0.3131
0.1146
0.2860
− 10.00
0.4610
0.2471
0.0966
0.1577
− 6.00
Direct synthesis: time domain criteria
Ti
0
Ti
7
Kc
8
Kc
9
Kc
Ti
Td
10
Kc
Ti
Td
0.8(2Tm + τm )
1
−
, x1 =
K m (2Tm + τm − x1 ) K m
[
8
Comment
Kc
α =1
α = 1; β = 1;
N =∞.
(2Tm + τm )2 − 0.267τm [6Tm 2 + 6Tm τm + τm 2 ] ;
]
[
]
 0.833 2Tm 2 + 4Tm τm + τm 2  1.667 2Tm 2 + 4Tm τm + τm 2

.
Ti = 1 −


2Tm + τm
(2Tm + τm )2


0.8(2ξ m Tm1 + τm )
1
Kc =
−
,
K m (2ξ m Tm1 + τm − x1 ) K m
x1 =
(2ξmTm1 + τm )2 − 0.267τm [6Tm12 + 6ξmTm1τm + τm 2 ] ;
[
]
[
]
 0.833 2Tm12 + 4ξm Tm1τm + τm 2  1.667 2Tm12 + 4ξ mTm1τm + τm 2

.
Ti = 1 −


2ξm Tm1 + τm
(2ξmTm1 + τm )2


9
2
2
1.20 x1
1
x
x
x − (2Tm + τm )x 2
−
; Ti = 1.667 2 − 4.167 23 ; Td = 0.833x 2 1 3
,
2
Km x2
Km
x1
x1
x1 − 0.833x 2 2
3
Kc =
2
2
2
2
3
x1 = 2Tm + 4Tm τm + τm , x 2 = 6Tm τm + 6Tm τm + τm .
10
(
3
Kc =
)
2
2
1.20 x1
1
2.778 x1 − 2.5x 2 x 2
=
−
;
; x1 = 2Tm12 + 4ξm Tm1τm + τm 2 ;
T
i
K m x 22 K m
x14
x1 − (2ξm Tm1 + τm )x 2
2
Td = 0.833x 2
x13 − 0.833x 2 2
, x 2 = 6Tm12 τm + 6ξ m Tm1τm 2 + τm 3 .
259
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
260
Rule
Taguchi and
Araki (2000).
Model: Method 1
Kc
Ti
Td
Comment
11
Kc
Ti
0
ξm = 1
12
Kc
Ti
0
ξ m = 0.5
τ m Tm ≤ 1.0 ; OS ≤ 20% .
Taguchi and
Araki (2000).
Model: Method 1
14
Kc
Ti
Td
ξm = 1
15
Kc
Ti
Td
ξ m = 0.5
τ m Tm1 ≤ 1.0 ; OS ≤ 20% ; N not specified.
11
Kc =

1 
0.5316
,
 0.3717 +

[τm Tm ] + 0.0003414 
Km 
(
)
Ti = Tm 2.069 − 0.3692[τm Tm ] + 1.081[τm Tm ] − 0.5524[τm Tm ] ,
2
3
α = 0.6438 − 0.5056(τm Tm ) + 0.3087(τm Tm ) − 0.1201(τm Tm ) .
2
12
Kc =
3

0.05627
1 
 0.1000 +
,
2 

Km 
[(τm Tm ) + 0.06041] 
(
)
Ti = Tm 4.340 − 16.39[τm Tm ] + 30.04[τm Tm ] − 25.85[τm Tm ] + 8.567[τm Tm ] ,
2
3
4
α = 0.6178 − 0.4439(τm Tm ) − 7.575(τm Tm ) + 9.317(τm Tm ) − 3.182(τm Tm ) .
2
14
Kc =
3
4

0.6978
1 
1.389 +
,
K m 
[(τm Tm1 ) + 0.02295]2 
(
)
Ti = Tm1 0.02453 + 4.104[τm Tm1 ] − 3.434[τm Tm1 ] + 1.231[τm Tm1 ] ,
2
3
4

τ 
τ 
τ  
τ
Td = Tm1  0.03459 + 1.852 m − 2.741 m  + 2.359  m  − 0.7962  m   ,
Tm1
 Tm1 
 Tm1 
 Tm1  

2
3
α = 0.6726 − 0.1285(τm Tm1 ) − 0.1371(τm Tm1 ) + 0.07345(τm Tm1 ) ,
2
3
β = 0.8665 − 0.2679(τm Tm1 ) + 0.02724(τm Tm1 ) .
2
15
Kc =

0.5013
1 
 0.3363 +
,
K m 
[(τm Tm1 ) + 0.01147]2 
(
)
T = T (0.03392 + 2.023[τ T ] − 1.161[τ T ] + 0.2826[τ T ] ) ,
Ti = Tm1 − 0.02337 + 4.858[τm Tm1 ] − 5.522[τm Tm1 ] + 2.054[τm Tm1 ] ,
2
3
2
d
m1
m
m1
m
m1
3
m
m1
α = 0.6678 − 0.05413(τm Tm1 ) − 0.5680(τm Tm1 ) + 0.1699(τm Tm1 ) ,
2
β = 0.8646 − 0.1205(τm Tm1 ) − 0.1212(τm Tm1 ) .
2
3
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Arvanitis et al.
(2000a).
Model: Method 1
Huang et al.
(2000).
16
Direct synthesis: frequency domain criteria
0 < x1 < 1 ;
Tm1
16
Ti
Kc
suggested


T
x1  2ξm + m1 
x1 = 0.5 .
τm 

α = 1, β = 1, N = ∞ .
Model: Method 1
17 K c
Ti
Td
τm
(
2
Tm1
Km
)


T
T
8(1 − x1 ) m1 (2ξ m τm + Tm1 ) 2ξ2 (1 − x1 ) + x1 m1 (2ξm τm + Tm1 ) + τm  ,
τm
τm


ξ
Kc = λ
α=
Comment
(
where
17
Td
x1Tm1 
T 
(x1Tm1 τm )(2ξm + (Tm1 τm ))
 2ξm + m1  , Ti =
,

K m τm 
τm 
1  Tm1 (2ξ m τm + Tm1 ) 4ξ 2 (1 − x1 ) + x1 
 − x2
1 +
τm 
τm 2

Kc =
x2 =
Ti

)



2
(2ξ m τ m + Tm1 ) + 1 2 x1 + 2ξ2 (1 − x1 )2  Tm1  (2ξ m τm + Tm1 )2  ≥ 0 .
2
τm 



 Km 
2Tm1ξ m + 0.4τm
, Ti = 2Tm1ξ m + 0.4τm , Td =
K m τm
2
Tm1 + 0.8Tm1ξ m τm
0.8Tm1ξm τm
,
2Tm1ξ m
0.5Tm1 2
−1, β =
− 1 , N = min[20,20Td ] ;
2
2Tm1ξ m + 0.4τ m
Tm1 + 0.8Tm1ξ m τ m
λ = 0.6 , τmξ m Tm1 ≤ 1 , A m = 2.83 ; λ = 0.7 , 1 < τmξ m Tm1 ≤ 2 , A m = 2.43 ;
λ = 0.8 , τmξ m Tm1 > 2 , A m = 2.13 .
261
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
262
Rule
Kc
18
Shamsuzzoha
and Lee (2007a).
Model: Method 1
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
ξ m = 0. 5 .
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
ξ m = 0. 7 .
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
ξ m = 1. 0 .
Kc =
Td =
Td
Comment
Ti
Td
λ = x1Tm
τm Tm
Ms
1.9
0.18
0.20
0.22
0.24
0.25
0.27
τm Tm
Ms
2.0
0.12
0.15
0.17
0.19
0.21
0.22
0.23
1.8
1.9
0.2
0.34
0.28
0.3
0.35
0.29
0.4
0.38
0.32
0.5
0.41
0.34
0.6
0.46
0.38
0.7
0.51
0.41
0.8
0.55
0.43
Ultimate cycle
0
x 2 Tu
x 1K u
2.0
0.25
0.26
0.28
0.30
0.33
0.36
0.38
0.9
1.0
1.25
1.5
2.0
2.5
3.0
α =1
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
0.05
0.11
0.83
0.39
x 1K u
0.25
0.30
0.16
0.18
x 2 Tu
0.23
0.18
0.35
0.40
0
0.20
0.20
0.15 0.45
0.14 0.50
α =1
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.01
0.03
0.07
0.11
0.27
0.17
0.14
0.14
x 1K u
0.05
0.10
0.15
0.20
0.14
0.17
0.19
0.20
x 2 Tu
0.14
0.14
0.14
0.14
0.25
0.30
0.35
0.40
0
0.20
0.20
0.14
0.14
0.45
0.50
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.04
0.11
0.17
0.20
0.95
0.53
0.38
0.30
0.05
0.10
0.15
0.20
0.21
0.21
0.21
0.20
0.23
0.20
0.17
0.15
0.25
0.30
0.35
0.40
0.20
0.20
0.14
0.14
0.45
0.50
α =1
2
Ti
6λ2 − x 3 + x1τm − 0.5τm
, Ti = Tm1 + Tm 2 + x1 − x 2 , x 2 =
,
K m (4λ + τm − x1 )
4 λ + τ m − x1
x 3 + x1 (Tm1 + Tm 2 ) + Tm1Tm 2 −
[
4
[
4
]
3
2
0.167 τm − 0.5x1τm + x 3τm + 4λ3
4λ + τm − x1
− x2 ,
Ti
[
]
Tm1 (1 − (λ Tm1 )) e − τ m Tm1 − 1 − Tm 2 (1 − (λ Tm 2 )) e − τ m Tm 2 − 1
,
Tm 2 − Tm1
2
x1 =
Kc
Ti
N = ∞ , α = 0.6 , β = 0 . Coefficients of x1 (deduced from graph):
1.8
0.27
0.29
0.31
0.33
18
17-Mar-2009
2
]
x 3 = Tm 2 (1 − (λ Tm 2 )) e − (τ m Tm 2 ) − 1 + x1Tm 2 .
2
4
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
ξ m = 1. 5 .
x 1K u
x 2 Tu
0
α =1
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
ξ m = 0. 5 ;
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.15
0.23
0.27
0.80
0.60
0.47
x 1K u
0.10
0.15
0.20
0.27
0.24
0.22
x 2 Tu
0.38
0.27
0.20
0.25
0.30
0.35
0.20
0.20
0.20
0.17
0.15
0.14
0.40
0.45
0.50
x2
τm
Tu
x1
x3
x1
x 3 Tu
x2
x3
τm
Tu
x1
x2
x3
τm
Tu
0.42 0.24 0.19 0.18 0.19 0.11 0.07 0.30
α = 1; β = 1;
0.27 0.15 0.17 0.23 0.17 0.10 0 0.36
N =∞.
Kuwata (1987);
x 1K u
x 2 Tu
x 3 Tu
x 1 , x 2 deduced
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
from graphs.
Tu
Tu
Tu
ξm = 0.7 ;
0.54 0.32 0.14 0.18 0.22 0.16 0.03 0.36 0.20 0.14 0 0.50
α = 1; β = 1;
0.37 0.25 0.12 0.23 0.20 0.14 0.01 0.42
N =∞.
0.29 0.19 0.08 0.30 0.20 0.14 0 0.47
Kuwata (1987);
x 1K u
x 2 Tu
x 3 Tu
x 1 , x 2 deduced
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
from graphs.
Tu
Tu
Tu
ξm = 1 ; α = 1 ;
0.61 0.42 0.12 0.18 0.30 0.20 0.06 0.36 0.20 0.14 0 0.50
β =1; N = ∞ .
0.47 0.34 0.10 0.23 0.21 0.17 0.025 0.42
0.38 0.27 0.08 0.30 0.20 0.14 0.01 0.47
Kuwata (1987);
x 1K u
x 2 Tu
x 3 Tu
x 1 , x 2 deduced
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
from graphs.
Tu
Tu
Tu
ξ m = 1. 5 ; α = 1 ;
0.67 0.48 0.11 0.18 0.33 0.25 0.07 0.36 0.20 0.14 0 0.50
β =1; N = ∞ .
0.54 0.43 0.09 0.23 0.25 0.18 0.03 0.42
0.43 0.34 0.08 0.30 0.20 0.15 0.02 0.47
Oubrahim and
Tm1 = Tm 2 ;
19
Leonard (1998).
0.5Tu
0.125Tu
0. 6 K u
0.1 < τm Tm1 < 3
Model: Method 1
2
19
α = 1 − 1.3
α = 1−
 16 − K m K u 
16 − K m K u
 , 10% overshoot.
, β = 1 − 1.69

17 + K m K u
 17 + K m K u 
38
1.717
, 20% overshoot.
, β =1−
29 + 3.5K m K u
(1 + 0.121K m K u )2
263
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
264
3.5.8 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
Y(s)
Model
−
F2 (s)
Table 27: PID controller tuning rules – SOSPD model G m (s) =
G m (s) =
Rule
Huang et al.
(1996).
1
Kc
1
Kc
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )
K m e − sτ m
2 2
Tm1 s + 2ξ m Tm1s + 1
Ti
Td
Comment
Minimum performance index: regulator tuning
0
Model: Method 1
Ti
Minimum IAE. Equations continued into the footnote on pp. 265 and 266;
0 < Tm 2 Tm1 ≤ 1 ; 0.1 ≤ τ m Tm1 ≤ 1 .
Kc =
τm
τ T 
1 
T
+ 76.6760 m 2 − 3.3397 m m2 2 
0.1098 − 8.6290
K m 
Tm1
Tm1
Tm1 
τ 
1 
1.1863 m 
+
T 
Km 
 m1 

−0.8058
T 
1 
 − 52.0778 m 2 
+
T 
Km 
 m1 

τ 
+ 23.1098 m 
 Tm1 
0.8405
0.6642
T 
− 12.1033 m 2 
 Tm1 
τ 
+ 20.3519 m 
 Tm1 
2.1123 



2.1482 



b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
+
τ T 
1 
9.4709 m  m 2 
Km 
Tm1  Tm1 

+
T τ 
1 
 − 19.4944 m 2  m 
Km 
Tm1  Tm1 

0.5306
+ 13.6581
Tm 2  τ m 


Tm1  Tm1 
−0.4500
− 28.2766
−1.0781 
τ m  Tm 2 


Tm1  Tm1 



1.1427 



τ m Tm 2
τm
Tm 2


2
T
1 
Tm1
Tm 1
+
− 19.1463e
+ 8.8420e
+ 7.4298e Tm1 − 11.4753 m 2  ;
Km 
τm 


2

τ 
T
τ T 
τ
Ti = Tm1  − 0.0145 + 2.0555 m + 0.7435 m 2 − 4.4805 m  + 1.2069 m m2 2 

Tm1
Tm1
Tm1 
 Tm1 


2
3
2

T 
τ 
T τ  
+ Tm1 0.2584 m 2  + 7.7916 m  − 6.0330 m 2  m  
Tm1  Tm1  

 Tm1 
 Tm1 


2
3
4

τ  
T 
τ T 
+ Tm1 3.9585 m  m 2  − 3.0626 m 2  − 7.0263 m  
Tm1  Tm1 

 Tm1  
 Tm1 

3
2
2
3

 τ  T  
T   τ 
T τ 
+ Tm1 7.0004 m 2  m  − 2.7755 m 2   m  − 1.5769 m  m 2  
Tm1  Tm1 

 Tm1  Tm1  
 Tm1   Tm1 

4
5
5

T  
τ 
T 
+ Tm1 3.1663 m 2  + 2.4311 m  − 0.9439 m 2  

 Tm1  
 Tm1 
 Tm1 

4
2
3

T   τ  
T τ 
+ Tm1  − 2.4506 m 2  m  − 0.2227 m 2   m  
Tm1  Tm1 

 Tm1   Tm1  

2
3
4

 τ  T 
τ T  
+ Tm1 1.9228 m   m 2  − 0.5494 m  m 2   ;
Tm1  Tm1  

 Tm1   Tm1 


2

τ 
τ T 
τ
T
x1 = Tm1 − 0.0206 + 0.9385 m + 0.7759 m 2 − 2.3820 m  + 2.9230 m m2 2 

Tm1
Tm1
Tm1 
 Tm1 


2
3
2

T 
τ 
T τ  
+ Tm1 − 3.2336 m 2  + 7.2774 m  − 9.9017 m 2  m  
Tm1  Tm1  

 Tm1 
 Tm1 


2
3
4

τ  
T 
τ T 
+ Tm1 2.7095 m  m 2  + 6.1539 m 2  − 11.1018 m  
Tm1  Tm1 

 Tm1  
 Tm1 

265
b720_Chapter-03
266
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
3
2
2
6

 τm  
 τ m   Tm 2 
Tm 2  τ m 










− 2.274
+ 5.7105
+ Tm1 10.6303
Tm1  Tm1 
Tm1   Tm1 
Tm1  





3
4
5

 τm  
 Tm 2 
τ m  Tm 2 








+ 8.0849
− 6.6597
+ Tm1 − 7.9490
Tm1  Tm1 
Tm1 
Tm1  





4
2
3

 Tm 2   τ m  
Tm 2  τ m 








− 7.6469
+ Tm1 − 4.4897
Tm1  Tm1 
Tm1   Tm1  




2
3
4
5

 Tm 2  
 τ m  Tm 2 
 τ m   Tm 2 












+ 4.1225
+ 5.0694
+ Tm1 2.2155
Tm1   Tm1 
Tm1  Tm1 
Tm1  






5
6
2
4

 τ m   Tm 2  
 Tm 2 
Tm 2  τ m 










− 1.6307
− 1.1295
+ Tm1 0.519
Tm1  Tm1 
Tm1 
Tm1   Tm1  





4
2
3
3
5

 τ m   Tm 2 
 τ m   Tm 2 
τ m  Tm 2  
;











− 0.9321
+ 0.9524
+ Tm1 2.2875
Tm1   Tm1 
Tm1   Tm1 
Tm1  Tm1  





α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; bf 2 = 0 , a f 3 = 0 ;
a f 4 = 0 ; K 0 = 1 ; b f 3 = 0 ; b f 4 = x 1 ; a f 5 = x1 10 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Huang et al.
(1996).
2
2
Kc
Ti
Td
Comment
Kc
Ti
0
Model: Method 1
267
Minimum IAE. Equations continued into the footnote on p. 268.
0.4 ≤ ξ m ≤ 1 , 0.05 ≤ τ m Tm1 ≤ 1 .
Kc =
 τ 
1 
τ
− 35.7307 + 14.19 m + 1.4023ξ m + 6.8618ξ m  m  
K m 
Tm1
 Tm1  
+
τ 
τ 
1 
 − 0.9773 m  + 55.5898ξ m  m 
T 
T 
Km 
 m1 
 m

+
τ 
τ
1 
53.8651 m ξ m 2 + 11.4911ξ m 3 + 0.8778 m 
T 
Km 
Tm1
 m1 

+
τ 
1 
− 29.8822 m 
T 
Km 
 m1 

+
τ 
1 
 − 25.4293ξ m 1.4622 − 0.1671ξ m 58981 + 0.0034ξ m  m 
T 
Km 
 m1 

3
−0.6951
0.086
τ 
+ 53.535 m 
 Tm1 
2
τ  
− 3.3093ξ m  m  
 Tm1  
−0.4762
−1.6624 




− 16.9807ξ m 1.1197 


−2.1208 



τm 
τm
τm
1 
3.0836
1.2103
Tm1 
+
− 25.0355
ξm
− 54.9617
ξm
− 0.1398e
Km 
Tm1
Tm1



+
τ m ξm
ξ T 
1 
− 8.2721e ξm + 6.3542e Tm1 + 1.0479 m m1  ;
τm 
Km 


2

τ 
τ 
τ
Ti = Tm1 0.2563 + 11.8737 m − 1.6547ξ m − 16.1913 m  − 9.7061ξ m m 

Tm1
Tm1 
 Tm1 


3
2

τ 
τ 
 τ 
+ Tm1 3.5927ξ m 2 + 19.5201 m  − 14.5581ξ m  m  + 2.939ξ m 2  m 

 Tm1 
 Tm1 
 Tm1 

4
3

 τm  
 τm 
3






+ 50.5163ξ m 
+ Tm1 − 0.4592ξ m − 34.6273
Tm1 
Tm1  





2


τm
2  τm 
3
4




+
ξ
−
ξ
8
.
6966
6
.
9436
+ Tm1 8.9259ξ m 
m
m
Tm1 
Tm1





b720_Chapter-03
268
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
5
4
3

τ  
τ 
τ 
+ Tm1 27.2386 m  − 20.0697ξ m  m  − 42.2833ξ m 2  m  

 Tm1  
 Tm1 
 Tm1 

2


τ 
τ 
+ Tm1 8.5019 m  ξ m 3 − 12.2957 m ξ m 4 + 8.0694ξ m 5 − 2.7691ξ m 6 


 Tm1 
 Tm1 


6
5


τ 
τ 
τ
+ Tm1  − 7.7887 m  + 2.3012ξ m  m  + 4.6594 m ξ m 5 
Tm1


 Tm1 
 Tm1 


4
3
2


τ 
τ 
τ 
+ Tm1 8.8984 m  ξ m 2 + 10.2494 m  ξ m 3 − 5.4906 m  ξ m 4  ;


 Tm1 
 Tm1 
 Tm1 


2

τ 
τ 
τ
x1 = Tm1 − 0.021 + 3.3385 m + 0.185ξ m − 0.5164 m  − 0.9643ξ m m 

Tm1
Tm1 
 Tm1 


3
2

τ 
τ 
 τ 
+ Tm1  − 0.8815ξ m 2 + 0.584 m  − 12.513ξ m  m  + 1.3468ξ m 2  m 

 Tm1 
 Tm1 
 Tm1 

4
3


 τm 
 τm 
3
4






−
ξ
15
.
3014
3
.
1988
+
ξ
+ Tm1 2.3181ξ m − 5.2368
m
m
T 
Tm1 


m1 




2
5

 τm  
τm
2  τm 
3






− 2.0411
ξ m + 3.4675
+ Tm1 11.9607ξ m 
Tm1 
Tm1
Tm1  





4
3
2


 τm 
 τm 
2  τm 
3








+ Tm1 − 0.8219ξ m 
−
ξ
−
ξ
15
.
0718
1
.
8859
m
m
T 
T 
Tm1 


m1 
m1 





6
5

 τm  
 τm 
 τm  4
5








+ 0.529ξ m 
ξ m + 2.2821ξ m − 0.9315
+ Tm1 0.4841
Tm1 
Tm1 
Tm1  






4
3


 τm 
 τm 
6
2
3






ξ
7
.
1176
ξ
+
+ Tm1 − 0.6772ξ m − 1.4212
m
m
T 
Tm1 


m1 




2


 τm 
τm
4
5

;


ξ
+
ξ
0
.
5497
+ Tm1 − 2.3636
m
m
Tm1 
Tm1





α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; bf 2 = 0 , a f 3 = 0 ;
a f 4 = 0 ; K 0 = 1 ; b f 3 = 0 ; b f 4 = x 1 ; a f 5 = x1 10 .
FA
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Madhuranthakam
et al. (2008).
Model: Method 1
3
Kc
Ti
Td
Kc
Ti
0
269
Comment
Tm1 > Tm 2 ;
τm < Tm1 + Tm 2 .
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = K c ; b f 3 = 0 , b f 4 = x1 , a f 5 = 0.1x1 .
Madhuranthakam
et al. (2008).
Model: Method 1
4
Minimum performance index: servo tuning
Tm1 > Tm 2 ;
0
Ti
τm < Tm1 + Tm 2 .
Kc
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = K c ; b f 3 = 0 , b f 4 = x1 , a f 5 = 0.1x1 .
3
0.6202  Tm1 + Tm 2 

1 +
Kc =

K m 
τm

0.9931
1.4849
τ 
T + Tm 2 

, x1 = 0.0921(τ m + Tm 2 ) m 1 + m1

Tm1 
τm

,
2
 




τm
τm
τ 
 .
 + 13.81
Ti = τm 1 + m  4.566 − 14.906
τ +T +T  

m1
m2 
 m
 τm + Tm1 + Tm 2 
 Tm1  

1.0409
4
Kc =
0.5723  Tm1 + Tm 2 

1 +

K m 
τm

, x1 = 0.0943(τm + Tm 2 )
1.6501
Ti = 0.2476


τm
(τm + Tm1 + Tm 2 )1 + Tm1 + Tm 2 
Tm1
τ
m


.
1.4636
τm  Tm1 + Tm 2 

1 +

Tm1 
τm

,
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
270
Rule
Huang et al.
(1996).
5
17-Mar-2009
5
Kc
Ti
Td
Comment
Kc
Ti
0
Model: Method 1
Minimum IAE. Equations continued into the footnote on p. 271; 0 < Tm 2 Tm1 ≤ 1 ,
0.1 ≤ τ m Tm1 ≤ 1 .
Kc =
1 
T
τm
τ T 
− 137.8937 m 2 − 122.7832 m m2 2 
7.0636 + 66.6512
K m 
Tm1
Tm1
Tm1 
+
0.0865
2.6405
1.0309 
 Tm 2 
 τm 
τ 
1 
26.1928 m 





33
.
6578
3
.
0098
+
+
T 
T 
T 
Km 

 m1 
 m1 
 m1 


+
2.345
1.0570
 Tm 2 
T 
T 
1 
 − 10.9347 m 2 


+ 29.4068 m 2 
141
.
511
+




τm 
Km 
 Tm1 
 Tm1 


+
−0.9450
−0.9282 
T τ 
Tm 2  τ m 
1 
34.3156 m 2  m 



70
.
1035
−
Km 
Tm1  Tm1 
Tm1  Tm1 



+
0.8866
0.8148 
τ m  Tm 2 
τ T 
1 
152.6392 m  m 2 



47
.
9791
−
Km 
Tm1  Tm1 
Tm1  Tm1 



+
τ m Tm 2
τm
Tm 2
−0.4062 

2
τ 
1 
;
− 57.9370e Tm1 + 10.4002e Tm1 + 6.7646e Tm1 + 7.3453 m 

Km 
Tm 



2

τ 
τ T 
τ
T
Ti = Tm1 0.9923 + 0.2819 m − 0.2679 m 2 − 1.4510 m  − 0.6712 m m2 2 

Tm1
Tm1
Tm1 
 Tm1 


2
3
2

T 
τ 
T τ  
+ Tm1 0.6424 m 2  + 2.504 m  + 2.5324 m 2  m  
Tm1  Tm1  

 Tm1 
 Tm1 


2
3
4

 τm  
 Tm 2 
τ m  Tm 2 








− 1.8759
+ 2.0500
+ Tm1 2.3641
Tm1  Tm1 
Tm1 
Tm1  





4
3
2
2

 τ m   Tm 2  
Tm 2  τ m 
τ m  Tm 2 










− 3.4972
− 1.3496
+ Tm1 0.8519
Tm1  Tm1 
Tm1  Tm1 
Tm1   Tm1  




3
4
5

 τm  
 Tm 2 
τ m  Tm 2 








+ 0.5862
− 3.1142
+ Tm1 − 2.4216
Tm1  Tm1 
Tm1 
Tm1  





b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
271
4
2
3

T   τ  
T τ 
+ Tm1 0.0797 m 2  m  + 0.985 m 2   m  
Tm1  Tm1 

 Tm1   Tm1  

2
3
5

T  
 τ  T 
+ Tm1 1.2892 m   m 2  + 1.2108 m 2   ;

 Tm1  
 Tm1   Tm1 

2

τ 
τ T 
τ
T
x1 = Tm1 0.0075 + 0.3449 m + 0.3924 m 2 − 0.0793 m  + 2.7495 m m2 2 

Tm1
Tm1
Tm1 
 Tm1 


2
3
2

T 
τ 
T τ  
+ Tm1 0.6485 m 2  + 0.8089 m  − 9.7483 m 2  m  
Tm1  Tm1  

 Tm1 
 Tm1 


2
3
4

 τm  
 Tm 2 
τ m  Tm 2 








− 1.0884
− 5.8194
+ Tm1 3.4679
Tm1  Tm1 
Tm1 
Tm1  





3
2
2
3

 τ m   Tm 2 
Tm 2  τ m 
τ m  Tm 2  










− 3.7055
− 1.4056
+ Tm1 12.0049
Tm1  Tm1 
Tm1   Tm1 
Tm1  Tm1  




4
5
4

 τm 
 Tm 2 
Tm 2  τ m  








− 6.3603
+ 0.3520
+ Tm1 10.0045
Tm1 
Tm1 
Tm1  Tm1  





2
3
2
3

 τ m   Tm 2  
 Tm 2   τ m 










+ 7.0404
+ Tm1 − 3.2980
Tm1   Tm1 
Tm1   Tm1  





4
5
6

 τ m  Tm 2 
 Tm 2 
 τm  










+ Tm1 1.4294
− 6.9064
+ 0.0471
Tm1  Tm1 
Tm1 
Tm1  






5
6
4
2

 Tm 2 
 τ m   Tm 2  
Tm 2  τ m 










+ Tm1 1.1839
+ 1.7087
+ 1.7444
Tm1  Tm1 
Tm1 
Tm1   Tm1  





3
3
2
4
5

 τ m   Tm 2 
 τ m   Tm 2 
τ m  Tm 2  

;










+ Tm1 − 1.2817
− 2.1281
+ 1.5121
Tm1   Tm1 
Tm1   Tm1 
Tm1  Tm1  





α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; bf 2 = 0 , a f 3 = 0 ;
a f 4 = 0 ; K 0 = 1 ; b f 3 = 0 ; b f 4 = x 1 ; a f 5 = x1 10 .
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
272
Rule
Huang et al.
(1996).
6
17-Mar-2009
6
Kc
Ti
Td
Comment
Kc
Ti
0
Model: Method 1
Minimum IAE. Equations continued into the footnote on p. 273. 0.4 ≤ ξ m ≤ 1 ;
0.05 ≤ τ m Tm1 ≤ 1 .
Kc =
 τ 
τ
1 
− 8.1727 − 32.9042 m + 31.9179ξm + 38.3405ξm  m 
K m 
Tm1
 Tm1 
τ 
τ 
τ 
1 
 + 0.2079 m 
+ 35.9456 m 
+ 29.3215 m 
T 
Km 
T
 Tm1 
 m1 
 m1 

1
+
− 21.4045ξ m 0.1311 + 5.1159ξ m1.9814 − 21.9381ξ m1.737
Km
−1.9009
0.1571
+
[
1.2234 
]
+
−0.1303
1.2008 
 τm 
τ 
1 
 − 17.7448ξ m  m 



26
.
8655
+
ξ
m

T 
Km 

 Tm1 
 m1 


+
τm 
τ
τ
1 
− 52.9156 m ξ m 1.1207 − 22.4297 m ξ m 0.3626 − 3.3331e Tm1 
Km 
Tm1
Tm1






τ m ξm
ξ T 
1 
ξm
+
8.5175e − 1.5312e Tm1 + 0.8906 m m1  [Huang (2002)];
τm 
Km 


2

τ 
τ 
τ
Ti = Tm1 1.1731 + 6.3082 m − 0.6937ξ m + 8.5271 m  − 24.7291ξ m m 

Tm1
Tm1 
 Tm1 


3
2


τ 
τ 
+ Tm1  − 6.7123ξ m  m  + 7.9559ξ m 2 − 32.3937 m  + 5.5268ξ m 6 


 Tm1 
 Tm1 


4
3


 τm 
 τm 
2  τm 








166
.
9272
36
.
3954
+
ξ
+
ξ
+ Tm1 − 27.1372
m
m
 T 
T 
Tm1 

m1 
m1 





2


τm
2  τm 
3
3
4




−
ξ
−
ξ
+
ξ
22
.
6065
1
.
6084
29
.
9159
+ Tm1 − 94.8879ξ m 
m
m
m
Tm1 
Tm1





5
4
3

 τm 
 τm 
2  τm 








− 93.8912ξ m 
− 84.3776ξ m 
+ Tm1 49.6314
Tm1 
Tm1 
Tm1  






2


 τm  4
 τm 
3
5






ξ
−
ξ
25
.
1896
19
.
7569
ξ
−
+ Tm1 110.1706
m
m
m
T 
Tm1 


m1 




b720_Chapter-03
17-Mar-2009
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
6
5
4


τ 
τ 
τ 
+ Tm1  − 12.4348 m  − 11.7589ξ m  m  + 68.3097 m  ξ m 2 


 Tm1 
 Tm1 
 Tm1 


3
2


τ 
τ 
τ
+ Tm1  − 17.8663 m  ξ m 3 − 22.5926 m  ξ m 4 + 9.5061 m ξ m 5  ;
Tm1


 Tm1 
 Tm1 


2

τ 
τ 
τ
x1 = Tm1 0.0904 + 0.8637 m − 0.1301ξ m + 4.9601 m  + 14.3899ξ m m 

Tm1
Tm1 
 Tm1 


3
2


τ 
τ 
+ Tm1 0.7170ξ m 2 − 12.5311 m  − 42.5012ξ m  m  + 17.0952ξ m 4 


 Tm1 
 Tm1 


4

 τm  
2  τm 
3






− 6.9555ξ m − 12.3016
+ Tm1 − 21.4907ξ m 
Tm1 
Tm1  





3
2


 τm 
τm
2  τm 
3






+
ξ
7
.
5855
19
.
1257
+
ξ
+ Tm1 102.9447ξ m 
m
m
T 
Tm1 
Tm1


m1 




5
4
3

 τm 
 τm 
2  τm 








− 110.0342ξ m 
− 17.2130ξ m 
+ Tm1 10.8688
Tm1 
Tm1 
Tm1  






2


 τm  4
 τm 
3
5
6






ξ
−
ξ
+
ξ
16
.
7073
16
.
2013
5
.
4409
ξ
−
+ Tm1 50.6455
m
m
m
m
T 
Tm1 


m1 




6
5
4


 τm 
 τm 
 τm 
2








ξ
10
.
9260
29
.
4445
+
−
ξ
+ Tm1 − 0.0979
m
m
T 
T 
Tm1 


m1 
m1 





3
2


 τm 
 τm 
τm
3
4
5

;




ξ
+
ξ
24
.
1917
6
.
2798
ξ
−
+ Tm1 21.6061
m
m
m
T 
Tm1 
Tm1


m1 




α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; bf 2 = 0 , a f 3 = 0 ;
a f 4 = 0 ; K 0 = 1 ; b f 3 = 0 ; b f 4 = x 1 ; a f 5 = x1 10 .
FA
273
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
274
Rule
Majhi and
Atherton (1999),
Atherton and Boz
(1998).
Model: Method 1
Kc
7
Ti
Comment
Td
Direct synthesis: time domain criteria
Coefficient
x3
0
values deduced
1
1
1
+
+
from graphs.
τm Tm 2 Tm1
Kc
α = 0 ; β = 1 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 1 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = x1 ; b f 3 = 1 ,
bf 4 = x 2 , a f 5 = 0 .
x3
x4
x5
x6
x3
x4
x5
x6
1.2
2.6
4.5
6.4
1.8
4.2
6.9
10.0
Minimum ITSE – 1.8
servo – Majhi
4.2
and Atherton
6.9
(1999).
10.0
Minimum ISTSE 2.3
– servo –
5.2
Atherton and Boz 8.4
(1998).
12.4
Minimum ISTSE 2.3
– servo – Majhi
5.2
and Atherton
8.7
(1999).
12.4
0.58
0.91
0.89
0.98
0.17
0.22
0.25
0.26
0.17
0.22
0.25
0.26
0.08
0.11
0.14
0.13
0.08
0.11
0.12
0.13
-0.81
-0.55
-0.30
-0.22
-0.31
-0.16
-0.11
-0.08
-0.29
-0.16
-0.11
-0.08
-0.16
-0.10
-0.07
-0.04
-0.16
-0.10
-0.06
-0.04
2.36
2.49
2.18
2.23
1.08
0.96
0.95
0.92
1.05
0.96
0.95
0.92
0.71
0.65
0.68
0.63
0.69
0.65
0.62
0.64
8.5
10.8
13.3
16.0
13.0
16.2
20.3
24.0
13.0
16.8
20.3
1.02
1.03
1.02
1.00
0.28
0.31
0.29
0.30
0.28
0.27
0.29
-0.16
-0.14
-0.12
-0.09
-0.07
-0.06
-0.04
-0.04
-0.06
-0.05
-0.04
2.18
2.16
2.13
2.10
0.94
0.99
0.93
0.95
0.94
0.90
0.97
16.5
20.4
25.2
31.2
16.5
20.4
25.2
0.14
0.15
0.15
0.14
0.14
0.15
0.15
-0.04
-0.03
-0.02
-0.02
-0.03
-0.03
-0.02
0.64
0.65
0.64
0.61
0.64
0.67
0.65
Minimum ISE –
servo – Atherton
and Boz (1998).
7
Equations developed from information provided by Majhi and Atherton (1999).
(T T + τmTm1 + τmTm 2 )3 , x = 1 1 − (Tm1Tm 2 + τmTm1 + τmTm 2 )3 x  ,
K c = x 4 m1 m 2

1
5
2
2
2
K m 
τm Tm1 Tm 2
K m τm 2Tm12Tm 2 2

 (T T + τ T + τ T )2

m m1
m m2
 m1 m 2
x 6 − (Tm1 + Tm 2 − τ m ) 
τ m Tm1Tm 2

 τm + Tm 2
≤ 0. 8 .
x2 = 
,
3
Tm1
(T T + τm Tm1 + τ m Tm 2 ) x 5


1 − m1 m 2


τ m 2 Tm12 Tm 2 2


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
8
Hansen (1998).
Model: Method 1
Kc
Ti
Td
Kc
Ti
0
275
Comment
χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; bf 2 = 0 ,
a f 3 = 0 ; a f 4 = 0 ; K 0 = 1 ; b f 3 = K c − (1 K m ) , b f 4 = x 2 , a f 5 = 0 .
9
Ti
Td
Kc
Arvanitis et al.
10
Ti
Td
Kc
(2000a).
Model: Method 1 α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; b = 0 , a
f1
f 1 = Ti , a f 2 = Ti Td ;
ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = 0 .
8
Kc =
[
[
2 Tm1Tm 2 + (Tm1 + Tm 2 )τm + 0.5τm 2
]
3
9K m Tm1Tm 2 τm + 0.5(Tm1 + Tm 2 )τm 2 + 0.167 τm 3
]
2
,
Ti = 1.54 x1 , α = 0.802 , nearly zero overshoot; Ti = 1.27 x1 , α = 0.711 , nearly
minimum IAE; Ti = 1.75x1 , α = 0.857 , conservative tuning;
]
[T T + (T + T )τ + 0.5τ ] ,
2[T T + (T + T )τ + 0.5τ ]
T +T +τ
.
x =
−
K
3K [T T τ + 0.5(T + T )τ + 0.167 τ ]
x1 =
[
3 Tm1Tm 2 τm + 0.5(Tm1 + Tm 2 )τm + 0.167 τm
2
3
2
m1 m 2
m1
m2
m
m
2 2
m1 m 2
2
m1
m2
m
m
m1
2
m
m1 m 2 m
m1
m2
m
3
m
m2
m
m
xT 
T 
Tm1τm
9
;
K c = 1 m1  2ξm + m1  , 0 < x1 < 1 ; suggested x1 = 0.4 ; Td =
τm 
K m τm 
x1 ( 2ξ m τm + Tm1 )
Ti =
10
Kc =


 1

 1

 1

τm 
x + 2ξ 2  − 1 + 2ξ  − 1 x 2 + ξ2  − 1   , with
2  2


x2
 x1 
 x1 
 x1   

2

 1
τm
τm 2
1+
+ ξ2  − 1 ≥ 0 , x 2 = 1 +
.
x1Tm1 (2ξ m τm + Tm1 )
x1Tm1 (2ξm τm + Tm1 )
 x1 
1 (2ξTCL 2 + τm )(2ξm τm + Tm1 )Tm1 − τmTCL 2 2
,
K m τm
TCL 2 2 + τm (2ξTCL 2 + τm )
(2ξTCL 2 + τm )(2ξm τm + Tm1 )Tm1 − τmTCL 2 2 ,
τm 2 + τm 2Tm1 (2ξ m τm + Tm1 )
2
2
Tm1 [TCL 2 + τm (2ξTCL 2 + τm )]
Td =
.
(2ξTCL 2 + τm )(2ξm τm + Tm1 )Tm1 − τmTCL 22
Ti =
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
276
Rule
Huang et al.
(2000).
Model: Method 1
Kc
Ti
Td
11 K c
Ti
0
Comment
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
bf 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = 1 ; b f 3 = 0 ; b f 4 = x 1 ;
a f 5 = x1 x 2 , x 2 not specified.
Åström and
Hägglund (2006),
pp. 252, 265.
Model:
Method 24
11
Kc = λ
12
Kc
Direct synthesis: frequency domain criteria
Ti
Td
M s = M t = 1.4
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 ; a f 3 = x1 , Td 30 ≤ x1 ≤ Td 3 ;
2
a f 4 = 0 . 5 x1 ; K 0 = 0 .
2
2Tm1ξ m + 0.4τm
T + 0.8Tm1ξ m τm
, Ti = 2Tm1ξ m + 0.4τm , x1 = m1
;
K m τm
0.8Tm1ξm τm
λ = 0.5, τm ξ m Tm1 ≤ 1 , λ = 0.6,1 < τm ξm Tm1 ≤ 2 , λ = 0.7, τmξ m Tm1 > 2 , servo;
λ = 0.6, τm ξ m Tm1 ≤ 1 , λ = 0.7,1 < τm ξ m Tm1 ≤ 2 , λ = 0.8, τm ξm Tm1 > 2 , regulator.
12
Kc =
1 
Tm1
T + 0.5x1
T (T + 0.5x1 ) 
+ 0.18 m 2
+ 0.02 m1 m 2
0.19 + 0.37
,
Km 
τm + 0.5x1
τm + 0.5x1
τm + 0.5x1 
Tm1
T + 0.5x1
T (T + 0.5x1 )
+ 0.18 m 2
+ 0.02 m1 m 2
τm + 0.5x1
τm + 0.5x1
τm + 0.5x1
Ti =
,
Tm1 (Tm 2 + 0.5x1 )
Tm 2 + 0.5x1
0.48
Tm1
0
.
0012
0
.
0007
+
+ 0.03
−
τm + 0.5x1
(τm + 0.5x1 )3
(τm + 0.5x1 )2
(τm + 0.5x1 )2
0.19 + 0.37
Td =
Tm1 (Tm 2 + 0.5x1 )
τm + 0.5x1
Tm1
Tm 2 + 0.5x1
Tm1 (Tm 2 + 0.5x1 )
0.19 + 0.37
+ 0.18
+ 0.02
τ m + 0. 5 x 1
τm + 0.5x1
τ m + 0. 5 x 1
0.29(τm + 0.5x1 ) + 0.16Tm1 + 0.2(Tm 2 + 0.5x1 ) + 0.28
 Tm1 + Tm 2 + 0.5x1 


T +T +τ +x .
m2
m
1
 m1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
277
3.6 SOSPD Model with a Zero
K (1 + sTm 3 )e −sτ m
K m (1 + Tm 3 s )e − sτ m
G m (s) = m
or G m (s) =
2
(1 + sTm1 )(1 + sTm 2 )
Tm1 s 2 + 2ξ m Tm1s + 1
or G m (s) =
K m (1 − Tm 4 s )e − sτ m
K m (1 − Tm 4 s )e −sτ m
or G m (s) =
2
(1 + sTm1 )(1 + sTm 2 )
Tm1 s 2 + 2ξ m Tm1s + 1

1 

3.6.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
+

1 

K c 1 +
Ti s 

E(s)
−
U(s)
Model
Y(s)
Table 28: PI controller tuning rules – SOSPD model with a zero
K m (1 − Tm 4s )e −sτ m
K m (1 + Tm3s )e −sτ m
K m (1 − Tm 4s )e −sτ m
G m (s ) =
or
or
2 2
(1 + sTm1 )(1 + sTm 2 ) Tm12s 2 + 2ξmTm1s + 1
Tm1 s + 2ξ m Tm1s + 1
Rule
Chien et al. (2003).
Model: Method 1
Kc
1
Kc
2
Kc
Ti
Direct synthesis: time domain criteria
Tm1
Tm1 > Tm 2
Ti
Pomerleau and Poulin 1
Tm1
(2004).
K m Tm1 + Tm 4 + τm
Model: Method 3
1
Kc =
Comment
1.5Tm1
OS < 10%;
Tm1 = Tm 2 .
Tm1
,
K m (1.414x1 + Tm 4 + τm )
x1 = 0.707Tm 2 + 0.5 4(Tm 4 τm + Tm 2Tm 4 + Tm 2 τm ) + 2Tm 2 .
2
2
Kc =
Ti
,
K m (2.414x1 + Tm 4 + τm − Ti )
4.828ξ m Tm1x1 + 2ξ mTm1 (Tm 4 + τm ) + Tm 4 τm − 2.414 x1
,
2ξ m Tm1 + Tm 4 + τm
2
Ti =
x1 obtained numerically from the solution of a cubic equation.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
278
Rule
Kc
Comment
Ti
Khodabakhshian and
Golbon (2004).
Direct synthesis: frequency domain criteria
Ti
Tm1 > Tm 2
3
Kc
Marchetti and Scali
(2000).
Model: Method 1
Also Desbiens (2007), p. 90. Model: Method 1
Robust
Negative zero.
2ξ m Tm1 + 0.5τm
2ξ mTm1 + 0.5τm
K m (2λ + τm )
2ξm Tm1 + 0.5τm
K m (2λ + τm + 2Tm 4 )
Positive zero.
2ξ m Tm1 + 0.5τm
Ultimate cycle
Luyben (2000).
Tm 4 Tm1 values.
x 1 values.
3
Kc =
Ti
Km
K u x1 K m
4
Model: Method 1
Tu x 2
0.2
0.4
0.8
1.6
3.9
3.3
2.8
3.0
τm Tm 4 = 0.2
3.8
3.4
3.0
2.9
τm Tm 4 = 0.4
4.1
3.6
3.2
3.1
τm Tm 4 = 0.6
4.3
3.8
3.4
3.2
τm Tm 4 = 0.8
4.8
4.3
3.7
3.3
τm Tm 4 = 1.0
5.2
4.6
3.9
3.4
τm Tm 4 = 1.2
5.5
5.0
4.4
3.7
τm Tm 4 = 1.4
6.0
5.4
4.7
3.8
τm Tm 4 = 1.6
(Tm1Tm 2 )2 ω6 + (Tm12 + Tm 22 )ω4 + ω2 , with ω given by solving
(TiTm 4 )2 ω4 + (Ti 2 + Tm 4 2 )ω2 + 1
 1 − 10−0.1M max 
 = 0.5π + tan −1 (Ti ω) − tan −1 (Tm 4ω) − tan −1 (Tm 2ω)
cos −1 


2


− tan −1 (Tm1 ω) − τ m ω with recommended M max = 0dB (Khodabakhshian
and Golbon, 2004); ω given by solving, for φm = 58.13 (Desbiens, 2007):
1.015 = 0.5π + tan −1 (Ti ω) − tan −1 (Tm 4ω) − tan −1 (Tm 2ω) − tan −1 (Tm1 ω) − τ m ω ;
2

T 
T  τ
τ
Ti = Tm1 1 + 0.175 m + 0.3 m 2  + 0.2 m 2  , m < 2 ;
Tm1
Tm1
Tm1
 Tm1 


2

 Tm 2 
T  τ
τm



Ti = Tm1  0.65 + 0.35
+ 0.2 m 2  , m > 2 .
+ 0.3

Tm1
Tm1
Tm1
 Tm1 


4
x 2 = (0.5 + 1.56[Tm 4 Tm1 ]) + (3.44 − 1.56[Tm 4 Tm1 ])(τm Tm 4 ) ; Tm1 = Tm 2 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models


1
+ Td s 
3.6.2 Ideal PID controller G c (s) = K c 1 +
 Ti s

R(s)
E(s)
−
+


1
K c 1 +
+ Td s 
T
s
i


U(s)
Y(s)
Model
Table 29: PID controller tuning rules – SOSPD model with a zero
K m (1 + sTm3 )e −sτ m
K m (1 − sTm 4 )e −sτ m
K m (1 − sTm 4 )e −sτ m
G m (s ) =
or
or
(1 + sTm1 )(1 + sTm 2 ) Tm12s 2 + 2ξmTm1s + 1
Tm1 2 s 2 + 2ξ m Tm1s + 1
Rule
Kc
Wang et al.
(1995a).
1
Ti
Td
Comment
Minimum performance index: servo tuning
p 0 q 2 − p 2 p1 Model: Method 1
p
1 p 0 q 1 − p1
q1 − 1
−
1
r
p0
p 0 q 1 − p1 p 0
Km
p0 2
p 0 = Tm1 + Tm 2 + Tm 4 + τm , p1 = Tm1Tm 2 + 0.5τm (Tm1 + Tm 2 ) − 0.5τm Tm 4 ,
p 2 = 0.5Tm1Tm 2 τ m , q 1 = Tm1 + Tm 2 + 0.5τ m , q 2 = Tm1Tm 2 + 0.5τ m (Tm1 + Tm 2 ) ,
r = δ0 + δ1
T 
T    τ 
T 
 T  τ
τm
+ δ 2  m 2  + δ3  m 4  + δ4  m  + δ7  m 2  + δ9  m 4  m
Tm1
 Tm1 
 Tm1    Tm1 
 Tm1 
 Tm1  Tm1
 τ 
 τ 
T 
T 
 T  T
 T  T
+ δ7  m  + δ5  m 2  + δ8  m 4  m 2 + δ9  m  + δ8  m 2  + δ6  m 4  m 4 ;
  Tm1 
 Tm1 
 Tm1 
 Tm1  Tm1   Tm1 
 Tm1  Tm1
Minimum IAE: δ 0 = 3.5550 , δ1 = −3.6167 , δ 2 = 2.1781 , δ 3 = −5.5203 , δ 4 = 1.4704 ,
δ 5 = −0.4918 , δ 6 = 2.5356 , δ 7 = −0.4685 , δ 8 = −0.3318 , δ 9 = 1.4746 .
Minimum ISE: δ 0 = 3.9395 , δ1 = −3.2164 , δ 2 = 1.6185 , δ 3 = −5.8240 , δ 4 = 1.0933 ,
δ 5 = −0.6679 , δ 6 = 2.5648 , δ 7 = −0.2383 , δ 8 = −0.0564 , δ 9 = 1.3508 .
Minimum ITAE: δ 0 = 3.2950 , δ1 = −3.4779 , δ 2 = 2.5336 , δ 3 = −5.5929 ,
δ 4 = 1.4407 , δ 5 = −0.3268 , δ 6 = 2.7129 , δ 7 = −0.5712 , δ 8 = −0.5790 , δ 9 = 1.5340 .
279
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
280
Rule
Kc
Chidambaram
(2002), p. 157.
Model: Method 1
2
Kc
3
Kc
4
Kc
5
Ti
Comment
Td
Direct synthesis: time domain criteria
‘Smaller’
Tm1Tm 2
Tm1 + Tm 2
τm Tm 4 .
Tm1 + Tm 2
‘Larger’
τm Tm 4 .
0.5
2ξ m Tm1
Tm1
ξm
Kc
‘Smaller’
τm Tm 4 .
‘Larger’
τm Tm 4 .
Direct synthesis: frequency domain criteria
Wang et al.
(2000b), (2001a).
Model: Method 2
6
2ξ m Tm1
Kc
Tm1
2
M s = 1.5
Robust
Marchetti and 2ξ mTm1 + 0.5τm
Scali (2000).
K m (2λ + τm )
Model: Method 1
7
Kc
2
3
4
5
6
Kc =
Kc =
1.571(Tm1 + Tm 2 )
2ξ m Tm1 + 0.5τm Tm1 (Tm1 + ξm τm )
2ξm Tm1 + 0.5τm
(
)
.
(
)
.
)
.
)
.
K m τm 1 + 3.142 Tm 4 τm 2
2.358(Tm1 + Tm 2 )
K m τm 1 + 4.712 Tm 4 τm 2
Negative zero.
Positive zero.
2
Kc =
3.142ξ mTm1
(
K m τm 1 + 3.142 Tm 4 τm 2
2
Kc =
Kc =
4.716ξ m Tm1
(
K m τm 1 + 4.712 Tm 4 τm 2
1
cos θ
2ξ m Tm1ω
; ω is determined by solving the
M s cos ωτ m − tan −1 (x1ω) K x 2ω2 + 1
[
]
m
1
 cos θ 
 = tan −1 (x1ω) − ωτ m − 0.5π , with
equation: tan −1 

 M s − sin θ 
(
(
)
)
 x τ ω2 − 1 cos(ωτ m ) − ωτ m sin (ωτ m ) 
θ = tan −1  1 m 2
 ; x1 = Tm3 or −Tm 4 , as appropriate.
 x1τm ω − 1 sin (ωτ m ) + ωτ m sin (ωτ m ) 
7
Kc =
2ξm Tm1 + 0.5τm
.
K m (2λ + τm + 2Tm 4 )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Lee et al. (2006). K (T + τ )
m CL
m
Model: Method 1
9
Kc
8
Comment
8
Ti
Td
Recommended
τm ≤ TCL ≤ 2τm .
Ti
Td
Recommended
τ m ≤ λ ≤ 2τm .
2
Desired closed loop transfer function =
9
Td
0 . 5τ m
T
0. 5 τ m
τ (0.1667 τm − 0.5Tm 3 )
, Td =
+ m1 + m
− Tm3 ;
TCL + τm
Ti
Ti (TCL + τm )
TCL + τm
2
Ti = 2ξm Tm1 − Tm3 +
Ti
281
2
2
e − sτ m
.
TCLs + 1
T (τ − λ ) + 0.5τm
Ti
, Ti = 2ξm Tm1 + m 4 m
,
K m (λ + τm + 2Tm 4 )
λ + τm + 2Tm 4
2
Kc =
Tm 4 (τm − λ ) + 0.5τm
T
τ (0.1667 τm + 0.5Tm 4 )
+ m1 − m
;
λ + τm + 2Tm 4
Ti
Ti (λ + τm + 2Tm 4 )
2
Td =
Desired closed loop transfer function =
(1 − sTm 4 )e −sτ .
(1 + sTm 4 )(1 + sλ )
m
2
2
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
282
3.6.3 Ideal controller in series with a first order lag

 1
1
+ Td s 
G c (s) = K c 1 +
Ti s

 Tf s + 1
R(s)
+
E(s)
U(s)

 1
1
K c 1 +
+ Td s 
 Ti s
 Tf s + 1
−
Y(s)
Model
Table 30: PID controller tuning rules – SOSPD model with a zero
K m (1 + sTm3 )e −sτ m
K m (1 + Tm3s )e −sτ m
K m (1 − sTm 4 )e −sτ m
G m (s ) =
or
or
(1 + sTm1 )(1 + sTm 2 ) (1 + sTm1 )(1 + sTm 2 )
Tm1 2 s 2 + 2ξ m Tm1s + 1
Rule
Chien et al.
(2003).
Model:
Method 1;
Tf = Tm3 .
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
2ξ m Tm1
0.829ξm Tm1
Tm1
K m τm
2ξ m
1
Kc
2
Kc
Pomerleau and
Tm1
1
Poulin (2004).
K m Tm1 + τ m
Model: Method 3
Tm1
Tm1
0
Ti
0
1.5Tm1
0
(
Tm1 = Tm 2 ,
Tf = Tm 3 ;
OS < 10%.
)
2
2
, x 1 = 0.707T m 2 + 0.5 2 T m 2 + τ m + 4T m 2 τ m .
1
Kc =
2
Kc =
Ti
,
K m (2.414 x1 + τm − Ti )
Ti =
4.828ξm Tm1x1 + 2ξ m Tm1τm + 0.5τm − 2.414 x1
,
2ξm Tm1 + τm
K m (1.414 x1 + Tm3 + τm )
Tm1 > Tm 2
2
2
x1 is obtained numerically from the solution of a cubic equation.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Li et al. (2004).
Model: Method 1
Kc
Ti
Td
Kc
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
2ξm Tm1
K m (λ + τm )
2ξ m Tm1
3
283
Comment
Robust
Bialkowski
(1996).
Model: Method 1
Chen et al.
(2006).
Model: Method 1
Chen et al.
(2006).
3
Kc =
4
Kc
0.6K u
Tm1
2ξ m
Tf = Tm3 or
Tm 4 ; λ not
defined.
Tm1Tm 2
Tm1 + Tm 2
τm ≤ λ ≤ 10τm
Ultimate cycle
0.5Tu
0.125Tu
Tf = 0.0125Tu
Tm1 + Tm 2
2
T
− Tm 4 τm
Tm1 + Tm 2
;
, Tf = CL 2
K m (2TCL 2 + Tm 4 + τm )
2TCL 2 + Tm 4 + τm
desired closed loop transfer function = −
4
Kc =
(λ − τ m )Tm 4
Tm1 + Tm 2
.
, Tf =
K m (λ + 2Tm 4 + τ m )
λ + 2Tm 4 + τ m
(1 − sTm 4 )e−sτ .
(TCL 2s + 1)2
m
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
284



Td s 
1

+
3.6.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + Td s 


N 

R(s)
+



 U(s)
T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

E(s)
−
Y(s)
Model
Table 31: PID controller tuning rules – SOSPD model with a zero
K (1 + sTm 3 )e − sτ m
K (1 − sTm 4 )e −sτ m
K m (1 + sTm3 )e −sτ m
or
or m
or
G m (s) = m
2 2
(1 + sTm1 )(1 + sTm 2 ) Tm1 s + 2ξmTm1s + 1 (1 + sTm1 )(1 + sTm 2 )
K m (1 − sTm 4 )e −sτ m
Tm12s 2 + 2ξ mTm1s + 1
Rule
Kc
Chien et al.
(2003).
Model: Method 1
0.829ξm Tm1
K m τm
2
Kc
Ti
Td
Comment
Direct synthesis: time domain criteria
1
2ξ m Tm1 − Tm 3
Td
2ξ m Tm1 − 0.1Td
Td
N = 10
2
1
Td =
Tm1
Tm1
− Tm3 , N =
−1 .
2ξ m Tm1 − Tm3
Tm 3 (2ξ mTm1 − Tm3 )
2
Kc =
Tm1
2
, x1 = 0.1Td + 0.5 4Tm 4 τm + 0.4Td Tm 4 + 0.4Td τm + 0.04Td ;
K m (2 x1 + Tm 4 + τm )
2
Td = Tm1 10ξ m − 3.02 11ξm − 1  , ξm > 0.302 .


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Td
Tm1 > Tm 2 > Tm 3
285
Robust
3
Kc
Chien (1988).
ξ
2
T
m m1 − Tm 3
Model: Method 1
K m (λ + τ m )
Ti
2ξ m Tm1 − Tm 3
4
Td
5
Kc
Ti
Td
6
Kc
Ti
Td
Tm1 > Tm 2 > Tm 4
N = 10; λ = [Tm1 , τ m ] (Chien and Fruehauf, 1990).
3
Kc =
4
Td =
5
Tm1 + Tm 2 − Tm3
T T − (Tm1 + Tm 2 − Tm3 )Tm3
.
, Ti = Tm1 + Tm 2 − Tm3 , Td = m1 m 2
K m (λ + τm )
Tm1 + Tm 2 − Tm 3
Tm2 1 − (2ξ m Tm1 − Tm 3 )Tm3
.
2ξ m Tm1 − Tm3
Tm 4 τm
Tm 4 τm
λ + Tm 4 + τm
, Ti = Tm1 + Tm 2 +
,
K m (λ + Tm 4 + τm )
λ + Tm 4 + τm
Tm1 + Tm 2 +
Kc =
Td =
6
Tm 4 τm
Tm1Tm 2
+
.
λ + Tm 4 + τm Tm1 + Tm 2 + (Tm 4 τm (λ + Tm 4 + τm ))
Tm 4 τm
Tm 4 τm
λ + Tm 4 + τm
, Ti = 2ξm Tm1 +
,
K m (λ + Tm 4 + τm )
λ + Tm 4 + τm
2ξ m Tm1 +
Kc =
2
Td =
Tm 4 τm
Tm1
+
.
λ + Tm 4 + τm 2ξ m Tm1 + (Tm 4 τm (λ + Tm 4 + τm ))
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
286



1  1 + Td s 


3.6.5 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

R(s)
+





1  1 + Td s  U(s)

K c 1 +
Td 
Ti s 

s
1 +
N 

E(s)
−
Y(s)
Model
Table 32: PID controller tuning rules – SOSPD model with a zero
K (1 + sTm 3 )e − sτ m
K (1 − sTm 4 )e −sτ m
or m
G m (s) = m
(1 + sTm1 )(1 + sTm 2 ) (1 + sTm1 )(1 + sTm 2 )
Rule
Kc
Zhang (1994).
Model: Method 1
Tm1 K m τm
Chien et al.
(2003).
Model:
Method 1;
Tm1 > Tm 2 .
0.414Tm1
K m τm
Poulin et al.
(1996).
Model: Method 1
Kc =
Comment
Td
Direct synthesis: time domain criteria
Tm1
Tm 2
‘Small’ τ m ; ‘good’ servo response. N = Tm 2 Tm 3 or N = ∞ .
1
Tm1
Tm 2
N = Tm 2 Tm3
N = 10
Kc
Direct synthesis: frequency domain criteria
Tm1
Tm1
Tm 2
N = Tm 2 Tm 3
K m (Tm1 + τ m )
Minimum φ m = 90 0 ; φ m = 60 0 , τ m = Tm1 .
2
1
Ti
Kc
Tm1
Tm 2
Minimum
φ m = 650 .
Tm1
,
K m (2 x1 + Tm 4 + τm )
2
x1 = 0.1Tm 2 + 0.5 4Tm 4 τm + 0.4Tm 2Tm 4 + 0.4Tm 2 τm + 0.04Tm 2 .
2
Kc =
T (T + 2Tm 4 )
Tm1
, φ m = 56 0 when Tm 4 = Tm1 = τ m .
, N = m 2 m1
K m (Tm1 + 2Tm 4 + τ m )
Tm1Tm 4
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
O’Dwyer
(2001a).
Model: Method 1
Kc
Ti
Td
x1Tm1 K m τm
Tm1
Tm 2
Comment
A m = 0.5π x 1 ; φ m = 0.5π − x 1 ; N = Tm 2 Tm 4 ; sample result:
0.785Tm1
K mτm
Tm1
Tm 2
A m = 2.0;
φ m = 450 .
Robust
Chien (1988).
Model: Method 1
Chien (1988).
Model: Method 1
Chien (1988).
Model:
Method 1;
Tm1 > Tm 2 > Tm 4 .
Chien (1988).
Model: Method 1
Bialkowski
(1996).
Model: Method 1
Tm1 > Tm 2 ;
N = 10;
[Tm1 , τ m ]
λ
∈
Tm1
(Chien
and
Tm1
Tm 2
K m (λ + τ m )
Fruehauf, 1990).
Tm 2
1.1(Tm1 − Tm 3 ) Tm1 > Tm 2 > Tm 3
Tm 2
K m (λ + τ m )
N = 11;
[Tm1 , τ m ]
λ
∈
Tm1
1.1(Tm 2 − Tm 3 )
Tm1
(Chien
and
K m (λ + τ m )
Fruehauf, 1990).
Tuning rules converted to this equivalent controller architecture.
N = 10;
Tm 2
Tm1
Tm 2
[Tm1 , τ m ]
λ
∈
K m (λ + τ m )
(Chien and
Tm1
Tm 2
Tm1
Fruehauf, 1990).
K m (λ + τ m )
Tm 2
K m (λ + τ m )
Tm 2
Tm1
Tm 2
K m (λ + τ m )
Tm 2
3
Td
Tm1
K m (λ + τ m )
Tm1
4
Td
N = 11; λ ∈ [T, τ m ] , T = dominant time constant (Chien and Fruehauf,
1990). Tuning rules converted to this equivalent controller
architecture.
Tm1
Tm 2
Tm1 > Tm 2
Tm1
K m (λ + τm )
3
Td = 1.1Tm1 +
1.1Tm 4 τm
.
λ + Tm 4 + τm
4
Td = 1.1Tm 2 +
1.1Tm 4 τ m
.
λ + Tm 4 + τ m
N = Tm 2 Tm3 or N = Tm 2 Tm 4 .
287
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
288
3.6.6 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) +
E(s)
−




2
T
s
1
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
 Ti s
T  1 + a f 1s + a f 2 s 2
1+ d s 

N 

U(s)
Model
Y(s)
Table 33: PID controller tuning rules – SOSPD model with a zero
G m (s) =
Rule
K m (1 + sTm 3 )e −sτ m
2
Tm1 s 2 + 2ξ m Tm1s + 1
Kc
or
K m (1 − sTm 4 )e−sτ m
Tm12s 2 + 2ξ mTm1s + 1
Ti
Td
Comment
0.167 τm
Negative zero.
Robust
Shamsuzzoha
and Lee (2006a).
Model: Method 1
0.5τm
K m (λ + τm )
1
0.5τm
Positive zero.
Kc
af1 =
0.5(λ + Tm3 )τm + Tm3λ − 0.083τm + 0.5Tm3τm
or
λ + τm
af1 =
0.5(λ + Tm 4 )τm + Tm 4λ − 0.083τm − 0.5Tm 4 τm
;
λ + τm + 2Tm 4
2
2
af 2 =
0.5τm Tm3 (λ − 0.167 τm )
0.5τm Tm 4 (λ + 0.167 τm )
or a f 2 =
;
λ + τm
λ + τm + 2Tm 4
2
b f 0 = 1 , b f 1 = 2ξ m Tm1 , b f 2 = Tm1 , N = ∞ .
λ = x1τm ; x1 = 1.360 , M s = 1.4 ; x1 = 0.677 , M s = 1.6 ;
x1 = 0.372 , M s = 1.8 ; x1 = 0.337 , M s = 2.0 .
1
Kc =
0.5τm
.
K m (λ + τm + 2Tm 4 )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
289
3.6.7 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

E(s)
R(s)
+
−




T
s
1
d


K c 1+
+
 Ti s
Td 
1+
s

N 

−
U(s)
Y(s)
Model
+
Table 34: PID controller tuning rules – SOSPD model with a zero
K m (1 + sTm 3 )e −sτ m
K m (1 − sTm 4 )e −sτ m
K m (1 + sTm3 )e−sτ m
G m (s) =
or
or
or
(1 + sTm1 )(1 + sTm 2 ) (1 + sTm1 )(1 + sTm 2 )
Tm12s 2 + 2ξmTm1s + 1
K m (1 − sTm 4 )e −sτ m
Tm12s 2 + 2ξ m Tm1s + 1
Rule
Kc
Madhuranthakam
et al. (2008).
Model: Method 1
1
Ti
Kc =
c
α = 0 , β = 1 , N = 10.
0.4938  Tm1 + Tm 2 − Tm 3 
1 +


K m 
τm

Ti = 12.585
Comment
Minimum performance index: regulator tuning
Ti
Td
Tm1 > Tm3
K
1.3594
1
Td
, 0.1 ≤
τm
≤ 0.66 ;
τm + Tm1 + Tm 2 − Tm3
Tm 2 (Tm1 + Tm 2 − Tm3 )  Tm1 + Tm 2 − Tm3 
1 +



τm
τm


2.4858
,
T  T + Tm 2 − Tm3 

Td = 6.465(Tm1 + Tm 2 − Tm 3 ) m 2 1 + m1

τm 
τm

2.9185
.
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
290
Rule
Madhuranthakam
et al. (2008).
Model: Method 1
Chien et al.
(2003).
Model: Method 1
Huang et al.
(2000).
Model: Method 1
Kc
2
Kc
Ti
Kc =
Comment
Td
Minimum performance index: servo tuning
Ti
Td
Tm1 > Tm3
α = 0 , β = 1 , N = 10.
Direct synthesis: time domain criteria
3
4
Ti
Kc
Kc
α = 0 ; β =1;
N = 10.
Td
Direct synthesis: frequency domain criteria
N = min[20,
2Tm1 ξ m + 0.4τ m
Td
20Td ]
1.2206
2
FA
0.5254  Tm1 + Tm 2 − Tm 3 
1 +


K m 
τm

, 0.1 ≤
τm
≤ 0.66 ;
τm + Tm1 + Tm 2 − Tm3
1.4569
 T + Tm 2 − Tm3 

Ti = 0.5657 τm 1 + m1

τm


,
Td = 6.7572(Tm1 + Tm 2 − Tm3 )
3
Kc =
T + Tm 2 − Tm 3 
Tm 2 
1 + m1



τm 
τm

Tm1
, x1 = 0.1Td + 0.5 4Tm 4 τm + 0.4Td Tm 4 + 0.4Td τm + 0.04Td 2 ;
K m (2 x1 + Tm 4 + τm )
2
Ti = 2ξ m Tm1 − 0.1Td ; Td = Tm1 10ξ m − 3.02 11ξm − 1  , ξm > 0.302 .


4
Kc = λ
α=
2
T + 0.8Tm1ξ m τm
2Tm1ξ m + 0.4τm
2T ξ + 0.4τm
;
or K c = λ m1 m
, Td = m1
K m (τm + 2Tm 3 )
K m (τm + 2Tm 4 )
0.8Tm1ξm τm
2Tm1ξ m
0.5Tm1 2
−1 ; β =
−1 ;
2Tm1ξ m + 0.4 τ m
Tm1 2 + 0.8Tm1ξ m τ m
λ = 0.6,
τm
τ
ξ m ≤ 1 , A m = 2.83 ; λ = 0.7,1 < m ξ m ≤ 2 , A m = 2.43 ;
Tm1
Tm1
λ = 0.8,
τm
ξ m > 2 , A m = 2.13 .
Tm1
2.9057
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Jyothi et al.
(2001).
Model:
Method 1;
α = 0 , β =1,
N =∞.
Kc
Ti
Td
Comment
5
Kc
Tm1 + Tm 2
τm Tm3 < 1
6
Kc
Tm1Tm 2
Tm1 + Tm 2
7
Kc
τm Tm3 < 1
8
Kc
Tm1
2ξ m
0.5(Tm1 + Tm 2 )
0.5Tm1Tm 2
Tm1 + Tm 2
τm Tm 4 < 1
Tm1 + Tm 2
Tm1Tm 2
Tm1 + Tm 2
2ξ m Tm1
Tm1
2ξ m
2ξ m Tm1
Tm1 + Tm 2
K m Tm 4
9
0.5
Kc
Tm1 + Tm 2
K m Tm 4
10
Kc
ξm Tm1 K m Tm 4
11
5
6
7
8
9
10
11
Kc =
Kc =
Kc =
Kc =
Kc =
Kc =
Kc =
Kc
1.57(Tm1 + Tm 2 )
K m τm 1 + 9.870(Tm3 τm )2
0.79(Tm1 + Tm 2 )
K m τm 1 + 2.467(Tm3 τm )2
3.14ξ m Tm1
K m τm 1 + 9.870(Tm3 τm )2
1.57ξ m Tm1
K m τm 1 + 2.467(Tm3 τm )2
1.57(Tm1 + Tm 2 )
K m τm 1 + 2.467(Tm 4 τm )2
0.79(Tm1 + Tm 2 )
K m τm 1 + 2.467(Tm 4 τm )2
1.57ξ m Tm1
K m τm 1 + 2.467(Tm 4 τm )2
.
.
.
.
.
.
.
τm Tm3 > 1
τm Tm3 > 1
τm Tm 4 > 1
τm Tm 4 < 1
τm Tm 4 > 1
τm Tm 4 < 1
τm Tm 4 > 1
291
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
292
3.6.8 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
−
Y(s)
Model
F2 (s)
Table 35: PID controller tuning rules – SOSPD model with a zero
K m (1 + sTm 3 )e −sτ m
K m (1 − sTm 4 )e −sτ m
G
(
s
)
=
or
G m (s) =
m
Tm12s 2 + 2ξ mTm1s + 1
Tm1 2 s 2 + 2ξ m Tm1s + 1
Rule
Kc
1
Huang et al.
(2000).
Model: Method 1
Kc
Ti
Td
Comment
Direct synthesis: time domain criteria
2Tm1ξ m + 0.4τ m
0
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
bf 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = 1 ; b f 3 = 0 ; b f 4 = x 1 ;
a f 5 = x1 x 2 , x 2 not specified.
Chien et al.
(2003).
Model: Method 1
2
Kc
Tm1
0
Tm1 > Tm 2
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 1 ; b f 3 = 1 , b f 4 = Tm 2 , a f 4 = 0.1Tm 2 .
1
Kc = λ
2
2Tm1ξ m + 0.4τm
2T ξ + 0.4τm
T + 0.8Tm1ξ m τm
;
or K c = λ m1 m
, x1 = m1
K m ( τm + 2Tm3 )
K m (τm + 2Tm 4 )
0.8Tm1ξ m τm
λ = 0.5, τ m ξ m Tm1 ≤ 1 ; λ = 0.6,1 < τm ξ m Tm1 ≤ 2 ; λ = 0.7, τmξ m Tm1 > 2 ; servo.
λ = 0.6, τmξ m Tm1 ≤ 1 ; λ = 0.7,1 < τm ξ m Tm1 ≤ 2 ; λ = 0.8, τm ξm Tm1 > 2 ; regulator.
2
Kc =
Tm1
, x1 = 0.1Tm 2 + 0.5 4Tm 4 τm + 0.4Tm 2 (Tm 4 + τm ) + 0.04Tm 2 2 .
K m (2 x1 + Tm 4 + τm )
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
3.7 TOSPD Model G m (s) = K m
G m (s) =
G m (s) =
1 + b 1s + b 2 s 2 + b 3 s 3
e −sτ m or
1 + a 1s + a 2 s 3 + a 3 s 3
K m e −sτ m
or
(1 + sTm1 )(1 + sTm 2 )(1 + sTm3 )
K m (Tm 3 s + 1)e −sτ m
(T s + 2ξ T s + 1)(T s + 1)
m1
2 2
m
m1
m2

1 

3.7.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
+
−

1 

K c 1 +

T
is 

U(s)
TOSPD
model
Y(s)
Table 36: PI controller tuning rules – third order system plus time delay model
K m e − sτ m
1 + b1s + b 2s 2 + b3s3 −sτ m
G m (s ) = K m
e
or
or
3
3
(1 + sTm1 )(1 + sTm 2 )(1 + sTm3 )
1 + a1s + a 2s + a 3s
K m (Tm3s + 1)e −sτ m
(T s + 2ξ T s + 1)(T s + 1)
2 2
m1
Rule
Minimum IAE –
Murata and Sagara
(1977). Model:
Method 2; K c , Ti
deduced from graphs.
Minimum IAE –
Murata and Sagara
(1977). Model:
Method 2; K c , Ti
deduced from graphs.
m m1
Kc
m2
Comment
Ti
Minimum performance index: regulator tuning
x1 K m
x 2Tm1
Tm1 = Tm 2 = Tm3
x1
1.3
0.9
0.7
x2
τm Tm1
x1
x2
τm Tm1
3.4
0.2
0.6
3.6
0.8
3.4
0.4
0.6
3.8
1.0
3.5
0.6
Minimum performance index: servo tuning
x1 K m
x 2Tm1
Tm1 = Tm 2 = Tm3
x1
x2
τm Tm1
x1
x2
τm Tm1
0.9
0.7
0.6
3.0
3.0
3.1
0.2
0.4
0.6
0.5
0.5
3.3
3.5
0.8
1.0
293
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
294
Rule
Kc
Kuwata (1987).
Model: Method 1
1
Comment
Ti
Direct synthesis: time domain criteria
Ti
Tm1 = Tm 2 = Tm3
Kc
Direct synthesis: frequency domain criteria
Hougen (1979),
pp. 350–351.
Model: Method 1;
Tm1 ≥ Tm 2 ≥ Tm 3 .
0.7  Tm1 


K m  τ m 
2
Vrančić et al. (1996),
Vrančić (1996),
p. 121.
Model: Method 1
Vrančić et al.
(2004a).
Model: Method 1
Vrančić et al.
(2004b).
1
Kc =
3
0.333
τm Tm1 ≤ 0.04
Kc
0.5A 3
( A1A 2 − K m A 3 )
A3
A2
0.5A 3
( A1A 2 − K m A 3 )
4
undefined
5
τ m Tm1 > 0.04
Ti
A m ≥ 2, φ m ≥ 60 0
(Vrančić et al., 1996).
Ti
A1 A 3
A1A 2 − K m A 3
G c = 1 (Tis )
Ti
Model: Method 1
Kc
0.4(3Tm1 + τm )
0.5
−
, Ti = 1.25x1 − 0.25(3Tm1 + τm ) , with
K m (3Tm1 + τm − x1 ) K m
x1 =
(3Tm1 + τm )2 − 0.267[6Tm13 + 18Tm12 τm + 9Tm1τm 2 + τm3 ] .
0.333
1   Tm1 
T + Tm 2 + Tm 3 

+ 0.8 m1
0.7
, Ti = 1.5τm 0.08 Tm1 (Tm 2 + Tm3 ) .

2K m   τm 
(
Tm1Tm 2Tm 3 )0.333 


2
Kc =
3
A1 = K m (a 1 − b1 + τ m ) , A 2 = K m b 2 − a 2 + A1a 1 − b1 τ m + 0.5τ m
(
(
2
),
2
3
)
A 3 = K m a 3 − b 3 + A 2 a 1 − A1a 2 + b 2 τ m − 0.5b1 τ m + 0.167 τ m .
A1A3 (A1A 2 − K m A 3 ) )
.
(A1A 2 − K m A3 )2 + K m A3 (A1A 2 − K m A3 ) + 0.25K m 2A32
4
Ti =
5
Kc =
A1A 2 − A3K m − [sign (A1A 2 − A 3K m )]A1 A 2 − A1A 3
2
A 3K m 2 − 2A1A 2 K m + A13
,
A1A 2 − A3K m − [sign (A1A 2 − A 3K m )]A1 A 2 − A1A 3
2
Ti = 2A1
( A 3K m
2
− 2A1A 2 K m + A13 )(1 + K c K m ) 2
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Comment
Robust
Marchetti and Scali
(2000).
Model: Method 1
a1 + 0.5τm
(3λ + τm )K m
a1 + 0.5τm
(3λ + τm + 2Tm3 )K m
b1 = b 2 = b3 = 0 or
a 1 + 0. 5 τ m
b 2 = b3 = 0; b1 = Tm 3 .
b 2 = b3 = 0 ;
b1 = −Tm3 .
Ultimate cycle
x 2 Tu
Non-oscillatory
x 1K u
TOSPD model –
x1
x 2 τm Tu x 1
x 2 τm Tu x 1
x 2 τm Tu
Kuwata (1987).
x 1 , x 2 deduced from 0.13 0.40 0.05 0.22 0.21 0.25 0.225 0.155 0.45
0.17 0.33 0.10 0.225 0.19 0.30 0.225 0.155 0.50
graphs.
0.19 0.30 0.15 0.225 0.17 0.35
0.21 0.24 0.20 0.225 0.16 0.40
Yu (2006),
Ziegler–Nichols.
0.45K u
0.83Tu
pp. 107–112.
0.33K u
2Tu
Model: Method 3
Oscillatory TOSPD model.
295
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
296


1
+ Td s 
3.7.2 Ideal PID controller G c (s) = K c 1 +
 Ti s

R(s)
+
E(s)
−

 U(s)
1
K c 1 +
+ Td s 
Ti s


Table 37: PID controller tuning rules – TOSPD model G m (s) =
G m (s ) =
Rule
Kc
1
Polonyi (1989).
Model: Method 1
Jones and Tham
(2006).
Marchetti and
Scali (2000).
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
1
Kc
K m e − sτ m
or
(1 + sTm1 )(1 + sTm 2 )(1 + sTm 3 )
K m e − sτ m
1 + a1s + a 2s3 + a 3s3
Ti
Comment
Td
Minimum performance index: other tuning
Ti
τm
Tm1 >
10(Tm 2 + τ m )
Standard form optimisation – binomial.
2
Ti
τm
Kc
Standard form optimisation – minimum ITAE.
Robust
3
Tm1 + Tm 2 + Tm3
Td
Kc
a1 + 0.5τm
(3λ + τm )K m
a 1 + 0. 5 τ m
x2
a 2 + 0.5a1τm
a1 + 0.5τm
Model: Method 1
Model: Method 1
Ultimate cycle
x 2 Tu
x 3 Tu
x 1K u
x1
Y(s)
TOSPD
model
x3
τm
Tu
x1
x2
x3
τm
Tu
x1
x2
τm
Tu
0.45 0.57 0.16 0.05 0.41 0.29 0.08 0.25 0.29 0.19 0.04 0.45
0.46 0.47 0.13 0.10 0.38 0.25 0.08 0.30 0.28 0.18 0.03 0.50
0.45 0.40 0.11 0.15 0.35 0.22 0.07 0.35
0.43 0.33 0.10 0.20 0.32 0.20 0.06 0.40

T
T T
K c = 1 − 4 m 2 + m 2  m1 , Ti = 4 6Tm 2 τm + τm .

6τm Tm3  τm


Tm 2
T T
+ m 2  m1 , Ti = 2.7 3.4Tm 2 τm + τm .
K c = 1 − 2.1

3.4τm Tm3  τm

T + Tm 2 + Tm3
T T + Tm 2Tm 3 + Tm1Tm3
3
K c = m1
, Td = m1 m 2
, λ not specified.
K m (λ + τm )
Tm1 + Tm 2 + Tm3
2
x3
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
297
3.7.3 Ideal controller in series with a first order lag

 1
1
+ Td s 
G c (s) = K c 1 +
 Ti s
 Tf s + 1
R(s)
E(s)
−
+
U(s)
Y(s)

 1
1
K m e − sτ
K c 1 +
+ Td s 
2
3
1 + a 1s + a 2 s + a 3 s
 Ti s
 Tf s + 1
m
Table 38: PID controller tuning rules – TOSPD model G m (s) =
Rule
Schaedel (1997).
Model: Method 1
1
Kc =
Kc
1
Td
1 + a 1s + a 2 s 2 + a 3 s 3
Comment
Direct synthesis: frequency domain criteria
Ti
Td
Tf = Td N ;
5 ≤ N ≤ 20 .
2
2
0.375Ti
a − a 2 + a1τm + 0.5τm
, Ti = 1
,
T


a1 + τm − Td
K m  a1 + τm + d − Ti 
N


2
Td =
Kc
Ti
K m e − sτ m
2
3
a 2 + a1τm + 0.5τm
a + a 2τm + 0.5a1τm + 0.167 τm
.
− 3
a1 + τ m
a 2 + a1τm + 0.5τm 2
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
298



Td s 
1

+
3.7.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + Td s 


N 

R(s)
E(s)
−
+




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

U(s)
K m e − sτ
2
1 + a 1s + a 2 s + a 3 s
Table 39: PID controller tuning rules – TOSPD model G m (s) =
Rule
Schaedel (1997).
1
Kc =
Td =
N=
Kc
1
Kc
Ti
Y(s)
m
Td
3
K m e − sτ m
1 + a 1s + a 2 s 2 + a 3 s 3
Comment
Direct synthesis: frequency domain criteria
Model: Method 1
Ti
Td
2
2
0.375Ti
a − a 2 + a1τm + 0.5τm
, Ti = 1
,
T


a1 + τm − Td
K m  a1 + τm + d − Ti 
N


a 2 + a1τm + 0.5τm 2 a 3 + a 2 τm + 0.5a1τm 2 + 0.167 τm 3
,
−
a1 + τ m
a 2 + a1τm + 0.5τm 2
Td
,
2
(
x1 + τm − Ti )
Ti Td
 x1 + τm − Ti 
+ 0.375
−
+
2
4
Kv


0.05 ≤ x1 ≤ 0.2 , K v = prescribed overshoot in the manipulated variable for a step
response in the command variable.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
299
3.7.5 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

E(s)
R(s)
+
−




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
U(s)
+
TOSPD
model
Y(s)
Table 40: PID controller tuning rules – third order system plus time delay model
1 + b 1s + b 2 s 2 + b 3 s 3 −sτ m
K m e − sτ m
G m (s) = K m
e
or G m (s) =
3
3
(1 + sTm1 )(1 + sTm 2 )(1 + sTm3 )
1 + a 1s + a 2 s + a 3 s
Rule
Taguchi and
Araki (2000).
1
Kc =
Kc
1
Ti
Td
Comment
Minimum performance index: servo/regulator tuning
0
Model: Method 1
Ti
K
c
OS ≤ 20% ; Tm1 = Tm 2 = Tm3 ; τ m Tm1 ≤ 1.0 .

1 
0.7399
 0.2713 +
,

Km 
(τm Tm1 ) + 0.5009 
(
Ti = Tm1 2.759 − 0.003899[τm Tm1 ] + 0.1354[τm Tm1 ]
2
α = 0.4908 − 0.2648(τm Tm1 ) + 0.05159(τm Tm1 ) .
2
),
b720_Chapter-03
Rule
Taguchi and
Araki (2000).
2
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
OS ≤ 20% ; N not specified; Tm1 = Tm 2 = Tm3 ; τ m Tm1 ≤ 1.0 .
Kuwata (1987).
Tm1 = Tm 2 = Tm3 .
Kuwata (1987).
Model: Method 1
Kc =
FA
Handbook of PI and PID Controller Tuning Rules
300
2
17-Mar-2009
3
Kc
4
Kc
Direct synthesis: time domain criteria
0
Ti
α = 1;
Model: Method 1
Ti
Tm1 = Tm 2 = Tm3
Td
α = 1, β = 1, N = ∞ .

1 
1.275
 0.4020 +
,

[τm Tm1 ] + 0.003273 
Km 
(
T = T (0.8335 + 0.2910[τ T ] − 0.04000[τ T ] ) ,
)
Ti = Tm1 0.3572 + 7.467[τm Tm1 ] − 12.86[τm Tm1 ] + 11.77[τm Tm1 ] − 4.146[τm Tm1 ] ,
2
3
4
2
d
m1
m
m1
m
m1
α = 0.6661 − 0.2509[τm Tm1 ] + 0.04773[τm Tm1 ] ,
2
β = 0.8131 − 0.2303[τm Tm1 ] + 0.03621[τm Tm1 ] .
2
3
Kc =
x1 =
0.8(3Tm1 + τm )
1
−
, with
K m (3Tm1 + τm − x1 ) K m
(3Tm1 + τm )2 − 0.267[6Tm13 + 18Tm12τm + 9Tm1τm 2 + τm3 ] ;
[
]
[
]
 0.833 6Tm12 + 6Tm1τm + τm 2  1.667 6Tm12 + 6Tm1τm + τm 2

Ti = 1 −
.


3Tm1 + τm
(3Tm1 + τm )2


4
Kc =
x
1.20 x13
1
x 2
x 2 − (3T + τ )x
−
, Ti = 1.667 2 − 4.167 23 , Td = 0.833x 2 1 3 m1 m 2 2 ;
2
x1
Km x2
Km
x1
x1 − 0.833x 2
2
2
3
2
2
3
x1 = 6Tm1 + 6Tm1τm + τm , x 2 = 6Tm1 + 18Tm1 τm + 9Tm1τm + τm .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Vrančić (1996),
pp. 136–137.
5
Ti
Comment
Td
Direct synthesis: frequency domain criteria
Model: Method 1
0
Ti
Kc
Ultimate cycle
0
x 2 Tu
x 1K u
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
α = 1.
301
Tm1 = Tm 2 = Tm3
x1
x2
τm Tu
x1
x2
τm Tu
x1
0.14
0.17
0.19
0.33
0.29
0.26
x 1K u
0.05
0.10
0.15
0.20
0.21
0.21
x 2 Tu
0.22
0.20
0.18
0.20
0.25
0.30
0.21
0.20
0.20
x 3 Tu
x2
τm Tu
0.16 0.35
0.15 0.40
0.14 0.45
Tm1 = Tm 2 = Tm3
Kuwata (1987);
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x 1 , x 2 deduced
T
T
Tu
u
u
from graphs.
α = 1 , β = 1 , 0.69 0.41 0.13 0.05 0.38 0.26 0.08 0.25 0.21 0.15 0.01 0.45
0.60 0.38 0.12 0.10 0.32 0.22 0.07 0.30 0.20 0.14 0 0.50
N =∞.
0.51 0.36 0.11 0.15 0.28 0.18 0.04 0.35
0.43 0.31 0.10 0.20 0.23 0.16 0.02 0.40
5
Kc =
A1A 2 − K m A 3 − x1
(1 − [1 − α] )(K A + A − 2K A A ) , K A − A A < 0 ;
x = (K A − A A ) − (1 − [1 − α ] )A (K A + A − 2K A A ) ;
2
2
m
3
1
3
m
m
1
2
m
3
3
1
2
2
1
Kc =
A1A 2 − K m A 3 + x1
1
2
2
2
3
m
3
3
1
m
1
2
(1 − [1 − α] )(K A + A − 2K A A ) , K A − A A > 0 .
2
2
m
A1
Ti =
2
Km +
m
3
1
3
m
(
1
KK
2
+ c m 1 − [1 − α ]
2K c
2
(
)
1
3
1
2
2
with
)
A1 = K m (a 1 − b1 + τ m ) , A 2 = K m b 2 − a 2 + A1a1 − b1τm + 0.5τm ,
2
(
2
3
)
A 3 = K m a 3 − b 3 + A 2 a 1 − A1a 2 + b 2 τ m − 0.5b1 τ m + 0.167 τ m ;
0.2 ≤ α ≤ 0.5 – good servo and regulator response (p. 139).
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
302
3.7.6 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
−
Y(s)
Model
F2 (s)
Table 41: PID controller tuning rules – third order system plus time delay model
K m e − sτ m
G m (s ) =
(1 + sTm1 )(1 + sTm 2 )(1 + sTm3 )
Rule
Kc
Ti
Kc
Ti
Td
Comment
Td
0.5τm ≤ λ ≤ 3τm
Robust
1
Jones and Tham
(2006).
Model: Method 1
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ;
K0 =
1
Tm1 + Tm 2 + Tm3 −
Kc =
0.4
; bf 3 = 1 , bf 4 = 0 , a f 5 = 0 .
K m (τm + 0.75)
0.4τm
τm + 0.75
K m (λ + τm )
Tm1 + Tm 2 + Tm3 −
, Ti =
1+
0.4τm
τm + 0.75
0.4τm
τm + 0.75
Td =
,
Tm1Tm 2 + Tm1Tm 3 + Tm 2Tm3
.
0.4τm
Tm1 + Tm 2 + Tm 3 −
τm + 0.75
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
303
3.8 Fifth Order System Plus Delay Model
K (1 + b1s + b 2 s 2 + b 3s 3 + b 4 s 4 + b s s 5 )e − sτm
G m (s ) = m
1 + a 1s + a 2 s 2 + a 3s 3 + a 4 s 4 + a 5s 5
(
)


1
+ Td s 
3.8.1 Ideal PID controller G c (s) = K c 1 +
 Ti s

U(s)
E(s)
R(s)
−
+
(
Y(s)
)
)
K m 1 + b1s + b 2s 2 + b 3s 3 + b 4s 4 + b 5s 5 e − sτ
1 + a 1s + a 2s 2 + a 3s 3 + a 4s 4 + a 5s 5


1
K c 1 +
+ Td s 
 Ti s

(
m
Table 42: PID controller tuning rules – fifth order model with delay
K (1 + b 1s + b 2 s 2 + b 3 s 3 + b 4 s 4 + b s s 5 )e − sτ m
G m (s) = m
1 + a 1s + a 2 s 2 + a 3 s 3 + a 4 s 4 + a 5 s 5
(
Rule
Kc
Vrančić et al.
(1999).
1
1
Kc
)
Ti
Comment
Td
Direct synthesis: frequency domain criteria
Model: Method 1
Ti
Td
Note: equations continued into the footnote on p. 304.
Kc =
a13 − a12 b1 + a1b 2 − 2a1a 2 + a 2 b1 + a 3 − b3 + y1
[
2K m − a12 b1 + a1a 2 + a1b12 − a 3 − b1b 2 + b3 + y 2
(
)
] , with
y1 = τ m a 1 − a 1 b1 − a 2 + b 2 + 0.5(a 1 − b1 )τ m + 0.167τ m and
2
2
3
y 2 = (a1 − b1 ) τ m + (a1 − b1 )τm + 0.333τm − (a1 − b1 + τm ) Td ;
2
Ti =
2
3
2
a13 − a12 b1 + a1b 2 − 2a1a 2 + a 2 b1 + a 3 − b3 + y1
[a − a b − a + b + (a − b )τ + 0.5τ − (a − b + τ )T ] ;
2
1
2
1 1
2
2
1
1
m
m
1
1
m
d
Td is found by solving the following equation:
2
3
4
Td x1 + 360 x 2 − 360τm x 3 + 180τm x 4 − 60τm x 5 − 15τm x 6
− 3τ m x 7 + 7τ m (b1 − a 1 ) − τ m = 0 , with
5
4
6
3
x 1 = 360[a 1 b 2 − a 1 (a 2 b1 + a 3 + b1b 2 + b 3 )
2
2
2
2
+ a 1 (a 2 + a 2 ( b1 − 2 b 2 ) + 3a 3 b1 + 2a 4 + b1b 3 + b 2 − b 4 )
2
− a 1 (a 2 ( 2a 3 − 3b 3 ) + a 3 ( 2 b1 − b 2 ) + 3a 4 b1 + a 5 − b1 b 4 + 2 b 2 b 3 − b 5 )
2
2
2
− a 2 b1 b 3 + a 3 + a 3 ( b1 b 2 − 2 b 3 ) + a 4 b1 + a 5 b1 − b1 b 5 + b 3 ]
4
3
2
2
− 360τ m [a 1 b1 − a 1 (a 2 + b1 + 2 b 2 ) + 3a 1 (a 3 + b1 b 2 )
2
+ a 1 (3a 2 b 2 − 3a 3 b1 − 3a 4 − b1 b 3 − 2 b 2 + 2 b 4 )
7
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
304
2
− a 2 ( b 1 b 2 + b 3 ) + a 3 ( b 1 − b 2 ) + 2a 4 b 1 + a 5 − b 1 b 4 + 2 b 2 b 3 − b 5 ]
2
4
3
2
2
+ 180τ m [a 1 − 4a 1 b1 + 3a 1 ( b1 + b 2 ) + a 1 (3a 2 b1 − 3a 3 − 5b1 b 2 + b 3 )
2
2
− a 2 ( b1 + 2 b 2 ) + a 3 b1 + 2a 4 + b1 b 3 + 2( b 2 − b 4 )]
3
3
2
2
+ 60τ m [4a 1 − 9a 1 b1 − a 1 (3a 2 − 5b1 − 4b 2 ) +4a 2 b1 − a 3 − 5b1 b 2 + b 3 ]
4
2
5
2
6
+ 15τ m [ 9a 1 −14a 1 b1 − 4a 2 + 5b1 + 4 b 2 ] − 42 τ m ( b1 − a 1 ) + 7τ m ,
4
3
x 2 = a 1 b 3 − a 1 ( a 2 b 2 + a 1 b 3 + a 4 + b1 b 3 )
2
2
2
+ a 1 (a 2 b1 + a 2 ( 2a 3 + b1 b 2 − 3b 3 ) + a 3 ( b1 + b 2 ) + 2a 4 b1 + a 5 + b 2 b 3 − b 5 )
3
2
2
2
− a 1 ( a 2 + a 2 ( b 1 − 2 b 2 ) + a 2 ( 2a 3 b 1 − 2 b 1 b 3 + b 2 − b 4 )
2
2
2
+ 2a 3 + a 3 ( 2 b1 b 2 − 3b 3 ) + a 4 ( b1 + b 2 ) + a 5 b1 − b1 b 5 + b 3 )
2
2
2
+ a 2 a 3 + a 2 [a 3 ( b1 − 2 b 2 ) − a 5 − b1 b 4 + b 5 ] + a 3 b1
2
+ a 3 ( a 4 − b1 b 3 + b 2 − b 4 ) + a 4 ( b1 b 2 − b 3 ) + a 5 b 2 − b 2 b 5 + b 3 b 4 ,
4
3
x 3 = a 1 b 2 − a 1 ( a 2 b1 + a 3 + b1 b 2 + b 3 )
2
2
2
2
+ a 1 (a 2 + a 2 ( b1 − 2 b 2 ) + 3a 3 b1 + 2a 4 + b1b 3 + b 2 − b 4 )
2
−a 1 (a 2 ( 2a 3 − 3b 3 ) + a 3 ( 2 b1 − b 2 ) + 3a 4 b1 + a 5 − b1 b 4 + 2 b 2 b 3 − b 5 )
2
2
2
− a 2 b1 b 3 + a 3 + a 3 ( b1 b 2 − 2 b 3 ) + a 4 b1 + a 5 b1 − b1 b 5 + b 3 ,
4
3
2
x 4 = a 1 b1 − a 1 ( a 2 + b1 + 2 b 2 )
2
2
+ 3a 1 (a 3 + b1 b 2 ) + a 1 (3a 2 b 2 − 3a 3 b1 − 3a 4 − b1 b 3 − 2 b 2 + 2b 4 )
2
− a 2 ( b1 b 2 + b 3 ) + a 3 ( b 1 − b 2 ) + 2a 4 b 1 + a 5 − b 1 b 4 + 2 b 2 b 3 − b 5 ) ,
4
3
2
2
x 5 = a 1 − 4a 1 b1 + 3a 1 ( b1 + b 2 ) + a 1 (3a 2 b1 − 3a 3 − 5b1b 2 + b 3 )
2
2
− a 2 ( b 1 + 2 b 2 ) + a 3 b 1 + 2a 4 + b 1 b 3 + 2( b 2 − b 4 ) ,
3
2
2
x 6 = 4a 1 − 9a 1 b1 − a 1 (3a 2 − 5b1 − 4 b 2 ) +4a 2 b1 −a 3 − 5b1 b 2 + b 3 ,
2
2
x 7 = 9a 1 − 14a 1 b1 − 4a 2 + 5b1 + 4b 2 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
305
3.8.2 Controller with filtered derivative
E(s)
R(s)
+
−


Td s
1

G c (s) = K c 1 +
+
 Ti s 1 + (Td N )s 
Y(s)

 U(s)


Td s  K m 1 + b1s + b 2s 2 + b 3s 3 + b 4s 4 + b 5s 5 e − sτ m
1
+
K c 1 +
T 

Ti s
1 + a 1s + a 2s 2 + a 3s 3 + a 4s 4 + a 5s 5
1+ d s

N 

(
)
)
(
Table 43: PID controller tuning rules – fifth order model with delay
K (1 + b 1s + b 2 s 2 + b 3 s 3 + b 4 s 4 + b s s 5 )e − sτ m
G m (s) = m
1 + a 1s + a 2 s 2 + a 3 s 3 + a 4 s 4 + a 5 s 5
(
Rule
)
Kc
Ti
Comment
Td
Direct synthesis: frequency domain criteria
Vrančić (1996),
pp. 118–119.
Model: Method 1
1
A3
Ti =
2
A 2 − Td A1 −
Td =
Ti
2(A1 − Ti )
Td
N
1
N < 10
Td
Ti
,
− (A 32 − A 5A1 ) +
(A − A A ) − N4 (A A − A )(A A − A A )
2
2
3
5
1
3
2
5
5
2
4
2
(A3A 2 − A5 )
N
(
A1 = K m (a 1 − b1 + τ m ) , A 2 = K m b 2 − a 2 + A1a 1 − b1 τ m + 0.5τ m
2
3
,
),
(
)
A = K (b − a + A a − A a + A a − b τ + 0.5b τ + 0.167 b τ + 0.042 τ )
A = K (a − b + A a − A a + A a − A a + b τ − 0.5b τ )
+ K (0.167 b τ − 0.042b τ + 0.008τ ) .
2
3
A 3 = K m a 3 − b 3 + A 2 a 1 − A1a 2 + b 2 τ m − 0.5b1 τ m + 0.167 τ m ,
2
4
m
4
4
3 1
5
m
5
5
4 1
2 2
1 3
3 m
3
2 m
4
1 m
m
2
3 2
2 3
1 4
4 m
3 m
3
m
2 m
4
1 m
5
m
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
306
Rule
Vrančić et al.
(1999).
2
17-Mar-2009
Kc =
[
2
Kc
Ti
Td
Comment
Kc
Ti
Td
8 ≤ N ≤ 20 ;
Model: Method 1
a13 − a12 b1 + a1b 2 − 2a1a 2 + a 2 b1 + a 3 − b3 + y1
2K m − a12 b1 + a1a 2 + a1b12 − a 3 − b1b 2 + b3 + (a1 − b1 ) 2 τ m + y 2
(
)
] , with
y1 = τ m a 1 − a 1 b1 − a 2 + b 2 + 0.5(a 1 − b1 )τ m + 0.167τ m and
2
2
3
y 2 = (a1 − b1 )τm + 0.333τm − (a1 − b1 + τm ) Td −
2
3
3
Ti =
2
Td 2
(a1 − b1 + τm ) ;
N
2
a1 − a1 b1 + a1b 2 − 2a1a 2 + a 2 b1 + a 3 − b3 + y1
2
 2
T 
2
a1 − a1b1 − a 2 + b 2 + (a1 − b1 )τ m + 0.5τ m − (a1 − b1 + τ m )Td − d 
N 

Td is found by solving the following equation:
4
3
2
Td N −3z1 + Td N −2 z 2 + Td N −1z3 + Td x1 + 360 x 2 − 360τm x 3
+ 180τm x 4 − 60τm x 5 − 15τm x 6 − 3τ m x 7 + 7τ m (b1 − a 1 ) − τ m = 0
2
2
5
4
6
7
with x 1 , x 2 , x 3 , x 4 , x 5 , x 6 and x 7 as defined in Table 42; z 1 , z 2 and z 3 are defined
as follows:
3
2
z 1 = 360[a 1 − a 1 b1 + a 1 ( b 2 − 2a 2 ) + a 2 b1 + a 3 − b 3 ]
2
2
3
+ 360τ m [a 1 − a 1 b1 − a 2 + b 2 ] + 180τ m (a 1 − b1 ) + 60τ m ,
3
2
z 2 = 360(a 1 − b1 )[a 1 − a 1 b1 + a 1 ( b 2 − 2a 2 ) + a 2 b1 + a 3 − b 3 ]
3
2
2
+ 360τ m [2a 1 − 3a 1 b1 − a 1 (3a 2 − b1 − 2b 2 ) + 2a 2 b1 + a 3 − b1 b 2 − b 3 ]
2
2
2
3
4
+ 180τ m (3a 1 − 4a 1 b1 − 2a 2 + b1 + 2 b 2 ) + 240τ m (a 1 − b1 ) + 60τ m ,
2
3
4
5
z 3 = z 4 + z 5 τ m + z 6 τ m + z 7 τ m + 135(a 1 − b1 ) τ m + 27τ m , with
4
3
2
2
z 4 = −360[a 1 b1 − a 1 (a 2 + b1 + b 2 ) + a 1 ( 2(a 3 + b1 b 2 ) − a 2 b1 )
2
2
2
+ a 1 ( a 2 + a 2 ( b 1 + b 2 ) − a 3 b 1 − 2a 4 − b 1 b 3 − b 2 + b 4 )
− a 2 ( a 3 + b1 b 2 ) + a 4 b1 + a 5 + b 2 b 3 − b 5 ] ,
4
3
2
2
z 5 = 360[a 1 − 3a 1 b1 + a 1 ( 2( b1 + b 2 ) − a 2 ) + a 1 (3a 2 b1 − a 3 − 3b1 b 2 )
2
2
− a 2 ( b1 + b 2 ) + a 4 + b1 b 3 + b 2 − b 4 ] ,
3
2
2
z 6 = 540[a 1 − 2a 1 b1 − a 1 (a 2 − b1 − b 2 ) + b1 (a 2 − b 2 )] and
2
2
z 7 = 180[ 2a 1 − 3a 1 b1 − a 2 + b1 + b 2 ] .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Vrančić et al.
(2004a), Vrančić
and Lumbar
(2004).
3
Kc
Ti
Td
Comment
Kc
Ti
Td
8 ≤ N ≤ 20 ;
Model: Method 1
3
307
K c , Ti and Td are determined by solving the following equations:
0.5
K c . Td =
A2
(A 4 A1 − A 5 K m ) − 0.5 A 4 (A1A 2 − A 3 K m )
A1
Km
2
2
K c 1 + 2K m K c + K m K c
=
Ti
2 A1 + K m 2 K cTd
(
)
2
and
2
Kc =
,
2
A 5 A 1 K m + A 1 A 2 A 3 − A 4 A1 − A 3 K m
2
A 3K m − A1 K m K cTd − A 2 A1 + A 2 K m K c Td + x
2A1A 2 K m − A13 − A 3K m 2
[
(
, with
][
)
]
x 2 = (2A1K m K cTd + A 2 )A 2 − A1A 3 − A 3 K m + A1 K c Td A1 + K m K cTd ,
and with
2
2
2
(
A1 = K m (a 1 − b1 + τ m ) , A 2 = K m b 2 − a 2 + A1a 1 − b1 τ m + 0.5τ m
2
),
(
)
A = K (b − a + A a − A a + A a − b τ + 0.5b τ + 0.167 b τ + 0.042τ )
A = K (a − b + A a − A a + A a − A a + b τ − 0.5b τ )
+ K (0.167 b τ − 0.042b τ + 0.008τ ) .
2
3
A 3 = K m a 3 − b 3 + A 2 a 1 − A1a 2 + b 2 τ m − 0.5b1 τ m + 0.167 τ m ,
2
4
m
4
4
3 1
2 2
1 3
5
m
5
5
4 1
3 2
2 3
3 m
3
2 m
4
1 m
m
2
1 4
4 m
3 m
3
m
2 m
4
1 m
5
m
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
308
3.8.3 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

E(s)
R(s)
−
+




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
U(s)
Y(s)
Model
+
Table 44: PID controller tuning rules – fifth order model with delay
K (1 + b 1s + b 2 s 2 + b 3 s 3 + b 4 s 4 + b s s 5 )e − sτ m
G m (s) = m
1 + a 1s + a 2 s 2 + a 3 s 3 + a 4 s 4 + a 5 s 5
(
Rule
)
Kc
Ti
Comment
Td
Direct synthesis: frequency domain criteria
Vrančić et al.
(2004a), Vrančić
and Lumbar
(2004).
1
1
Ti
Kc
Model:
Method 1;
8 ≤ N ≤ 20 .
Td
Note: equations continued into the footnote on the next page. K c , Ti and Td are determined by
solving the following equations:
A
A
0.5 2 (A 4 A1 − A 5 K m ) − 0.5 4 (A1A 2 − A 3 K m )
A1
Km
K c . Td =
,
2
2
A 5 A 1 K m + A 1 A 2 A 3 − A 4 A1 − A 3 K m
K c 1 + 2K m K c + K m 2 K c 2
=
and
Ti
2 A1 + K m 2 K cTd
(
)
A K − A12 K m K cTd − A 2 A1 + A 2 K m 2 K c Td + x
Kc = 3 m
, with
2A1A 2 K m − A13 − A 3K m 2
[
(
)
][
]
x 2 = (2A1K m K cTd + A 2 )A 2 − A1A 3 − A 3 K m + A1 K c Td A1 + K m K cTd ,
and with
2
2
2
(
A1 = K m (a 1 − b1 + τ m ) , A 2 = K m b 2 − a 2 + A1a 1 − b1 τ m + 0.5τ m
(
2
3
)
A 3 = K m a 3 − b 3 + A 2 a 1 − A1a 2 + b 2 τ m − 0.5b1 τ m + 0.167 τ m ,
2
),
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
(
A = K (a − b + A a − A a + A a − A a + b τ − 0.5b τ )
+ K (0.167 b τ
A 4 = K m b 4 − a 4 + A 3 a 1 − A 2 a 2 + A 1a 3 − b 3 τ m + 0.5b 2 τ m 2 + 0.167b1 τ m 3 + 0.042 τ m 4
309
)
2
5
m
5
5
4 1
3 2
2 3
1 4
4 m
3 m
m
α = 1, β = 1.
2 m
3
4
5
)
− 0.042b1 τ m + 0.008τ m ;
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
310
3.9 General Model G m (s) =
K m e − sτ m
(1 + sTm1 ) n

1 

3.9.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
−
+

1 

K c 1 +
Ti s 

U(s)
K m e − sτ
Y(s)
m
(1 + sTm1 ) n
Table 45: PI controller tuning rules – general model G m (s) =
Rule
Minimum IAE –
Murata and Sagara
(1977). n = 4.
Model: Method 3;
K c , Ti deduced from
graphs.
Minimum IAE –
Murata and Sagara
(1977). n = 5.
Model: Method 3;
K c , Ti deduced from
graphs.
Minimum IAE –
Murata and Sagara
(1977). n = 4. Model:
Method 3; K c , Ti
deduced from graphs.
Minimum IAE –
Murata and Sagara
(1977). n = 5. Model:
Method 3; K c , Ti
deduced from graphs.
Kc
K m e − sτ m
(1 + sTm1 ) n
Comment
Ti
Minimum performance index: regulator tuning
x1 K m
x 2Tm1
x1
x2
τm Tm1
x1
x2
τm Tm1
0.9
0.7
0.6
4.0
4.0
4.2
0.2
0.4
0.6
0.5
0.5
4.4
4.7
0.8
1.0
x1 K m
x 2Tm1
x1
x2
τm Tm1
x1
x2
τm Tm1
0.7
0.6
0.5
4.5
4.7
4.9
0.2
0.4
0.6
0.5
0.4
5.2
5.5
0.8
1.0
Minimum performance index: servo tuning
x1 K m
x 2Tm1
x1
x2
τm Tm1
x1
x2
τm Tm1
0.7
0.6
0.5
4.5
4.7
4.9
0.2
0.4
0.6
0.5
0.4
5.2
5.5
0.8
1.0
x1 K m
x 2Tm1
x1
x2
τm Tm1
x1
x2
τm Tm1
0.6
0.5
0.5
4.1
4.3
4.6
0.2
0.4
0.6
0.5
0.4
5.0
5.3
0.8
1.0
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Kuwata (1987).
1
Davydov et al.
(1995).
Kc =
x1 =
2
Kc =
Comment
Direct synthesis: time domain criteria
Model: Method 1
Ti
K
c
Model: Method 1;
ξ = 0.9.
Direct synthesis: frequency domain criteria
τ m + Tar
0.5
‘Normal’ design.
0.5
Km n −1
n
( n + 1)( τ m + Tar )
0.375  n + 1 
‘Sharp’ design.


2n
K m  n − 1
2
[
Schaedel (1997).
Model: Method 2
1
Ti
311
Ti
Kc
]
0.4(nTm1 + τm )
0.5
−
, Ti = 1.25x1 - 0.25(nTm1 + τm ) , with
K m (nTm1 + τm − x1 ) K m
(nTm1 + τm )2 − 0.267[n (n − 1)(n − 2)Tm13 + 3n (n − 1)Tm12τm + 3nTm1τm 2 + τm3 ] .



τ*m

, Ti = (nTm1 + τ m )0.624 − 0.467



nTm1 + τ m 




K m  4.345
− 0.151
nTm1 + τm


1
τ*m
n


(n − 1)!
1
(
)
n
1
!
with τ*m = τ m + Tm1 (n − 1) −
.
+
−
n −1 − (n −1)
n −i
(n − 1) e
( ) (i − 1)!

i =1 n − 1
∑
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
312


1
+ Td s 
3.9.2 Ideal PID controller G c (s) = K c 1 +
 Ti s

E(s)
R(s)
+
−
U(s)
Y(s)
Model
Table 46: PID controller tuning rules – general model
Comment
Kc
Ti
Td
Rule
Gorez and Klàn
(2000), Klán
(2000).
Model: Method 4


1
K c 1 +
+ Td s 
T
s
i


Direct synthesis: time domain criteria
Td
1
Ti
K m (Ti + τm )
Ti
Ti τm 
τ 
1 − m 

Tar  Tar 
Alternative
tuning.
0.25Ti
Alternative
tuning.
Klán (2000).
< 0.25Ti
2
τ 
τ
1 + 1 + 2 m  − 2 m
Tar
 Tar 
1
General delayed model. Ti = Tar
,
2
2
T 
T
K  2τ   
τ 
Td = ar (Ti + Tcr ) cr + Ti − Taa − m 1 − c 1 + m   ,

Ti 
Tar
2Tar  K m 
3Ti  


Tar = average residence time of the process (which equals Tm + τ m for a FOLPD
process, for example); Taa = additional apparent time constant;

K 
τ 
Tcr = 1 − c 1 + m  τm .
 K m  2Ti 
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Gorez and Klàn
(2000).
Lee and Teng
(2003).
313
Kc
Ti
Td
Comment
2
Kc
Ti
Td
Model: Method 4
3
Kc
Ti
Td
Model: Method 1
2 x1 K m
2Tm1
0.5Tm1
0.2 ≤ τm Tm1 ≤ 2
Trybus (2005).
Model: Method 1 τm
n
Tm1 0.20 0.22 0.25 0.29 0.33 0.40 0.50 0.67 1.0 2.0
2
x1
0.23 0.23 0.22 0.22 0.21 0.21 0.20 0.18 0.16 0.12
3
x1
0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.12 0.11 0.09
4
x1
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.07
5
General delayed model has a positive zero. K c =
Ti
,
K m [Ti + (1 + x1 )τm ]
2
τ 
τ 
τ 
1 + 1 + 2 m  − 2x1 m 1 − (3 + 2.5x1 ) m 
Tar 
Tar  τm (1 + 1.5x1 )
 Tar 
Ti = Tar
−
,
2
Tar

Tar 
Tcr
1
+ Ti − Taa − Tca 
,
(Ti + Tcr )
Ti 
Tar
 1 + x1 K c τ m
K m Tar
with Tar = average residence time of the process, Taa = additional apparent time
Td =
constant and x1 is a normalised area parameter characterising the inverse response of
the process.


K 
K  2τ   τ 2
τ 
Tcr = 1 − (1 + x1 ) c 1 + m  τm ; Tca = 1 − (1 + x1 ) c 1 + m   m .
K m  2Ti 
Km 
3Ti   2Tar


3
General delayed model. The three dominant desired poles of the closed loop response
are − ξωCL ± jωCL 1 − ξ 2 and − x1ωCL . G p ( jω) evaluated at − ξωCL + jωCL 1 − ξ 2
equals x 2∠φ2 , with G p ( jω) evaluated at − x1ωCL equalling − x 3 . Then,
[
2
Kc = −
]
[
]
[
x1 x 3 sin cos −1 ξ + φ2 + x 3 sin cos −1 ξ − φ2 + x1x 2 sin 2 cos −1 ξ
[
] [
x 2 x 3 x12 − 2 x1ξ + 1 sin cos −1 ξ
]+ x sin[cos ξ − φ ]+ x x sin[2 cos ξ] ;
x ω {x sin [cos ξ] + x [sin (cos ξ − φ ) + x sin φ ]}
x x sin [cos ξ] + x [x sin (cos ξ + φ ) − sin φ ]
T =
.
ω [x x sin (cos ξ + φ ) + x sin (cos ξ − φ ) + x x sin (2 cos ξ )]
Ti =
[
]
];
2
x1 x 3 sin cos −1 ξ + φ2
1 CL
2
2
CL
1
3
3
−1
−1
3
−1
1 2
d
−1
−1
3
2
3
2
2
1
−1
1
−1
−1
1 2
2
2
2
2
1 2
−1
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
314
Rule
Trybus (2005) –
continued.
Kc
Ti
Td
Comment
(1 + τm ) x1
Km
Tm1 + 0.5τm
0.5Tm1τm
Tm1 + 0.5τm
τm
>2
Tm1
τm
Tm1
2.2
20
n
x1
0.12 0.13 0.15 0.16 0.19 0.21 0.26 0.32 0.43
3
x1
0.09 0.10 0.11 0.13 0.15 0.17 0.21 0.26 0.37
4
x1
0.07 0.08 0.09 0.10 0.12 0.14 0.17 0.22 0.33
5
2.5
2.9
3.3
4.0
5.0
6.7
10
G m (s) = K m e −sτ m (1 + sTm1 ) .
n
Direct synthesis: frequency domain criteria
Skoczowski and
Tarasiejski
(1996).
4
Kc
Td
Model: Method 1
0.5(n − 1)Tm1
λ ≥ nTm1
Tm1
Robust
Larionescu
(2002).
Model: Method 1
4
nTm1
K m (λ + τm )
ωg Tm1
K m e − sτ m
G m (s ) =
. Kc ≤
n
Km
(1 + sTm1 )
nTm1
G m (s) = K m e −sτ m (1 + sTm1 ) .
n
(1 + ω T )
2 n −1
m1
2 2
1 + ωg Td
2
g
, Td =
n −1
Tm1 , n ≥ 2 with
n+2

2n + 4 τm 4n + 2 
− Tm1  n 2 − 2n − 2 +
+
φm  ± b
π Tm1
π


ωg =
, and with


+
τ
−
4
n
2
2
n
2
2
2
m
+
φm 
2Tm1 n − 4n + 3 +
π Tm1
π


2
b = Tm1
 2
2n + 4 τ m 4 n + 2 
+
φm  + c , with
 n − 2n − 2 +
π Tm1
π


2 
4n + 2  τ m  2n − 2 


+
φm  ,
c = 4(n + 2)1 + φm  n 2 − 4n + 3 +
π
π  Tm1 
π

 

φ m = specified phase margin.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
315
3.9.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
E(s)
R(s)
U(s)

 1
1
K m e − sτ
K c 1 +
+ Td s 
(1 + sTm1 ) n
 Ti s
 Tf s + 1
m
+
−
Y(s)
Table 47: PID controller tuning rules – general model G m (s) =
Rule
Schaedel (1997).
Model: Method 2
1
Ti =
Kc
Ti
Td
K m e − sτ m
(1 + sTm1 ) n
Comment
Direct synthesis: frequency domain criteria
1
Td
Tf = Td N ,
0.563  n + 1 
Ti


5 ≤ N ≤ 20 .
Km  n − 2
3(n + 1)
(τm + Tar ) , Td = n + 1 (τm + Tar ) .
5n − 1
6n
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
316



Td s 
1

+
3.9.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + s Td 


N 

R(s)




T
s
1
d

+
K c 1 +
Td 

Ti s
1+ s 

N

E(s)
−
+
U(s)
K m e − sτ
(1 + sTm1 ) n
m
Table 48: PID controller tuning rules – general model G m (s) =
Rule
Kc
Ti
Y(s)
K m e − sτ m
(1 + sTm1 ) n
Comment
Td
Direct synthesis: time domain criteria
Davydov et al.
(1995).
ξ = 0.9;
N = Km ;
Model: Method 1
1
2
Kc
Ti
0.25Ti
τ*m
> 0.5
nTm1 + τm
Kc
Ti
Td
τ*m
< 0. 5
nTm1 + τm
0.5(n − 1)Tm1
λ ≥ nTm1 ; N = 5.
Robust
Larionescu
(2002).
Model: Method 1
1
Kc =
nTm1
K m (λ + τm )
nTm1



τ*m
 ,
, Ti = (nTm1 + τm )0.911 − 0.716
nTm1 + τm  






K m  3.540
− 0.718 
nTm1 + τm


1
τ*m


(n − 1)! + (n − 1)! n
1
with τ*m = τm + Tm1 (n − 1) −
.
n −1 − (n −1)
n −i
(n − 1) e
(n − 1) (i − 1)!

i =1
∑
2
Kc =

 0.150τ*m 
 .
, Ti = (nTm1 + τ m )0.559 − 
 nT + τ 
*



τ
m1
m 

m
K m  2.766
− 0.521


nTm1 + τ m


1
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
317
3.9.5 Two degree of freedom structure 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

E(s)
R(s)
−
+




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
U(s)
+
Y(s)
K m e − sτ
(1 + sTm1 )n
Table 49: PID controller tuning rules – general model G m (s) =
Rule
Kc
Kuwata (1987).
Model: Method 1
1
Kc =
x1 =
1
Kc
2
Kc
Ti
Td
m
K m e − sτ m
(1 + sTm1 ) n
Comment
Direct synthesis: time domain criteria
0
Ti
Ti
Td
0.8(nTm1 + τm )
1
−
, α = 1,
K m (nTm1 + τm − x1 ) K m
(nTm1 + τm )2 − 0.267[n (n − 1)(n − 2)Tm13 + 3n (n − 1)Tm12τm + 3nTm1τm 2 + τm3 ] ,
[
]
[
]
 0.833 n ( n − 1)Tm12 + 2nTm1τm + τm 2  1.667 n ( n − 1)Tm12 + 2nTm1τm + τm 2

Ti = 1 −
.


nTm1 + τm
(nTm1 + τm )2


2
Kc =

x 2 − (nT + τ m )x 2
x x
1.20 x13
1
−
, Ti = 1.6671 − 2.5 22  2 , Td = 0.833x 2 1 3 m1
,
2

Km x2
Km
x1  x1
x 1 − 0.833x 2 2

α = 1 , β = 1 , N = ∞ ; x1 = n (n − 1)Tm12 + 2nTm1τm + τm 2 ,
x 2 = n (n − 1)(n − 2 )Tm1 + 3n (n − 1)Tm1 τm + 3nTm1τm + τm .
3
2
2
3
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
318
3.10 Non-Model Specific

1 

3.10.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
E(s)
+
−

1 

K c 1 +
Ti s 

U(s)
Non-model
specific
Y(s)
Table 50: PI controller tuning rules – non-model specific
Rule
Kc
Ti
Comment
Ziegler and Nichols
(1942).
Idzerda et al. (1955).
0.45K u
Ultimate cycle
0.83Tu
Quarter decay ratio.
Johnson (1956).
0.5K u
Tu
Hwang and Chang
(1987).
0.45K u
1  5.22 5.22 

Tu
−
p1  Tu
T1 
0.83K u
1
3TuK c
p1 , T1 = decay rate, period measured under proportional control
when K c = 0.5K u .
1
Parr (1989).
0. 5K u
0.43Tu
p. 191.
p. 192.
Parr (1989).
0.33K u
2Tu
Chen and Yang
(1993).
Hang et al. (1993b),
p. 59.
Pessen (1994).
0.36K u
5.25Tu
0.25K u
0.25Tu
0.25K u
0.167Tu
McMillan (1994).
0.3571K u
Tu
Dominant time delay
process.
Dominant time delay
process.
p. 90.
TuK c = period of the continuous oscillation signal (of the measured variable) generated
when K c = 0.83K u , with Ti being decreased until continuous oscillations exist.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Åström and Hägglund
(1995), pp. 141–142.
Kc
Ti
Comment
0.4698K u
0.4373Tu
A m = 2, φ m = 20 0 .
0.1988K u
0.0882Tu
A m = 2.44,
φ m = 610 .
0.2015K u
0.1537Tu
A m = 3.45,
φ m = 46 0 .
Calcev and Gorez
(1995).
Edgar et al. (1997),
p. 8-15.
Klán and Gorez
(2000).
ABB (2001).
0.3536 K u
0.1592Tu
0.59 K u
0.81Tu
0.5 K m
0.5Tu
0. 5K u
0.8Tu
0.3K u
2
Ti
0.3K u
3
Ti
0.5 K m
0.4Tu
Robbins (2002).
Prokop et al. (2005).
Wang et al. (1995b).
Vrančić et al. (1996),
Vrančić (1996),
p. 121.
Vrančić (1996),
p. 140.
Friman and Waller
(1997).
4
φm = 450 , small τ m
φm = 150 , large τ m .
Minimum IAE –
regulator.
K m assumed known.
Minimum IAE –
servo.
Good response –
regulator.
K m assumed known.
Direct synthesis: frequency domain criteria
Ti
Kc
0.5A 3
( A1A 2 − K m A 3 )
A3
A2
A m ≥ 2, φ m ≥ 60 0
(Vrančić et al., 1996).
0.45K u
A3
A2
Modified Ziegler–
Nichols method.
0.4830
3.7321
ω1500
A m > 2,
G p ( jω1500 )
2
Ti = (0.24 + 0.111K u K m )Tu .
3
Ti = (0.27 + 0.054K u K m )Tu .


1
jωCL G CL ( jωCL )
1
4
Kc =
Im 
 , Ti =
ωCL
ωCL  G p ( jωCL ){1 − G CL ( jωCL )}
φ m > 150 .


jωCLG CL ( jωCL )
Im

(
)
{
(
)
}
ω
−
ω
G
j
1
G
j

CL
CL 
 p CL
.


jωCLG CL ( jωCL )
Rl 

 G p ( jωCL ){1 − G CL ( jωCL )}
319
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
320
Rule
Kc
Kristiansson and
Lennartson (2000).
KuKm
K 1350 K m
K 1350 K m
6
Ti =
0.50K u K m − 0.36
.
(0.33K u K m − 0.17)ωu
7
Ti =
9
10
Ti =
K c = K135 0
K u K m > 0. 5
7
Ti
K u K m < 0.1 ;
K 1350 K m ≤ 0.1 .
K u K m < 0.1 ;
Ti
K 1350 K m > 0.1 .
KuKm
ω u (0.18K u K m + 1)
K u K m ≤ 10
Kc
Ti
K u K m > 10
10
Kc
Ti
1.6 ≤ M s ≤ 1.9
(0.315K1350 K m − 0.175)ωu
5.4K1350 K m − 13.6
Ti
9
20K135 0 K m − 160
(1.32K1350 K m − 3.2)ωu
6
8
2
Kristiansson and
0.33K u K m − 0.15
Lennartson (2002a). K (0.18K K + 1)
m
u m
1.18K u K m − 1.72
.
(0.33K u K m − 0.17)ωu
0.1 ≤ K u K m ≤ 0.5
2
5.4 K 1350 K m − 13.6
Ti =
Ti
2
20 K 1350 K m − 160
5
5
2
0.50K u K m − 0.36
Kristiansson (2003).
Comment
Ti
1.18K u K m − 1.72
KuKm
8
FA
.
.
0.09K1350 K m + 0.25
0.09K1350 K m + 1.2
, Ti =
(
K1350 K m
ω1350 0.09K1350 K m + 1.2
).




2

K150 0
ω150 0 
 K150 0  
0.075





Kc =
0
.
2
+
=
ω
+
−
,
0
.
06
T
0
.
06
1
.
6
0
150
 i
 K  .
K150 0
Km 

Km
m 



+
0
.
05




Km


b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Kristiansson and
Lennartson (2006).
11
Kristiansson and
Lennartson (2003).
12
Kristiansson and
Lennartson (2006).
13
0.05 ≤
Ti
K 1500
Km
≤ 0. 9 ;
1.65 ≤ M max ≤ 1.85 .
0.05 ≤
Ti
Kc
K 1500
Km
≤ 0. 9 ;
1.60 ≤ M max ≤ 1.85 .
Kc
1.6(Tar − τm )
0.15
Ku
0.8Tu
1 + 3.7(K u K m )
0.05 ≤
K 1500
Km
≤ 0. 9 ;
1.60 ≤ M max ≤ 1.85 .
Hägglund and Åström
(2004).
K u ≥ 0.2 K m (robust); K u ≥ 0.5K m (close to optimal tuning).
Åström and Hägglund
(2006), p. 239.
Aikman (1950).
Comment
Ti
Kc
321
0.16
Ku
Tu
1 + 4.5(K u K m )
0.81K 37%
Other tuning rules
1.29T37%
K u > 0.2K m (close to
optimal tuning);
M s = M t = 1.4 .
37% decay ratio.
[0.63K 33% ,0.97 K 33% ] [1.1T33% ,1.3T33% ]
Rutherford (1950).
MacLellan (1950).
33% decay ratio.
0.90K 37%
T37%
37% decay ratio.
1.19 K 37%
0.92T37%
37% decay ratio.
1.02 K 37%
0.92T37%
37% decay ratio.


0.075
2 0.2 +

K150 0 K m + 0.05 

11
Kc =
,
K m 0.06 + 1.6 K150 0 K m − 0.06 K150 0 K m 2
[
(
(
)
)
)]
(
Ti =
[
(
2
)
(
ω150 0 0.06 + 1.6 K150 0 K m − 0.06 K150 0 K m




K
ω
K


0
0
0.075
12
 , T = 2T  0.7 − 0.45 150 0  .
K c = 2Tar  0.7 − 0.45 150  150 0.2 +
i
ar 
K150 0

K m 
Km  Km 


+ 0.05 

Km


13
K c = 1.6(Tar − τm )

ω150 0 
0.075
0.2 +
.
K m 
K150 0 K m + 0.05 
(
)
)2 ]
.
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
322
Rule
Kc
Ti
Comment
Young (1955).
K 37%
< 1.1Tu
37% decay ratio.
K x%
0.5 + 0.361 ln x
Tx %
1.2 1 + 0.025 ln 2 x
0.999 K 25%
0.814T25%
Parr (1989), p. 191.
0.667 K 25%
T25%
Example: x = 25 i.e.
quarter decay ratio.
Quarter decay ratio.
McMillan (1994),
pp. 42–43.
0.42 K 25%
T25%
‘Fast’ tuning.
0.33K 25%
T25%
‘Slow’ tuning.
Wade (1994), p. 114.
0.7515K 25%
0.7470T25%
ECOSSE team
(1996b).
Hay (1998), p. 189.
0.65K 50%
0.7917T50%
K 25%
T25%
Bateson (2002),
p. 616.
K 25%
Tu
McMillan (2005),
p. 62.
0.25K 25%
Chesmond (1982),
p. 400.
sin φ m
Åström (1982).
G p ( jω900 )
Leva (1993).
Åström and Hägglund
(1995), p. 248.
 τ 
0.1 + 65.31 m 
 T25% 
tan φ m
ω900
Ti
0.5
4
ω1350
G p ( jω1350 )
0.25
1. 6
ω1350
G p ( jω1350 )
Hägglund and Åström
(1991).
14
Kc =
^
^
0.25 K u
tan (φm − φω − 0.5π )
G p ( jω) 1 + tan (φm − φω − 0.5π )
2
‘Modified’ ultimate
cycle method.
T25%
Kc
14
x = 100(decay ratio).
0.2546 Tu
, Ti =
2
tan( φ m − φ ω − 0.5π)
>0
Alfa-Laval
Automation ECA400
controller.
Alfa-Laval
Automation ECA400
controller – large
delay.
Model: Method 2
tan (φm − φω − 0.5π )
.
ω
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
NI Labview (2001).
Model: Method 2
0.4 K u
^
0.18 K u
^
‘Some’ overshoot.
^
‘Little’ overshoot.
∧
Model: Method 5
0.8 Tu
^
0.3 K u
1.6 Tu
∧
0.333 A p
2 Tu
Cox et al. (1994).
0.2 hTu sin φ m
Ap
Jones et al. (1997).
Model: Method 2
0.5787
0.16Tu tan φ m
^
h
Ap
x1 Tu
Majhi (1999),
pp. 132–137.
0.4614  K m h 
K m  A p 
Majhi (1999),
pp. 132–137.
0.5380  K m h 
K m  A p 
2.5465h sin φ m
Lee et al. (2005).
Quarter decay ratio.
0.8 Tu
^
Tang et al. (2002).
Model: Method 4
^
0.8 Tu
0.13 K u
Pagola and
Pecharromán (2002).
Parr (1989).
Comment
Ti
^
323
0.7958 ≤ x1 ≤ 1.5915.
^
0.5468
Minimum ISTE –
servo.
^
0.5752
Minimum ISTE –
regulator.
0.5554
Tu  K m h 
3.7736  A p 
0.9395
Tu  K m h 
3.2541  A p 
^
tan φ m
^
A p x 1 ω900 A m
ω900
0.45
1 + Tm 2 x12
Km
5.215
x1
0.81 ≤ x 1 ≤ 1 ;
x 1 = 1 , ‘small’ τ m ;
x 1 = 0.91 , ‘large’ τ m .
Equivalent to Ziegler
and Nichols (1942). 15
15
Representative result for FOLPD process model. Other formulae may be deduced, equivalent to
other ultimate cycle tuning rules, for this process model. In addition, tuning rules may also be
deduced for process models in SOSPD form, FOLIPD form, FOLIPD form (with a negative zero)
and SOSIPD form, as well as processes of 4th, 5th and 6th order without an explicit time delay term.
x1 =
2
τm
16(τm Tm ) + 66 − 181(τm Tm )2 + 762(τm Tm ) + 3081
(τm Tm ) + 17
, 0.1 ≤
τm
≤ 2.0 .
Tm
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
324


1
3.10.2 Ideal PID controller G c (s) = K c 1 +
+ Td s 

 Ti s
E(s)
R(s)
+
−

 U(s)
1
K c 1 +
+ Td s 
 Ti s

Non-model
specific
Y(s)
Table 51: PID controller tuning rules – non-model specific
Rule
Kc
Ziegler and
Nichols (1942).
[ 0. 6 K u , K u ]
Ti
Td
Ultimate cycle
0.5Tu
0.125Tu
Farrington
Tu
[ 0.1Tu , 0.25Tu ]
[ 0.33K u ,0.5K u ]
(1950).
McAvoy and
0.54 K u
Tu
0.2Tu
Johnson (1967).
Atkinson and
0.25K u
0.75Tu
0.25Tu
Davey (1968).
20% overshoot – servo response.
Ku
0.5Tu
0.125Tu
Carr (1986);
0.6667 K u
Tu
0.167Tu
Pettit and Carr
(1987).
0. 5K u
1.5Tu
0.167Tu
Tu
0.2Tu
0. 5K u
Tu
0.25Tu
0. 5K u
0.34Tu
0.08Tu
Tinham (1989).
0.4444 K u
0.6Tu
0.19Tu
Blickley (1990).
0. 5K u
Tu
Corripio (1990),
p. 27.
0.75K u
0.63Tu
Parr (1989),
pp. 190,191,193.
0. 5K u
[0.125Tu ,
0.167Tu ]
0.1Tu
Comment
Quarter decay
ratio.
Underdamped.
Critically
damped.
Overdamped.
ξ ≈ 0.45
Less than quarter
decay ratio
response.
Quarter decay
ratio.
Quarter decay
ratio.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Åström (1982).
Kc
K u cos φ m
Ti
Td
1
x1Ti
Ti
Comment
0.87 K u
Representative results:
0.55Tu
0.14Tu
φ m = 30 0
0.71K u
0.77Tu
0.19Tu
φ m = 450
0.50K u
1.19Tu
0.30Tu
φ m = 60 0
Ku
Am
Arbitrary
4 π 2 Ti
Specify A m .
K u cos φ m
x1Td
2
Specify φ m .
Hang and Åström
(1988b).
K u sin φ m
Tu (1 − cos φ m )
π sin φ m
Tu (1 − cos φ m )
4π sin φ m
Åström and
Hägglund (1988),
p. 60.
0.35K u
0.77Tu
0.19Tu
0.4698K u
0.4546Tu
0.1136Tu
0.1988K u
1.2308Tu
0.3077Tu
0.2015K u
0.7878Tu
0.1970Tu
0.27 K u
2.40Tu
1.32Tu
0.906K u
0.5Tu
0.125Tu
φ m = 250
0.866K u
0.5Tu
0.125Tu
φ m = 30 0
0. 5K u
0.5Tu
0.125Tu
p. 90.
0.5Tu
0.125Tu
p. 21.
0.1592Tu
0.0398Tu
Åström and
Hägglund (1984).
Åström and
Hägglund (1995),
pp. 141–142.
Chen and Yang
(1993).
De Paor (1993).
McMillan (1994)
McMillan (2005) [0.3K u ,0.5K u ]
1
2
Calcev and
Gorez (1995).
0.3536K u
ABB (1996).
0.625K u
Tu
Td
325
Am ≥ 2 ,
φ m ≥ 450 .
A m = 2,
φ m = 20 0 .
A m = 2.44,
φ m = 610 .
A m = 3.45,
φ m = 46 0 .
0
φ m = 45 , ‘small’ τ m ; φ m = 150 , ‘large’ τ m .
0.5Tu
0.083Tu
‘P+D’ tuning
rule.
T
Ti =  tan φm + 4 x1 + tan 2 φm  u . x1 = 0.25 (Åström, 1982);

 4απ
x1 = 0.5 (Seki et al., 2000); 0.1 ≤ x1 ≤ 0.3 (Seki et al., 2000).
T
Td =  tan φ m + 1 + tan 2 φ m  u , x1 not specified.

 π
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
326
Rule
Kc
Ti
Td
Luo et al. (1996).
0.48K u
0.5Tu
0.125Tu
[0.213Tu ,
[0.133Tu ,
1.406Tu ]
0.469Tu ]
0.46K u
2.20Tu
0.16Tu
0. 4 K u
0.5Tu
0.125Tu
Based on work
by Tyreus and
Luyben (1992).
p. 26.
0. 5K u
Tu
0.125Tu
p. 27.
[0.32 K u ,0.6K u ]
Karaboga and
Kalinli (1996).
Luyben and
Luyben (1997),
p. 97.
Tan et al.
(1999a).
Tan et al.
(1999a).
Tighter damping than quarter decay ratio tuning.
0. 4 K u
0.333Tu
0.083Tu
Wojsznis et al.
(1999).
Yu (1999), p. 11.
Tan et al. (2001).
Robbins (2002).
Smith (2003).
0.125Tu
Some overshoot.
0. 2 K u
0.5Tu
0.125Tu
No overshoot.
Kc
Ti
0.25Ti
0.33K u
0.5Tu
0.333Tu
0. 2 K u
0.5Tu
0.333Tu
0.45K u
4
Ti
0.25Tu
0.45K u
5
Ti
0.25Tu
0.625Tu
0.1Tu
0.625Tu
0.1Tu
0.6Tu
1 + 2(K u K m )
Td
0.75K u
Åström and
Hägglund (2006),
pp. 240–241.
Ti ωu G 'c ( jωu )
2
0.5Tu
[K u ,1.67K u ]
Alfaro Ruiz
(2005a).
Kc =
0.33K u
3
Chau (2002),
p. 115.
3
Comment
2
0.25Ti ωu + 1
6
Kc
, Ti = 0.3183Tu tan
‘Just a bit of’
overshoot.
No overshoot.
Minimum IAE –
servo.
‘Good’ response
– regulator.
Quarter decay
ratio.
K u > 0.2K m
(close to optimal
tuning);
M s = M t = 1. 4 .
0.5π + ∠G 'c ( jωu )
,
2
G 'c ( jωu ) = desired frequency response of controller G c ( jω) at ωu .
4
Ti = (0.24 + 0.111K m K u )Tu .
5
Ti = (0.27 + 0.054K m K u )Tu .
K  
1 
1 − (K u K m )
Kc =
0.3 − 0.1 u   , Td = 0.15Tu
.
Ku 
K
1
−
0.95(K u K m )

 m 

4
6
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
Rutherford
(1950).
1.25K 37%
T37%
Other rules
0.125T37%
1.12 K 37%
T37%
0.25T37%
1.77 K 37%
1.29T37%
0.16T37%
1.67 K 37%
1.29T37%
0.16T37%
MacLellan
(1950).
Harriott (1964),
pp. 179–180.
Lipták (1970),
pp. 846–847.
Comment
Td
1.49 K 37%
0.98T37%
0.24T37%
K 25%
0.167T25%
0.667T25%
K 25%
0.667T25%
0.167T25%
Kc
Ti
0.25Ti
0.999 K 25%
0.488T25%
0.122T25%
K 25%
0.67T25%
0.17T25%
37% decay ratio.
37% decay ratio.
0.83K 25%
0.5T25%
0.1T25%
Quarter decay
ratio.
Quarter decay
ratio.
x = 100(decay
ratio).
Example: x = 25
i.e. quarter decay
ratio.
Quarter decay
ratio.
‘Fast’ tuning.
0.67 K 25%
0.5T25%
0.1T25%
‘Slow’ tuning.
Wade (1994), [ 1.002 K 25% ,
p. 114.
1.67 K
0.45T25%
0.1125T25%
0.8497 K 50%
0.475T50%
0.1188T50%
K 25%
0.667T25%
0.167T25%
K 25%
0.6667Tu
0.1667Tu
7
Chesmond
(1982), p. 400.
Parr (1989),
p. 191.
McMillan
(1994), p. 43.
ECOSSE team
(1996b).
Hay (1998),
p. 189.
Bateson (2002),
p. 616.
Rotach (1994).
7
Kc =
8
Kc =
8
25% ]
Kc
Ti
− 0.5
Tx %
K x%
, Ti =
.
0.5 + 0.361ln x
2 1 + 0.025 ln 2 x
M max
2
M max − 1
G p ( jωM max ) , Ti = −
2
.

dφωM 
2
max
ωM max 

 dωM max 
dφ ωM
max
dω M max
‘Modified’
ultimate cycle.
327
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
328
Rule
Rotach (1994) –
continued.
García and
Castelo (2000).
Ti
Td
9
Kc
Ti
Td
10
Kc
Ti
0.25Ti
^
0. 4 K u
Parr (1989).
0.5 A p
Zhang et al.
(1996a).
11
Kc =
Kc =
^
Td =
^
0.159 Tu
∧
∧
Tu
0.25 Tu
Ti
Td
G p ( jωr ) ,
dφωr 
 


0.5
1
1
−1
2
[ ωr
+ φ ωr  ].
+ φωr   + tan  π − sin −1
1 + tan  π − sin
M
dωr 
M
ωr

max
max




(
cos 1800 + φm − ∠G p ( jω1 )
) , T = 2[sin(180 + φ − ∠G ( jω )) + 1] .
ω cos(180 + φ − ∠G ( jω ) )
0
i
G p ( jω1 )
m
0
1
1
p
m
1
p
1
π
2
2
, with x1 =
, x2 =
Ap − ε4 ,
2
4h
1+ x
x3
1 + x12 x 2 2 + sin 2 φm
3
x3 =
Ti =
Self-regulating
processes.
Non selfregulating
processes.
^
0.083 Tu
Tu
Kc
ω1 < ωu
2
,
 dφω 



1
1
−1
−1
2
r
+ φω r 
ωr ωr
+ φω r  − tan π − sin
1 + tan  π − sin
M max
M max
 dωr 




Td = −
11
^
M max 2 − 1
Ti = −
10
^
0.3333 Tu
0. 4 K u
M max
Kc =
Comment
Kc
Lloyd (1994).
Model: Method 3
9
FA
x 2 − cos φm
2
2
x 2 + sin φm
sin φm or x 3 =
cos φm − x 2
x 2 2 + sin 2 φm
A x −x
Am2 − 1
Am2 − 1
or Ti =
; Td = m 4 2 1 or
A mωg (x 4 − A m x1 )
A mωg (x 4 + A m x1 )
ωg A m − 1
(
A m x 4 + x1
(
2
)
) , with x ∈ [A x + 1.0, A x + 1.2] or
ωg A m − 1
4
m 1
m 1
∧ 
∧ 
∧ 
∧ 
 
 ∧

x 4 ∈   ωpc − ωu  ωu  − 0.4,   ωpc − ωu  ωu  + 0.4 , ωu obtained from an ideal


 




∧ 
∧ 

relay experiment. x 4 = A m x1 + 1.2 or x 4 =   ωpc − ωu  ωu  + 0.4 (minimum IAE,



regulator).
sin φm ;
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Jones et al.
(1997).
Shin et al.
(1997).
Majhi (1999),
pp. 132–137.
Majhi (1999),
pp. 132–137.
NI Labview
(2001).
Model: Method 2
12
Kc =
Kc
0.7490h A p
Comment
Td
Ti
^
Model: Method 2
^
x1 Tu
329
0.125 Tu
0.2526 ≤ x1 ≤ 0.5053 .
12
Kc
Ti
x 3Ti
Model: Method 2
13
Kc
Ti
Td
14
Kc
Ti
Td
Minimum ISTE –
servo.
Minimum ISTE –
regulator.
Quarter decay
ratio.
‘Some’
overshoot.
∧
∧
0.6 K u
∧
0.5 Tu
∧
0.12 Tu
∧
0.25 K u
∧
0.5 Tu
0.12 Tu
ρ
 ∧


1 
1 

 − x 2  x 3 ωu Ti − ∧
x1  x 3ωu Ti −
 − y 2 − ρx 2

ωu Ti 



T
ω
u i 

,


 ωu

ωu 
(x 2 − x1 ) + (x1 − x 2 )2 + 4 x 3ρx1ωu + x 3 y2 ωu  ρx1 + y∧ 2 
∧
Ti =

,
∧ 

2 x 3ρx1ωu + x 3 y 2 ωu 


∧ 

 ωu − ωu 
2
1
1


 1− ξ ,
x1 = −
, x 2 = ∧ cos ∠G p ( j ωu )  , ρ = 
Ku
ωu
ξ


Ku
∧
1


y 2 = ∧ sin ∠G p ( j ωu )  . Typical x 3 : 0.1; typically 0.3 ≤ ξ ≤ 0.7 .


Ku
∧
13
Kc =

∧ K h
K h
1 
0.5585 m  + 0.03835 , Ti = 0.259 Tu  m 
 Ap 
 Ap 
Km 






0.516
,
∧
(
)
∧
(
)
Td = 0.124 Tu K m h A p 0.403 .
14
Kc =

∧ K h
K h
1 
0.7837 m  − 0.0526 , Ti = 0.257 Tu  m 
 Ap 
 Ap 
Km 






0.197
,
Td = 0.131Tu K m h A p 1.109 .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
330
Rule
Kc
NI Labview
(2001) –
continued.
Chen and Yang
(1993).
Ti
∧
0.5 Tu
0.12 Tu
‘Little’
overshoot.
4Td
Td
Model: Method 6
∧
0.15 K u
15 0.25 + 0.87 x1
0.25 + x12
Comment
Td
∧
2.5465h sin φ m
16
^
Tang et al.
x 2Td
0.81 ≤ x 1 ≤ 1
Td
A p x 1 ω900 A m
(2002).
Model: Method 4
x 1 = 1 , ‘small’ τ m ; x 1 = 0.91 , ‘large’ τ m ; 1.5 ≤ x 2 ≤ 4 .
Dutton et al.
(1997).
17
Tue
0.5K eu
0.25Tue
pp. 576–578.
Direct synthesis: time domain criteria
Ramasamy and
Ti
18
Sundaramoorthy K (τ + T )
Td
Ti
m CL
CL
(2007).
2
15
x1 =
π Ap − εr
Td =
16
Td =
2
, 2ε r = relay deadband, d r = relay output amplitude;
4d r
− x 2 ± x 22 + 1
^
2 ωu
, x2 =
0.43 − 0.5x1
.
0.25 + 0.87 x1
− cot φ m + cot 2 φ m + 4 x 2
^
.
2 ω90 0
17
K *c
K eu =
(8 − r )2
1−
, Tue =
6.283  (8 − r )3.5 
1 −

ωd 
1110 
0.286
with r = ratio of the height of the first peak
55
to the height of the first trough of the closed loop response, when controller gain K *c is applied;
ωd = damped natural frequency.
18
Desired closed loop transfer function = e −sτ CL 1 + sTCL .
2
−

 τCL − t  − σ 2
_
−


τCL 3
τCL

Ti = t − τCL +
, Td =  Ti + τCL − t  + 
,
−
2(τCL + TCL )
2Ti
6Ti (τCL + TCL )


2
−
with t = mean and σ 2 = variance of the process impulse response.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ramasamy and
Sundaramoorthy
(2007) –
continued.
19
Kc
Ti
Td
Ti
Td
Direct synthesis: frequency domain criteria
0 < KmKu < ∞ ;
21
Ti
Td
Kc
M
= 1.4.
20
Åström and
Hägglund (1995),
p. 217.
max
22
Åström and
Hägglund (1995),
p. 217.
Streeter et al.
(2003), Keane et
al. (2005).
19
Comment
23
24
Kc
Ti
Td
Kc
Ti
Td
(
0 < KmKu < ∞ ;
M max = 2.0.
0 < KmKu < ∞ ;
M max = 2.0.
)
Desired closed loop transfer function = e −sτ CL 1 + 2ξCL TCL1s + TCL12s 2 .
Kc =
2
2
− 2TCL1
τCL
Ti
, Ti = t − τCL +
,
K m (τCL + 2ξCL TCL1 )
2(τCL + 2ξCL TCL1 )
−
2
−

 τCL − t  − σ 2
_
−


τCL 3

, with t = mean
Td =  Ti + τCL − t  + 
−
2Ti
6Ti (τCL + 2ξCL TCL1 )


and σ 2 = variance of the process impulse response.
20
21
22
23
24


1
Tuning rules converted from formulae developed for G c (s) = K c  b +
+ Td s  .
Ti s


(
2
)
(
)
(
2
)
(
2
)
K c = 0.19e −1.61κ + 2.5 κ K u , Ti = 0.44e −2.9 κ + 3.14 κ Tu , Td = 0.29e0.84 κ −5.6 κ Tu


1
Tuning rules converted from formulae developed for G c (s) = K c  b +
+ Td s  .
T
s
i


(
2
2
)
(
2
)
K c = 0.18e −1.04 κ +1.08 κ K u , Ti = 0.15e −0.74 κ + 0.26 κ Tu , Td = 0.60e −1.96 κ + 0.68 κ Tu .
(
K c x1 = 0.72e
(
Ti
0.59e
=
x1
Td x1 =
)K − 0.0012340T − 6.1173.10 ,
)([ 0.72e
)K − 0.0012340T − 6.1173.10 ]T ,
[0.72e
]K
− 0.040430e
−1.6 κ +1.2 κ 2
u
−1.3 κ + 0.38 κ 2
0.108e
u
−1.6 κ +1.2 κ 2
−1.6 κ +1.2 κ
− 3 κ +1.76 κ 2
u
u
−1.3 κ + 0.38 κ 2
2
( )
K u Tu − 0.0026640 e
2
−6
(
Tu log 1.6342
log K u
0.72K u e −1.6 κ +1.2 κ − 0.0012340Tu − 6.1173.10− 6
)
−6
u
u
2
, x1 = 0.25e0.56 κ − 0.12 κ +
Ku
.
eK u
331
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
332
3.10.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
R(s) E(s)
−
+
Rule
Kristiansson
(2003).
1
Kc =


1
K c 1 +
+ Td s 
Ti s


1
Tf s + 1
U(s)
Non-model
specific
Y(s)
Table 52: PID controller tuning rules – non-model specific
Comment
Kc
Ti
Td
1
Kc
Minimum performance index: other tuning
Ti
Td
‘Almost’ optimal tuning rule; K 1500 ≥ 0.03 ; 1.6 ≤ M s ≤ 1.9 .
0.60
,
2

K150 0
 K150 0  

 K150 0
 
− 0.8
Km 
+ 0.07  0.32 + 1.6

Km
 
 K m  
 Km
1.5
,
2

K150 0
 K150 0  
 
ω150 0 0.32 + 1.6
− 0.8
Km
K m  




0.6667
,
Td =
2

K150 0
 K150 0  
 
ω150 0 0.32 + 1.6
− 0.8
Km
K m  




0.4
or
Tf =
2
2



K
K
K



0
0
0 
K


ω150 0  150 + 0.07  0.32 + 1.6 150 − 0.8 150   min 6 + m ,25
K
K
K
K


0


m
 m  
 m

150

Ti =
Tf =
1
.
2

K150 0
 K150 0

 K150 0  
 
ω150 0 20
+ 0.5 0.32 + 1.6
− 0.8

Km
Km

 
 K m  
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ramasamy and
Sundaramoorthy
(2007).
2
2
Kc
3
Kc
Ti
333
Comment
Td
Direct synthesis: time domain criteria
Applies to
x1 + Tf
Td
processes with
x 3 + Tf
dominant
Tf
numerator
x 2 + Tf
1+
dynamics.
x2
Desired closed loop transfer function = e −sτ CL 1 + sTCL .
Kc =
2
−
 Tf 
τCL
, Tf not specified;
1 +  , x1 = t − τCL +
K m (τCL + TCL )  x1 
2(τCL + TCL )
Ti
2
−

 τ − t  − σ 2
3
−  CL
τCL

x1 + τCL − t + 
+ Tf −
2 x1
6 x1 (τCL + TCL )
Td =
,
Tf
1+
2
_
τCL
t − τCL +
2(τCL + TCL )
−
with t = mean and σ 2 = variance of the process impulse response (treated as a statistical
distribution).
3
(
)
Desired closed loop transfer function = e −sτ CL 1 + 2ξCL TCL1s + TCL12s 2 .
Kc =
 Tf 
τCL
x2
,
1 +  , x 2 = t − τCL +
K m (τCL + 2ξCLTCL1 )  x 2 
2(τCL + 2ξCL TCL1 )
−
2
2
− 2TCL1
2
−

 τCL − t  − σ 2
_
−


τCL3

, with t = mean
x 3 =  x 2 + τCL − t  + 
−
2x 2
6 x 2 (τCL + 2ξCLTCL1 )


and σ 2 = variance of the process impulse response (treated as a statistical distribution).
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
334
Rule
Kc
Wang et al
(1995b).
Kristiansson and
Lennartson
(2002b).
4
17-Mar-2009
Ti
4
Kc
5
Kc
Td
Comment
Direct synthesis: frequency domain criteria
Ti
Td
Ti
0.4444Ti
Plant does not contain an integrator; 1.6 ≤ M max ≤ 1.9 .
For a stable process, K m is assumed known; for an integrating process, K m and τ m are assumed
known. K c =


1
jωCL G CL ( jωCL )
Im 
,
ωCL  G p ( jωCL ){1 − G CL ( jωCL )}


jωCL G CL ( jωCL )
Im

G
j
1
G
j
ω
−
ω
(
)
{
(
)
}

1
CL
CL 
 p CL
Ti =
ωCL 

jωCL G CL ( jωCL )
Rl 

 G p ( jωCL ){1 − G CL ( jωCL )}
+



jωCL G CL ( jωCL )
j2ωCL G CL ( j2ωCL )
1  
 Rl 
 − Rl 
 ,
3   G p ( jωCL )[1 − G CL ( jωCL )] 
 G p ( j2ωCL )[1 − G CL ( j2ωCL )] 

 


 
j2ωCLG CL ( j2ωCL )
jωCLG CL ( jωCL )
 Rl
 − Rl

 G p ( j2ωCL )[1 − G CL ( j2ωCL )] 
1   G p ( jωCL )[1 − G CL ( jωCL )]
Td = 
.
3


jωCL G CL ( jωCL )

Im



 G p ( jωCL )[1 − G CL ( jωCL )]


5
Kc =
Ti =
Tf =


0.48
1.5
− 0.15
 K150 0 K m + 0.07

(
[
)
(
)
(
)]
K m 0.34 + 1.5 K150 0 K m − 0.7 K150 0 K m 2
[
1.5
(
)
(
ω150 0 0.34 + 1.5 K150 0 K m − 0.7 K150 0 K m
[
(
,
)2 ]
,


0.48
− 0.15


 K150 0 K m + 0.07
(
)
(
)
) ]2 min{3 + 2(K m K150 ),25}
ω150 0 0.34 + 1.5 K 150 0 K m − 0.7 K 150 0 K m 2
0
.
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
6
Kristiansson and
Lennartson
(2006).
Kc
Ti
Td
Kc
Ti
Td
Comment
Plant does not contain an integrator; 1.65 ≤ M max ≤ 1.85 .
7
Kc
Ti
Td
8
Kc
Ti
Td
Plant contains an integrator.
Ultimate cycle
0.5Tu
0.125Tu
[0.3K u ,0.5K u ]
McMillan
(2005).
M max ≈ 1.7


0.45
1. 5 
− 0.1
1.5
6
 K150 0 K m + 0.07
 , T =
,
Kc =
i
K m 0.86 K150 0 K m + 0.44
ω150 0 0.86 K150 0 K m + 0.44
(
[ (
Td =
Tf =
7
Kc =
Ti =
8
Kc =
Td =
ω1500
Km
)
[ (
]
)
]
)
0.6667
1
, Tf =
or
K150 0
K 1500
K 1500 




ω150 0 0.86
+ 0.44
ω1500 0.86
+ 0.44 2 + 14

Km
Km
Km 






0.45
− 0.1

K
K
0
.
07
+
 150 0 m

(
[ (
)
)
]
{
(
) }
ω150 0 0.86 K150 0 K m + 0.44 2 min 3 + 2 K m K150 0 ,25
3.333ω150 0
e
Km
3.333
ω150 0
3.5 −
3.5 −
2.94ω150 0
Km
6.4 −
9ω
e
4.4 −
3.5 −
G p jω
3ω150 0
150 0
(
(
G p jω150 0
6.5ω
150 0
Km
3ω150 0
Km
)
G p jω150 0
Km
1
3ω150 0
Km
(
150 0
Km
(
)
, Tf =
, Td =
)
G p jω
150 0
(
)
(
)
Km
≤ 0.91 .
0.083 ω1500
,
G p jω1500 ≥ 0.7 ;
ω1500
Km
(
)
, Ti =
(
2.94
ω150 0
3.5 −
3ω150 0

2.94 
0.11 4.4−
G p jω150 0  , Tf =
e
3.5 −
ω1500
ω150 0 
Km

(
K 1500
3ω150 0

0.834 
G p jω150 0  .
3.5 −
ω150 0 
Km

)
G p jω150 0
; 0.04 ≤
)
G p jω1500 < 0.7 , 1.7 ≤ M max ≤ 1.8 .
1
3ω150 0
Km
6.5ω
150 0
Km
(
)
(
G p jω150 0
G p jω
1500
)
,
)
,
335
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
336



Td s 
1

+
3.10.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + Td s 


N 


 U(s)


T
s
1
d
Non-model

+
K c 1 +
Td 

Ti s
specific
s
1+

N 

E(s)
R(s)
−
+
Y(s)
Table 53: PID controller tuning rules – non-model specific
Comment
Td
Kc
Ti
Rule
Direct synthesis: frequency domain criteria
Ti
6.283 x1ω
φω > φm − π
Leva (1993).
N not specified.
1
Kc
2
Kc
x1Td
Td
6 ≤ x1 ≤ 10
Yi and De Moor
(1994).
Vrančić (1996),
p. 130.
3
Kc
4Td
Td
N not defined.
4
Td
N < 10
1
Ti
2(A1 − Ti )
ωTi
Kc =
2

2π 
 + ω2Ti 2
G p ( jω) 1 − ωTi
x1 

ωTi
2
Kc =
,
2
G p ( jω) 1 − ω2Ti Td + ω2Ti 2
(
4
Kc =
Ti =
0.5 cos θ
G p ( jωφ )
, Td =
A3
, Ti =
tan (φm − φω − 0.5π)
2π
ω 1+
tan (φm − φω − 0.5π )
x1
, x1 = 10 .
)
Td =
3
Ti
(
A 2 − Td A1 − Td
2
− x1ω + x12ω2 + 4x1ω2 tan 2 (φm − φω − 0.5π )
2 x1ω2 tan (φm − φω − 0.5π )
, φω < φm − π .
tan θ + 4 + tan 2 θ
, θ = 2250 − ∠G p ( jωφ ) .
2ωφ
N
),
2
Td =
− (A 3 − A 5A1 ) +
(A − A A ) − (4 N )(A A − A )(A A − A A ) .
2
2
3
5
1
3
(2 N )(A3A 2 − A5 )
2
5
5
2
4
3
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Ti
5
Kc
Ti
Vrančić (1996),
p. 134.
6
Kc
Vrančić et al.
(1999).
Lennartson and
Kristiansson
(1997).
Kristiansson and
Lennartson
(1998a).
7
Vrančić (1996),
pp. 120–121.
5
Kc =
337
Comment
Td
A3A4 − A 2 A5
A 3 2 − A1 A 5
N ≥ 10
Ti
x1Ti
N = 10 ;
0.2 ≤ x1 ≤ 0.5 .
Kc
Ti
Td
8 ≤ N ≤ 20
8
Kc
Ti
0.4Ti
K u K m ≥ 1.67
9
Kc
Ti
0.4Ti
(
)
(A − A A )(A A − A K ) − (A A − A A )A ,
0.5A3 A32 − A1A5
2
3
1
5
1
2
3
m
3
4
2
2
1
5
Ti =
(
A3 A 32 − A1A 5
)
(A − A A )A − (A A − A A )A .
2
3
1
5
2
3
4
2
6
Kc =
7
Kc =
A − A 2 − 4x1A1A 3
0.5Ti
.
, Ti = 2
A1 − K m Ti
2 x1A1
A3
2


T
2
2 A1A 2 − A 0 A 3 − Td A1 − d A 0 A1 


N


Td is obtained by solving:
A3
, Ti =
2
A 2 − Td A1 −
(
Td
Km
N
,
)
A 0 A 3 4 A1A 3 3 A 0 A 5 − A 2 A 3 2
2
Td +
Td −
Td + A 3 − A1A 5 Td + (A 2 A 5 − A 3A 4 ) = 0 .
N
N3
N2
8
Kc = KuKm
Ti =
9
N=
[
K u K m + 2.5 12K u 2 K m 2 − 35K u K m + 30
Kc
3
2
− 0.053ωu + 0.47ωu − 0.14ωu + 0.11
Kc = KuKm
Ti =
12K u 2 K m 2 − 35K u K m + 30
,N=
2.5 
35
30 
+
12 −
.
K m K u 
K m K u K m 2 K u 2 
12K u 2 K m 2 − 35K u K m + 30
[
K u K m + x1 12K u 2 K m 2 − 35K u K m + 30
Kc
− 0.525ωu 3 + 0.473ωu 2 − 0.143ωu + 0.113
,
],
];
ωu
≤ 0.4 ;
KuKm
x1 
35
30 
+
12 −
 ; x 1 = 3 , K u K m > 10 ; x 1 = 2.5 , K u K m < 10 .
K m K u 
K m K u K m 2 K u 2 
2
5
1
b720_Chapter-03
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
338
Rule
Kc
Ti
Kristiansson and
Lennartson
(1998a) –
continued.
Kristiansson and
Lennartson
(1998b).
Kristiansson and
Lennartson
(2000).
Kc
10
10
FA
Comment
Td
Ti
0.4Ti
11
Kc
Ti
0.4Ti
12
Kc
Ti
0.333Ti
13
Kc
Ti
Td
K c as in footnote 9; Ti =
N = 2.5
0. 1 ≤ K u K m
≤ 0.5
Kc
3
− 0.185ωu + 1.052ωu
2
ωu
≥ 0.4 .
− 0.854ωu + 0.309 K u K m
,
ωu
9.14
11
> 0.45;
−
+ 3.14 , K u K m > 1.67 ,
Kc =
2
2
KuKm
K mK u
Km Ku
7.71
Ti =
12
Kc =
12K u 3K m 2 − 35K u 2 K m + 30K u
[
3
K m K u 3 + 2.5 12K u 2 K m 2 − 35K u K m + 30
3
Ti =
13
2
Kc =
[
KcKm Ku
2
2
2
(1.1K u K m − 2.3K u K m + 1.6)
− 0.63ωu + 0.39ωu 2 + 0.15ωu + 0.0082
.
],
ωu 0.95K m K u − 2K m K u + 1.4
2
Kc
3
]
,N =
2.5 
35
30 
+
12 −
.
K m K u 
K m K u K m 2 K u 2 
2
2
K m K u (−20 + 13K m K u )(1 + 0.37 K m K u ) 2
 1.6( −20 + 13K m K u )(1 + 0.37 K m K u ) 
− 1 ,

2
2
 1.1K m K u − 2.3K m K u + 1.6

Ti =
2
2
K m K u (1.1K u K m − 2.3K u K m + 1.6)  1.6( −20 + 13K m K u )(1 + 0.37 K m K u ) 
− 1 ,

ωu (−20 + 13K m K u )(1 + 0.37 K m K u ) 2  1.1K m 2 K u 2 − 2.3K m K u + 1.6

Td =
K m K u (1.1K u K m − 2.3K u K m + 1.6)
ωu (−20 + 13K m K u )(1 + 0.37 K m K u ) 2
2
2

 ( −20 + 13K m K u ) 2 (1 + 0.37 K m K u ) 2


2
2
2
(1.1K m K u − 2.3K m K u + 1.6)

− 1 ,

 1.6( −20 + 13K m K u )(1 + 0.37 K m K u )
−1 

2
2
1.1K m K u − 2.3K m K u + 1.6


N=
2
2
K K (1.1K u K m − 2.3K u K m + 1.6)
Td
.
, Tf = m u
Tf
ωu (−20 + 13K m K u )(1 + 0.37 K m K u ) 2
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Kristiansson and
Lennartson
(2000) –
continued.
14
Ti
Td
Comment
14
Kc
Ti
Td
K u K m > 0.5
15
Kc
Ti
Td
K u K m < 0.1
Kc =
2
2

(1.1K u K m − 2.3K u K m + 1.6) 2  4.8K m K u (1 + 0.37 K m K u )
− 1 ,
2
2
2
2
2 
3ωu K m K u (1 + 0.37 K m K u )  1.1K m K u − 2.3K m K u + 1.6 
Ti =
2
2

(1.1K u K m − 2.3K u K m + 1.6)  4.8K m K u (1 + 0.37 K m K u )
− 1 ,

2
2
2
3ωu (1 + 0.37 K m K u )
 1.1K m K u − 2.3K m K u + 1.6 

 3K m 2 K u 2 (1 + 0.37 K m K u ) 2


2
2
2
2
2
(1.1K u K m − 2.3K u K m + 1.6)  (1.1K m K u − 2.3K m K u + 1.6)
,
Td =
1
−

 4.8K m K u (1 + 0.37 K m K u )
3ωu (1 + 0.37 K m K u ) 2
−1 

2
2
1.1K m K u − 2.3K m K u + 1.6


N=
15
Kc =
Ti =
2
2
Td
1.1K u K m − 2.3K u K m + 1.6
.
, Tf =
Tf
3ωu (1 + 0.37 K m K u ) 2
(−6 + 3.7 K1350 K m ) 2
 20.8(1.8 + 0.3K m K135 0 )
2 
13K m (1.8 + 0.3K m K1350 ) 
( −6 + 3.7 K m K1350 )

− 1 ,

(−6 + 3.7 K1350 K m )K1350 K m  20.8(1.8 + 0.3K m K135 0 ) 
− 1 ,

13ω1350 (1.8 + 0.3K m K135 0 ) 2  (−6 + 3.7 K m K1350 )


 169(1.8 + 0.3K m K 0 ) 2
135


2
(−6 + 3.7 K m K135 0 )K m K1350 
(−6 + 3.7 K m K1350 )

Td =
−
1
,

13ω1350 (1.8 + 0.3K m K135 0 ) 2  20.8(1.8 + 0.3K m K1350 )
−1 

 (−6 + 3.7 K m K1350 )


(−6 + 3.7 K m K1350 ) K m K1350
T
.
N = d , Tf =
Tf
13ω1350 (1.8 + 0.3K m K1350 ) 2
339
b720_Chapter-03
Rule
Kc
Kristiansson and
Lennartson
(2002a).
Ti
Td
Comment
16
Kc
Ti
Td
K u K m ≤ 10
17
Kc
Ti
Td
K u K m > 10
K u [1.5(K m K u + 4)(0.4K m K u + 0.75) − K m K u x1 ]x1
,
Km
(0.4K m K u + 0.75) 2 ( 4 + K m K u )
Kc =
Ti =
K m K u [1.5(K m K u + 4)(0.4K m K u + 0.75) − K m K u x1 ]
,
ωu
(0.4K m K u + 0.75) 2 (4 + K m K u )
Td =
K mK u
(4 + K m K u )
,
ωu [1.5(4 + K m K u )(0.4K m K u + 0.75) − K m K u x1 ] 1 + N −1
(
2
N=
K K
x1
Td
,
, Tf = m u
Tf
ωu
(0.4K m K u + 0.75) 2 (4 + K m K u )
2
2
[
Km
(0.44K m K1350 + 1.4) 2 x 2
[
K m K135 0 1.5(0.44K m K135 0 + 1.4) x 2 − K m K u x 3
Td =
(0.44K m K135 0 + 1.4) 2 x 2
ω135 0
K m K1350
ω1350
2
m
],
x2
,
+
1
.4) − K m K1350 x 3 1 + N −1
135
[1.5x (0.44K K
2
N=
] ,
K1350 1.5(0.44K m K135 0 + 1.4) x 2 − K m K1350 x 3 x 3
Kc =
Ti =
)
2
x 1 = 0.13 + 0.16K m K u − 0.007 K m K u .
17
FA
Handbook of PI and PID Controller Tuning Rules
340
16
17-Mar-2009
0
](
)
2
K m K1350
x3
Td
,
, Tf =
ω135 0
Tf
(0.44K m K1350 + 1.4) 2 x 2
x 2 = min(14 + 0.5K m K 1350 ,25) , x 3 = 1.35 + 0.35K m K 1350 − 0.006K m 2 K 1350 2 .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models

1  1 + sTd

3.10.5 Classical controller G c (s) = K c 1 +
 Ti s  1 + s Td
N
R(s)
+
E(s)
−
Rule

 U(s)



1  1 + sTd 
Non-model

K c 1 +
Td 
Ti s 
specific

1 + s 
N

Y(s)
Table 54: PID controller tuning rules – non-model specific
Comment
Td
Kc
Ti
Minimum performance index: regulator tuning
Minimum IAE –
Edgar et al.
(1997), p. 8-15.
Pessen (1953).
N =∞.
Pessen (1954).
N =∞.
Atkinson (1968).
N =∞.
0.56K u
0.39Tu
0.25K u
Ultimate cycle
0.33Tu
0.5Tu
0. 2 K u
0.25Tu
N = 10
0.14Tu
‘Optimum’ servo
response.
0.5Tu
‘Optimum’ regulator response – step changes.
0.33K u
0.5Tu
0.33Tu
0.750K u
0.75Tu
‘Some’
overshoot.
0.25Tu
0.375K u
‘Rather underdamped response’ – p. 396.
0.75Tu
0.25Tu
Kinney (1983).
0.25K u
‘Good results’ – p. 396.
0.5Tu
0.12Tu
N not specified.
Corripio (1990),
p. 27.
Hang et al.
(1993b), p. 58.
0. 6 K u
0.5Tu
0.125Tu
10 ≤ N ≤ 20
0.35K u
1.13Tu
0.20Tu
N not specified.
0. 5K u
1.2Tu
0.125Tu
0.25K u
1.2Tu
0.125Tu
‘Aggressive’
tuning.
‘Conservative’
tuning.
St. Clair (1997),
p. 17. N ≥ 1 .
341
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
342
Rule
Kc
Ti
Td
Comment
Harrold (1999).
0.67 K u
0.5Tu
0.125Tu
N not specified.
Tan et al.
(1999a), p. 26.
0.3K u
0.15Tu
0.25Tu
N=∞
O’Dwyer
(2001b) –
representative
results – Åström
and Hägglund
(1995)
equivalent,
p. 142.
N =∞.
Tan et al. (2001).
1
17-Mar-2009
Kc =
Ti =
Ziegler–Nichols ultimate cycle equivalent.
A m = 2,
0.2349 K u
0.2273Tu
0.2273Tu
0.0944 K u
0.6154Tu
0.6154Tu
0.1008K u
0.3939Tu
0.3939Tu
φ m = 46 0 .
Ti
0.25Ti
N=∞
1
Kc
Ti ωu G 'c ( jωu )
Ti 2ωu 2 + 1 0.0625Ti 2ωu 2 + 1
,
 2∠G 'c ( jωu ) + π 
2
2
6.25ωu + 4ωu tan 2 
 − 2.5ωu
2


 2∠G 'c ( jωu ) + π 
ωu 2 tan 

2


,
G 'c ( jωu ) = desired controller frequency response at ω = ωu .
φ m = 20 0 .
A m = 2.44,
φ m = 610 .
A m = 3.45,
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
343
3.10.6 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) E(s)
+
−
U(s)




2
T
s
b
+
b
s
+
b
s
1
Non-model
d
f1
f2
 f0
K c 1 +
+
 Ti s
specific
Td  1 + a f 1 s + a f 2 s 2
s
1+

N 

Y(s)
Table 55: PID controller tuning rules – non-model specific
Comment
Kc
Ti
Td
Rule
Kristiansson et
al. (2000).
1
Kc
Minimum performance index: other tuning
Ti
Td
M s ≈ 1.7
‘Almost’ optimal tuning rule.
2


G p ( jωu )
G p ( j ωu )


−
+
1.6 1.6
2
.
3
1
.
1
2


Km
Km
1.6


1
,
Kc =
, Ti =



G p ( jωu )
G p ( jωu ) 




ωu 0.37 +
K m 0.37 +
Km 
Km 






Td =
2


G (j )
1.6 G p ( jωu ) − 2.3 p ωu + 1.1
2


Km
Km


0.625
, x1 =
,
2

G p ( jωu ) 




G
(
j
)
G
(
j
)
ω
ω
p
u
u

ωu 0.37 +
 13 − 20 p

ωu 0.37 +
Km 





K
K
m
m



 

Tf = x1 ,
G p ( jω u )
Km
≤ 0.5 ; Tf =
x1 G p ( j ω u )
,
> 0. 5 ;
Km
3
2
b f 0 = 1 , b f 1 = 0 , b f 2 = 0 , a f 1 = Tf , a f 2 = Tf , N = ∞ .
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
344
Rule
Kristiansson
(2003).
2
Kc
Ti
Td
Kc
Ti
Td
Comment
‘Almost’ optimal tuning rule; K 1500 ≥ 0.03 ; 1.6 ≤ M s ≤ 1.9 .
Direct synthesis: time domain criteria
Ramasamy and
Sundaramoorthy
(2007).
2
3
x1 + Tf
Kc
0.60
Kc =
2
K 0
K 0  

K 0
K m  150 + 0.07  0.32 + 1.6 150 − 0.8 150  
Km
 
 K m  
 Km
1.5
,
Ti =
2

K150 0
 K150 0  
 
ω150 0 0.32 + 1.6
− 0.8

Km

 K m  

Td =
Td
,
0.6667
, bf 0 = 1 , bf 1 = 0 , bf 2 = 0 , N = ∞ ,
2

K150 0
 K150 0  
 
ω150 0 0.32 + 1.6
− 0.8

Km

 K m  

0.8
,
af1 =
2

K150 0
 K150 0

 K150 0  
 
ω150 0 20
+ 0.5 0.32 + 1.6
− 0.8

Km
Km

 
 K m  
1
.
af 2 =
2
2
2
K
K
K




0
0
0
2
ω150 0 20 150 + 0.5 0.32 + 1.6 150 − 0.8 150  
Km
Km
 K m  
 

2
−
 af1 
a f 2 + (a f 1 + x 2 )x1
τCL
x1
3
Kc =
,
, x1 = t − τCL +
 , Td =
1 +
K m (τCL + TCL ) 
x1 
x1 + a f 1
2(τCL + TCL )
2
−

2
3
 τ CL − t  − σ
_
τ CL



with x 2 =  x 1 + τ CL − t  +
,
−
2x 1
6x 1 (τ CL + TCL )


−
a f 1 , a f 2 not specified; b f 0 = 1 , b f 1 = 0 , b f 2 = 0 , N = ∞ ; t = mean and σ2 =
variance of the process impulse response; desired closed loop transfer function =
e −sτ CL 1 + sTCL .
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Ramasamy and
Sundaramoorthy
(2007).
4
4
Kc
Ti
Td
Kc
x3 + af1
Td
Comment
Applies to processes with dominant numerator dynamics.
(
)
Desired closed loop transfer function = e −sτ CL 1 + 2ξCL TCL 2s + TCL 2 2s 2 .
Kc =
 af1 
a f 2 + (a f 1 + x 4 )x 3
x3
with
1 +
 , Td =
K m (τCL + 2ξCL TCL 2 ) 
x3 
x3 + a f1
−
x 3 = t − τCL +
2
2
τCL − 2TCL 2
,
2(τCL + 2ξCL TCL 2 )
2
−

 τCL − t  − σ 2
_

τCL 3

,
x 4 =  x 3 + τCL − t  + 
−
2x 3
6x 3 (τCL + 2ξCL TCL 2 )


−
a f 1 , a f 2 not specified; b f 0 = 1 , b f 1 = 0 , b f 2 = 0 , N = ∞ ; t = mean and σ 2 =
variance of the process impulse response.
345
b720_Chapter-03
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
346
3.10.7 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
K
α +
Td  c

1+
s

N 

E(s)
R(s) +
−
Rule
Edgar et al.
(1997), p. 8–15.
Majhi (1999),
pp. 132–137.
1
Kc =




T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

−
+
U(s)
Non-model
specific
Y(s)
Table 56: PID controller tuning rules – non-model specific
Comment
Td
Kc
Ti
Minimum performance index: regulator tuning
0.77 K u
0.48Tu
0.11Tu
1
Kc
Minimum IAE; α = 0 , β = 1 , N = ∞ .
Minimum ISTE;
Ti
Td
N = 10.
∧  K h + 4.267 A 
17.08  K m h − 0.4079A p 
m
p

 , Ti = 0.654 Tu 
,
K m  K m h + 14.9A p 
 K m h + 12.15A p 
∧  K h − 0.6498A 
m
p
Td = 2.891Tu 
 , α = 0 , β =1.
 K m h + 10.52A p 
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
Rule
Kc
Majhi (1999),
pp. 132–137.
Shen (2002).
2
Kc
3
Kc
Minimum performance index: servo tuning
Minimum ISTE;
Ti
Td
N = 10.
Minimum performance index: other tuning
∧
Ti
Td
Ku > 1 Km
Kc
Direct synthesis: frequency domain criteria
2
0
M s = 1.4
0.90T e −4.4 κ + 2.7 κ
4
Åström and
Hägglund (1995),
p. 215.
Comment
Td
Ti
347
u
2
α = 1 − 1.1e −0.0061κ +1.8κ ; 0 < K m K u < ∞ .
2
0.13K u e1.9 κ −1.3κ 0.90Tu e −4.4 κ + 2.7 κ
0
2
M s = 2.0
2
α = 1 − 0.48e 0.40 κ −0.17 κ ; 0 < K m K u < ∞ .
2
Kc =
∧  K h + 0.1205A 
15.75  K m h − 0.3287A p 
m
p

 , Ti = 4.602 Tu 
,
K m  K m h + 18.04A p 
 K m h + 16.07 A p 
∧  K h − 0.5917 A 
m
p
Td = 2.93 Tu 
 , α = 0 , β =1.
 K m h + 18.22A p 
3
Minimise
∞
∞
0
0
∫ r( t) − y(t) dt + ∫ d( t) − y(t) dt ; N = ∞ , β = 0 , M ≤ 2 ;
s

∧
^  
^ 2  



K c = K u exp 0.17 −  2.62  K m K u   + 1.79  K m 2 K u   ,
 



  

 



∧
^  


Ti = T u exp  − 0.02 −  2.62  K m K u   + 1.34


  


 2 ^ 2  
 K m K u   ,
 

 


∧
^  
^ 2  



Td = T u exp  − 1.70 −  0.59  K m K u   −  0.25  K m 2 K u   ,
 



  

 



^  
^ 2  



α = 1 − exp − 0.30 −  0.48  K m K u   +  0.93  K m 2 K u    .
 



  

 


4
2
K c = 0.053K u e 2.9 κ − 2.6 κ .
b720_Chapter-03
FA
Handbook of PI and PID Controller Tuning Rules
348
Rule
Vrančić (1996),
pp. 136–137.
5
17-Mar-2009
5
Kc
Ti
Td
Kc
Ti
0
Ultimate cycle
0.5Tu
0.125Tu
Mantz and
Tacconi (1989).
0.6K u
VanDoren
(1998).
0.75K u
0.625Tu
0.1Tu
OMEGA Books
(2005).
0.61K u
0.625Tu
0.1Tu
Kc =
Comment
Quarter decay ratio; α = 0.83 , β = 0.346 , N = ∞ .
A1A 2 − K m A 3 − x1
α = 0 ,β =1,
N =∞.
α = 0 ,β =1,
N =∞.
(1 − [1 − α] )(K A + A − 2K A A ) , K A − A A < 0 ;
2
2
m
m
3
1
3
m
1
A1A 2 − K m A 3 + x1
Kc =
3
1
2
2
(1 − [1 − α] )(K A + A − 2K A A ) , K A − A A > 0 ;
x = (K A − A A ) − (1 − [1 − α ] )A (K A + A − 2K A A ) ;
2
2
m
2
1
Ti =
m
3
1
m
3
1
3
m
1
2
3
m
2
2
2
A1
2
(
1
K K
2
Km +
+ c m 1 − [1 − α ]
2K c
2
)
3
3
3
1
1
2
m
1
2
.
0.2 ≤ α ≤ 0.5 – good servo & regulator action (Vrančić, 1996, p. 139).
b720_Chapter-03
17-Mar-2009
FA
Chapter 3: Controller Tuning Rules for Self-Regulating Process Models
3.10.8 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
Model
−
Y(s)
F2 (s)
Table 57: PID controller tuning rules – non-model specific
Comment
Td
Kc
Ti
Rule
1
Bateson (2002),
pp. 629–637.
Direct synthesis: frequency domain criteria
Model: Method 1
Ti
2 ω180 0
Kc
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 1 ;
b f 3 = 0 ; b f 4 = 0.1Td ; a f 5 = 0 .
1
K c = 10
{ (
min  − G p jω 0

140
[
) } or {− G (jω ) − 6}
p
]
[
180 0
(
, G p jω1400
]
Ti = min ω82 0 ,0.2ω170 0 . min ω82 0 ,0.2ω170 0 .
) and G p (jω180 ) are given in dB;
0
349
b720_Chapter-04
04-Apr-2009
FA
Chapter 4
Controller Tuning Rules for Non-Self-Regulating
Process Models
4.1 IPD Model G m (s) =
K m e −sτ m
s

1 

4.1.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
E(s)
+
−

1 

K c 1 +
Ti s 

U(s)
K m e − sτ
s
m
Y(s)
Table 58: PI controller tuning rules – IPD model G m (s) =
K m e − sτ m
s
Rule
Kc
Ti
Comment
Ziegler and Nichols
(1942).
Model: Method 2
0.9 K m τm
Process reaction
3.33τ m
Quarter decay ratio.
1.0 K m τm
∞
Quarter decay ratio.
Two constraints
method – Wolfe
(1951).
Model: Method 2
Also given by Coon (1956), (1964) and NI Labview (2001).
Decay ratio = 0.4.
0.6 K m τm
2.78τ m
Decay ratio is as
small as possible.
Minimum error integral (regulator mode).
0.87 K m τm
4.35τ m
350
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Comment
Åström and Hägglund
(1995), p. 13.
Model: Method 1
Hay (1998), p. 188.
0.63
K mτm
3.2 τ m
0.42 K m τm
5. 8τ m
Ultimate cycle
Ziegler–Nichols
equivalent.
Model: Method 3
Hay (1998), p. 199.
Model: Method 1;
K c and Ti
deduced from graphs.
Kp
s(1 + sTp ) n
NI Labview (2001).
Model: Method 12
Minimum IAE –
Shinskey (1988),
p. 123.
Minimum IAE –
Shinskey (1994),
p. 74.
Minimum IAE –
Shinskey (1988),
p. 148.
Model: Method 1
K m τ m = 0. 1
3.5
K m τ m = 0. 2
2.5
2.2
K m τ m = 0. 4
2.0
K m τ m = 0.5
1.7
K m τ m = 0.6
0% overshoot (servo).
x 2τm
x 3 K m τm
x1
K m τ m = 0.3
4.5K m τ m
x1 K m τ m
Bunzemeier (1998).
Model: Method 5
Gp =
7.5
x2
0.18 1.350
0.24 3.050
0.22 1.910
0.21 1.690
0.20 1.584
0.20 1.557
0.44 K m τm
x3
0.23
0.40
0.30
0.28
0.26
0.26
10% overshoot
(servo).
Coefficient values:
n
x1
x2
0
1
2
3
4
5
0.20
0.19
0.19
0.18
0.18
1.477
1.463
1.453
1.385
1.378
x3
n
0.25
0.24
0.24
0.24
0.24
6
7
8
9
10
‘Some’ overshoot.
∞
‘No’ overshoot.
0.9 K m τm
3.33τm
Quarter decay ratio.
0.4 K m τm
5.33τm
‘Some’ overshoot.
0.24 K m τm
5.33τm
‘No’ overshoot.
0.26 K m τm
Minimum performance index: regulator tuning
0.9524
Model: Method 1
4τ m
K τ
m m
0.9259
K m τm
4τ m
Model: Method 1
0.61K u
Tu
Also specified by
Shinskey (1996),
p. 121.
351
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
352
Rule
Kc
Ti
Comment
Minimum ISE –
Hazebroek and Van
der Waerden (1950).
Minimum ISE –
Haalman (1965).
Model: Method 1
Minimum ITAE –
Poulin and Pomerleau
(1996).
Model: Method 1
1.5
K mτm
5.56τ m
Model: Method 2
0.6667 K m τm
∞
Skogestad (2001).
Model: Method 1
Skogestad (2003).
Model: Method 1
Skogestad (2001).
Model: Method 1
Process output step
load disturbance.
Process input step
0.5327 K m τm
3.8853τ m
load disturbance.
Minimum performance index: other tuning
0.28 K m τm
7τ m
M max = 1.4
0.5264 K m τm
4.5804 τ m
0.404 K m τm
7τ m
M max = 1.7
0.49 K m τm
3.77τ m
M max = 2.0
Kuwata (1987).
Model: Method 1
Direct synthesis: time domain criteria
Also given by Hay
∞
0.5 K m τm
(1998), p. 188.
Regulator – Gorecki
et al. (1989).
Model: Method 1
e  m 
K m τm
∞
0.828 K m τm
5.828τm
0.487
K mτm
8.75τ m
0.31K u
2.2Tu
0.5 K m τm
5τ m
0.75 K m τm
2.41τ m
Tyreus and Luyben
(1992).
Model:
Method 1
or Method 10.
Fruehauf et al.
(1993).
Rotach (1995).
Model: Method 6
Wang and Cluett
(1997).
1
M s = 1.9 , A m = 2.36 , φ m = 50 0 .
Kc =
 τ +T 
−  m m 
T
Pole is real and has
maximum attainable
multiplicity.
Maximum closed
loop log modulus
= 2dB ; TCL =
τ m 10 .
Model: Method 2
Damping factor for oscillations to a disturbance input = 0.75.
1
Model: Method 1;
Ti
Kc
ξ = 0.707 .
1
, Ti = (1.4020TCL + 1.2076)τm , τm ≤ TCL ≤ 16τm .
K m τm (0.7138TCL + 0.3904)
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Wang and Cluett
(1997) – continued.
Cluett and Wang
(1997).
Model: Method 1
Kc
Ti
Comment
Kc
Ti
Model: Method 1;
ξ =1 .
0.9588 K m τ m
3.0425τ m
TCL = τ m
0.6232 K m τ m
5.2586τ m
TCL = 2τ m
2
0.4668 K m τ m
7.2291τ m
TCL = 3τ m
0.3752 K m τ m
9.1925τ m
TCL = 4τ m
0.3144 K m τ m
11.1637 τ m
TCL = 5τ m
0.2709 K m τ m
13.1416τ m
TCL = 6τ m
1.04Tu
M max = 5 dB
Poulin and Pomerleau
2.13
0.34 K u or
(1999).
K m Tu
Model: Method 1
x1 K m τ m
Vítečková (1999),
Vítečková et al.
OS
x1
(2000a).
0.368
0%
Model: Method 1
0.514
5%
0.581
10%
0.641
15%
Chidambaram and
1.1111 K m τm
Sree (2003).
Huba and Žáková
(2003).
Skogestad (2003),
(2004b).
Model: Method 1
0.696
20%
0.748
25%
0.801
30%
0.853
35%
4.5τ m
0.23 K m τm
2.914 τ m
3.555τ m
1
K m (TCL + τ m )
4ξ 2 (TCL + τ m )
0.5
K mτm
0.4689 K m τm
Sree and
Chidambaram (2006).
Model: Method 1
2x1
(1 + x1 )K m τm
Kc =
Coefficient values:
OS
x1
0.281 K m τ m
Benjanarasuth et al.
(2005).
Model: Method 1
2
∞
0.30K u
x1
OS
0.906
0.957
1.008
40%
45%
50%
Model: Method 1
Model: Method 1
Suggested
ξ = 0.7 or 1.
8τ m
‘Good’ robustness –
TCL = τ m , ξ = 1 .
∞
‘Stability index’ =
2.5.
0.5(1 + x1 )τm
x1 − 1
p. 47. x1 > 1 ;
x1 = 1.25
(Chidambaram and
Sree, 2003).
1
, Ti = (1.9885TCL + 1.2235)τm , τm ≤ TCL ≤ 16τm .
K m τm (0.5080TCL + 0.6208)
353
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
354
Rule
Kc
Comment
Ti
Direct synthesis: frequency domain criteria
Maximise crossover
3
frequency.
∞
Kc
Hougen (1979),
p. 333.
Model: Method 1
Buckley et al. (1985),
pp. 389–390.
Model: Method 1
Chidambaram (1994),
Srividya and
Chidambaram (1997).
≤
0.67075
Kmτm
ωp
Gain and phase
margin – Kookos et
al. (1999).
Model: Method 1
≥ 20τm
‘Well-damped’
response.
3.6547τ m
Model: Method 7;
recommended
A m = 2.
0.45
K m τm
AmKm
1
ω p 0.5π − ω p τ m
0.942 K m τ m
Representative results:
4.510τ m
(
)
A m = 1.5;
φ m = 22.5 0 .
Chen et al. (1999a).
Model: Method 11
0.698 K m τ m
4.098τ m
A m = 2; φ m = 30 0 .
0.491 K m τ m
6.942 τ m
A m = 3; φ m = 450 .
0.384 K m τ m
18.710τ m
A m = 4; φ m = 600 .
π


φ m + 2 (A m − 1)


K mτm Am2 − 1
(
3
)
Ti
0.5236 K m τ m
8τ m
Values recorded deduced from a graph:
0.1
0.2
0.3
0.4
K mτm
7.0
Kc
4
Ti =
5
Kc =
φm ≥
Ti
Kc
5
Cheng and Yu
(2000).
Model: Method 1
4
3.5
2.2
1.8
A m = 2.83;
φ m = 46.10 .
0.5
0.6
0.7
0.8
0.9
1.0
1.4
1.1
1.0
0.8
0.75
0.7
2

π
τm
Am − 1
.


4  φm + 0.5π(A m − 1)  
φm + 0.5π(A m − 1) 
0.5π − φm −

2
Am − 1


r1π(2r1A m − 1)
(
)
4K m τm r12 A m 2 − 1
, Ti =
(
2
2
)
4τm r1 A m − 1
2
πr1 A m (r1A m − 2 )(2r1A m − 1)
2
π  1.0607 
1 −

2 
A m 
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
O’Dwyer (2001a).
Model: Method 1
Kc
Ti
Comment
x1 K m τ m
x2τm
6
Representative coefficient values:
Am
φm
x1
x2
Am
x2
0.558
1.4
1.5
46.2
0
0.357
4.3
4.0
60.0 0
0.484
1.55
2.0
45.50
0.305
12.15
5.0
75.0 0
0.458
3.35
3.0
0
O’Dwyer (2001a).
Model: Method 1
59.9
x1K u
x 2Tu
7
2.01 − 0.80φ
6.283(1.72φ − 2.55)
ωφ
1.920 < φ < 2.356 ;
M s = 1.2
0.33
6.61
ω 2.09
φ = 2.09 radians
(‘good’ choice).
2.50 − 0.92φ
6.283(1.72φ − 3.05)
ωφ
2.094 < φ < 2.443 ;
M s = 1.4 .
5.36
ω 2.27
φ = 2.27 radians
(‘reasonable’ choice).
( )
Hägglund and Åström
(2004).
Model: Method 1
G p jωφ
G p ( jω2.09 )
( )
G p jωφ
0.41
G p ( jω2.27 )
6
Am =
x2 π
 +
4x 1  2

1+
π2
π 

−
4
x2 

2 
2
π
π 

−
4
x2 

2
x2 π
 +
4 2

2
, x 2 > 1.273 ;


φ m = tan −1  0.5x 1 2 x 2 2 + 0.5x 1 x 2 x 1 2 x 2 2 + 4  − 0.5x 1 2 + 0.5

7
Am =

2x 2  π
 +
πx1  2

1+
π2
π 

−
4 4x 2 

π
 +
x12 π2  2

1
φm
x1
x12 x 2 2 + 4 .
2
π2
π 

−
4 4x 2 

φ m = tan −1 x 3 − 0.125π2 x12 +
x1
x2
2
; x 3 = 2π2 x12 x 2 2 + 2πx1x 2 4π2 x12 x 2 2 + 4 ;
πx1
4π2 x12 x 2 2 + 4 .
16 x 2
355
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
356
Rule
Kc
Ti
Comment
6.283(0.86φ − 1.50)
ωφ
2.356 < φ < 2.705 ;
M s = 2. 0 .
G p ( jω2.53 )
0.52
4.25
ω 2.53
φ = 2.53 radians
(‘good’ choice).
Hägglund and Åström
(2004).
0.35 K m τ m
7τm
Model: Method 2
Åström and Hägglund
(2006), pp. 228–229.
0.35 K m τ m
13.4τm
Model: Method 2;
‘AMIGO’ tuning rule;
M s = M t = 1. 4 .
Clarke (2006).
Model: Method 4
 0.222 0.444 
,


 K m τm K m τm 
[1.592τm ,3.183τm ]
Hägglund and Åström
(2004) – continued.
Model: Method 1
Litrico and Fromion
(2006).
Litrico et al. (2006).
8
Kc =
3.43 − 1.15φ
( )
G p jωφ
Kc
Ti
0.333 K m τm
6τm
8
A m = 12.7dB , φm = 44.50 .
Model: Method 1
Model: Method 1
A

 − Am  
1.571 − 20m
10
sin  0.0175φm + 1.57110 20   ,
K m τm

 



Am

 − Am  
Ti = (0.637 τm )10 20 tan  0.0175φm + 1.57110 20   ; A m in dB, φm in degrees.

 



b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Chien (1988).
Model: Method 1
1  2λ + τ m 
K m  [λ + τ m ]2 
Boudreau and
McMillan (2006).
Model: Method 1
1  2λ + τ m 
K m  [λ + τ m ]2 
357
Comment
Ti
Robust
Ogawa (1995).
Model: Method 1;
coefficients of K c
x1 K m τ m
x1
x2
and Ti deduced from
graphs.
0.45
0.39
0.34
0.30
0.27
11
12
13
14
15
Alvarez-Ramirez et
al. (1998).
Model: Method 1
1  1
1 


+
K m  TCL Tm 
9
2λ + τ m
9
4(λ + τm )
2λ + τ m
2
>
Overdamped
response.
x 2τm
20% uncertainty in process parameters.
30% uncertainty in process parameters.
40% uncertainty in process parameters.
50% uncertainty in process parameters.
60% uncertainty in process parameters.
Tm + τ m
TCL > τ m
λ ∈ [1 K m , τm ] (Chien and Fruehauf, 1990);
λ = 3τ m (Bialkowski, 1996);
λ > τ m + Tm (Thomasson, 1997);
1.5τm ≤ λ ≤ 4.5τm (Zhang et al., 1999b).
From a graph, λ = 1.5τ m ….overshoot = 58%, settling time = 6τ m
λ = 2.5τ m ….overshoot = 35%, settling time = 11τ m
λ = 3.5τ m ….overshoot = 26%, settling time = 16τ m
λ = 4.5τ m ….overshoot = 22%, settling time = 20τ m .
λ = e max / 100 K m ; e max = maximum output error after a step load disturbance
(Andersson, 2000, p. 12);
Ti se − τ ms
y
=
(Chen and Seborg, 2002);
 
2
 d  desired K c (λs + 1)
λ = τ m (Smith, 2002);
λ = 1.65τm , minimum IAE, servo (Panda et al., 2006);
λ = 1.15τm , minimum IAE, regulator (Panda et al., 2006);
λ = 2.65τm , overshoot (servo) ≈ 20% (Panda et al., 2006);
λ = τm , Maximum load rejection capability (Boudreau and McMillan, 2006);
λ > τm (Yu, 2006, p. 19).
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
358
Rule
Kc
Zhong and Li (2002).
Model: Method 2
2 x1 + τm
Smith (2002).
Skogestad (2004a).
Model: Method 1
Ti
Comment
K m (x1 + τm )2
2 x1 + τ m
x1 not specified.
1 K m τm
τm
Model: Method 1
10
4
K cK m
Kc
Ultimate cycle
Litrico et al. (2007).


1.234 K u 10


∧
11
Kc
^
0.37 K u
−
Am
20
A

− m 
φm = 900 1 − 10 20 




Model: Method 10
∞
Ti
^
1.5 Tu
Representative result; A m = 10 dB; φm = 430 .
Other methods
Penner (1988).
Model: Method 1
10
0.50
K m τm
∞
Maximum closed
loop gain = 1.0.
0.58
K mτm
10τ m
Maximum closed
loop gain = 1.26.
0.8
K mτm
5.9 τ m
Maximum closed
loop gain = 2.0.
K c ≥ ∆d 0 ∆y max , ∆d 0 = maximum magnitude of a sinusoidal disturbance over all
frequencies, ∆y max = maximum controlled variable change, corresponding to the
sinusoidal disturbance.
11
A

 − Am  
∧  − m

K c = 1.234 K u 10 20 sin  0.0175φm + 1.57110 20   ,

 





Am

 − Am  
∧ 

Ti =  0.159 Tu 10 20 tan  0.0175φ m + 1.57110 20   ; A m in dB, φm in degrees.








b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models


1
4.1.2 Ideal PID controller G c (s) = K c 1 +
+ Td s 

 Ti s
E(s)
R(s)
+
−

 U(s)
1
K c 1 +
+ Td s 
 Ti s

K m e − sτ
s
Y(s)
m
K m e − sτ m
s
Table 59: PID controller tuning rules – IPD model G m (s) =
Rule
Kc
Callender (1934).
τm = 1 ;
Model: Method 1
Ziegler and
Nichols (1942).
0.2155 K m
Ti
0.1 K m
Process reaction
2.529
∞
5.0
x1 K m τ m
2τm
0.5τm
Ford (1953).
Model: Method 3
1.48 K m τm
2τ m
0.37τ m
1.36 K m τm
∞
0.265τm
Åström and
Hägglund (1995),
p. 139.
Hay (1998),
p. 188.
0.94 K m τm
2τ m
0.5τ m
Hay (1998),
p. 199.
Model:
Method 1;
K c , Td deduced
from graphs.
10.0
NI Labview
(2001).
Model:
Method 12
1.1 K m τm
2τm
0.53 K m τm
4τm
0.8τm
0.32 K m τm
4τm
0.8τm
x1 K m τ m
2. 5τ m
0.4τm
Alfaro Ruiz
(2005a).
Comment
Td
Decay ratio =
0.11.
Decay ratio = 0.
1.2 ≤ x1 ≤ 2.0 ;
Model: Method 2
Decay ratio
2.7:1.
Model: Method 1
Ultimate cycle Ziegler–Nichols equivalent.
0.4 K m τm
3.2 τ m
0.8τ m
Model: Method 3
0.5 K m τm
∞
0.5τm
Model: Method 3
0.55τ m
K m τ m = 0. 1
0.30τ m
K m τ m = 0. 2
0.25τ m
K m τ m = 0.3
0.25τ m
K m τ m = 0. 4
0.25τ m
K m τm = 0.5, 0.6
0.5τm
Quarter decay
ratio.
‘Some’
overshoot.
‘No’ overshoot.
4.0
2.5
2.0
3. 2 K m τ m
1.8
2
2.0 ≤ x1 ≤ 3.33 ;
Model: Method 1
359
b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
360
Rule
Kc
Visioli (2001).
Model: Method 1
Paz Ramos et al.
(2005).
Åström and
Hägglund (2004).
Model: Method 1
Alenany et al.
(2005).
Model: Method 1
Regulator –
Gorecki et al.
(1989).
Model: Method 1
Leonard (1994).
Model: Method 1
Ti
Comment
Td
Minimum performance index: regulator tuning
x1 K m τ m
x 2τm
x 3τ m
Visioli (2001).
Model: Method 1
1
04-Apr-2009
Coefficient values:
1.49
0.59
Minimum ISE.
1.66
0.53
Minimum ITSE.
1.83
0.49
Minimum ISTSE
Minimum performance index: servo tuning
∞
x1 K m τ m
x 3τ m
1.37
1.36
1.34
Coefficient values:
0.49
0.45
0.45
∞
2.1883τm
1.03
0.96
0.90
0.5992 K m τm
Minimum ISE.
Minimum ITSE.
Minimum ISTSE
Minimum IAE;
Model: Method 1
Minimum performance index: other tuning
x1 K m τ m
x 2τm
x 3τ m
x1
x2
x3
0.139
76.9
0.261
23.3
0.367
12.2
0.460
7.85
0.543
5.78
0.645 K m τm
0.346
0.365
0.378
0.389
0.400
1.104 K m τm
Coefficient values:
M max
x1
1.1
1.2
1.3
1.4
1.5
x2
x3
M max
∞
0.616
4.58
0.681
3.82
0.740
3.28
0.793
2.89
0.841
2.61
0.357 τm
0.410
1.6
0.418
1.7
0.426
1.8
0.434
1.9
0.440
2.0
Optimum servo.
2.405τm
0.417 τm
Optimum
regulator.
Direct synthesis: time domain criteria
Pole is real and
Tm
has maximum
∞
1
1 + 4(Tm τm )
Kc
attainable
2.785 K m τm
3.731τm
0.263τm
multiplicity.
OS (step input) <
0.74 K m τm
12.2 τ m
0.41τ m
10%; Minimum
IAE (disturbance
0.47 K u
3.05Tu
0.10Tu
ramp).
τ + 4Tm −
Kc = m
e
K m Tm τm
τ m + 2 Tm
Tm
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Td
2
Kc
Ti
Td
3
Kc
Ti
Td
x1 K m τ m
x 2τm
x 3τ m
Wang and Cluett
(1997).
Cluett and Wang
(1997).
Model: Method 1
Rotach (1995).
Model: Method 6
x1
x2
x3
Coefficient values:
x4
x1
0.9588 3.0425 0.3912
1
0.6232 5.2586 0.2632
2
0.4668 7.2291 0.2058
3
1.21 K m τm
1.60τ m
361
Comment
Model: Method 1
TCL = x 4 τ m
x2
x3
x4
0.3752 9.1925 0.1702
0.3144 11.1637 0.1453
0.2709 13.1416 0.1269
0.48τ m
4
5
6
Damping factor for oscillations to a disturbance input = 0.75.
Chidambaram
Model: Method 1
1.2346 K m τm
4.5τ m
0.45τm
and Sree (2003).
Sree and
Chidambaram
Model: Method 1
0.896 K m τm
2.5τ m
0.55τm
(2005b).
4
Chen and Seborg
Model: Method 1
Ti
Td
Kc
(2002).
2
Kc =
1
, Ti = (1.4020TCL + 1.2076)τm ,
K m τm (0.7138TCL + 0.3904)
Td =
3
Kc =
τm
; τm ≤ TCL ≤ 16τm , ξ = 0.707 .
1.4167TCL + 1.6999
1
, Ti = (1.9885TCL + 1.2235)τm ,
K m τm (0.5080TCL + 0.6208)
Td =
4  y
=
 
 d desired
Tis(1 + 0.5τms )e −sτ m
K c (TCLs + 1)
3
, Kc =
τm
; τm ≤ TCL ≤ 16τm , ξ = 1 .
1.0043TCL + 1.8194
τm (3TCL + 0.5τm )
, Ti = 3TCL + 0.5τm ,
K m (TCL + 0.5τm )3
2
Td =
2
3
3
1.5TCL τm + 0.75TCL τm + 0.125τm − TCL
.
τm (3TCL + 0.5τm )
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
362
Rule
Sree and
Chidambaram
(2006).
Model: Method 1
Regulator –
Gorecki et al.
(1989).
Chen et al.
(1999a).
Kc
Ti
Td
Comment
1 K m τm
∞
0.5τm
p. 46.
4x12
1 + x1 2 K m τm
)
0.5(1 + x1 )
τm
x1 − 1
0.25(1 + x1 )
τm
x1
0.8956 K m τm
2.5τm
0.5τm
(
p. 47. x1 > 1 ;
x1 = 1.25
(Chidambaram
and Sree, 2003).
p. 48.
Direct synthesis: frequency domain criteria
Model: Method 1
∞
0.75 K m τm
0.333τm
Low frequency part of the magnitude Bode diagram is flat.
1.661
AmK mτm
∞
0.4603
K m τm
7.880τm
0.390τm
M s = M t = 1.4 ;
Model: Method 1
0.45
K m τm
8τm
0.5τm
M s = M t = 1.4 ;
Model: Method 2
Åström and
Hägglund (2006),
p. 244.
Åström and
Hägglund (2006),
pp. 263–264.
5
Td
6
Td
Model: Method 1
Robust
λ + 0.25τ m
2
τm
Zou et al. (1997), K (λ + 0.5τ )
2λ + τ m
2λ + τ m
m
m
Zou and Brigham
(1998).
Model: Method 8 or Method 9; 0.5τ m ≤ λ ≤ 3τ m .
Rice (2004).
2λ + τm
Model: Method 1 K (λ + 0.5τ )2
m
2λ + τ m
m
0.25τm + λ
τm
2λ + τm
7
2
Recommended
1
0.5τm
Lee et al. (2006). K (T + τ )
τm ≤ TCL ≤ 2τm .
∞
TCL + τm
m CL
m
Model: Method 1
Desired closed loop response = e −sτ m (1 + sTCL ) .
5
6
7
Td = 1.273τm [1 − 0.6002A m (1.571 − φm )] .
rA 

Td = τm 1.2732 − 1 m  .
1.6661 

λ = 2.149τm , ‘very aggressive’; λ = 2.444τm , ‘aggressive’;
λ = 2.780τm , ‘moderately aggressive’; λ = 3.162τm , ‘moderate’;
λ = 4.091τm , ‘moderately conservative’; λ = 5.293τm , ‘conservative’;
λ = 6.847 τm , ‘very conservative’.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Shamsuzzoha
and Lee (2006a).
Shamsuzzoha
and Lee (2007a).
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
8
Also given by Shamsuzzoha et al. (2006c); λ , ξ not specified.
9
Model: Method 1
Ti
Td
K
c
Ultimate cycle
Litrico and
Fromion (2006).
8
Kc =
10
Kc
Ti
, Td =
x1K m (2λξ + τm − x 2 )
Ti = x1 + x 2 −
Ti
x1x 2 −
Model:
Method 10
Td
0.167 τm 3 − 0.5x 2 τm 2
2
λ2 + x 2 τm − 0.5τm
2λξ + τm − x 2
,
Ti
2λξ + τm − x 2
(
)
2
2

λ2 − 2λξx1 + x1 e− τ m x1 
λ2 + x 2 τm − 0.5τm
, x 2 = x1 1 −
,
2
2λξ + τm − x 2
x1


x1 is a constant of a ‘sufficiently large value’.
9
Kc =
2
2
3λ2 + 2x 2 τm − 0.5τm − x 2
Ti
,
, Ti = x1 + 2 x 2 −
x1K m (3λ + τm − 2x 2 )
3λ + τm − 2 x 2
2 x1x 2 + x 2 2 −
Td =
λ3 + 0.167 τm 3 − x 2 τm 2 + x 2 2 τm
2
2
3λ2 + 2x 2 τm − 0.5τm − x 2
3λ + τm − 2 x 2
,
Ti
3λ + τm − 2 x 2
3


λ
1 −  e − τ m Tm  , x1 is a constant of a ‘sufficiently large value’;
 x 

1


From graphs: λ = 2.3τm , M s = 1.6 ; λ = 1.7 τm , M s = 1.8 ; λ = 1.4τm , M s = 2.0 .

x 2 = x1 1 −


10
A
 − Am 
∧  − m

K c = 1.234 K u 10 20 sin θ , θ = 0.0175φm + 1.57110 20  ;




A
Am
m
∧  x
∧  10 20


,
Ti =  0.159 Tu  1 10 20 tan θ , Td =  0.159 Tu 


 x1 tan θ
 1 + x1
A

− m 
with 2 ≤ x1 ≤ 6 , φm < 901 − 10 20  , A m in dB, φm in degrees.




363
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
364
4.1.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
R(s)
E(s)
−
+


1
K c 1 +
+ Td s 
Ti s


U(s)
1
1 + Tf s
K m e − sτ
s
m
Table 60: PID controller tuning rules – IPD model G m (s) =
Rule
Kc
Ti
Td
Y(s)
K m e − sτ m
s
Comment
Robust
Tan et al.
τm
0.463λ + 0.277
(1998b).
0
λ = 0.5
K mτm
0.238λ + 0.123
Model: Method 1
Tf = τm (5.750λ + 0.590) ; labelled H ∞ optimal.
Zhang et al.
(1999a).
Rivera and Jun
(2000).
Rice and Cooper
(2002).
Model: Method 1
Ou et al. (2005a).
Model: Method 1
1
2
3
4
Kc =
Kc =
Kc =
Kc =
(
1
Kc
2λ + τ m
0
2
Kc
2(τ m + λ )
0
3
Kc
2λ + 1.5τ m
0.5τ m 2 + λτ m
2λ + 1.5τ m
4
Kc
3λ + τm
2λ + τm
K m λ2 + 2λτ m + 0.5τm
2(τm + λ )
2
2
, Tf =
2
)
K m ( 2τ m + 4 τ m λ + λ )
(
2λ + 1.5τm
K m λ2 + 2λτ m + 0.5τm
, Tf =
)
λ2 τm
.
2λ2 + 4λτ m + τm 2
τ m λ2
2
2 τ m + 4 τ m λ + λ2
, Tf =
2
(6λ + τm )τm
4(3λ + τm )
.
0.5λ2 τ m
λ2 + 2λτ m + 0.5τ m 2
1
4(3λ + τm )
4λ3
, Tf =
.
2
2
2
K m 12λ + 6λτ m + τm
12λ + 6λτ m + τm 2
.
λ not specified;
Model: Method 1
λ not specified;
Model: Method 1
Suggested
λ = 3.162τ m .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Ou et al.
(2005b).
Model: Method 1
Wang et al.
(2005).
Arbogast and
Cooper (2007).
Model: Method 1
Kc
Ti
5
Kc
2λ + 1.5τm
6
Kc
7
365
Comment
Td
(2λ + τm )τm
λ > 0.3034τm
4λ + 3τm
(for stability).
2λ + 1.3866τm
Td
Kc
2TCL + 1.5τm
(TCL + 0.5τm )τm
λ not specified;
Model: Method 1
0.465
K m τm
7.82τm
2TCL + 1.5τm
0.468τm
Tf = 0.297 τm
Recommended TCL = 3.16τm .
5
Kc =
6
Kc =
λ2 τ m
1
2λ + 1.5τm
, Tf =
.
2
2
2
K m λ + 2λτ m + 0.5τm
2λ + 4λτ m + τ m 2
1
2λ + 1.3866τm
0.3866τm (2λ + τm )
, Td =
,
K m λ2 + 3.2286λτ m + 0.4896τm 2
2λ + 1.3866τm
Tf = τm
7
Kc =
(
2(2TCL + 1.5τm )
2
K m 2TCL + 4τm TCL + τm
2
)
, Tf =
0.3866λ2 − 0.2494λτ m − 0.1247 τm 2
TCL 2 τm
2
2TCL + 4TCL τm + τm 2
λ2 + 3.2286λτ m + 0.4896τm 2
.
.
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
366



Td s 
1

+
4.1.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + sTd 


N 

R(s)




T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

E(s)
+
−
U(s)
K m e − sτ
s
Table 61: PID controller tuning rules – IPD model G m (s) =
Rule
Kc
Ti
m
Y(s)
K m e − sτ m
s
Comment
Td
Direct synthesis: frequency domain criteria
Kristiansson and
Lennartson
(2002a).
1
Chien (1988).
Model: Method 1
2
Kc
Ti
Kc
2λ + τ m
Yu (2006), p. 19.
2
Model: Method 1 K (λ + 0.5τ )
m
m
1
2λ + τ m
Model: Method 1
Td
Robust
τ m (λ + 0.25τ m )
2λ + τ m
τ m (λ + 0.25τ m )
2λ + τ m
(
)
N = 10;
λ > τm .
Kc =
0.059 K 1 2 + (0.055 K 1 ) − 0.08 
2.5ωu 
0.055 0.059  
2
− 0.08 +
+
−
,
2

0.4(10 + 1 K 1 )
K m 
K1
K1   2.3 − 2 K 1

Ti =
2
2.5 
2
0.059 K1 + (0.055 K1 ) − 0.08 
−
,

ωu  2.3 − 2K1
0.4(10 + 1 K1 )

(
)
(
)
−1
2.5 
2
0.059 K12 + (0.055 K1 ) − 0.08   1

Td =
−
 + 1 ,


0.4(10 + 1 K1 )
ωu  2.3 − 2K1
 N 
N=
2
N = 10
Kc =
(
−1
)
2
Td
0.059 K1 + (0.055 K1 ) − 0.08
, Tf =
, 0.5 ≤ K1 ≤ 1 .
Tf
0.16ωu (10 + 1 K1 )
2λ + τm
K m (0.5λ + τm )2
; λ ∈ [1 K m , τ m ] (Chien and Fruehauf, 1990).
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Td
Kc
Ti
Td
0.447
K m τm
7.528τm
0.189τm
3
Arbogast and
Cooper (2007).
Model: Method 1
Comment
N = 0.636
Recommended TCL = 3.16τm .
3
Kc =
(2TCL + 1.5τm )(2TCL 2 + 4τmTCL + τm 2 ) − TCL 2τm ,
(
2
0.5K m 2TCL + 4τmTCL + τm
)
2 2
2
Ti = 2TCL + 1.5τm −
Td =
τm (TCL + 0.5τm )
2
TCL τm
2
2TCL + 4τm TCL + τm
Td
TCL 2 τm
.
, Tf =
2
Tf
2TCL + 4τm TCL + τm 2
,
−
2
2TCL + 1.5τm −
N=
TCL τm
2TCL 2 + 4τm TCL + τm 2
2
TCL τm
2
2TCL + 4τm TCL + τm
2
,
367
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
368



1  1 + Td s 


4.1.5 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

R(s)





1  1 + sTd 

K c 1 +
Td 
Ti s 

1 + s 
N

E(s)
+
U(s)
K m e − sτ
s
m
Y(s)
Table 62: PID controller tuning rules – IPD model G m (s) =
K m e − sτ m
s
−
Rule
Kc
Bunzemeier
(1998).
Model:
Method 5;
Gp =
x1 K m τ m
Ti
Comment
Td
Process reaction
Kp
s(1 + sTp )
.
n
Minimum IAE –
Shinskey (1988),
p. 143.
Minimum IAE –
Shinskey (1994),
p. 74.
Model: Method 1
Minimum IAE –
Shinskey (1996),
p. 117.
x 2τm
x 4 K m τm
x1
x2
0% overshoot
(servo).
10% overshoot
(servo).
x 3τ m
Coefficient values:
x3
x4
N
n
0.21
0.68
0.47
0.35
0.30
0.27
0.25
0.23
0.22
0.22
0.730
0.280
0.24
5.60
0
1.570
0.796
0.94
5.99
2
1.200
0.669
0.62
6.03
3
0.981
0.587
0.46
5.99
4
0.866
0.530
0.38
6.02
5
0.828
0.487
0.34
6.01
6
0.801
0.452
0.32
6.03
7
0.782
0.424
0.30
5.97
8
0.767
0.401
0.29
5.99
9
0.756
0.381
0.27
5.95
10
Minimum performance index: regulator tuning
Model:
0.93
Method
2;
1
.
57
τ
0
.
58
τ
m
m
K mτm
N not specified.
0.93
K mτm
0.93
K mτm
1.60τ m
0.58τ m
N = 10
1.48τ m
0.63τ m
N = 20
1.57 τ m
0.56τ m
Model:
Method 2;
N not specified.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Minimum IAE –
Shinskey (1996),
p. 121.
0.56K u
Ti
Comment
Td
Model:
Method 1;
N not specified.
Direct synthesis – frequency domain criteria
1
∞
0.45τm
Kc
Hougen (1979),
pp. 333–334.
0.39Tu
0.15Tu
Model: Method 1; maximise crossover frequency; 10 ≤ N ≤ 30 .
2
∞
10[log10 τ m +1.65] Five criteria are
Kc
fulfilled; N = 10.
Robust
λ ∈ [1 K m , τ m ]
0.5τm
Chien (1988). K (λ + 0.5τ )2
0.5τ m
2λ + 0.5τ m
(Chien and
m
Model: Method 1 m
Fruehauf, 1990);
2λ + 0.5τm
N = 10.
2λ + 0.5τ m
0.5τ m
K m (λ + 0.5τm )2
Hougen (1988).
Model: Method 1
2λ + 0.5τm
Chien (1988). K (λ + 0.5τ )2
m
Model: Method 1 m
0.5τm
2λ + 0.5τ m
0.55τm
0.5τ m
2.2λ + 0.55τm
K m (λ + 0.5τm )2
Tuning rules converted to this equivalent controller architecture.
3
0.5τ m
3λ + 0.5τm
λ not specified;
Kc
Model: Method 1
Suggested
4
2λ + τ m
0.5τ m
λ = 3.162τ m .
Kc
Zhang et al.
(1999a).
Rice and Cooper
(2002).
Model: Method 1
1
2
3
4
Values deduced from graph:
0.1
0.2
K mτm
0.3
0.4
0.5
Kc
9
4.2
2.8
2.1
1.7
K mτm
0.6
0.7
0.8
0.9
1.0
Kc
1.45
1.2
1.1
0.95
Equations deduced from graph; K c ≈
Kc =
Kc =
0.5τm
(
K m 3λ2 + 1.5λτ m + 0.25τm 2
(
2λ + τm
2
λ ∈ [1 K m , τ m ]
(Chien and
Fruehauf, 1990);
N = 11.
K m λ + 2λτ m + 0.5τm
2
)
)
1
10
K 'm
, N=
, N=
0.85

 τ 
−  log10  m'  
 T 

 m 
, Km =
K 'm
Tm'
.
(3λ + 0.5τm )(3λ2 + 1.5λτm + 0.25τm 2 ) .
λ3
λ2 + 2λτ m + 0.5τ m 2
λ2
.
369
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
370
Rule
Kc
Ti
Td
2λ + 0.5τm
0.5τm
Kc
2TCL + τm
0.5τm
0.435 K m τm
7.324τm
0.5τm
Rice (2004).
2λ + 0.5τm
Model: Method 1 K (λ + 0.5τ )2
m
Arbogast and
Cooper (2007).
Model: Method 1
m
6
Comment
N=∞
5
N = 1.684
Recommended TCL = 3.16τm .
Ultimate cycle
Luyben (1996).
Model:
Method 10
0.46K u
2.2Tu
0.16Tu
Maximum closed
loop log modulus
of +2dB ;
N = 10.
Belanger and
Luyben (1997).
Model: Method 1
3.11K u
2.2Tu
3.64Tu
N = 0.1
5
λ = 2.149τm , ‘very aggressive’; λ = 2.444τm , ‘aggressive’;
λ = 2.780τm , ‘moderately aggressive’; λ = 3.162τm , ‘moderate’;
λ = 4.091τm , ‘moderately conservative’; λ = 5.293τm , ‘conservative’;
λ = 6.847 τm , ‘very conservative’.
6
Kc =
(
2(2TCL + τm )
2
K m 2TCL + 4τm TCL + τm
2
)
, N=
TCL 2 + 2TCL τm + 0.5τm 2
TCL 2
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
371
4.1.6 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) E(s)
+
−




2 U(s)
T
s
1
K m e − sτ m
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
2
 Ti s
T  1 + a f 1s + a f 2 s
s
1+ d s 

N 

Table 63: PID controller tuning rules – IPD model G m (s) =
Rule
Kc
Ti
Kc
0.667 τm
Y(s)
K m e − sτ m
s
Td
Comment
0.25τm
Model: Method 1
Robust
Shamsuzzoha et
al. (2007).
Yu (2006), p. 18.
Model: Method 1
1
Kc = −
1
0.46K u
Ultimate cycle
2.22Tu
0.16Tu
b f 0 = 0 , b f 1 = 0.16Tu , b f 2 = 0 , a f 1 = 0.016Tu , a f 2 = 0 .
3


4τm
λ
, b f 0 = 1 , b f 1 = x1 1 +  e τ m x1 − 1 , b f 2 = 0 ,
K m x1 (6τm + 18λ − 6b f 1 )
x1 




2
N = ∞ , af1 =
af 2 = 0 .
2b f 1τm + τm + 12λτ m + 18λ2
+ x1 ; x1 , λ not specified explicitly;
6τm + 18λ − 6 x1
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
372
4.1.7 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+ s

N 

E(s)
−
R(s) +




T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

U(s)
−
+
K m e − sτ
s
Table 64: PID controller tuning rules – IPD model G m (s) =
Rule
Minimum IAE –
Shinskey (1988),
p. 143.
Minimum IAE –
Shinskey (1994),
p. 74.
Minimum IAE –
Shinskey (1988),
p. 148.
Minimum IAE –
Shinskey (1996),
p. 121.
Kc
Ti
Td
m
Y(s)
K m e − sτ m
s
Comment
Minimum performance index: regulator tuning
α = 0 , β =1,
1.28
1.90τ m
0.48τ m
N =∞.
K mτm
Model: Method 2
α = 0 , β =1,
1.28
1.90τ m
0.46τ m
N =∞.
K mτm
Model: Method 1
α = 0 , β =1,
0.82 K u
0.48Tu
0.12Tu
N =∞.
Model: Method 1
α = 0 , β =1,
0.77 K u
0.48Tu
0.12Tu
N =∞.
Model: Method 1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Minimum ISE – 0.6330 K m τm
Arvanitis et al.
(2003a).
1.4394 K m τm
Model: Method 1
0.6114 K m τm
Arvanitis et al.
1.2986 K m τm
(2003a).
Model: Method 1
Ti
Td
Comment
2.3800τ m
0
α =1
2.4569 τ m
0.3982τ m
α = 1, β = 1,
N =∞.
2.7442 τ m
0
α =1
3.2616τ m
0.4234τ m
α = 1, β = 1,
N =∞.
∞
∫ [e ( t) + K u ( t)]dt .
2
2
Minimise performance index
m
2
0
0.6146 K m τm
Arvanitis et al.
1.1259 K m τm
(2003a).
Model: Method 1
2.6816τ m
0
α =1
6.7092τ m
0.4627τ m
α = 1, β = 1,
N =∞.
∞
2

 du  
Minimise performance index e 2 ( t ) + K m 2   dt .
 dt  

0 
Minimum performance index: servo tuning
0
0.6270 K m τm
2.4688τ m
α =1
∫
Minimum ISE –
Arvanitis et al.
(2003a).
1.5221 K m τm
Model: Method 1
0.6064 K m τm
Arvanitis et al.
1.4057 K m τm
(2003a).
Model: Method 1
2.1084 τ m
0.3814τ m
α = 1, β = 1,
N =∞.
2.8489 τ m
0
α =1
2.5986τ m
0.4038τ m
α = 1, β = 1,
N =∞.
∞
∫ [e ( t) + K u ( t)]dt .
2
2
Minimise performance index
m
2
0
0.6130 K m τm
Arvanitis et al.
1.3332 K m τm
(2003a).
Model: Method 1
2.7126τ m
0
α =1
3.0010τ m
0.4167τ m
α = 1, β = 1,
N =∞.
∞
Minimise performance index
2
 2
2  du 
e ( t ) + K m   dt .
 dt  

0 
∫
373
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
374
Rule
Minimum ITAE
– Pecharromán
(2000a).
Model:
Method 11
Minimum ITAE
– Pecharromán
and Pagola
(2000).
Model:
Method 11
Kc
Ti
x1K u
Comment
Td
Minimum performance index: other tuning
0
x 2 Tu
Km = 1
Coefficient values:
φc
x1
x1
x2
α
x2
α
φc
0.049
2.826
0.506
− 164 0
0.066
2.402
0.512
− 160
0
0.218
1.279
0.564
− 1350
0.250
1.216
0.573
− 130 0
0.099
1.962
0.522
− 1550
0.286
1.127
0.578
− 1250
0.129
1.716
0.532
− 150 0
0.330
1.114
0.579
− 120 0
1.506
0.544
0
0.159
0.351
1.093
0.577
− 118 0
0.189
1.392
0.555
− 145
− 140 0
x 2 Tu
x1K u
x 3Tu
x1
x2
Coefficient values:
x3
α
φc
1.672
0.366
0.136
0.601
− 164 0
1.236
0.427
0.149
0.607
− 160 0
0.994
0.486
0.155
0.610
− 1550
0.842
0.538
0.154
0.616
− 150 0
0.752
0.567
0.157
0.605
− 1450
0.679
0.610
0.149
0.610
− 140 0
0.635
0.637
0.142
0.612
− 1350
0.590
0.669
0.133
0.610
− 130 0
0.551
0.690
0.114
0.616
− 1250
0.520
0.776
0.087
0.609
− 120 0
0.509
0.810
0.068
0.611
− 118 0
Km = 1
0
x1K u
x 2 Tu
Minimum ITAE
Coefficient values:
– Pecharromán
α
α
x1
x2
φc
x1
x2
φc
(2000b), p. 142.
0
0.0469 2.8052 0.5061 − 164.1 0.2174 1.2566 0.5642 − 135.00
Model:
Method 11
0.0662 2.3876 0.5119 − 160.50 0.2511 1.1948 0.5730 − 130.00
0.0988 1.9581 0.5220 − 155.00 0.2870 1.1281 0.5777 − 125.00
0.1271 1.6757 0.5319 − 150.00 0.3280 1.0860 0.5794 − 120.00
0.1589 1.5052 0.5439 − 145.00 0.3501 1.0822 0.5767 − 118.00
0.1866 1.3619 0.5546 − 140.00
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Minimum ITAE
– Pecharromán
(2000b), p. 148.
Model:
Method 11
Comment
Kc
Ti
Td
x1K u
x 2 Tu
x 3Tu
x1
x2
Coefficient values:
x3
α
φc
1.6695
0.3684
0.1323
0.6007
− 164.10
1.2434
0.4389
0.1507
0.6073
− 160.00
0.9901
0.4846
0.1587
0.6102
− 155.00
0.8378
0.5393
0.1562
0.6163
− 150.00
0.7383
0.5789
0.1548
0.6052
− 145.00
0.6728
0.6283
0.1488
0.6105
− 140.00
0.6196
0.6221
0.1376
0.6120
− 135.00
0.5948
0.6939
0.1326
0.6096
− 130.00
0.5513
0.7050
0.1190
0.6157
− 125.00
0.5271
0.7471
0.0992
0.6088
− 120.00
0.5229
0.8886
0.0862
0.6115
− 118.0 0
α = 0.6810
Taguchi and
0
0.7662 K m τm
4.091τ m
Araki (2000).
1.253 K m τm
2.388τ m
0.4137τ m
OS ≤ 20% ;
α = 0.6642 , β = 0.6797 , N fixed but not specified.
Model: Method 1
∞
0.82 K m τm
0.40τm
β = 0.41 ;
Taguchi et al.
N = 10.
(2002).
N = 10;
∞
0
.
4046
τ
1
m
0.8203 K m τm
Model:
0.1 ≤ τm ≤ 1.0 .
Method 1;
∞
0.87 K m τm
0.44τm
β = 0.44 ;
α=0.
N= ∞.
Minimum IAE – 0.571 K m τm
0
6.139τm
Tavakoli et al.
M max = 2 ; α = 0.417 ; Model: Method 1.
(2005).
Direct synthesis: time domain criteria
Kuwata (1987).
0
1 K m τm
3.33τm
α =1
Model: Method 1
2
1.067 K m τm
0
.
313
τ
α
=
1, β = 1,
m
6.25τm
N =∞.
1
β = 0.3623 +
0.02488
.
τm + 0.1035
375
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
376
Rule
Chien et al.
(1999).
Model: Method 2
Hansen (2000).
Model: Method 1
Chidambaram
(2000b).
Model: Method 1
Kc
Ti
Td
Comment
2
Kc
1.414TCL 2 + τ m
0
α =1
3
Kc
α = 1, β = 1,
N =∞.
Underdamped system response: ξ = 0.707 .
1.414TCL 2 + τ m
Td
0.938K m τ m
2.7 τ m
0.313τ m
0.64 K m τ m
3.333τ m
0.487 K m τ m
8.75τ m
0.9425 K m τm
2τ m
α = 0.833 ,
β =1, N = ∞ .
α = 0.65
0
α = 0.557
In general, α = 0.6 (on average) or α = 0.5[1 − τ m Ti ] .
0.5τ m
N = ∞ ; β = 1 ; α = 0.707 or α = 0.65 .
Hägglund and
Åström (2002).
Model: Method 2
0.35
K mτm
Arvanitis et al.
(2003a).
Model: Method 1
(8 − x1 )K m τm
4
(
)
16 2ξ2 + 1
32ξ2 + 4 K m τ m
Chidambaram
and Sree (2003).
Model: Method 1
Sree and
Chidambaram
(2006).
Model: Method 1
Klán (2001).
Model: Method 1
2
3
Kc =
Kc =
(
(
)
4τ m
x1
0
α = 1,
4
.
x1 = 2
4ξ + 1
16ξ 2 + 4
τm
16 2ξ 2 + 1
α = 1, β = 1,
N =∞.
(2ξ + 1)τ
2
m
(
0.3 < α < 0.5 .
)
4.5τ m
0.45τ m
0.9 K m τm
3.33τm
0
1.2 ≤ x1 ≤ 2
2τ m
0.5τ m
0.8956
K m τm
2.5τm
0.5τm
x1 K m τ m ,
α = 0.6 , β = 0 ,
N =∞.
α = 0.65 .
pp. 37–38.
α = 0.65 , β = 1 ,
N =∞.
p. 48. N = ∞ ,
β = 0 , α = 0.6 .
Direct synthesis: frequency domain criteria
0
α = 0.19
0.29 K m τm
8.9τm
K m TCL 2 2 + 1.414TCL 2τm + τm 2
(
0
1.2346
K mτm
1.414TCL 2 + τm
).
2
1.414TCL 2 + τm
2
M s = 1.4;
7τ m
K m TCL 2 + 0.707TCL 2 τm + 0.25τm
2
)
, Td =
0.25τm + 0.707TCL 2 τm
.
1.414TCL 2 + τm
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Td
Comment
0
α =1
0.25τm + λ
τm
2λ + τm
α = 0 ,β =1;
N =∞,
λ = 3τm .
Ti
377
Robust
Arvanitis et al.
(2003a).
Model: Method 1
2
4
4π τ m
x 1 π 2 − x1
(
Kc
2λ + τm
Rice (2006).
K m (λ + 0.5τm )2
Model: Method 1
Kc =
2λ + τ m
α = 0.6 , β = 0 ,
N =∞.
λ = 2.3τm , M s = 1.6 ; λ = 1.7 τm , M s = 1.8 ; λ = 1.4τm , M s = 2.0 ;
5
Shamsuzzoha
and Lee (2007a).
Model: Method 1
4
)
Ti
Kc
Td
equations for λ deduced from graphs.
4π2
2
[(8 − x )π + x ]K τ with 0 < x < π ;
1
2
1
2
1
m m
recommended x1 =
5
Kc =
2

π2 
16
 , ξ > 0.3941 .
1− 1− 2 2

2 
π 4ξ + 1 
(
2
)
2
Ti
3λ + 2x 2 τm − 0.5τm − x 2
,
, Ti = x1 + 2 x 2 −
x1K m (3λ + τm − 2x 2 )
3λ + τm − 2 x 2
2
2 x1x 2 + x 2 −
Td =

x 2 = x1 1 −


3
2
2
λ3 + 0.167 τm − x 2 τm + x 2 τm
2
2
3λ2 + 2x 2 τm − 0.5τm − x 2
3λ + τm − 2 x 2
−
,
Ti
3λ + τm − 2 x 2
3


λ
1 −  e − τ m Tm  , x1 is a constant with a ‘sufficiently large value’.
 x 

1


b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
378
4.1.8 Two degree of freedom controller 2




T
s
1
d
 1 + b f 1s (F(s) R (s) − Y(s) ) − K Y(s) ,
U(s) = K c 1 +
+
0
 Ti s
T  1 + a f 1s
1+ d s 

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5 s 4
R(s)
F(s)
+
−




T
s
1
d
 1 + b f 1s
K c 1 +
+
 Ti s
Td  1 + a f 1 s
1+
s

N 

+ U(s)
−
K m e − sτ
s
K0
Table 65: PID controller tuning rules – IPD model G m (s) =
Rule
Alenany et al.
(2005).
Model: Method 1
Kc
Ti
Y(s)
m
Td
K m e − sτ m
s
Comment
Minimum performance index: servo tuning
1.104 K m τm
2.405τm
0.417 τm
N=∞
a f 1 = 0 , bf 1 = 0 ; bf 2 = 0 ; a f 3 = 0 , a f 4 = 0 , a f 5 = 0 , bf 3 = 0 ,
bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
a f 2 = 1.866τm : OS ≈ 7% ; a f 2 = 2.38τm : OS ≈ 0% .
Normey-Rico et
al. (2000).
Model: Method 1
0.563 K m τm
Direct synthesis: time domain criteria
1.5τ m
0.667 τ m
N=∞
a f 1 = 0.13τm , b f 1 = 0 ; a f 2 = 0.75τm , b f 2 = 0.30τm ;
a f 3 = 0 , a f 4 = 0 , a f 5 = 0 , bf 3 = 0 , bf 4 = 0 , bf 5 = 0 ,
K 0 = 0. 5 K m τ m .
Normey-Rico et
al. (2001).
Model: Method 1
1
Kc
(1.5 − x1 )τm
Td
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , a f 4 = 0 ,
a f 5 = 0 , b f 3 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = 0. 5 K m τ m .
1
Kc =
1.5 − x1 
τm
1 − x1 (1.5 − x1 )
4 x1 + 1 − 4 x12 + 0.5x1  , Td =
− x1τm , N =
;
(1.5 − x1 )x1
K m τm 
1.5 − x1

Recommended x1 = 0.5 ; non-oscillatory response.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Benjanarasuth et
al. (2005).
Model: Method 1
Kc
Ti
Td
0.37 K u
Tu
0
Comment
a f 1 = 0 , b f 1 = 0 ; a f 2 = Tu , b f 2 = 0 ; a f 3 = 0 , b f 3 = 0 ; a f 4 = 0 ,
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
0.63K u
0.76Tu
0.078Tu
N=∞
a f 1 = 0 , b f 1 = 0 ; a f 2 = 0.76Tu , b f 2 = 0 ;
2
a f 3 = 0.06Tu , b f 3 = 0 ; a f 4 = 0 , a f 5 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = 0 .
2
Huang et al.
(2005b).
Model: Method 1
Kc
Ti
[
0.6325 τm
]
N=∞
a f 1 = max 0.0063 τm ,0.01 , b f 1 = 0 ; a f 2 = Ti , b f 2 = 1.0630τm ;
1.5
a f 3 = 0.6723τm
+ 0.6988K m τm
2.5
, b f 3 = 0.2652τm 2 ; a f 4 = 0 ,
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
Robust
Lee and Edgar
(2002).
Model: Method 1
3
Ti
Kc
0
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , a f 4 = 0 ,
a f 5 = 0 , b f 3 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = 0.25K u .
4
Zhang et al.
(2002a).
Model: Method 1
2λ 2 + 1.5τm
Kc
Td
N=∞
2
a f1 =
0.5λ 2 τ m
2
λ 2 + 2λ 2 τ m + 0.5τ m 2
, b f 1 = 0 ; a f 2 = 2λ 2 + τ m ,
b f 2 = 2λ1 + τm ; a f 3 = 0 , a f 4 = 0 , a f 5 = 0 , b f 3 = 0 , b f 4 = 0 ,
bf 5 = 0 , K 0 = 0 .
2
K c = 0.3221 + (0.3099 K m τm ) , Ti = τm (1.0630 + 1.1048K m τm ) .
3
Kc =
4
Kc =
2
0.25K u Ti
4
τm
− τm +
.
, Ti =
(λ + τm )
KuKm
2(λ + τm )
1
2λ 2 + 1.5τm
(2λ 2 + τm )0.5τm , λ ,λ not specified.
, Td =
1 2
K m λ 2 2 + 2λ 2 τm + 0.5τm 2
2λ 2 + 1.5τm
379
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
380
Rule
Kc
Ti
Td
Comment
5
2λ 2 + (1 + δ)τm
Td
N=∞
Kc
Zhang et al.
λ 2 2δτm − r2 τm 2 (2λ + τm )
(2006).
af1 = 2
, b f 1 = 0 ; a f 2 = 2λ 2 + τ m ,
Model: Method 1
λ + 2λ δτ − r τ 2 − r τ (2λ + τ )
2
2
m
2 m
1 m
m
b f 2 = 2λ1 + τm ; a f 3 = 0 , a f 4 = 0 , a f 5 = 0 , b f 3 = 0 , b f 4 = 0 ,
bf 5 = 0 , K 0 = 0 .
5
Kc =
2
1
2λ 2 + τm + δτm
2λ 2 + δτm
T
=
,
,
d
K m λ 2 2 + 2λ 2δτm − r2 τm 2 − r1τm (2λ + τm )
2λ 2 + (1 + δ)τm
λ1 , λ 2 , λ , r1 , r2 , δ not specified.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
4.1.9 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
−
Y(s)
Model
F2 (s)
Table 66: PID controller tuning rules – IPD model G m (s) =
Rule
Kc
Ti
Td
K m e − sτ m
s
Comment
Minimum performance index: other tuning
0.45 K m
8τ m
0.5τ m
Åström and
α = 1 , τm Tm ≤ 1 ; α = 0 , τm Tm > 1 ; β = 1 ; χ = 0 ; δ = 0 ; N = ∞ ;
Hägglund (2004).
bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 ,
Model: Method 1
2
a f 3 = 0.2τm , a f 4 = 0.01τm ; K 0 = 0 .
Kaya and
Atherton (1999),
Kaya (2003).
Model:
Method 10
1
Direct synthesis: frequency domain criteria
∧
0
1
0.313 K u
0.733 T u
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
∧ 

0.567  K m K u 
K0 =

∧
K m 

 τm T u 
∧
bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ; bf 3 = 1 ; a f 5 = 0 .
0.667
0.333


∧ 
 K m K u 
1  τm Tm
−
− 0.313 K u , b f 4 = 0.753
.


∧
τm  K m
 τm T u 


∧
381
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
382
Rule
Kc
Ti
Kc
Ti
Td
Comment
Robust
2
Lee and Edgar
(2002).
Model: Method 1
Td
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 0.25K u ;
bf 3 = 1 ; bf 4 = 0 ; a f 5 = 0 .
3
Kc
Ti
x1
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; b f 1 = 0 , a f 1 = Td , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = Td , a f 4 = 0 ; K 0 = 0.25K u ;
bf 3 = 1 ; bf 4 = 0 ; a f 5 = 0 .
2
3
Kc =
2
2

0.25K u  4
4
τm
τm
− τm +
,
− τm +
 , Ti =

(λ + τm )  K u K m
2(λ + τm ) 
KuKm
2(λ + τm )
Td =
2
4
0.25K u 
τm 3
τm
τ (1 − 0.25K u K m τm ) 
2
+
+ m
.
0.25τm −
2
(λ + τm ) 
6(λ + τm ) 4(λ + τm )
0.5K u K m (λ + τm ) 
Kc =
2
2

0.25K u  4
τm
4
τm
− τm +
+ x1  , Ti =
− τm +
+ x1

(λ + τm )  K u K m
2(λ + τm )
KuKm
2(λ + τm )

2

τm
τm
(1 − 0.25K u K m τm ) 
x1 = τm 0.5 −
+
+

2
6( λ + τ m ) 4( λ + τ m )
0.5K u K m (λ + τm ) 

0.5
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
4.2 IPD Model with a Zero
G m (s) =
K m (1 + sTm 3 )e −sτ m
K (1 − sTm 4 )e −sτ m
or G m (s) = m
s
s

1 

4.2.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
−
+

1 

K c 1 +
Ti s 

U(s)
Model
Y(s)
Table 67: PI controller tuning rules – IPD model with a negative zero
K (1 + sTm3 )e −sτ m
K (1 − sTm 4 )e −sτ m
G m (s) = m
or m
s
s
Rule
Kc
2
3
4
Kc =
Kc =
Kc =
Kc =
1.571
3
Kc
(
)
.
(
)
.
K m τm 1 + 3.142 Tm 4 τm 2
2.358
Comment
Direct synthesis: frequency domain criteria
τm Tm3 < 1
∞
4
τm Tm3 > 1
Kc
Jyothi et al. (2001).
Model: Method 1
1
Ti
Direct synthesis: time domain criteria
1
‘Smaller’ τm Tm 4 .
Kc
∞
2
‘Larger’ τm Tm 4 .
Kc
Chidambaram (2002),
p. 157.
Model: Method 1
K m τm 1 + 4.712 Tm 4 τm 2
1.57
K m τm 1 + 9.870(Tm3 τm )2
0.79
K m τm 1 + 2.467(Tm3 τm )2
.
.
383
b720_Chapter-04
Rule
Kc
Jyothi et al. (2001).
Model: Method 1
0.5 K m Tm 4
Kc =
FA
Handbook of PI and PID Controller Tuning Rules
384
5
04-Apr-2009
5
Ti
Kc
0.79
K m τm 1 + 2.467(Tm 4 τm )2
.
∞
Comment
τm Tm 4 < 1
τm Tm 4 > 1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
4.3 FOLIPD Model G m (s) =
K m e − sτm
s(1 + sTm )

1 

4.3.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
E(s)
+
−

1 

K c 1 +
Ti s 

U(s)
K m e − sτ
s(1 + sTm )
m
Y(s)
Table 68: PI controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Ti
K m e − sτ m
s(1 + sTm )
Comment
Process reaction
Quarter decay ratio
Coon (1956), (1964).
criterion.
∞
K m (τ m + Tm )
Model: Method 1;
Coefficient values:
coefficients of K c
τ m Tm
x1
τ m Tm
x1
τ m Tm
x1
deduced from graphs.
0.020
5.0
0.25
2.2
4.0
1.1
0.053
4.0
0.43
1.7
0.11
3.0
1.0
1.3
Minimum performance index: regulator tuning
Minimum IAE –
0.556
Shinskey (1994),
Model: Method 1
3.7(τ m + Tm )
K m (τ m + Tm )
p. 75.
Minimum IAE –
0.952
Shinskey (1994),
Model: Method 1
4(Tm + τ m )
K m (Tm + τ m )
p. 158.
x1
385
b720_Chapter-04
Rule
Minimum ITAE –
Poulin and Pomerleau
(1996).
Model: Method 1
Process output step
load disturbance.
Process input step
load disturbance.
Velázquez-Figueroa
(1997).
Model: Method 1
Velázquez-Figueroa
(1997).
Model: Method 1
Kuwata (1987).
Model: Method 1
Kc =
FA
Handbook of PI and PID Controller Tuning Rules
386
1
04-Apr-2009
1
Kc
Ti
Comment
Kc
x 1 (τ m + Tm )
K c and Ti
coefficients deduced
from graph.
τ m Tm
x1
0.2
0.4
0.6
0.8
1.0
0.2
0.4
0.6
0.8
1.0
5.0728
4.9688
4.8983
4.8218
4.7839
3.9465
3.9981
4.0397
4.0397
4.0397
0.029  Tm 


K m  τm 
Coefficient values:
x2
τ m Tm
0.5231
0.5237
0.5241
0.5245
0.5249
0.5320
0.5315
0.5311
0.5311
0.5311
1.2
1.4
1.6
1.8
2.0
1.2
1.4
1.6
1.8
2.0
0.157
∞
x1
x2
4.7565
4.7293
4.7107
4.6837
4.6669
4.0337
4.0278
4.0278
4.0218
4.0099
0.5250
0.5252
0.5254
0.5256
0.5257
0.5312
0.5312
0.5312
0.5313
0.5314
0.1 ≤
τm
≤ 0.33
Tm
0.195
τ
τ 
0.1 ≤ m ≤ 0.5
6.824Tm  m 
Tm
 Tm 
Minimum performance index: servo tuning
0.528
τ
0.031  Tm 
0.1 ≤ m ≤ 0.33
∞


Tm


K m  τm 
0.406
0.119
τ
 τm 
0.042  τm 
0.1 ≤ m ≤ 0.5




8
.
807
T
T
m
T 
m
K m  Tm 
 m
Direct synthesis: time domain criteria
0.5
∞
K (τ + T )
0.044  τm 


K m  Tm 
m
m
0.122
m
x2
Tm 2
+1 .
K m (τm + Tm ) x1 (τm + Tm )2
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
2
Huba and Žáková
(2003).
Model: Method 1
Kc
Ti
Kc
∞
387
Comment
Representative tuning rules; tuning rules for other τ m Tm values
may be obtained from a graph.
0.193 K m τ m
3.717 τ m
τ m Tm = 0.5
0.207 K m τ m
3.386τ m
τ m Tm = 1
0.219 K m τ m
3.127 τ m
τ m Tm = 2
Direct synthesis: frequency domain criteria
Maximise crossover
3 1.26x 1
frequency.
∞
Kmτm
Hougen (1979),
p. 338.
Model: Method 1
Poulin and Pomerleau
2.13
0.34 K u or
(1999).
K T
m
u
Robust
∞
Velázquez-Figueroa 0.833(2λ + Tm + τm )
(1997).
K m (λ + τm )2
McMillan (1984).
Model: Method 1
4
Kc
Tuning rules developed from K u , Tu .
^
K u tan 2 φ m
Perić et al. (1997).
Model: Method 8
− 2Tm + τm + 4Tm
3
4
2
2
2 Tm + τ m − τ m + 4 Tm
K m τ m 2e
0.1592 Tu
tan φ m
1 + tan 2 φ m
2
Kc =
Model: Method 1; λ
not specified.
Ultimate cycle
Ti
^
2
Model: Method 1;
M max = 5 dB .
1.04Tu
2
.
2 Tm
x 1 values recorded deduced from a graph:
τ m Tm
1
2
3
4
5
6
7
8
9
10
x1
0.31
0.19
0.14
0.11
0.09
0.078
0.068
0.06
0.053
0.05
2
  T 0.65 

1.477 Tm 
1


m 
Kc =

 , Ti = 3.33τm 1 + 
 .
τ
K m τ m 2 1 + (Tm τ m )0.65 
  m  
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
388


1
+ Td s 
4.3.2 Ideal PID controller G c (s) = K c 1 +
Ti s


E(s)
R(s)
+
−

 U(s)
1
K c 1 +
+ Td s 
 Ti s

K m e − sτ
s(1 + sTm )
m
Y(s)
Table 69: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Ti
Td
K m e − sτ m
s(1 + sTm )
Comment
Minimum performance index: regulator tuning
Minimum ISE – 0.6667 K m τm
Model: Method 1
∞
Tm
Haalman (1965).
0
A m = 2.36 ; φ m = 50 ; M s = 1.9 .
0.717
Velázquez

1
Figueroa (1997). 0.062  Tm 
Td
Ti


Model: Method 1 K m  τm 
Minimum performance index: servo tuning
0.75
0.73
Velázquez

 τm 
2
Figueroa (1997). 0.064  Tm 


1
.
2
T
T
m
i


T 
Model: Method 1 K m  τm 
 m
Direct synthesis: time domain criteria
Van der Grinten
∞
1 K m τm
Tm + 0.5τ m Step disturbance.
(1963).
−2 ω d τ m
Stochastic
e
Model: Method 1
3
disturbance.
∞
Td
K τ
m m
Tachibana
(1984).
1
2
λ
K m (1 + λτ m )
τ 
Ti = 3.537Tm  m 
 Tm 
0.951
∞
τ 
, Td = 1.458Tm  m 
 Tm 
Tm
0.754
.
Ti = 8.071τm , 0 < τm Tm ≤ 0.0333 ;
Ti = 22.183τm − 0.4701Tm , 0.0333 < τm Tm ≤ 0.2121 ;
Ti = 8.2076Tm − 18.724τm , 0.2121 < τm Tm ≤ 0.3256 ;
Ti = 1.7571Tm + 1.089τm , τm Tm > 0.3256 .
3


T
Td = 1 − 0.5e − ωd τ m + m e − ωd τ m τme − ωd τ m .
τ
m


Model: Method 5
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
389
Comment
Td
Vítečková
∞
x1 K m τ m
Tm
(1999),
Coefficient values:
Vítečková et al.
OS
OS
OS
OS
x
x
x1
x1
1
1
(2000a).
0%
0.641
15%
0.801
30%
0.957
45%
Model: Method 1 0.368
0.514
5%
0.696
20%
0.853
35%
1.008
50%
0.581
10%
0.748
25%
0.906
40%
4
Chen and Seborg
Model: Method 1
3TCL + τ m
Td
Kc
(2002).
Sree and
Model:
Chidambaram
Method 1;
T
T
5
i
d
Kc
(2006).
p. 58.
Direct synthesis: frequency domain criteria
6
2
Åström and
0.67e−1.9 τ + 0.2 τ
Hägglund (1995), K (T + τ )
m m
m
pp. 212–213.
−9.3τ + 6.6 τ 2
Model: Method 1 4.8e
or Method 3.
K m (Tm + τm )
=
 
 d desired
0.56τm e1.1τ −1.1τ
ωpTm
Chen et al.
(1999a).
4  y
2
0.13τm e13.6 τ −11.0 τ 14.2τm e −13.3τ + 8.6 τ
K m A mTd
r1ωx Tm
K mTd
2
0.68τm e 2.26 τ −1.8τ
2
2
M max = 1.4
M max = 2.0
∞
7
Td
Model: Method 1
∞
8
Td
Model: Method 1
(3TCL + τm )se−sτ , K = (3TCL + τm )(Tm + τm ) ,
c
(TCL + τm )3
K c (TCLs + 1)3
m
2
Td =
0.895 − 0.100
5
Kc =
K m τm
Tm
τm
Tm
T
0.450 + 0.960 m
τm
τm
τ , T =
τ .
, Ti =
Tm m d
Tm m
0.358 − 0.040
0.895 − 0.100
τm
τm
0.895 − 0.100


1
Tuning rules converted from formulae developed for G c (s) = K c  [1 − α ] +
+ Tds  .
Tis


1
7
.
Td =
2
−1
2ωp − 1.273ωp τm + Tm
6
8
Td =
1
ωx − 1.273ωx 2 τm + Tm −1
, ωx =
0.25π(2r1A m − 1)
(r A − 1)τ
2
1
2
m
m
.
3
2
3TCL Tm + 3TCL Tm τm − TCL + Tm τm
.
(3TCL + τm )(Tm + τm )
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
390
Rule
Kc
Klán (2001).
0.67e−1.9 τ + 0.2 τ
Model: Method 1
K m (Tm + τm )
Ti
Td
9
Ti
Td
∞
Tm
Comment
2
O’Dwyer
(2001a).
Model: Method 1
Åström and
Hägglund (2006),
p. 246.
x 1Tm
K mτm
A m = 0. 5 x 1 ;
φ m = 0.5π − x 1 .
x1
Representative coefficient values:
Am
φm
x1
Am
0.785
2
10
45
0
0.524
Ti
Kc
Rivera and Jun τ m + Tm + 2λ
(2000).
K m (τ m + λ )2
Model: Method 1
Td
Robust
Tm (τ m + 2λ )
τ m + Tm + 2λ
τ m + Tm + 2λ
φm
3
60 0
M s = M t = 1. 4 ;
Model: Method 1
λ not specified.
2
Recommended
1
0.5τm
Tm +
Lee et al. (2006). K (T + τ )
τ
m ≤ TCL ≤ 2τ m .
∞
TCL + τm
m CL
m
Model: Method 1
Desired closed loop response = e −sτ m (1 + sTCL ) .
Shamsuzzoha et
al. (2006c).
Model: Method 1
9
11
Ti
Kc
Td
λ , ξ not
specified.


1
Tuning rules converted from formulae developed for G c (s) = K c  [1 − α ] +
+ Tds  .
Tis


Ti = 0.13(τm + Tm )e13.6 τ −11.0 τ ; Td = 14.2(τm + Tm )e−13.3τ +8.6 τ .
2
10
11
2
T
T
0.37 + 0.02 m
0.16 + 0.28 m
1 
Tm 
τm
τm
Kc =
τ , T =
τ .
0.37 + 0.02  , Ti =
Tm m d
Tm m
K m τm 
τm 
0.03 + 0.0012
0.37 + 0.02
τm
τm
Kc =
Td =
Ti
, Ti = x1 + Tm + x 2 − x 3 ,
x1K m (4λξ + τm − x 2 )
x 4 + x 2 (Tm + x1 ) + x1Tm −
0.167 τm 3 − 0.5x 2 τm 2 + x 4 τm + 4λ3ξ
4λξ + τm − x 2
− x3 ;
Ti
x1 is a constant with ‘a sufficiently large value’,
2
x2 =
2
2
2
2
Tm x 5e − τ m x 1 − x1 x 5e − τ m x1 + x1 − Tm
4λ2ξ 2 + 2λ2 + x 2 τm − 0.5τm − x 4
, x3 =
,
x1 − Tm
4λξ + τm − x 2
2
 λ2
2λξ 
2
x 4 = Tm x 5e − τ m Tm − 1 + x 2Tm , x 5 =  2 −
+1 .

T
Tm

 m
[
]
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Shamsuzzoha
and Lee (2007a).
12
Kc
Ti
Td
Comment
Ti
Td
Model: Method 1
0.25Ti
Tuning rules
developed from
K u , Tu .
Ultimate cycle
McMillan
(1984).
Model: Method 1
Perić et al.
(1997).
Model: Method 8
12
Kc =
Td =
Kc
Ti
K u cos φ m
x1Td
13
∧
14
Td
Recommended
x1 = 4 .
Ti
, Ti = x1 + Tm + x 2 − x 3 ,
x1K m (4λ + τm − x 2 )
x 4 + x 2 (Tm + x1 ) + x1Tm −
3
2
0.167 τm − 0.5x 2 τm + x 4 τm + 4λ3
4λ + τm − x 2
− x3 ;
Ti
x1 is a constant with ‘a sufficiently large value’,
2
x2 =
[
]
2
[
]
2
x1 x 5e − τ m x1 − 1 − Tm x 5e − τ m Tm − 1
6λ2 − x 4 + x 2 τm − 0.5τm
, x3 =
,
Tm − x1
4λ + τ m − x 2
[
4
]

λ
x 4 = Tm x 5e
− 1 + x 2Tm ; x 5 = 1 −  ;
x
1

From graphs: λ = 0.26τm , M s = 1.6 , 0.05 ≤ τm Tm ≤ 1.1 ;
2
− τ m Tm
λ = 0.21τm , M s = 1.8 , 0.05 ≤ τm Tm ≤ 1.75 ;
λ = 0.19τ m , M s = 2.0 , 0.05 ≤ τm Tm ≤ 2.5 .
13
14
2
  T 0.65 

1.111 Tm 
1


m 
Kc =

 , Ti = 2τm 1 + 
 .
τ
K m τ m 2 1 + (Tm τ m )0.65 
  m  

Td =  tan φ m +


^
T
4
+ tan 2 φ m  u .
 4π
x1

391
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
392
4.3.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 1 + Tf s
 Ti s
R(s)
E(s)
+
−
U(s) K e −sτ m
1
m
Tf s + 1
s(1 + sTm )


1
K c 1 +
+ Td s 
Ti s


Y(s)
Table 70: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Kristiansson and
Lennartson
(2006).
Model:
Method 1;
1.7 < M max
< 1.8 .
1
Kc =
10e
−8 τ m T m
K m Tm
2
Ti
Kc
2
Kc
Ti
Kc
Ti
(1 − 0.35e
Comment
Td
Direct synthesis: frequency domain criteria
Ti
Td
τ
0 ≤ m < 0.25
Tm
1
3
1.7 τ m + 1.3Tm
(
2 1.7 − e − τ m 1.3Tm
1.7 τ m + 1.3Tm
(
2 1.7 − e − τ m 1.3Tm
− 4 τ m Tm
m
(
−4.5 τ m T m
m
m
d
)
4e
K m Tm
2
− τ m 1.3Tm
m
)
m
− 4 τ m Tm
−8 τ
Tm
0.25e m
Tm
(2.4τm + 0.9Tm )2 .
m
− τ m 1.3Tm
i
3
m
τ
1 ≤ m < 50
Tm
)(1.7τ + 1.3T ) ,
)(1.7τ + 1.3T ) , T = 0.85τ + 0.65T .
T = 2(1.7 − e
τ 
2 
 0.06 + 0.004
(1.7 − e
)(1.7τ + 1.3T ) ,
K =
T 
K T 
)(1.7τ + 1.3T ) , T = 0.85τ + 0.65T .
T = 2(1.7 − e
Kc =
(1.7 − e
τm
) 0.25 ≤ T < 1
)(2.4τ + 0.9T ) , T = 2(12−.40τ.35+e0.9T ) ,
Ti = 2 1 − 0.35e −4 τ m Tm (2.4τm + 0.9Tm ) , Tf =
2
K m e − sτ m
s(1 + sTm )
− τ m 1.3Tm
m
c
2
m m
m
m
m
f
m
m
m
m
f
m
m
m
m
i
− τ m 1.3Tm
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Kc
Ti
Td
Comment
Td
Model: Method 1
Robust
H ∞ optimal –
Tan et al.
(1998b).
4
λ = 0.5 (performance), λ = 0.1 (robustness), λ = 0.25 (acceptable).
5
3λ + Tm + τ m
1.5τ m ≤ λ
(3λ + τ m )Tm
Kc
Zhang et al.
3λ + τ m + Tm
≤ 4.5τ m
(1999b).
Model: Method 1 λ = 1.5τ m , OS = 58%, TS = 6τ m ; λ = 2.5τ m , OS = 35%, TS = 11τ m ;
λ = 3.5τ m , OS = 26%, TS = 16τ m ; λ = 4.5τ m , OS = 22%,
TS = 20τ m ; λ > 0.2291τm for stability (Ou et al., 2005b).
Tan et al.
(1998a).
Model:
Method 1;
λ not specified.
Rivera and Jun
(2000).
Model: Method 1
4
Kc =
Kc =
Kc
Tm + 8.1633τ m
Tm τ m
0.1225Tm + τ m
Tf = 0.5549τ m
7
Kc
Tm + 5.3677 τ m
Tm τ m
0.1863Tm + τ m
Tf = 0.4482τ m
8
Kc
Tm + 3.9635τ m
Tm τ m
0.2523Tm + τ m
Tf = 0.2863τ m
9
Kc
2( τ m + λ ) + Tm
(0.463λ + 0.277)([0.238λ + 0.123]Tm + τm )
K m τm 2
Ti = Tm +
5
6
, Tf =
K m 3λ2 + 3λτ m + τm
2
)
, Tf =
6
Kc =

0.0337Tm 
τm
1 +
.
2 
K m τm  0.1225Tm 
7
Kc =

0.0754Tm 
τm
1 +
.
2 

0
.
1863
T
K m τm 
m 
λ3
3λ2 + 3λτ m + τ m 2
.

0.1344Tm 
τm
1 +
.
2 
K m τm  0.2523Tm 
2(τ m + λ ) + Tm
τ m λ2
9
Kc =
, Tf =
.
2
2
2
K m 2τ m + 4τ m λ + λ
2τ m + 4 τ m λ + λ2
8
Kc =
(
)
λ not specified.
τm
,
5.750λ + 0.590
Tm τm
τm
, Td =
.
(0.238λ + 0.123)Tm + τm
0.238λ + 0.123
3λ + Tm + τm
(
2Tm (τ m + λ )
2( τ m + λ ) + Tm
393
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
394



Td s 
1

+
4.3.4 Controller with filtered derivative G c (s) = K c 1 +
 Ti s 1 + s Td 


N 

R(s)




T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

E(s)
+
−
U(s)
K m e − sτ
s(1 + sTm )
m
Table 71: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Ti
Y(s)
K m e − sτ m
s(1 + sTm )
Comment
Td
Direct synthesis: frequency domain criteria
Kristiansson and
Lennartson
(2002a).
1
Td
Model:
Method 1;
0.5 ≤ K1 ≤ 1 .
Tm (2λ + τ m )
2λ + Tm + τ m
λ ∈ [τ m , Tm ]
(Chien and
Fruehauf, 1990);
N = 10.
Ti
Kc
Robust
Chien (1988).
2λ + τ m + Tm
Model: Method 1
K m (λ + τ m )2
1
2λ + Tm + τ m
(
)
Kc =
0.059 K 1 2 + (0.055 K 1 ) − 0.08 
2.5ωu 
0.055 0.059  
2
− 0.08 +
+
−
,
2

0.4(10 + 1 K 1 )
K m 
K1
K1   2.3 − 2 K 1

Ti =
2
2.5 
2
0.059 K1 + (0.055 K1 ) − 0.08 
−
,

ωu  2.3 − 2K1
0.4(10 + 1 K1 )

(
)
(
)
−1
2.5 
2
0.059 K12 + (0.055 K1 ) − 0.08   1

Td =
−
 + 1 ,


0.4(10 + 1 K1 )
ωu  2.3 − 2K1
 N 
N=
(
)
2
Td
0.059 K1 + (0.055 K1 ) − 0.08
, Tf =
.
Tf
0.16ωu (10 + 1 K1 )
−1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models





1  1 + Td s 

4.3.5 Classical controller G c (s) = K c 1 +
Td s 
Ti s 

1 +

N 

R(s)





1  1 + sTd 

K c 1 +
Td 
Ti s 

1 + s 
N

E(s)
+
−
U(s)
Y(s)
K m e − sτ
s(1 + sTm )
m
Table 72: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Ti
K m e − sτ m
s(1 + sTm )
Comment
Td
Minimum performance index: regulator tuning
Minimum IAE –
τ m = Tm ;
0.78
Shinskey (1994), K ( τ + T ) 1.38( τ m + Tm ) 0.66( τ m + Tm )
N = 10.
m
m
m
p. 75.
Model: Method 1
Minimum IAE –
Shinskey (1994),
pp. 158–159.
1
Minimum ITAE
– Poulin and
Pomerleau
(1996), (1997).
Model:
Method 1.
Process output
step load
disturbance.
3
2
Kc
Kc
Kc
τm Tm < 2
0.56τ m + 0.75Tm
Ti
Model: Method 1; N not specified.
x 2 (τ m + Tm )
Tm
τm Tm ≥ 2
3.33 ≤ N ≤ 10
Tm N
Coefficient values (deduced from graphs):
τm
x1
x2
x1
T N
0.2
0.4
0.6
0.8
1.0
5.0728
4.9688
4.8983
4.8218
4.7839
τm
m
0.5231
0.5237
0.5241
0.5245
0.5249
(
1.2
1.4
1.6
1.8
2.0
[
4.7565
4.7293
4.7107
4.6837
4.6669
])
1
Kc =
0.926
, Ti = 1.57 τm 1 + 1.2 1 − e − Tm τ m .
K m τm (1.22 − 0.03(Tm τm ))
2
Kc =
0.926
.
K m τm (1 + 0.4(Tm τm ))
3
Kc =
τm
x2
Tm 2
+1 ; 0 ≤
≤ 2.
(Tm N )
K m (τm + Tm ) x1 (τm + Tm )2
x2
0.5250
0.5252
0.5254
0.5256
0.5257
395
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
396
Rule
Kc
Ti
Poulin and
Pomerleau
(1996), (1997) –
continued.
Process input
step load
disturbance.
0.2
0.4
0.6
0.8
1.0
Skogestad
(2003).
Model: Method 1
0.5
K mτm
Comment
Td
Coefficient values (continued):
3.9465
0.5320
1.2
4.0337
3.9981
0.5315
1.4
4.0278
4.0397
0.5311
1.6
4.0278
4.0397
0.5311
1.8
4.0218
4.0397
0.5311
2.0
4.0099
0.5312
0.5312
0.5312
0.5313
0.5314
Direct synthesis: time domain criteria
Hougen (1979),
p. 338.
8τ m
N=∞
Tm
Direct synthesis: frequency domain criteria
0.7
0.3
∞
0
.
106
x
4
1
0.135 NTm τm
Kmτm
Model: Method 1; maximise crossover frequency; 10 ≤ N ≤ 30 .
N = 5.
Poulin et al.
0.5455
(1996).
Tm
M max = 1 dB
K m (τm + 0.2Tm ) 21(0.2Tm + τ m )
Model: Method 1
Robust
Tm
λ ∈ [τ m , Tm ]
Chien (1988).
Tm
2λ + τ m
(Chien and
K m (λ + τ m )2
Model: Method 1
Fruehauf, 1990);
2λ + τ m
N = 10.
2λ + τ m
Tm
K m (λ + τ m )2
Chien (1988).
Model: Method 1
2λ + τ m
K m (λ + τ m )
2
Tm
K m (λ + τ m )2
2λ + τ m
1.1Tm
Tm
2.2λ + 1.1τm
λ ∈ [τ m , Tm ]
(Chien and
Fruehauf, 1990);
N = 11.
Tuning rules converted to this equivalent controller architecture.
4
x 1 values deduced from graph:
τ m Tm
1
2
3
4
5
6
x1
6
3
2.1
1.8
1.6
1.3
τ m Tm
7
8
9
10
11
12
x1
1.1
1.0
0.9
0.8
0.7
0.7
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
397
4.3.6 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) E(s)
+




2 U(s)
T
s
1
K m e − sτ
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
 Ti s
T  1 + a f 1s + a f 2 s 2
s(1 + sTm )
1+ d s 

N


m
−
K m e − sτ m
s(1 + sTm )
Table 73: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Tsang et al.
(1993).
Model: Method 2
Kc
x1 K m τ m
Direct synthesis: time domain criteria
0
∞
bf 0 = 1
2
ξ
1.6818
0.0
1.3829
0.1
1.1610
0.2
x1 K m τ m
x1
Coefficient values:
ξ
x1
0.9916
0.8594
0.7542
0.3
0.4
0.5
ξ
0.6693
0.6
0.6000
0.7
0.5429
0.8
0.35τm
∞
x1
ξ
0.4957
0.4569
0.9
1.0
bf 0 = 1
2
2
b f 1 = 0.5τm , b f 2 = 0.0833τm , a f 1 = 0.2τm , a f 2 = 0.01τm .
x1
Tsang and Rad
(1995).
Model: Method 2
Comment
Td
b f 1 = Tm + 0.25τm , b f 2 = 0.25Tm τm , a f 1 = 0.2τm , a f 2 = 0.01τm .
x1
Tsang et al.
(1993).
Model: Method 2
Ti
Y(s)
ξ
1.8512
0.0
1.5520
0.1
1.3293
0.2
0.809 K m τm
x1
Coefficient values:
ξ
x1
1.1595
1.0280
0.9246
0.3
0.4
0.5
0.8411
0.7680
0.6953
∞
0
ξ
x1
ξ
0.6
0.7
0.8
0.6219
0.5527
0.9
1.0
Maximum
overshoot = 16%.
b f 0 = 1 , b f 1 = Tm + 0.5τm , b f 2 = 0.5Tm τm , a f 1 = 0.12τm ,
2
a f 2 = 0.0036τm .
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
398
Rule
Kc
Shamsuzzoha et
al. (2006a).
Model: Method 1 b
Ti
Td
Comment
Direct synthesis: frequency domain criteria
τ
1
0 ≤ m ≤ 2.5
∞
0.333τm
Tm
K m (λ + τm )
f 0 = 1 , b f 1 = Tm , b f 2 = 0 , a f 1 = 0.167 τ m
2λ − τm
, af 2 = 0 , N = ∞ .
λ + τm
λ values deduced from graph: λ = 1.4τm , M s = 1.4 ;
λ = 0.7 τm , M s = 1.6 ; λ = 0.4τm , M s = 1.8 ; λ = 0.35τm , M s = 2.0 .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
399
4.3.7 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
 α + β d K c
T 

1+ d s

N 

E(s)
−
R(s) +




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
U(s)
+
m
Table 74: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Ti
Y(s)
K m e − sτ
s(1 + sTm )
K m e − sτ m
s(1 + sTm )
Comment
Td
Minimum performance index: regulator tuning
Minimum IAE –
α = 0 ,β =1,
1.16
Shinskey (1994), K ( τ + T )
1.38( τ m + Tm ) 0.55( τ m + Tm )
N =∞.
m
m
m
p. 75.
Model: Method 1
Minimum IAE –
Shinskey (1994),
p. 159.
1
1
1.28
Kc =
(
Kc
0.48τ m + 0.7Tm
Ti
K m τm 1 + 0.24(Tm τm ) − 0.14(Tm τm )2
α = 0 ,β =1,
N =∞.
Model: Method 1
) , T = 1.9τ (1 + 0.75[1 − e
i
m
− (T m τ m )
)
] .
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
400
Rule
Kc
4
(8 − x1 )K m τm
Arvanitis et al.
(2003b).
Model: Method 1
Ti
Td
Comment
4τm
x1
0
α =1
Minimum ISE. 2
Minimum performance index. 3
2
2
3
τ 
τ 
τ 
τ 
x1 = 2.6302 − 2.1248 m  + 2.5776 m  − 1.8511 m  + 0.82557 m 
T
T
T
 m
 m
 m
 Tm 
5
6
4
7
τ 
τ 
τ 
τ 
− 0.23641 m  + 0.044128 m  − 0.0053335 m  + 0.00040201 m 
T
T
T
 m
 m
 m
 Tm 
9
10
τ 
τ 
τ
− 1.7164.10 −5  m  + 3.1685.10 −7  m  , 0 < m < 4.1 ;
T
T
T
m
 m
 m
τ
 τ
x1 = 1.7110073 − 0.003554 m − 4.1 , m ≥ 4.1 .
 Tm
 Tm
∞
3
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
2
m
0
2
3
τ 
τ 
τ 
τ 
x1 = 2.1054 − 0.76462 m  + 0.79445 m  − 0.51826 m  + 0.21771 m 
 Tm 
 Tm 
 Tm 
 Tm 
5
6
7
τ 
τ 
τ 
τ 
− 0.06 m  + 0.010927 m  − 0.0013006 m  + 9.717.10 −5  m 
 Tm 
 Tm 
 Tm 
 Tm 
9
10
τ 
τ 
τ
− 4.132.10 −6  m  + 7.6235.10 −8  m  , 0 < m < 4.6 ;
Tm
 Tm 
 Tm 
τ
 τ
x1 = 1.69667833406 − 0.00148768 m − 4.6  , m ≥ 4.6 .
T
 m
 Tm
4
8
8
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Arvanitis et al.
(2003b) –
continued.
Arvanitis et al.
(2003b).
Model: Method 1
Ti
401
Comment
Td
Minimum performance index. 4
5
0
Ti
Kc
α =1
Minimum ISE. 6
∞
4
Performance index =
2
 2
2  du 
e ( t ) + K m   dt .
 dt  

0 
∫
τ
 τ
x1 = 1.6505623 − 0.0034985 m − 8  , m ≥ 2 ;
T
 m
 Tm
2
3
τ 
τ 
τ 
τ 
x1 = 2.1806 − 0.60273 m  + 0.3875 m  − 0.14955 m  + 0.034535 m 
 Tm 
 Tm 
 Tm 
 Tm 
5
6
4
7
τ 
τ 
τ 
τ 
− 0.0042243 m  + 8.2395.10 −5  m  + 5.0912.10 −5  m  − 7.283.10 −6  m 
 Tm 
 Tm 
 Tm 
 Tm 
9
8
10
τ 
τ 
τ
+ 4.2603.10 −7  m  − 9.5824.10 −9  m  , m range not defined.
Tm
 Tm 
 Tm 
12
.
5664
τ
+
T
−
4
(
)
5
m
m
Kc =
K m 2(τm + Tm )(12.5664(τm + Tm ) − 4 ) − 1.5τm 2 + 3τm Tm + 2Tm 2 x1
[
) ]
(
3.4674τm + 3.1416Tm − 1
12.5664(τm + Tm ) − 4
]x 2 ; Ti =
.
x1
τm
with x1 = [0.5708 +
2
6
3
τ 
τ 
τ 
τ 
x 2 = 0.99315 + 1.9536 m  − 2.5157 m  + 1.9163 m  − 0.8893 m 
 Tm 
 Tm 
 Tm 
 Tm 
5
6
7
4
τ 
τ 
τ 
τ 
+ 0.26167 m  − 0.049809 m  + 0.0061098 m  − 0.00046593 m 
 Tm 
 Tm 
 Tm 
 Tm 
9
10
τ 
τ 
τ
+ 2.0083.10 −5  m  − 3.7368.10 −7  m  , 0 < m < 6.0 ;
Tm
 Tm 
 Tm 
τ
 τ
x 2 = 1.96705757 + 0.01308189 m − 6  , m ≥ 6.0 .
T
 m
 Tm
8
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
402
Rule
Kc
Ti
Arvanitis et al.
(2003b) –
continued.
Td
Comment
Minimum performance index. 7
Minimum performance index. 8
∞
7
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
m
2
0
2
3
τ 
τ 
τ 
τ 
x 2 = 0.73114 + 2.3461 m  − 2.8509 m  + 2.0965 m  − 0.95252 m 
T
T
T
 m
 m
 m
 Tm 
5
6
4
7
τ 
τ 
τ 
τ 
+ 0.27639 m  − 0.052089 m  + 0.0063413 m  − 0.00048064 m 
T
T
T
 m
 m
 m
 Tm 
9
8
10
τ 
τ 
τ
+ 2.0611.10 −5  m  − 3.8178.10 −7  m  , 0 < m < 4.5 ;
T
T
T
m
 m
 m
τ
 τ
x 2 = 1.916423116 + 0.018175439 m − 4.5  , m ≥ 4.5 .
 Tm
 Tm
∞
8
Performance index =
2
 2
2  du 
e ( t ) + K m   dt .
 dt  

0 
∫
2
3
τ 
τ 
τ 
τ 
x 2 = 0.60896 + 3.0593 m  − 3.9339 m  + 2.933 m  − 1.3353 m 
 Tm 
 Tm 
 Tm 
 Tm 
5
6
7
4
τ 
τ 
τ 
τ 
+ 0.38696 m  − 0.072771 m  + 0.0088395 m  − 0.00066864 m 
 Tm 
 Tm 
 Tm 
 Tm 
9
10
τ 
τ 
τ
+ 2.8623.10 −5  m  − 5.2941.10 −7  m  , 0 < m < 4.5 ;
Tm
 Tm 
 Tm 
τ
 τ
x 2 = 1.9283751 + 0.016846129 m − 4.5  , m ≥ 4.5 .
T
 m
 Tm
8
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Ti
Td
Comment
4
τm
x1
(8 − x1 )
τm
16
α = 1, β = 1,
N =∞.
Kc
16
Arvanitis et al. (16 − 3x )K τ
1
m m
(2003b).
Model: Method 1
Minimum ISE. 9
Minimum performance index. 10
2
9
3
τ 
τ 
τ 
τ 
x1 = 1.5841 + 0.3101 m  + 0.38841 m  − 0.4622 m  + 0.21918 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
− 0.060691 m  + 0.010771 m  − 0.0012466 m  + 9.1201.10 −5  m 
 Tm 
 Tm 
 Tm 
 Tm 
10
9
τ 
τ 
− 3.8302.10 −6  m  + 7.0316.10 −8  m  .
 Tm 
 Tm 
∞
10
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
m
2
0
2
3
τ 
τ 
τ 
τ 
x1 = 0.066485 + 2.0757 m  + 1.0972 m  − 2.7957 m  + 1.9019 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
− 0.68418 m  + 0.14763 m  − 0.019733 m  + 0.0016016 m 
 Tm 
 Tm 
 Tm 
 Tm 
9
10
τ 
τ 
τ
− 7.2368.10 −5  m  + 1.397.10 −6  m  , 0 < m < 4.0 ;
Tm
 Tm 
 Tm 
τ
 τ
x1 = 2.128638 − 0.00560812 m − 4.0  , m ≥ 4.0 .
T
 m
 Tm
8
8
403
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
404
Rule
Kc
11
Arvanitis et al.
(2003b).
Model: Method 1
Kc
Ti
Td
Comment
Ti
Td
α = 1, β = 1,
N =∞.
Minimum ISE. 12
Minimum performance index. 13
11
Kc =
12.5664(τm + Tm ) − 4
K m τm [25.1328(τm + Tm ) − 8 − (τm + 2Tm )x1 ]
with x1 = [0.5708 +
Ti =
12.5664(τm + Tm ) − 4
x1
2
.
, Td = Tm − Tm
x1
12.5664(τm + Tm ) − 4
2
12
3.4674τm + 3.1416Tm − 1
]x 2 ,
τm
3
τ 
τ 
τ 
τ 
x 2 = 1.178 + 4.5663 m  − 7.0371 m  + 5.5784 m  − 2.6103 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.7679 m  − 0.1458 m  + 0.017833 m  − 0.0013561 m 
 Tm 
 Tm 
 Tm 
 Tm 
8
10
9
τ 
τ 
τ
+ 5.83.10 −5  m  − 1.0823.10 −6  m  , 0 < m < 3.5 ,
Tm
 Tm 
 Tm 
τ
 τ
x 2 = 2.2036 − 0.0033077 m − 6.5  , m ≥ 3.5 .
T
 m
 Tm
∞
13
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
m
2
0
2
3
τ 
τ 
τ 
τ 
x 2 = −0.1185 + 4.781 m  − 3.9977 m  + 1.733 m  − 0.42245 m 
T
T
T
 m
 m
 m
 Tm 
5
7
6
4
τ 
τ 
τ 
τ 
+ 0.057708 m  − 0.0038421 m  + 2.6386.10 −5  m  + 1.078.10 −5  m 
T
T
T
 m
 m
 m
 Tm 
9
τ 
− 4.2486.10 −7  m  .
 Tm 
8
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Arvanitis et al.
(2003b).
Model: Method 1
Ti
Comment
Td
Minimum performance index: servo tuning
4
4τm
(8 − x1 )K m τm
0
α =1
x
1
Minimum ISE. 14
Minimum performance index. 15
Minimum performance index. 16
2
14
3
τ 
τ 
τ 
τ 
x1 = 1.997 − 0.82781 m  + 1.0002 m  − 0.72106 m  + 0.32269 m 
 Tm 
 Tm 
 Tm 
 Tm 
5
6
4
7
τ 
τ 
τ 
τ 
− 0.092452 m  + 0.017215 m  − 0.0020706 m  + 0.00015505 m 
T
T
T
m
m
m






 Tm 
8
10
9
τ 
τ 
τ
− 6.5691.10 −6  m  + 1.2025.10 −7  m  , 0 < m < 5.5 ;
T
T
T
m
m
m




τ
 τ
x1 = 1.6281745 − 0.001171 m − 5.5  , m ≥ 5.5 .
T
 m
 Tm
∞
15
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
m
2
0
2
3
τ 
τ 
τ 
τ 
x1 = 1.5693 + 0.1066 m  − 0.10101 m  + 0.05217 m  − 0.016147 m 
T
T
T
 m
 m
 m
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.0030412 m  − 0.00032187 m  + 1.2181.10 −5  m  + 9.9698.10 −7  m 
T
T
T
 m
 m
 m
 Tm 
−7  τ m 
9
10
τ 
τ
 + 3.7365.10 −9  m  , 0 < m < 4.6 .
− 1.2274.10 
T
T
T
m
 m
 m
∞
16
Performance index =
2
 2
2  du 
e ( t ) + K m   dt
 dt  

0 
∫
τ

τ
x1 = 0.780651417 + 4.7464131 m − 0.1 , 0 < m < 0.3 ;
Tm
 Tm

τ

τ
x1 = 1.729934 − 0.051535 m − 0.3  , 0.3 ≤ m < 2 .
T
T
m
 m

8
405
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
406
Rule
Kc
Arvanitis et al.
(2003b).
Model: Method 1
17
Kc
Ti
Td
Comment
Ti
0
α =1
Minimum ISE. 18
Minimum performance index. 19
17
Kc =
12.5664(τm + Tm ) − 4
[
3.4674τm + 3.1416Tm − 1
12.5664(τm + Tm ) − 4
]x 2 , Ti =
.
x1
τm
with x1 = [0.5708 +
2
18
) ]
(
K m 2(τm + Tm )(12.5664(τm + Tm ) − 4 ) − 1.5τm 2 + 3τm Tm + 2Tm 2 x1
3
τ 
τ 
τ 
τ 
x 2 = 0.79001 + 2.114 m  − 2.5601 m  + 1.8971 m  − 0.86871 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.25371 m  − 0.048068 m  + 0.0058771 m  − 0.00044707 m 
T
T
T
m
m
m






 Tm 
8
10
9
τ 
τ 
τ
+ 1.9231.10 −5  m  − 3.5718.10 −7  m  , 0 < m < 4.5 ;
T
T
T
m
m
m




τ
 τ
x 2 = 1.903177576 + 0.0181584 m − 4.5  , m ≥ 4.5 .
T
 m
 Tm
∞
19
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
2
m
0
2
3
τ 
τ 
τ 
τ 
x 2 = 0.48124 + 2.5549 m  − 2.896 m  + 2.0495 m  − 0.91115 m 
T
T
T
 m
 m
 m
 Tm 
5
6
7
4
τ 
τ 
τ 
τ 
+ 0.26094 m  − 0.048775 m  + 0.0059064 m  − 0.00044618 m 
T
T
T
 m
 m
 m
 Tm 
−5  τ m 
9
10
τ 
τ
 − 3.5335.10 −7  m  , 0 < m < 4.0 ;
+ 1.9095.10 
T
T
T
m
 m
 m
τ
 τ
x 2 = 1.87054524 + 0.021802 m − 4  , m ≥ 4.0 .
T
 m
 Tm
8
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Arvanitis et al.
(2003b) –
continued.
Arvanitis et al.
16
(2003b).
(16 − 3x1 )K m τm
Model: Method 1
Ti
407
Comment
Td
Minimum performance index. 20
α = 1, β = 1,
N =∞.
(8 − x1 )
τm
16
4
τm
x1
Minimum ISE. 21
∞
20
Performance index =
2
 2
2  du 
e ( t ) + K m   dt .
 dt  

0 
∫
2
3
τ 
τ 
τ 
τ 
x 2 = 0.31373 + 3.7796 m  − 5.0294 m  + 3.8589 m  − 1.7956 m 
T
T
T
 Tm 
 m
 m
 m
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.52906 m  − 0.10079 m  + 0.012369 m  − 0.00094357 m 
T
T
T
 m
 m
 m
 Tm 
8
10
9
τ 
τ 
τ
+ 4.0678.10 −5  m  − 7.5694.10 −7  m  , 0 < m < 3.5 ;
T
T
T
m
 m
 m
 τ
τ
x 2 = 1.86144723 + 0.021989 m − 3.5  , m ≥ 3.5 .
 Tm
 Tm
2
21
3
τ 
τ 
τ 
τ 
x1 = 1.2171 + 0.7339 m  + 0.083449 m  − 0.14905 m  + 0.030257 m 
T
T
T
 Tm 
 m
 m
 m
5
6
7
4
τ 
τ 
τ 
τ 
+ 0.0045567 m  − 0.0029943 m  + 0.00056821 m  − 5.4957.10 −5  m 
T
T
T
 m
 m
 m
 Tm 
9
10
τ 
τ 
+ 2.7505.10 −6  m  − 5.6642.10 −8  m  .
T
 m
 Tm 
8
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
408
Rule
Kc
Arvanitis et al.
(2003b) –
continued.
Arvanitis et al.
(2003b).
Model: Method 1
Ti
Comment
Td
Minimum performance index. 22
23
Ti
Kc
Td
α = 1, β = 1,
N =∞.
Minimum ISE. 24
∞
22
∫ [e ( t) + K u ( t)]dt .
2
Performance index =
2
m
2
0
2
3
τ 
τ 
τ 
τ 
x1 = 0.083709 + 2.2875 m  − 0.18739 m  − 1.0059 m  + 0.79718 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
τ 
τ 
τ 
τ 
− 0.3036 m  + 0.067859 m  − 0.0093104 m  + 0.00077161 m 
 Tm 
 Tm 
 Tm 
 Tm 
4
8
10
9
τ 
τ 
τ
− 3.5473.10 −5  m  + 6.9487.10 −7  m  , 0 < m < 4.5
Tm
 Tm 
 Tm 
τ
 τ
x 1 = 2.444547 − 0.0146274714 m − 4.5  , m ≥ 4.5 .
T
 m
 Tm
12.5664(τm + Tm ) − 4
23
Kc =
K m τm [25.1328(τm + Tm ) − 8 − (τm + 2Tm )x1 ]
with x1 = [0.5708 +
Ti =
12.5664(τm + Tm ) − 4
x1
2
.
, Td = Tm − Tm
x1
12.5664(τm + Tm ) − 4
2
24
3
3.4674τm + 3.1416Tm − 1
]x 2
τm
τ 
τ 
τ 
τ 
x 2 = 1.1571 + 5.0775 m  − 8.2021 m  + 6.6353 m  − 3.1355 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.92683 m  − 0.17635 m  + 0.02158 m  − 0.0016402 m 
 Tm 
 Tm 
 Tm 
 Tm 
9
10
τ 
τ 
τ
+ 7.0439.10 −5  m  − 1.3056.10 −6  m  , 0 < m < 4.5
Tm
 Tm 
 Tm 
 τ
τ
x 2 = 2.124307 − 0.004844182 m − 4.5  , m ≥ 4.5 .
T
 Tm
 m
8
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Arvanitis et al.
(2003b) –
continued.
Td
Comment
Minimum performance index. 25
Minimum performance index. 26
∞
25
Performance index =
∫ [e ( t) + K u ( t)]dt .
2
2
m
2
0
2
3
τ 
τ 
τ 
τ 
x 2 = −0.70861 + 7.4212 m  − 8.1214 m  + 4.8168 m  − 1.7217 m 
T
T
T
 Tm 
 m
 m
 m
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.38998 m  − 0.056975 m  + 0.0053141 m  − 0.00030233 m 
T
T
T
 m
 m
 m
 Tm 
8
10
9
τ 
τ 
τ
+ 9.3969.10 −6  m  − 1.1861.10 −7  m  , 0 < m < 4.5
T
T
T
m
 m
 m
τ
 τ
x 2 = 2.1069751341 − 0.0017098 m − 4.5  , m ≥ 4.5 .
 Tm
 Tm
∞
26
Performance index =
2
 2
2  du 
e ( t ) + K m   dt .
 dt  

0 
∫
2
3
τ 
τ 
τ 
τ 
x 2 = 0.05486 + 0.81662 m  − 1.4989 m  + 1.1955 m  − 0.48464 m 
 Tm 
 Tm 
 Tm 
 Tm 
7
6
5
4
τ 
τ 
τ 
τ 
+ 0.11011 m  − 0.013386 m  + 0.00059665 m  + 3.8633.10 −5  m 
 Tm 
 Tm 
 Tm 
 Tm 
9
10
τ 
τ 
τ
− 5.307.10 −6  m  + 1.6437.10 −7  m  , 0 < m < 6.0 ;
Tm
 Tm 
 Tm 
 τ
τ
x 2 = 2.1111 − 0.001025 m − 6  , m ≥ 6 .
T
 Tm
 m
8
409
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
410
Rule
Kc
Ti
x1 K m
Comment
Td
Minimum performance index: other tuning
x 2Tm
x 3Tm
N=∞
Taguchi et al.
τm
τm
(1987).
α
α
x1
x 2 x3
β
x1
x 2 x3
β
Tm
Tm
Model: Method 1
12.06 0.81 0.38 0.67 0.84 0.2 0.67 5.25 1.26 0.66 0.74 1.6
3.93 1.55 0.62 0.67 0.82 0.4 0.59 5.82 1.34 0.66 0.74 1.8
2.19 2.23 0.78 0.67 0.80 0.6 0.53 6.36 1.42 0.66 0.73 2.0
1.50 2.88 0.90 0.66 0.79 0.8 0.42 7.74 1.61 0.66 0.72 2.5
1.14 3.50 1.00 0.66 0.77 1.0 0.36 9.06 1.82 0.66 0.72 3.0
0.92 4.10 1.09 0.66 0.76 1.2 0.27 11.38 2.26 0.66 0.70 4.0
0.77 4.68 1.18 0.66 0.75 1.4 0.22 14.76 2.59 0.68 0.76 5.0
x1K u
x 2 Tu
x 3Tu
Minimum ITAE
Coefficient values:
– Pecharromán
α
x
x
x3
φc
1
2
and Pagola
1.672
0.366
0.136
0.601
(2000).
− 164 0
Model:
1.236
0.427
0.149
0.607
− 160 0
Method 4;
0.994
0.486
0.155
0.610
− 1550
Km = 1;
0.842
0.538
0.154
0.616
T =1;
− 150 0
m
β = 1 , N = 10;
0.05 < τ m < 0.8 .
Minimum ITAE
– Pecharromán
(2000a).
Model:
Method 4;
Km = 1;
Tm = 1 ;
0.05 < τ m < 0.8 .
0.752
0.567
0.157
0.605
− 1450
0.679
0.610
0.149
0.610
− 140 0
0.635
0.637
0.142
0.612
− 1350
0.590
0.669
0.133
0.610
− 130 0
0.551
0.690
0.114
0.616
− 1250
0.520
0.776
0.087
0.609
− 120 0
0.509
0.810
0.068
0.611
− 118 0
x1K u
0
x 2 Tu
x1
x2
α
0.049
2.826
0.066
Coefficient values:
φc
x1
x2
α
φc
0.218
1.279
0.564
− 1350
− 160 0
0.250
1.216
0.573
− 130 0
0.522
− 1550
0.286
1.127
0.578
− 1250
1.716
0.532
− 150
0
0.330
1.114
0.579
− 120 0
0.159
1.506
0.544
− 1450
0.351
1.093
0.577
− 118 0
0.189
1.392
0.555
− 140 0
0.506
− 164
0
2.402
0.512
0.099
1.962
0.129
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
x1K u
Minimum ITAE
– Pecharromán
x1
x2
(2000b), p. 142.
0.0469 2.8052
Model:
Method 4;
0.0662 2.3876
Km = 1;
0.0988 1.9581
Tm = 1 ;
0.05 < τ < 0.8 . 0.1271 1.6757
m
Ti
Td
x 2 Tu
0
Comment
Coefficient values:
φc
x1
α
411
x2
α
φc
0.5061 − 164.10 0.2174 1.2566 0.5642 − 135.00
0.5119 − 160.50 0.2511 1.1948 0.5730 − 130.00
0.5220 − 155.00 0.2870 1.1281 0.5777 − 125.00
0.5319 − 150.00 0.3280 1.0860 0.5794 − 120.00
0.1589 1.5052 0.5439 − 145.00 0.3501 1.0822 0.5767 − 118.00
0.1866 1.3619 0.5546 − 140.00
Minimum ITAE
– Pecharromán
(2000b), p. 148.
Model:
Method 4;
Km = 1;
Tm = 1 ;
β = 1 , N = 10;
0.05 < τm < 0.8 .
Taguchi and
Araki (2000).
Model: Method 1
27
Kc =
x1K u
x 2 Tu
x 3Tu
x1
x2
Coefficient values:
x3
α
φc
1.6695
0.3684
0.1323
0.6007
− 164.10
1.2434
0.4389
0.1507
0.6073
− 160.00
0.9901
0.4846
0.1587
0.6102
− 155.00
0.8378
0.5393
0.1562
0.6163
− 150.00
0.7383
0.5789
0.1548
0.6052
− 145.00
0.6728
0.6283
0.1488
0.6105
− 140.00
0.6196
0.6221
0.1376
0.6120
− 135.00
0.5948
0.6939
0.1326
0.6096
− 130.00
0.5513
0.7050
0.1190
0.6157
− 125.00
0.5271
0.7471
0.0992
0.6088
− 120.00
0.5229
0.8886
0.0862
0.6115
− 118.0 0
OS ≤ 20% ;
τm Tm ≤ 1.0 .
27
Kc
Ti
0

0.2839
1 
,
 0.1787 +

Km 
(τm Tm ) + 0.001723 
Ti = 4.296 + 3.794(τm Tm ) + 0.2591(τm Tm ) , α = 0.6551 + 0.01877(τ m Tm ) .
2
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
412
Rule
Kc
Comment
Ti
Td
Ti
Td
x1 K m
x 2Tm
Taguchi and
α
x1
x 2 x3
β
Araki (2002).
8.91
1.73
0.46
0.32
0.72
Model: Method 1
11.13 1.40 0.39 0.45 0.91
12.04 0.81 0.38 0.67 0.84
x 3Tm
Taguchi and
Araki (2000) –
continued.
28
Kc
x4
x1
x2
N=∞
x3
α
β
x4
0.1 12.36 0.68 0.39 0.66 0.80 1.5
0.5 13.00 0.54 0.40 0.67 0.76 2.0
1.0
Load disturbance model = K m e −sτ m (1 + sx 4Tm ) ; τm Tm = 0.2 .
Taguchi et al.
(2002).
Model:
Method 1;
α=0.
Taguchi et al.
(2002).
Model:
Method 1;
α=0.
Taguchi et al.
(2002).
28
Kc =
∞
x1Tm K m
x2
β
τm Tm
16.54
0.32
5.33
0.52
1.96
0.76
1.17
0.91
x1Tm K m
0.89
0.85
0.78
0.73
0.1
0.2
0.4
0.6
x1
N = 10
x 2Tm
∞
x1
β
x2
β
τm Tm
x1
x2
26.56
7.75
2.54
1.42
0.29
0.50
0.78
0.95
0.81
0.79
0.74
0.70
0.1
0.2
0.4
0.6
0.98
0.74
0.35
0.15
1.08
1.19
1.59
2.77
∞
Kc
τm Tm
0.68
0.8
0.64
1.0
0.50
2.0
0.37
5.0
N= ∞
x1
29
β
x2
0.83
1.02
0.65
1.10
0.32
1.47
0.14
1.47
x 2Tm
τm Tm
0.66
0.8
0.62
1.0
0.50
2.0
0.37
5.0
N = 10;
Model: Method 1
Td

1 
0.5184
,
0.7608 +
2 
K m 
((τm Tm ) + 0.01308) 
(
)
T = T (0.03432 + 2.058(τ T ) − 1.774(τ T ) + 0.6878(τ T ) ) , α = 0.6647 ,
Ti = Tm 0.03330 + 3.997(τm Tm ) − 0.5517(τm Tm ) ,
2
2
d
m
m
m
m
m
3
m
m
β = 0.8653 − 0.1277(τ m Tm ) + 0.03330(τ m Tm ) , N not specified.
2
2
29
Kc =

τ 
τ
Tm 
0.2938
, β = 0.9305 − 0.4147 m + 0.1234 m  ,
0.4073 +
2
K m 
Tm
((τm Tm ) + 0.03829) 
 Tm 
2
3

 τm  
 τm 
τm
τm






Td = Tm 0.08289 + 2.682
− 2.959
 + 1.309 T   , α = 0 , 0.1 ≤ T ≤ 1.0 .
Tm
T

m
 m 
 m

b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Kuwata (1987).
Model: Method 1
Comment
Td
Direct synthesis: time domain criteria
3.33(Tm + τm )
0
K m (Tm + τm )
1
Kc
Ti
4
(8 − x1 )K m τm
4τm
x1
30
Arvanitis et al.
(2003b).
Model: Method 1
Ti
α = 1, β = 1 ,
N =∞.
α = 1;
4
x1 = 2
.
4ξ + 1
Td
0
Ti
31
Kc
32
Kc
(2ξ + 1)τ
33
Kc
Ti
2
α = 1, β = 1,
N =∞.
Td
m
α =1
Td
Direct synthesis: frequency domain criteria
2
M s = 1.4
5.7τ m e1.7 τ−0.69 τ
Kc
0
Ti
M s = 2.0
35
K
Åström and
Hägglund (1995),
pp. 210–212.
34
c
0.14 ≤ τm Tm ≤ 5.5 ; Model: Method 3.
Klán (2001).
30
31
1.067(Tm + τm )
33
6.25τm (2Tm + τm )
2
K m τm (2Tm + τm )
2
0
Ti
Kc
3
Kc =
2
; Ti =
2
(Tm + τm )
2
Model: Method 1
2.5τm (Tm + 0.5τm )
3
; Td =
(Tm + τm )
3
(1 + 4ξ )(τ + T )
, T = (1 + 4ξ )(τ + T ) .
K [τ (0.5 + 8ξ ) + τ T (1 + 16ξ ) + 8ξ T ]
16(2ξ + 1)
16ξ + 4
K =
(32ξ + 4)K τ , T = 16(2ξ + 1) τ .
τ T (1 + 4ξ )
τ + T + 4τ ξ
.
K =
, T = τ + T + 4τ ξ , T =
τ + T + 4τ ξ
K τ (1 + 8ξ )
2
Kc =
2
m
32
36
2
m
m
m
m m
c
2
m
m
2
m m
2
2
2
i
m
m
m
2
2
c
2
d
m
2
m
2
m m
2
i
m
m
m
2
m m
d
m
m
2
m
2
2
34
Kc =
2
0.41e−0.23τ + 0.019 τ
, α = 1 − 0.33e 2.5τ−1.9 τ .
K m (Tm + τm )
35
Kc =
2
2
0.81e−1.1τ + 0.76 τ
, Ti = 3.4τm e0.28τ − 0.0089 τ , α = 1 − 0.78e −1.9 τ+1.2 τ .
K m (Tm + τm )
2
2
36
2
2
0.41e−0.23τ + 0.019 τ
Kc =
, Ti = 5.7(τm + Tm )e1.7 τ − 0.69 τ , α = 1 − 0.33e 2.5τ−1.9 τ .
K m (Tm + τm )
.
413
b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
414
Rule
Kc
Wang and Cai
37
Kc
(2001).
Model: Method 1 0.6068 K m τm
Wang and Cai
(2002).
Xu and Shao
(2003a).
0.6189 K m τm
Xu and Shao
(2003c).
1.5τ m + 0.5Tm
Xu and Shao
(2004a).
Model: Method 1
37
04-Apr-2009
Kc =
40
Td
Ti
Td
2
(2λ − 1)τm + Tm
K m λ2 τm 2
Comment
β = 0, N = ∞.
5.9784 τ m
38
Td
5.9112 τ m
39
Td
2(Tm + 1.5τ m )
Kc
2K m τ m
Ti
Tm + τ m
(Tm + 0.5τm )2
(Tm + 1.5τ m )
1.5Tm τ m
1.5τ m + 0.5Tm
(2λ − 1)Tm τm
(2λ − 1)τm + Tm (2λ − 1)τm + Tm
N =∞; α =
Model: Method 1
Model: Method 1
41
Model: Method 1
λ not defined.
λτ m
λ
; β=
.
Tm + (2λ − 1)τm
2λ − 1
τm (1.3608M s − 1.2064)
1 
1.2064 
,
1.3608 −
 , Ti =
K m τm 
Ms 
0.29M s − 0.3016
Td =
(Tm + 0.1τm )(1.450Ms − 1.508) , α =
1.3608M s − 1.2064
0. 2 M s
, 1.3 ≤ M s ≤ 2 .
1.3608M s − 1.2064
38
Td = 0.8363(Tm + 0.1τm ) , α = 0.3296 , M s = 1.6 ( A m > 2.66 , φ m > 36.4 0 ) .
39
Td = 0.8460(Tm + 0.1τm ) , N = ∞ , β = 0 , α = 0.3232 , A m = 3 , φ m = 60 0 .
40
Kc =
41
α=
τm
0.5(Tm + 1.5τm )
, N= ∞ , β = 0 , A m > 2 , φ m > 60 0 .
, α=
Tm + 1.5τ m
K m τm (Tm + τm )
τm
, β = 0.6667 , N= ∞ , A m > 2 , φ m > 60 0 .
1.5Tm + 0.5τ m
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Td
Comment
Td
α = 0. 6 , β = 0 .
415
Robust
42
Shamsuzzoha
and Lee (2007a).
Model: Method 1
Ti
Kc
λ = 0.26τm , M s = 1.6 , 0.05 ≤ τm Tm ≤ 1.1 ;
λ = 0.21τm , M s = 1.8 , 0.05 ≤ τm Tm ≤ 1.75 ;
λ = 0.19τ m , M s = 2.0 , 0.05 ≤ τm Tm ≤ 2.5 ;
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
x 1K u
42
Kc =
Td =
α =1
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.12
0.19
0.25
1.14
1.09
0.91
x 1K u
0.08
0.10
0.13
0.30
0.34
0.36
x 2 Tu
0.89
0.86
0.84
0.15
0.18
0.20
0.38
0.83
0.25
x2
x3
x2
α = 1, β = 1,
N =∞.
τm Tu
x3
0.71
0.61
0.69
0.62
0.125Tu
0.08
0.20
0.08
0.22
20% overshoot.
x1
Oubrahim and
Leonard (1998).
Model: Method 1
equations for λ deduced from graphs.
Ultimate cycle
0
x 2 Tu
0.80
0.54
0.73
0.57
0. 6 K u
τm Tu
0.11
0.15
0.09
0.17
0.5Tu
x 3 Tu
x1
α = 0.9 ; β = 0.99 ; N = ∞ ; 0.05 < τm Tm < 0.8 .
2
Ti
6λ2 − x 4 + x 2 τm − 0.5τm
, Ti = x1 + Tm + x 2 − x 3 , x 3 =
,
x1K m (4λ + τm − x 2 )
4λ + τm − x 2
x 4 + x 2 (Tm + x1 ) + x1Tm −
0.167 τm 3 − 0.5x 2 τm 2 + x 4 τm + 4λ3
4λ + τ m − x 2
− x3 ,
Ti
x1 is a constant with a ‘sufficiently large value’;

x2 =
λ
2 
x1 1 − 
 x1 

4
e
τ
− m
x1
τm
4



λ  − Tm
2 




− 1 − Tm 1 −
−
e
1

 Tm 

,


Tm − x1
τm
4


λ  − Tm
2 
 e
− 1 + x 2Tm , N = ∞ .
x 4 = Tm 1 −

 Tm 



b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
416
4.3.8 Two degree of freedom controller 2




T
s
1
d
 1 + b f 1s (F(s) R (s) − Y(s) ) − K Y(s) ,
U(s) = K c 1 +
+
0
 Ti s
T  1 + a f 1s
1+ d s 

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5 s 4
R(s)
F(s)
+
−




T
s
1
d
 1 + b f 1s
K c 1 +
+
 Ti s
Td  1 + a f 1s
1+
s

N 

+ U(s)
−
K m e − sτ
s(1 + sTm )
m
K0
Table 75: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
1
Huang et al.
(2005b).
Model: Method 1
Kc
Ti
[
Td
Direct synthesis: time domain criteria
Ti
T
m
]
Y(s)
K m e − sτ m
s(1 + sTm )
Comment
N=∞
a f 1 = max 0.01 τm ,0.01 , b f 1 = 0 ; a f 2 = Ti , b f 2 = 1.452τm + Tm ;
a f 3 = Ti Tm , b f 3 = 1.452τmTm ; a f 4 = 0 , a f 5 = 0 , b f 4 = 0 , b f 5 = 0 ,
K0 = 0 .
Robust
Lee and Edgar
(2002).
Model: Method 1
2
Kc
Ti
0
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , a f 4 = 0 ,
a f 5 = 0 , b f 3 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = 0.25K u .
1
Kc =

2.2221K m τ m 
0.2328 
T 
.
1 + 0.6887 m  + 0.5173 , Ti = (1.452τ m + Tm )1 +




K m τm 
τm 
 1 + 0.6887(Tm τ m ) 
2
Kc =
0.25K u Ti
4
τm
, T =
.
−τ +
(λ + τm ) i K u K m m 2(λ + τm )
2
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
3
Liu et al. (2003).
Model: Method 1
Kc
Ti
Td
Kc
Ti
Td
417
Comment
a f 1 = 0 , b f 1 = 0 ; a f 2 = 3λ + τm , b f 2 = λ ; a f 3 = 0 , a f 4 = 0 ,
a f 5 = 0 , bf 3 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
Representative λ values (deduced from graph):
OS
Rise time
OS
Rise time
λ
λ
0.3τ m
≈ 57%
≈ 3τ m
2τ m
≈ 0%
≈ 8τ m
0.5τ m
≈ 33%
≈ 3.5τ m
2.5τ m
≈ 0%
≈ 10.5τ m
τm
≈ 7%
≈ 5τ m
3τ m
≈ 0%
≈ 12.5τ m
1.5τ m
≈ 0%
≈ 8.5τ m
3.5τ m
≈ 0%
≈ 14τ m
a f 1 = 0 , b f 1 = 0 ; a f 2 = 7λ + τm , b f 2 = 3λ ; a f 3 = λ(16λ + 4τm ) ,
b f 3 = 3λ2 ; a f 4 = 4λ2 (3λ + τm ) , b f 4 = λ3 , a f 5 = 0 , b f 5 = 0 , K 0 = 0 .
Representative λ values (deduced from graph):
OS
Rise time
OS
Rise time
λ
λ
0.3τ m
≈ 43%
≈ 3.5τ m
2τ m
≈ 0%
≈ 16.5τ m
0.5τ m
≈ 15%
≈ 4.5τ m
2.5τ m
≈ 0%
≈ 20τ m
τm
≈ 0%
≈ 8τ m
3τ m
≈ 0%
≈ 24τ m
1.5τ m
≈ 0%
≈ 12.5τ m
3.5τ m
≈ 0%
≈ 28τ m
a f 1 = 0 , b f 1 = 0 ; a f 2 = 4λ + τm , b f 2 = 3λ ; a f 3 = λ (3.25λ + τm ) ,
b f 3 = 3λ2 ; a f 4 = 0.25λ2 (3λ + τm ) , b f 4 = λ3 , a f 5 = 0 , b f 5 = 0 ,
K0 = 0 .
Representative λ values (deduced from graph):
OS
Rise time
OS
Rise time
λ
λ
0.3τ m
3
Kc =
≈ 3τ m
2τ m
≈ 40%
≈ 3τ m
2.5τ m
≈ 4%
≈ 8τ m
≈ 15%
≈ 3.5τ m
3τ m
≈ 1%
≈ 10τ m
1.5τ m
≈ 7%
≈ 5τ m
3.5τ m
≈ 0%
≈ 12τ m
Ti
2
m
≈ 6.5τ m
τm
K m 3λ + 3λτ m + τm
m
≈ 4%
0.5τ m
2
x1
2
)
x1
, Ti =
(3λ + 3λτ + τ )
T (3λ + τ )(3λ + 3λτ + τ )
λ
T =
−
d
(
≈ 61%
2
2
m
m
2
m
,N=
m
Tm (3λ + τm )
−1
λ3 x1
3
3λ2 + 3λτ m + Tm 2
,
(
)
x1 = (3λ + τm + Tm ) 3λ2 + 3λτ m + τm − λ3 .
2
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
418
4.3.9 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
−
Y(s)
Model
F2 (s)
Table 76: PID controller tuning rules – FOLIPD model G m (s) =
Rule
Kc
Ti
Td
K m e − sτ m
s(1 + sTm )
Comment
Direct synthesis: time domain criteria
1
2
0
Skogestad
K m (TCL + τ m ) 4ξ (TCL + τ m )
(2004b).
Model: Method 1 For ‘good’ robustness: TCL = τ m , ξ = 0.7 or 1. α = 0 ; β = 1 ; χ = 0 ;
δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 1 ; bf 2 = 0 ,
a f 3 = 0 , a f 4 = 0 ; K 0 = 1 ; b f 3 = 1 ; b f 4 = Tm ,
Xu and Shao
(2004a).
Model: Method 1
(λ − 1)τm + Tm
2
K m λ τm
2
a f 5 = Tm x1 , 2 ≤ x1 ≤ 10 .
(λ − 1)τm + Tm
(λ − 1)Tm τm
(λ − 1)τm + Tm
λ not defined.
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 1 λK m τ m ;
b f 3 = 1 ; b f 4 = Tm ; a f 5 = 0 .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Majhi and
Mahanta (2001).
Model: Method 6
Kc
0.5236
Kmτm
Ti
Td
419
Comment
Direct synthesis: frequency domain criteria
A m = 3;
0
2τ m e τ ms
φ = 60 0 .
m
α = 0 ; β = 1 ; χ = 0 ; δ = 0 ; b f 1 = Tm , a f 1 = 0 , a f 2 = 0 ; ε = 0 ;
φ = 0 ; ϕ = 1 ; b f 2 = Tm , a f 3 = 0 , a f 4 = 0 ; K 0 = 0.5 K m τm ; b f 3 = 1 ;
b f 4 = Tm ; a f 5 = 0 .
Wang et al.
(2001b).
Model: Method 7
0.4189
K m τm
4τ m
1.25(Tm + 0.1τ m )
A m = 3;
φ m = 60 0 .
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 0. 2 K m τ m ;
bf 3 = 1 ; bf 4 = 0 ; a f 5 = 0 .
Robust
1
Lee and Edgar
(2002).
Model: Method 1
Kc
Ti
Td
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 0.25K u ;
bf 3 = 1 ; bf 4 = 0 ; a f 5 = 0 .
2
Kc
Ti
x1
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; b f 1 = 0 , a f 1 = Td , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = Td , a f 4 = 0 ; K 0 = 0.25K u ;
bf 3 = 1 ; bf 4 = 0 ; a f 5 = 0 .
1
2
Kc =
2
2

0.25K u  4
4
τm
τm
− τm +
,
− τm +
 , Ti =

(λ + τm )  K u K m
2(λ + τm ) 
KuKm
2(λ + τm )
Td =
2
3
4
0.25K u  4Tm
τm
τm
τ (1 − 0.25K u K m τm ) 
2
+ 0.5τm −
+
+ m
.

2
(λ + τm )  K u K m
6(λ + τm ) 4(λ + τm )
0.5K u K m (λ + τm ) 
Kc =
2
2

0.25K u  4
4
τm
τm
− τm +
+ x1
− τm +
+ x1  , Ti =

2(λ + τm )
KuKm
2(λ + τm )
λ + τm  K u K m

3
4
 4Tm
τm
τm
(1 − 0.25K u K m τm )τm 2 
2
x1 = 
+ 0.5τm −
+
+

2
6( λ + τ m ) 4( λ + τ m )
0.5K u K m (λ + τm ) 
 K u K m
0.5
.
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
420
4.4 FOLIPD Model with a Zero
K (1 + sTm 3 )e −sτ m
K (1 − sTm 4 )e −sτm
G m (s) = m
or G m (s) = m
s(1 + sTm1 )
s(1 + sTm1 )


1
+ Td s 
4.4.1 Ideal PID controller G c (s) = K c 1 +
 Ti s

E(s)
R(s)
−
+

 U(s)
1
K c 1 +
+ Td s 
Ti s


Model
Y(s)
Table 77: PID controller tuning rules – FOLIPD model with a zero
K (1 − sTm 4 )e −sτ m
K (1 + sTm3 )e−sτ m
G m (s ) = m
or m
s(1 + sTm1 )
s(1 + sTm1 )
Rule
Kc
Ti
Td
Comment
Direct synthesis: time domain criteria
1
Chidambaram
(2002), p. 157.
Model: Method 1
Jyothi et al.
(2001).
Model: Method 1
1
2
3
4
Kc =
Kc =
Kc =
Kc =
1.571
Kc
∞
‘Smaller’
τm Tm 4 .
2
Kc
‘Larger’
τm Tm 4 .
3
Kc
4
Kc
Direct synthesis: frequency domain criteria
τm Tm3 < 1
∞
Tm1
τm Tm3 > 1
(
)
.
(
)
.
K m τm 1 + 3.142 Tm 4 τm 2
2.358
Tm1
K m τm 1 + 4.172 Tm 4 τm 2
1.57
K m τm 1 + 9.870(Tm3 τm )2
0.79
K m τm 1 + 2.467(Tm3 τm )2
.
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Jyothi et al.
(2001).
Model: Method 1
0.5 K m Tm 4
5
Kc
Comment
Ti
Td
∞
Tm1
τm Tm 4 > 1
Td
Recommended
τm ≤ λ ≤ 2τm .
τm Tm 4 < 1
Robust
Lee et al. (2006).
Model: Method 1
5
6
Kc =
6
∞
Kc
0.79
K m τm 1 + 2.467(Tm 4 τm )2
.
T (τ − λ ) + 0.5τm
1
;
, Td = Tm1 + m 4 m
K m (λ + τm + 2Tm 4 )
λ + τm + 2Tm 4
2
Kc =
(1 − sTm 4 )e −sτ
.
(1 + sTm 4 )(1 + sλ )
m
Desired closed loop transfer function =
421
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
422
4.4.2 Ideal controller in series with a first order lag
E(s)
R(s)
−
+
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
U(s)

 1
1
K c 1 +
+ Tds 
 Tis
 Tf s + 1
Y(s)
Model
Table 78: PID controller tuning rules – FOLIPD model with a zero
K (1 + sTm 3 )e − sτ m
K (1 − sTm 4 )e −sτ m
G m ( s) = m
or m
s(1 + sTm1 )
s(1 + sTm1 )
Rule
Td
Comment
Ti
Td
Model: Method 1
Ti
Td
Model: Method 1
Kc
Ti
1
Kc
2
Kc
Robust
Anil and Sree
(2005).
Shamsuzzoha et
al. (2006c).
1
Kc =
Tm1 + Tm 4 + τm + 3λ
, T = T + T + τ + 3λ ,
K [(λ + T + τ ) + 2λ + λ (T + τ ) − T τ ]
2
m
2
x1 is a constant of a ‘sufficiently large value’.
m4
m
2
m4
i
m
m1
m4
m
m4 m
Td =
Tm1 (Tm 4 + τm + 3λ )
λ3 − Tm 4 τm (3λ + Tm 4 + τm )
.
, Tf =
Tm1 + Tm 4 + τm + 3λ
(λ + Tm 4 + τm )2 + 2λ2 + λ(Tm 4 + τm ) − Tm 4τm
Kc =
Ti
, λ , ξ not specified; Ti = x1 + Tm1 + x 2 − x 3 , Tf = Tm3 ,
x1K m (4λξ + τm − x 2 )
Td =
x 4 + x 2 (Tm1 + x1 ) + x1Tm1 −
0.167 τm3 − 0.5x 2 τm 2 + x 4 τm + 4λ3ξ
4λξ + τm − x 2
− x3 ,
Ti
x2 =
Tm12 x 5e − τ m Tm1 − x12 x 5e − τ m x1 + x12 − Tm12
,
x1 − Tm1
x3 =
4λ2ξ2 + 2λ2 − x 4 + x 2 τm − 0.5τm 2
2
, x 4 = Tm1 x 5e− τ m Tm1 − 1 + x 2Tm1 ,
4λξ + τm − x 2
[
2

 λ2
2λξ
x5 = 
−
+ 1 .

T 2 T
m1

 m1
]
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
423





1  1 + Td s 

4.4.3 Classical controller G c (s) = K c 1 +
Td s 
Ti s 

1 +

N 

E(s)
R(s)
−
+





1  1 + sTd 

K c 1 +
 Ti s  1 + s Td 


N 

U(s)
Y(s)
Model
Table 79: PID controller tuning rules – FOLIPD model with a zero
K (1 + sTm 3 )e −sτ m
K (1 − sTm 4 )e −sτ m
G m (s) = m
or m
s(1 + sTm1 )
s(1 + sTm1 )
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Anil and Sree
(2005).
Model: Method 1
1 0.5τ m Tm1
λ3K m
2
Kc
Tm1
2.414λ + 0.5τm
N=
2.414λ + 0.5τm
Tm3
Tm1
Td
N=∞
1
λ is determined by solving λ3 − 1.207 τm λ2 − 0.603τm 2λ − 0.125τm 3 = 0 .
2
Kc =
0.5τm Tm1
, Td = 2.414λ + 0.5τm + Tm 4 ;
K m λ3 − 0.5τmTm 4 [2.414λ + 0.5τm + Tm 4 ]
(
)
3
2
λ is determined by solving λ − 1.207τm λ − (0.6035τm + 2.414Tm 4 )τm λ
2
2
− τm (0.125τm + 0.5Tm 4 τm + Tm 4 ) = 0 .
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
424
4.5 I 2 PD Model G m (s) =
K m e −sτm
s2


1
+ Td s 
4.5.1 Ideal PID controller G c (s) = K c 1 +
Ti s


R(s)
+
E(s)
−
U(s)


1
K c 1 +
+ Td s 
Ti s


K m e − sτ
s
Table 80: PID tuning rules – I 2 PD model G m (s) =
Rule
Åström and
Hägglund (2006),
pp. 244–245.
Kc
Ti
Td
m
Y(s)
2
K m e − sτ m
s2
Comment
Direct synthesis: frequency domain criteria
M s = M t = 1. 4 ;
0.02140
17.570τm
14.019τm
Model: Method 1
K m τm 2
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models



1  1 + Td s 


4.5.2 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

E(s)
R(s)
+
−





1  1 + Td s  U(s)

K c 1 +
Td 
Ti s 

s
1 +
N 

K m e − sτ
m
s2
Table 81: PID tuning rules – I 2 PD model G m (s) =
Rule
Kc
Skogestad
(2003).
Model: Method 1
0.0625
Ti
Y(s)
K m e − sτ m
Td
s2
Comment
Direct synthesis: time domain criteria
K mτm2
8τ m
8τ m
N=∞
425
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
426
4.5.3 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+ s

N 

E(s)
R(s) +
−




T
s
1
d

+
K c 1 +
Td 

Ti s
s
1+

N 

+
U(s)
Hansen (2000).
Model: Method 1
Kc
Ti
K me
s2
+
Table 82: PID tuning rules – I 2 PD model G m (s) =
Rule
Y(s)
− sτ m
Td
K m e − sτ m
s2
Comment
Direct synthesis: time domain criteria
2
5.4 τ m
2.5τ m
N = ∞ ; β =1;
3.75K m τ m
α = 0.833 .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
427
4.5.4 Two degree of freedom controller 2




T
s
1
d
 1 + b f 1s (F(s) R (s) − Y(s) ) − K Y(s) ,
U(s) = K c 1 +
+
0
 Ti s
T  1 + a f 1s
1+ d s 

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5 s 4
R(s)




T
s
1
d
 1 + b f 1s
K c 1 +
+
 Ti s
Td  1 + a f 1s
1+
s

N 

+
F(s)
−
+ U(s)
−
Kc
Ti
Kc
Ti
Y(s)
m
s2
K0
K m e − sτ m
Table 83: PID tuning rules – I 2 PD model G m (s) =
Rule
K m e − sτ
s2
Comment
Td
Robust
1
Liu et al. (2003).
Model: Method 1
Td
a f 1 = 0 , b f 1 = 0 ; a f 2 = 4λ + τm , b f 2 = 2λ ;
2
a f 3 = 6λ + 4λτ m + τm , b f 3 = λ2 ; a f 4 = 0 , a f 5 = 0 , b f 4 = 0 ,
2
bf 5 = 0 , K 0 = 0 .
1
Kc =
(
Ti
K m 4λ + 6λ τm + 4λτ m + τm
2
d
2
2
2
m
m
2
3
2
2
m
m
2
m
m
3
m
3
4
m
4λ + 6λ τ m + 4λτ m 2 + τ m 3
3
x1
2
N=
3
3
)
x1
, Ti =
(4λ + 6λ τ + 4λτ + τ ) ,
(6λ + 4λτ + τ )(4λ + 6λ τ + 4λτ + τ ) −
λ
T =
3
(
2
)
6λ2 + 4λτ m + τm
2
3
− 1 , x1 = (4λ + τm ) 4λ3 + 6λ2 τm + 4λτ m + τm − λ4 .
λ3x1
;
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
428
Rule
Liu et al. (2003)
– continued.
Kc
Ti
Comment
Td
Representative λ values (deduced from graph):
OS
Rise time
OS
Rise time
λ
λ
0.8τ m
≈ 33%
≈ 4τ m
2.5τ m
≈ 0%
≈ 10τ m
τm
≈ 20%
≈ 5τ m
3τ m
≈ 0%
≈ 12.5τ m
1.5τ m
≈ 3%
≈ 7τ m
3.5τ m
≈ 0%
≈ 14τ m
2τ m
≈ 0%
≈ 8τ m
4τ m
≈ 0%
≈ 16τ m
2
3
a f 1 = 0 , b f 1 = 0 ; b f 2 = 4λ , b f 3 = 6λ , b f 4 = 4λ , b f 5 = λ4 ;
a f 2 = 8λ + τm , a f 3 = 26λ2 + 8λτ m + τm
(
2
)
2
(
2
)
a f 4 = 4λ 10λ2 + 20λτ m + 4τm , a f 5 = 4λ2 6λ2 + 4λτ m + τm , K 0 = 0 .
λ
0.8τ m
Representative λ values (deduced from graph):
OS
Rise time
OS
Rise time
λ
≈ 14%
≈ 3τ m
2.5τ m
≈ 0%
≈ 7τ m
≈ 4%
≈ 3.5τ m
3τ m
≈ 0%
≈ 8.5τ m
1.5τ m
≈ 0%
≈ 4.5τ m
3.5τ m
≈ 0%
≈ 10.5τ m
2τ m
≈ 0%
≈ 6τ m
4τ m
≈ 0%
≈ 13τ m
τm
a f 1 = 0 , b f 1 = 0 ; b f 2 = 4λ , b f 3 = 6λ2 , b f 4 = 4λ3 , b f 5 = λ4 ;
2
(
a f 2 = 5λ + τm , a f 3 = 10.25λ2 + 5λτ m + τm ,
2
)
(
2
)
a f 4 = λ 7λ2 + 4.25λτ m + τm , a f 5 = 0.25λ2 6λ2 + 4λτ m + τm ,
λ
0.8τ m
K0 = 0 .
Representative λ values (deduced from graph):
OS
Rise time
OS
Rise time
λ
≈ 46%
≈ 6τ m
2.5τ m
≈ 4%
≈ 20.5τ m
τm
≈ 34%
≈ 13.5τ m
3τ m
≈ 2%
≈ 24τ m
1.5τ m
≈ 16%
≈ 13τ m
3.5τ m
≈ 1%
≈ 28τ m
2τ m
≈ 8%
≈ 16.5τ m
4τ m
≈ 0%
≈ 32τ m
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
4.5.5 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
−
Y(s)
Model
F2 (s)
Table 84: PID tuning rules – I 2 PD model G m (s) =
Rule
Kc
Ti
K m e −sτm
Td
s2
Comment
Direct synthesis: time domain criteria
0.25
0
Skogestad
2
4ξ 2 (TCL + τ m )
K m (TCL + τ m )
(2004b).
Model: Method 1 For ‘good’ robustness: TCL = τ m , ξ = 0.7 or 1; α = 0 ; β = 1 ; χ = 0 ;
δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 1 ; bf 2 = 0 ,
a f 3 = 0 ; a f 4 = 0 ; K 0 = 1 ; b f 3 = 1 , b f 4 = 4(TCL + τm ) ,
a f 5 = b f 4 x 2 , 2 ≤ x 2 ≤ 10 .
Huba (2005).
Model: Method 1
−
0.079
K m τm 2
∞
5.835τm
α = 1; β = 1; χ = 1 ; δ = 0 ; ε = 0 ; φ = 1; ϕ = 0 ; N = ∞ ;
bf 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = 0 .
429
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
430
4.6 SOSIPD Model
G m (s) =
K m e −sτ m
s(1 + Tm1s)
or G m (s) =
2
K m e − sτ m
2
s(Tm1 s 2 + 2ξ m Tm1s + 1)

1 

4.6.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
+
−

1 

K c 1 +
Ti s 

U(s)
K m e − sτ
Y(s)
m
s(1 + sTm1 ) 2
Table 85: PI controller tuning rules – SOSIPD model G m (s) =
Rule
Kc
Ti
s(1 + sTm1 )2
Comment
Direct synthesis: time domain criteria
Kuwata (1987).
Model: Method 1
0.5
K m (2Tm1 + τm )
∞
K m e − sτ m
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
431
4.6.2 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

R(s)
+
E(s)
−




T
s
1
d


K c 1+
+
 Ti s
Td 
1+
s

N 

−
U(s)
+
Table 86: PID controller tuning rules – SOSIPD model G m (s) =
G m (s) =
Rule
Minimum ITAE
– Pecharromán
(2000a).
Model:
Method 2;
Km = 1;
Tm1 = 1 ;
0.1 < τ m < 10 .
K m e − sτ m
or
s(1 + Tm1s) 2
K m e − sτ m
2 2
s(Tm1 s + 2ξm Tm1s + 1)
Kc
Ti
x1K u
Y(s)
SOSIPD
model
Comment
Td
Minimum performance index: other tuning
0
x 2 Tu
x1
x2
α
0.049
2.826
0.066
Coefficient values:
φc
x1
x2
α
φc
0.218
1.279
0.564
− 1350
− 160 0
0.250
1.216
0.573
− 130 0
0.522
− 1550
0.286
1.127
0.578
− 1250
1.716
0.532
− 150
0
0.330
1.114
0.579
− 120 0
0.159
1.506
0.544
− 1450
0.351
1.093
0.577
− 118 0
0.189
1.392
0.555
− 140 0
0.506
− 164
0
2.402
0.512
0.099
1.962
0.129
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
432
Rule
Kc
x1K u
Minimum ITAE
– Pecharromán
x1
x2
(2000b), p. 142.
0.0469 2.8052
Model:
Method 2;
0.0662 2.3876
Km = 1;
0.0988 1.9581
Tm1 = 1 ;
0.05 < τ < 10 . 0.1271 1.6757
m
Ti
Td
x 2 Tu
0
Comment
Coefficient values:
φc
x1
α
x2
α
φc
0.5061 − 164.10 0.2174 1.2566 0.5642 − 135.00
0.5119 − 160.50 0.2511 1.1948 0.5730 − 130.00
0.5220 − 155.00 0.2870 1.1281 0.5777 − 125.00
0.5319 − 150.00 0.3280 1.0860 0.5794 − 120.00
0.1589 1.5052 0.5439 − 145.00 0.3501 1.0822 0.5767 − 118.00
0.1866 1.3619 0.5546 − 140.00
Minimum ITAE
– Pecharromán
and Pagola
(2000).
Model:
Method 2;
Km = 1;
x1K u
x 2 Tu
x 3Tu
x1
x2
Coefficient values:
x3
α
φc
1.672
0.366
0.136
0.601
− 164 0
1.236
0.427
0.149
0.607
− 160 0
0.994
0.486
0.155
0.610
− 1550
Tm1 = 1 ;
0.842
0.538
0.154
0.616
− 150 0
0.1 < τ m < 10 ;
0.752
0.567
0.157
0.605
− 1450
β = 1 , N = 10.
0.679
0.610
0.149
0.610
− 140 0
0.635
0.637
0.142
0.612
− 1350
0.590
0.669
0.133
0.610
− 130 0
0.551
0.690
0.114
0.616
− 1250
0.520
0.776
0.087
0.609
− 120 0
0.509
0.810
0.068
0.611
− 118 0
α
φc
Minimum ITAE
– Pecharromán
(2000b), p. 148.
Model:
Method 2;
Km = 1;
Tm1 = 1 ;
β = 1 , N = 10;
0.05 < τm < 0.8 .
x1K u
x 2 Tu
x 3Tu
x1
x2
Coefficient values:
x3
1.6695
0.3684
0.1323
0.6007
− 164.10
1.2434
0.4389
0.1507
0.6073
− 160.00
0.9901
0.4846
0.1587
0.6102
− 155.00
0.8378
0.5393
0.1562
0.6163
− 150.00
0.7383
0.5789
0.1548
0.6052
− 145.00
0.6728
0.6283
0.1488
0.6105
− 140.00
0.6196
0.6221
0.1376
0.6120
− 135.00
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Pecharromán
(2000b) –
continued.
Ti
Td
x1K u
x 2 Tu
x 3Tu
x1
x2
Coefficient values:
x3
α
φc
0.5948
0.6939
0.1326
0.6096
− 130.00
0.5513
0.7050
0.1190
0.6157
− 125.00
0.5271
0.7471
0.0992
0.6088
− 120.00
0.5229
0.8886
0.0862
0.6115
1
Kc
Ti
0
− 118.0 0
τm Tm1 ≤ 1.0 ;
2
Kc
Ti
Td
OS ≤ 20% .
x1Tm1 K m
∞
Taguchi and
Araki (2000).
Model: Method 1
Taguchi et al.
(2002).
Model:
Method 1;
N = 10; α = 0 .
Kc =
x 2Tm1
x1
x2
β
τm Tm1
x1
x2
β
τm Tm1
1.48
1.04
0.71
0.56
1.35
1.41
1.49
1.57
0.89
0.81
0.72
0.67
0.1
0.2
0.4
0.6
0.46
0.40
0.24
0.12
1.63
1.70
2.02
3.08
0.63
0.60
0.50
0.38
0.8
1.0
2.0
5.0
3
1
Comment
Kc
Kc
∞
Td

1 
0.3840
 0.07368 +
 , T = 8.549 + 4.029[τm Tm1 ] ,

[τm Tm1 ] + 0.7640  i
Km 
α = 0.6691 + 0.006606[τm Tm1 ] .
2
Kc =

1 
0.5667
 0.1778 +
 , T = T (1.262 + 0.3620[τm Tm1 ]) ,

[τm Tm1 ] + 0.002325  d m1
Km 
(
)
Ti = Tm1 0.2011 + 11.16[τm Tm1 ] − 14.98[τm Tm1 ] + 13.70[τm Tm1 ] − 4.835[τm Tm1 ] ,
2
3
α = 0.6666 , β = 0.8206 − 0.09750[τm Tm1 ] + 0.03845[τm Tm1 ] ; N not specified.
2
3
Kc =

Tm1 
0.3084
,
0.1309 +
Km 
([τm Tm1 ] + 0.1315) 
[
]
Td = Tm 1.308 + 0.5000[τm Tm1 ] − 0.1119[τm Tm1 ] ,
2
β = 0.9231 − 0.6049[τm Tm1 ] + 0.2906[τm Tm1 ] ; 0.1 ≤ τm Tm1 ≤ 1.0 .
2
4
433
b720_Chapter-04
Rule
Taguchi et al.
(2002).
Model:
Method 1;
N = 10; α = 0 .
Kc
Ti
Td
Comment
x1Tm1 K m
∞
x 2Tm1
ξm = 0.5
x1
x2
β
τm Tm1
x1
x2
β
τm Tm1
0.52
0.43
0.34
0.30
1.11
0.89
0.61
0.50
0.82
0.67
0.26
-0.13
0.1
0.2
0.4
0.6
0.28
0.26
0.21
0.13
0.49
0.53
0.91
2.26
-0.34
-0.39
-0.08
0.23
0.8
1.0
2.0
5.0
Kc
∞
Td
x1Tm1 K m
∞
x 2Tm1
4
Taguchi et al.
(2002).
Model:
Method 1;
N = 10; α = 0 .
Taguchi et al.
(2002).
Model:
Method 1;
N = 10; α = 0 .
Taguchi et al.
(2002).
Model:
Method 1;
N = 10; α = 0 .
Taguchi et al.
(2002).
Model:
Method 1;
N = 10; α = 0 .
Kc =
FA
Handbook of PI and PID Controller Tuning Rules
434
4
04-Apr-2009
x2
β
τm Tm1
1.06
1.34
0.80
1.32
0.57
1.30
0.46
1.31
x1Tm1 K m
0.89
0.81
0.70
0.62
0.1
0.2
0.4
0.6
x1
x2
2.18
1.34
1.48
1.46
0.93
1.64
0.69
1.77
x1Tm1 K m
x1
x2
β
τm Tm1
∞
0.40
1.33
0.35
1.37
0.23
1.64
0.12
2.74
x 2Tm1
0.56
0.8
0.52
1.0
0.40
2.0
0.33
5.0
ξ m = 1. 2
β
τm Tm1
x1
β
0.92
0.87
0.81
0.77
0.1
0.2
0.4
0.6
∞
x2
β
τm Tm1
2.93
1.29
1.90
1.46
1.13
1.71
0.81
1.90
x1Tm1 K m
0.93
0.89
0.83
0.80
0.1
0.2
0.4
0.6
x1
x1
ξm = 0.8
∞
x2
0.55
1.88
0.46
1.98
0.26
2.37
0.12
3.42
x 2Tm1
x1
x2
0.63
2.06
0.51
2.19
0.27
2.68
0.12
3.75
x 2Tm1
τm Tm1
0.73
0.8
0.70
1.0
0.59
2.0
0.43
5.0
ξ m = 1. 4
β
τm Tm1
0.77
0.8
0.74
1.0
0.64
2.0
0.47
5.0
ξ m = 1. 6
x1
x2
β
τm Tm1
x1
x2
β
τm Tm1
3.80
2.37
1.34
0.93
1.24
1.45
1.76
2.00
0.94
0.90
0.85
0.82
0.1
0.2
0.4
0.6
0.70
0.56
0.28
0.12
2.20
2.36
2.95
4.08
0.79
0.77
0.68
0.51
0.8
1.0
2.0
5.0

Tm1 
0.08343
,
0.1904 +
Km 
((τm Tm1 ) + 0.1496) 
[
]
Td = Tm1 1.237 − 2.031(τm Tm1 ) + 1.344(τm Tm1 ) ,
2
β = 1.048 − 1.637(τm Tm1 ) − 1.676(τm Tm1 ) + 1.898(τm Tm1 ) ; 0.1 ≤ τm Tm1 ≤ 1.0 .
2
3
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Kuwata (1987).
Model: Method 1
Comment
Td
Direct synthesis: time domain criteria
1
0
K m (2Tm1 + τm ) 3.33(2Tm1 + τm )
5
Kuwata (1987);
x 1 , x 2 deduced
from graphs.
Ti
Ti
Kc
α = 1,
β =1, N = ∞ .
Td
Ultimate cycle
0
x 2 Tu
x 1K u
α =1
α =1
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
0.16
0.19
0.23
1.05
0.97
0.95
x 1K u
0.01
0.03
0.05
0.26
0.30
0.32
x 2 Tu
0.89
0.88
0.86
0.08
0.10
0.13
0.35
0.36
0.38
0.85 0.15
0.84 0.18
0.83 0.25
α =1
x 3 Tu
τm Tu
Kuwata (1987);
x 1 x 2 x 3 τm
x 1 x 2 x 3 τm
x 1 x 2 x 3 τm
x 1 , x 2 deduced
Tu
Tu
Tu
from graphs;
0.98
0.45
0.12
0.03
0.79
0.54
0.11
0.10
0.70
0.60
0.09
0.17
β =1, N = ∞ .
0.90 0.47 0.12 0.05 0.76 0.56 0.10 0.12 0.70 0.62 0.08 0.20
0.82 0.51 0.11 0.08 0.72 0.58 0.09 0.15
5
Kc =
1.067
K m 2T
Td = 1.25
[
(2Tm1 + τm )3
2
2
m1 + 4Tm1τ m + τ m
(2.5T
; Ti =
2
]
2
2
m1 + Tm1τ m + 0.25τm
)(2T
[
6.25 2Tm12 + 4Tm1τm + τm 2
(2Tm1 + τm )2
2
2
m1 + 4Tm1τ m + τm
3
(2Tm1 + τm )
).
];
2
435
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
436
4.7 SOSIPD Model with a Zero G m (s) =
K m (1 + sTm 3 )e − sτ m
s(1 + sTm1 )(1 + sTm 2 )



1  1 + Td s 


4.7.1 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

R(s)
E(s)
+
−





1  1 + Td s 

K c 1 +
Td 
Ti s 

s
1 +
N 

Y(s)
U(s)
G m (s)
Table 87: PID controller tuning rules – SOSIPD model with a zero
K (1 + sTm3 )e −sτ m
G m (s ) = m
s(1 + sTm1 )(1 + sTm 2 )
Rule
Kc
Bialkowski
(1996).
Model: Method 1
Tm1
Ti
Td
Comment
Robust
K m (λ + τm )2
Tm1
2λ + τ m
N=
2λ + τm
;
Tm3
Tm1 > Tm 2 .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
437
4.8 TOSIPD Model
G m (s) =
K m e − sτ m
K m e −sτ m
or G m (s) =
3
s(1 + sTm1 )(1 + sTm 2 )(1 + sTm 3 )
s(1 + sTm1 )
4.8.1 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

E(s)
R(s)
+
−
Rule
Kuwata (1987);
x 1 , x 2 deduced
from graphs.




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
Y(s)
U(s)
Model
+
Table 88: PID controller tuning rules – TOSIPD model
Comment
Kc
Ti
Td
Ultimate cycle
0
x 2 Tu
x 1K u
α =1
x1
x2
τm Tu
x1
x2
τm Tu
x1
x2
τm Tu
0.23
0.26
0.28
0.91
0.89
0.88
x 1K u
0.01
0.03
0.05
0.31
0.33
0.35
x 2 Tu
0.86
0.86
0.85
0.08
0.10
0.13
0.36
0.37
0.38
0.84
0.84
0.83
0.15
0.18
0.25
x 3 Tu
Kuwata (1987);
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x1 x 2 x 3 τm
x 1 , x 2 deduced
Tu
Tu
Tu
from graphs.
0.85
0.50
0.11
0.03
0.74
0.56
0.09
0.10
0.70
0.62
0.08
0.18
α = 1, β = 1,
0.80 0.52 0.11 0.05 0.72 0.58 0.09 0.12 0.70 0.63 0.075 0.22
N =∞.
0.77 0.55 0.10 0.08 0.70 0.61 0.08 0.16
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
438
4.9 General Model with Integrator G m (s) =
K m e − sτ m
s(1 + sTm1 )
∏ (T s + 1)∏ (T
K
G (s) =
s ∏ (T s + 1)∏ (T
m1i
m
m
m 2i
i
m 3i
m 4i
or
)
e
s + 2ξ T s + 1)
2 2
s + 2ξ m n i Tm 2i s + 1
i
i
n
2 2
i
m di
m 4i

1 

4.9.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
+
U(s)

1 

K c 1 +

T
is 

E(s)
−
G m (s)
Y(s)
Table 89: PI controller tuning rules – general model with integrator
Comment
Kc
Ti
Rule
Direct synthesis: time domain criteria
0.5
∞
K m (nTm1 + τm )
Kuwata (1987).
Model: Method 1
Direct synthesis: frequency domain criteria
(1)
Symmetrical
Kc
optimum method.
α1TQ
( 2)
Non-symmetrical
Kc
optimum method.
1
Loron (1997).
Model: Method 1
1
Kc
(1)
 1 + sin φ m 

, α1 = 
α1 TQ
 cos φ m 
1
=
Km
2

 

ξ md i Tm 4i  − 
ξ m n i Tm2i  + τ m .
TQ = 
Tm3i + 2
Tm1i + 2
 i
  i

i
i
∑
Kc
( 2)
=
∑
λ
K m α 2 TQ
, λ=
∑
Mc2
∑
2
 1 + sin ∆φ 
−1
, α 2 = 
 , ∆φ = cos (1 λ ) ,
2
Mc −1
 cos ∆φ 
M c = desired closed loop resonant peak.
−sτ m
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
439
4.9.2 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 





T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

E(s)
R(s)
+
−
U(s)
−
K m e − sτ
n
s(1 + sTm1 )
m
+
Table 90: PID controller tuning rules – general model with integrator
Comment
Kc
Ti
Td
Rule
Direct synthesis: time domain criteria
Kuwata (1987).
1
Model: Method 1 K (nT + τ ) 3.33(nTm1 + τm )
0
m
m1
m
Kuwata (1987).
Model: Method 1
1
Kc =
1
Ti
Kc
Td
α =1
α = 1; β = 1;
N =∞.
[
1.067
(nTm1 + τm )3
6.25 n (n − 1)Tm12 + 2nTm1τm + τm 2
, Ti =
2
2
2
K m n (n − 1)T + 2nT τ + τ
(nTm1 + τm )2
m1
m1 m
m
[
]
[(nT + τ ) − 0.75(n(n − 1)T + 2nT τ + τ )] ,
T = 1.25x
2
d
Y(s)
1
m1
m
2
m1
3
nTm1 + τm
(
)
],
2
2
m1 m
m
x1 = [n (n − 1)Tm1 + 2nTm1τm + τm ] .
2
2
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
440
4.10 Unstable FOLPD Model G m (s) =
K m e −sτ m
Tm s − 1

1 

4.10.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
E(s)
+
−

1 

K c 1 +
Ti s 

U(s)
Y(s)
K m e − sτ
Tm s − 1
m
Table 91: PI controller tuning rules – unstable FOLPD model G m (s) =
Rule
Minimum ITSE –
Majhi and Atherton
(2000).
0 < τm Tm < 0.693 .
Kc
1
2
K m e − sτ m
Tm s − 1
Comment
Ti
Minimum performance index: servo tuning
Model: Method 1
Ti
K
c
Model: Method 3
Ti
Kc
Direct synthesis: time domain criteria
TS is the ±1%
0.4ξ 2TS
settling time.
Jacob and
Chidambaram (1996).
Model: Method 1
10
TS
Chidambaram (1997).
1.678  Tm 

ln
K m  τ m 
0.4015Tm e 5.8τ m Tm
Valentine and
Chidambaram (1998).
Model: Method 1
2.695 −1.277 τ m Tm
e
Km
0.4015Tm e 5.8τ m Tm
Model: Method 1
3
(
ξ = 0.333 ;
τm Tm < 0.7 .
)
1
Kc =
e − τ m Tm − 0.064 
2.6316Tm e τ m Tm − 0.966
1 
, Ti =
.
0.889 + τ T


m
m
Km 
e
e − τ m Tm − 0.377
− 0.990 
2
Kc =

1 
1
Tm K (1 + K )
 0.889 +
 , Ti =
, K = − Ap Kmh .
K m 
K (1 + K ) 
0.5(1 − 0.6382K ) tanh −1 K
3
±1% Ts = 7.5Tm , τ m Tm = 0.1 ; ±1% Ts = 8.75Tm , τ m Tm = 0.2 ;
(
)
±1% Ts = 11.25Tm , τ m Tm = 0.3 ; ±1% Ts = 15.0Tm , τ m Tm = 0.4 ;
±1% Ts = 17.5Tm , τ m Tm = 0.5 ; ±1% Ts = 20.0Tm , τ m Tm = 0.6 .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Model: Method 1;
‘small’ τm Tm .
Chandrashekar
et al. (2002).
5
Kc
Ti
Model: Method 1
Chidambaram (2002),
p. 156.
Model: Method 1
Kc =
Tm Ti
2 2
0.04TS ξ + Ti τm
49.535 − 21.644 τm Tm
e
Km
0.8668  Tm 


K m  τm 
0.8288
0.1523Tm e
τm
< 0.1
Tm
7.9425τ m Tm
0. 1 ≤
τm
≤ 0. 7
Tm
6.0000 K m
Alternative tuning rules:
0.6000Tm
τ m Tm = 0.1
3.2222 K m
1.4500Tm
τ m Tm = 0.2
2.2963 K m
2.6571Tm
τ m Tm = 0.3
1.8333 K m
4.4000Tm
τ m Tm = 0.4
1.5556 K m
7.0000Tm
τ m Tm = 0.5
1.3265 K m
14.6250Tm
τ m Tm = 0.6
1.1875 K m
31.0330Tm
τ m Tm = 0.7
τm
2.695 −1.277 Tm
e
K m,
0.4015Tme
τ
5.8 m
Tm
0<
τm
≤ 0.6
Tm
2
, Ti =
0.04TS ξ2 + Tm τm + 0.4TSξ2
.
Tm − τm
Desired closed loop transfer function =
Kc =
6
Comment
4
Chandrashekar et
al. (2002).
Model: Method 1
5
Ti
Chidambaram
(2000c).
6
4
Kc
441
(
(
(Tis + 1)e−sτ
)(
m
1
(1)
( 2)
K m Ti − TCL
2 − TCL 2 − τ m
Desired closed loop transfer function =
);
(1)
( 2)
TCL
2s + 1 TCL 2s + 1
(ηs + 1)e −sτ ;
(TCL2 s + 1)2
)
, Ti =
(
)
(1)
( 2)
(1)
( 2)
TCL
2 TCL 2 + Tm TCL 2 + TCL 2 + τ m
.
Tm − τm
m

τ
τ 
τ
TCL 2 =  0.025 + 1.75 m Tm , m ≤ 0.1 ; TCL 2 = 2 τ m , 0.1 ≤ m ≤ 0.5 ;
Tm
Tm
Tm 

τ

τ
TCL 2 = 2 τ m + 5τ m  m − 0.5  , 0.5 ≤ m ≤ 0.7 .
T
T
m
 m

b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
442
Rule
Kc
Minimum ITAE –
Chidambaram (2002),
p. 156.
Model: Method 1
7
Kc
T 
0.876 m 
 τm 
0.898
Sree et al. (2004).
Model: Method 1
0.8624  Tm 


K m  τm 
Manum (2005).
Model: Method 1
0.5Tm
K m τm
Sree and
Chidambaram (2006),
pp. 19–22.
Minimum ITAE –
Sree and
Chidambaram (2006),
pp. 22–23.
Model: Method 1
Comment
Ti
0.324Tm e
6.46
8
Ti
4τm Tm (2Tm − 3τm )
(Tm − 2τm )
0.4015Tme
Kc
0.898
0.324Tm e
0.2 ≤
τm
≤ 0.6
Tm
0.01 ≤
τm
≤ 0.6
Tm
τm
< 0.25
Tm
2
2.695 −1.277 Tm
e
Km
T 
0.876 m 
 τm 
Tm
0.9744
τm
9
τm Tm ≤ 0.2
τm
τ
5.8 m
Tm
Model: Method 1
τm Tm ≤ 0.2
6.461τ m
Tm
0.2 ≤
τm
≤ 0.6
Tm
Direct synthesis: frequency domain criteria
De Paor and
O’Malley (1989).
Model: Method 1
7
8
9
10
Kc =
10
A m = 2;
Ti
Kc
τm
<1.
Tm
τm 
1 
10.7572 − 35.1  .
Km 
Tm 
3
2


τ 
τ 
τ
Ti = Tm 143.34 m  − 73.912 m  + 19.039 m − 0.2276 .
Tm


 Tm 
 Tm 


1 
τm 
Kc =
10.7572 − 35.1  .
Km 
Tm 
Kc =
1 
cos
Km 


Tm 
τ 
τ τ
1 − m  sin
1 − m  m +

 T T
τm  Tm 
m  m

Ti =
Tm
 T 

 m 1 − τm   tan (0.5φ )

 τm  Tm  



τ τ 
1 − m  m  ,
 T T 
m  m


, φ = tan −1
Tm 
τ 
1 − m  −
τ m  Tm 

τ τ
1 − m  m .
 Tm  Tm
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Venkatashankar and
Chidambaram (1994).
11
Comment
Ti
25(Tm − τ m )
Kc
443
Model: Method 1;
τ m Tm < 0.67 .
Chidambaram
τm
T 
1 
< 0.6
1 + 0.26 m 
(1995b),
25Tm − 27τ m
Tm
K m 
τm 
Chidambaram (1998),
p. 91.
2
τ  
1 
τ
Model: Method 1
4.656 − 13.05 m + 13.436 m   .
Alternatively, K c =
Km 
Tm
 Tm  

12
τm
ω p Tm
Ti
< 0.62
Ho and Xu (1998).
Tm
AmKm
Model: Method 1
Representative results:
A m = 2.3 ,
0.5775Tm
τ m Tm
K mτm
0.3212Tm − τ m
φ = 250 .
m
0.6918Tm
Kmτm
τ m Tm
0.3359Tm − τ m
x 1Tm K m τ m
−Tm
1.0472
1.5
30
0
0.5236
3
0.7854
2
450
0.3927
4
Luyben (1998).
Model: Method 1
0.31K u
12
Ti =
13
2.2Tu
φm
60 0
67.50
TCL = 3.16τ m
Maximum closed loop log modulus = 2 dB.
Model: Method 1;
13
Ti
0.1 ≤ τ m Tm ≤ 0.6 .
Kc
Gaikward and
Chidambaram (2000).
Kc =
φ m = 22.50 .
Other representative results: coefficient values:
Am
φm
x1
Am
x1
11
A m = 1.9 ,
2
2
2
1 
0.04Tm2  25 
τm + x1 Tm
  x1 (Tm − τm )
0.98 1 +
,
2 
2
2
2


Km
(
Tm − τm )  τm 
τm + 625x1 (Tm − τm )


x1 = 1.373, τm Tm < 0.25 ; x1 = 0.953, 0.25 ≤ τ m Tm < 0.67 .
1
2
1.57ωp − ωp τm − Tm
−1
.
2

 τm  
τm
1 
Tm 

.


Kc =
+ 8.214
0.2619 + 0.7266  , Ti = Tm 0.193 + 4.19
Tm
Tm  
Km 
τm 




b720_Chapter-04
Rule
Kc
Sree and
Chidambaram (2006),
pp. 15–16.
Paraskevopoulos et
al. (2006).
Model: Method 1
15
Kc =
x1 =
FA
Handbook of PI and PID Controller Tuning Rules
444
14
04-Apr-2009
14
15
Kc
Ti
Comment
Ti
Model: Method 1;
0 ≤ τm Tm < 0.6 .
Ti
τm
< 0.9
Tm
2
1 + x1
Ti x1
1 + Ti 2 x12
2

 τm  
τm
1 
0.7266Tm 




T
T
0
.
193
4
.
19
8
.
214
0
.
2619
,
+
=
+
+

 i
m
T  .
Tm
Km 
τm

m 




τ 
τ
2
Ti 1 − m  + Ti − m + x 2
T
T
m 
m

2Ti 2 (τm Tm )
,
2
 
τ 
τ 
τ
τ 
2
x 2 = Ti 2 1 − m  + Ti − m  + 4 m Ti 1 + Ti − m  ;
Tm 
Tm 
Tm 
  Tm 
φm
 T 
 φmax

τ
τ
, with φm > 0.2φmax
Ti = x 3 1 + m 0.632 m + 0.436 m − 0.0153  m
m ;


φm
τm 
Tm
Tm


1
−


max
φm
0.0029 − 0.0682
x3 =
τm
τ
+ 1.4941 m
Tm
Tm

τ 
1.003 − m 


T
m 

2
=−
, φ max
m
τm
Tm
 T

Tm
− 1 + tan −1  m − 1  .
 τm

τm


b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Paraskevopoulos et
al. (2006) –
continued.
16
K min = Ti ωmin
16 K max
Am
1 + ωmin
2
Kc
Ti
Comment
or K min A m
Ti
τm Tm < 0.9
2
1 + Ti ωmin
2
1 + ωmax
and K max = Ti ωmax
0.03(τm Tm )
1.14 − (τm Tm )
ωmin = 1 +


0.05
 0.973 +
Ti − x1


(
)
−
τ
1
T
m
m 

0.006 +
2
Ti −
2
1 + Ti ωmax 2
x1
τm
(1 + Ti )
Tm
x1 =
445
, with
,
0.0029 − 0.0682 τm Tm + 1.4941(τm Tm )
(1.003 − (τm Tm ))2
,
4
2

 τ   
τ  x   1.571Tm
ωmax = 1 + 0.22 m   1 +  0.1 − 0.3 m  1  
Tm  Ti   τm

 Tm    



 

Ti
Ti
− 0.9463 
− 0.5609 ;

 (Ti + 1)(τm Tm )
  (Ti + 1)(τm Tm )

1+ (τ m Tm ) 


 max  


 A m − 1  A m − 1 


+
Ti = x1 1 + 0.65 


 
max


1 −  Am − 1
A
−1  

 
 m



[
[
]
]
2
3

τ 
 τ  3(τm Tm )4 − 2.3(τm Tm )2 
τ
τ
,
0.01 − 0.18 + 5 m − 32 m + 75 m  − 51 m  +
Tm
Tm
Tm 
Tm 


(
1 − (τm Tm ))3




1.571Tm
max
max
; A m > 0.2(A m − 1) +1.
with A m =

0.4085(τm Tm ) 


τ m 1 +

 1 − 0.2864(τm Tm ) 
b720_Chapter-04
04-Apr-2009
Handbook of PI and PID Controller Tuning Rules
446
Rule
Kc
Rotstein and Lewin
(1991).
Model: Method 1
 λ

Tm λ 
+ 2 
 Tm

λ2 K m
Ti
Comment
Robust
 λ

λ 
+ 2 
 Tm

λ obtained
graphically – sample
values below.
τ m Tm = 0.2, 0.6Tm ≤ λ ≤ 1.9Tm
τ m Tm = 0.2, 0.5Tm ≤ λ ≤ 4.5Tm
τ m Tm = 0.4, 1.5Tm ≤ λ ≤ 4.5Tm
τ m Tm = 0.6, 3.9Tm ≤ λ ≤ 4.1Tm
Tan et al. (1999b).
Model: Method 1
Ou et al. (2005a).
17
Kc
18
Kc
Kc =
λ2 + 2λTm + Tm τm
K m (λ + τm )
2
, Ti =
λ2 + 2λTm + Tm τm
.
Tm − τm
K m uncertainty =
50%.
K m uncertainty =
30%.
Ti
τm Tm < 0.5
Ti
Model: Method 1


τ
Tm 12.7708 m + 3.8019 
Tm
1

 .
17
Kc =
, Ti =
τm


τm
0.1486
+ 0.6564
K m  0.1486
+ 0.6564 
Tm
Tm


18
FA
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models


1
+ Td s 
4.10.2 Ideal PID controller G c (s) = K c 1 +
 Ti s

E(s)
R(s)

 U(s)
1
K c 1 +
+ Td s 
 Ti s

−
+
K m e − sτ
Tm s − 1
m
Y(s)
Table 92: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Kc
Minimum ISE –
Visioli (2001).
Ti
Td
K m e − sτ m
Tm s − 1
Comment
Minimum performance index: regulator tuning
1.18
1.37  τ m 
τ 


Model: Method 1
2.42Tm  m 
0.60τ m
K m  Tm 
 Tm 
Minimum ITSE –
Visioli (2001).
1.37  τ m 


K m  Tm 
τ 
4.12Tm  m 
 Tm 
0.90
Minimum ISTSE
– Visioli (2001).
1.70  τ m 


K m  Tm 
τ 
4.52Tm  m 
 Tm 
1.13
0.55τ m
Model: Method 1
0.50τ m
Model: Method 1
Minimum performance index: servo tuning
Minimum ISE –
Visioli (2001).
τ 
4.00Tm  m 
 Tm 
0.47
0.90
Minimum ITSE –
1.38  τ m 


Visioli (2001).
K m  Tm 
τ 
4.12Tm  m 
 Tm 
0.90
0.95
Minimum ISTSE
1.35  τ m 


– Visioli (2001).
K m  Tm 
τ 
4.52Tm  m 
 Tm 
1
2
3
1.32  τ m 


K m  Tm 
0.92
[
](τ T ) .
T = 3.62T [1 − 0.85(T τ ) ](τ T ) .
T = 3.70T [1 − 0.86(T τ ) ](τ T ) .
Td = 3.78Tm 1 − 0.84(Tm τm )
0.02
0.95
m
m
m
m
m
m
0.02
d
m
m
m
d
m
m
m
0.93
0.02
0.97
1
Td
Model: Method 1
2
Td
Model: Method 1
3
Td
Model: Method 1
1.13
447
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
448
Rule
Kc
Ti
Comment
Td
Minimum performance index: servo/regulator tuning
Jhunjhunwala
and
Chidambaram
(2001).
4
Ti
Kc
Direct synthesis: time domain criteria
Ti
1.165  Tm 


5
T
x1
i
Km  τm 
Chidambaram
(1997).
Model: Method 1
6
Valentine and
0.245
Chidambaram
1.165  Tm 
(1997b).


Model: Method 1 K m  τ m 
Kc =
τm Tm < 0.6
Ti
4.4Tm + 9.0τm
7
4
0.176Tm +
0.36τm
2.044 τ m
Tm
0.6 ≤
τm
≤ 0.8
Tm
0.8 <
τm
≤1
Tm
Ti
1 
τ  τ
1.397  Tm 
13.0 − 39.712 m  , m < 0.2 ; K c =


K m 
Tm  Tm
K m  τm 
Ti = 0.856Tm e
Model: Method 1
Td
τ
, 0 ≤ m ≤ 1 ; Ti = 0.3444Tme
Tm
0.769
2.9595 τ m
Tm
, 1≤
, 0.2 ≤
τm
≤ 1.4 ;
Tm
τm
≤ 1.4 ;
Tm


τ
τ
Td = Tm  0.5643 m + 0.0075  , 0 ≤ m ≤ 1.4 .
Tm
Tm


2
5

τ  τ
τ 
τ
Ti =  0.176 + 0.360 m Tm ; x1 = 0.179 − 0.324 m + 0.161 m  , m < 0.6 ;
Tm 
Tm

 Tm  Tm
x1 = 0.04 , 0.6 < τm Tm < 0.8 ; x1 = 0.12 − 0.1(τm Tm ) , 0.8 < τm Tm < 1.0 .
6
Ti =
7
Ti =
0.176Tm + 0.36τm
0.179 − 0.324(τm Tm ) + 0.161(τm Tm )2
0.176Tm + 0.36τm
.
0.12 − 0.1(τm Tm )
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Pramod and
Chidambaram
(2000),
Chidambaram
(2002), p. 156.
Model: Method 1
8
Chidambaram
(2002), p. 156.
Sree et al.
(2004).
Model: Method 1
8
9
Ti
Ti
Kc
9
Ti
10
Ti
449
Comment
Td
τm Tm < 0.6
0.176Tm
+0.36τm 0.6 <
τm
< 0.8
Tm
0.8 <
τm
≤1
Tm
11
Kc
Ti
Td
12
Kc
Ti
0.4917 τ m
Model: Method 1
0.01 ≤
τm
≤ 0.9
Tm
2
 τm  
0.176Tm + 0.36τm
1 
τm



Kc =
2.121 − 1.906
.
+ 0.945
2
  , Ti =
Km 
Tm
T
 τm 
 m 
τm



−
+
0.179 0.324
0.161

Tm
 Tm 
Ti = 0.44Tm + 0.90τm (Pramod and Chidambaram, 2000);
Ti = 4.4Tm + 9.0τm (Chidambaram, 2002).
10
Ti =
0.176Tm + 0.36τm
(Chidambaram, 2002).
0.12 − 0.1(τm Tm )
11
Kc =
1.397Tm
τ
1 
τm  τm
, 0.2 < m ≤ 1.4 ;
≤ 0.2 ; K c =
13.0 − 39.712  ,
Km 
Tm  Tm
K m τm
Tm
Ti = 0.856Tm e
2.044
τm
Tm
τm
2.9595
τ
τ
Tm
, 0 < m < 1 ; Ti = 0.344Tm e
, 1 < m ≤ 1.4 ;
Tm
Tm

τ
τ 
Td = Tm 0.0075 + 0.5643 m  , 0 < m ≤ 1.4 .
Tm 
Tm

12
Kc =
1.4183  Tm 


K m  τm 
0.9147
2


τ 
τ
, Ti = Tm 16.327 m  + 5.5778 m + 0.8158 ,
Tm


 Tm 


  τ 2

τm
τ
τ
0.01 ≤
≤ 0.6 ; Ti = Tm 196 m  − 247.28 m + 87.72 , 0.6 ≤ m ≤ 0.9 .
Tm
Tm
Tm
  Tm 



b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
450
Rule
Kc
Sree et al. (2004)
– continued;
Vivek and
Chidambaram
(2005).
Sree and
Chidambaram
(2006),
pp. 117,118.
13
04-Apr-2009
Kc =
1.2824  Tm 


K m  τm 
Ti = 0.483Tme
Td
13
Kc
Ti
Td
14
Kc
Ti
Td
Comment
0.01 ≤
τm
≤ 1.2
Tm
Model: Method 1
Alternative tuning rules:
Ti
Td
Kc
TCL 2
τ m Tm
0.02Tm
0.0
101.0000 K m
0.0404Tm
0.0
10.3662 K m
0.3874Tm
0.0435Tm
0.10Tm
0.1
5.3750 K m
0.8600Tm
0.0884Tm
0.20Tm
0.2
3.2655 K m
1.8018Tm
0.1375Tm
0.40Tm
0.3
2.4516 K m
3.0400Tm
0.1868Tm
0.60Tm
0.4
2.0217 K m
4.6500Tm
0.2366Tm
0.80Tm
0.5
1.7525 K m
6.7286Tm
0.2866Tm
1.00Tm
0.6
1.5458 K m
10.337Tm
0.3380Tm
1.30Tm
0.7
1.3723 K m
17.693Tm
0.3910Tm
1.80Tm
0.8
1.2420 K m
33.610Tm
0.4440Tm
2.60Tm
0.9
1.1400 K m
80.620Tm
0.4969Tm
4.20Tm
1.0
1.0895 K m
143.6Tm
0.5975Tm
5.00Tm
1.2
1.0536 K m
277.37Tm
0.6982Tm
6.00Tm
1.4
0.8325
3.3739
Ti


τ
τ
, Ti = Tm 5.5734 m − 0.0063 , 0.01 ≤ m ≤ 0.5 ;
Tm
Tm


τm
Tm
, (Sree et al., 2004); Ti = 0.483Tme
− 3.3739
τm
Tm
(Vivek and
Chidambaram, 2005; Model: Method 5); 0.5 ≤ τm Tm ≤ 1.2 ;
Td = 0.507 τm + 0.0028Tm .
14
Desired closed loop transfer function =
Kc = −
([Ti − 0.5τm ]s + 1)e−sτ ;
(
)(
)
0.5(Ti − 0.5τ m )τ m
Ti
, Td =
,
(1)
( 2)
Ti
K m TCL
+
T
+
1
.
5
τ
−
T
2
CL 2
m
i
(
(
)
)
(1)
( 2)
(1)
( 2)
(1)
( 2)
TCL
2TCL 2 + 0.5τ m TCL 2 + TCL 2 + 0.5TCL 2TCL 2
Ti =
m
(1)
( 2)
TCL
2s + 1 TCL 2s + 1
Tm − 0.5τm
(
τm
(1)
( 2)
+ Tm TCL
2 + TCL 2 + τ m
Tm
)
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Sree and
Chidambaram
(2006),
pp. 117,118.
Sree and
Chidambaram
(2006).
Model: Method 1
15
Kc =
Kc
Ti
Td
Comment
451
15
Kc
Ti
0.5τ m
Model: Method 1
16
Kc
Ti
Td
pp. 15–16.
Kc
Ti
Td
p. 248;
τ
0.01 ≤ m ≤ 1.1 .
Tm
17
2

τ 
τ
τ
1 
4282 m  − 1334.6 m + 101 , 0 < m < 0.2 ;
Tm
Km 
Tm 
Tm




Kc =
1.1161  Tm 


K m  τm 
0.9427
, 0.2 ≤
τm
≤ 1.0 .
Tm
, 0.8 ≤
τm
≤ 1.0 .
Tm
2


 τm 
 τm 
τ


 + 0.8288 , 0 ≤ m ≤ 0.8 ;


Ti = Tm 36.842
−
10
.
3

T 
T
T


m
 m
 m


τ 
Ti = 76.241Tm  m 
 Tm 
Desired closed loop transfer function =
TCL 2 = 4.5115Tm (τm Tm )
5.661
(
6.77
(ηs + 1)e −sτ ;
(TCL2 s + 1)2
m
, 0.8 ≤ τm Tm ≤ 1.0 ,
)
TCL 2 = 0.0326 + 0.4958(τm Tm ) + 2.03(τm Tm )2 Tm , 0 ≤ τm Tm ≤ 0.8 .
16
Kc =
2

 τm  
τm
1 
0.726Tm 




+
T
T
0
.
096
2
.
099
4
.
104
0
.
229
,
=
+
+

 i
m
T   ,
τm 
Tm
Km 

 m 

2

τ  
τ
τ
Td = Tm 0.019 + 0.419 m + 0.822 m   , 0 ≤ m < 0.6 .
Tm
T
T


m
 m 

17
Kc =
1.214  Tm 


K m  τm 
0.8449
1.028
τ 
, Ti = 3.05Tm  m 
 Tm 
1.0145
τ 
, Td = 0.672Tm  m 
 Tm 
.
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
452
Rule
Kc
Sree and
Chidambaram
(2006) –
continued.
18
Kc
Ti
Td
Comment
Ti
Td
p. 248;
τ
0.01 ≤ m ≤ 1.1 .
Tm
Direct synthesis: frequency domain criteria
De Paor and
O’Malley (1989).
Model: Method 1
Chidambaram
(1995b).
19
1.166  Tm 


Kc =
K m  τm 
Kc =
Ti =
1 
cos
Km 

Kc
Ti
Td
τm
<1
Tm
20
Kc
25Tm − 27 τm
0.46τ m
τ m Tm < 0.6
Also Chidambaram (1998), p. 93. Model: Method 1
τ
0.1 ≤ m ≤ 0.6 ;
21
Ti
Td
Kc
Tm
Model: Method 1
Gaikward and
Chidambaram
(2000).
18
19
0.6365
1.105
, Ti = 1.0553Tme
Tm
τm
τ 
, Td = 0.7542Tm  m 
 Tm 

1 − τm Tm
τ τ
1 − m  m +
sin
 T T
τm Tm
m  m

0.789
.

τ τ 
1 − m  m  ,
 T T 
m  m


τm Tm
Tm
, Td = Tm
tan (0.75φ) ,
 1 − τm Tm 
1 − τm Tm

 tan (0.75φ )
 τm Tm 
φ = tan −1
(Tm τm − 1) − (τm Tm ) − (τm Tm )2 .
20
Kc =
2
 τm  
τm
1 
1 
T 
 .

1.3 + 0.3 m  or K c =
5
.
332
15
.
02
16
.
214
−
+
T  
τm 
Km 
Tm
K m 
 m 

21
Kc =
2


 τm 
τ
1 
Tm 



+
+ 2.099 m + 0.096 ,
0
.
299
0
.
726
,
T
=
T
4
.
104

 i
m


τm 
Km 
Tm


 Tm 


2


 τm 
τm

.


+
+
Td = Tm 0.822
0
.
419
0
.
019
Tm 
Tm





b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
453
Comment
Td
Robust
Ti
Td
Kc
Rotstein and
Lewin (1991), λ determined graphically – sample values provided:
Marchetti et al.
τm Tm = 0.2 , 0.5Tm ≤ λ ≤ 1.9Tm .
K m uncertainty
(2001).
= 50%.
τm Tm = 0.4 , 1.3Tm ≤ λ ≤ 1.9Tm .
Model: Method 1
τm Tm = 0.2 , 0.4Tm ≤ λ ≤ 4.3Tm .
K m uncertainty
τm Tm = 0.4 , 1.1Tm ≤ λ ≤ 4.3Tm .
= 30%.
τm Tm = 0.6 , 2.2Tm ≤ λ ≤ 4.3Tm .
22
Tan et al.
(1999b).
23
Ti
Kc
τm Tm < 1.0 ;
Model: Method 1
Td
  λ



 λ
Tm λ
+ 2  + 0.5τm 
0.5λ
+ 2 τ m
T


 Tm
  m
 , T = λ λ + 2  + 0.5τ , T =
22
Kc =
.
d
i
m

T


λ2 K m
λ

 m
λ
+ 2  + 0.5τ m

 Tm
23
Kc =
Ti =
1
K m {[− (0.0373 λ ) + 0.1862](τm Tm ) + [0.6508 − 0.1498 log λ ]}
,
{[(10.5045 λ ) + 0.8032](τm Tm ) + [(3.2312 λ ) − 0.3445]} T ,
{[− (0.0373 λ ) + 0.1862](τm Tm ) + [0.6508 − 0.1498 log λ]} m


τ
1
Td = Tm 0.9065λ0.1632 m −

Tm 0.2075λ + 2.0335 


 − 0.0373
τ
+ 0.1862  m + (0.6508 − 0.1498 log λ ) , λ not specified.

λ
T


m


b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
454
Rule
Kc
Lee et al. (2000).
Model: Method 1
Shamsuzzoha
and Lee (2006b).
Ti
Td
Comment
24
Kc
Ti
Td
0 ≤ τm Tm < 2
25
Kc
Ti
Td
Model: Method 1
26
Ti
Td
Kc
Shamsuzzoha et
If τm Tm >> 1 , λ = τm (Shamsuzzoha et al., 2005); λ = x1Tm , with
al. (2005),
Shamsuzzoha
x1 values given below (Shamsuzzoha and Lee, 2007a).
and Lee (2007a).
Ms
τm Tm
Ms
τm Tm
Model: Method 1
3.0
3.5
4.0
3.0
3.5
4.0
0.01
0.01
0.01
0.01
0.40
0.34
0.31
0.3
0.05
0.05
0.04
0.05
0.65
0.55
0.48
0.4
0.10
0.09
0.08
0.1
1.10
0.90
0.75
0.5
0.23
0.20
0.18
0.2
24
Kc =
2
 T


, x1 = Tm  CL + 1 eτ m Tm − 1 , Ti = −Tm + x 1 − x 2 ,
− K m (2TCL + τm − x1 )
 Tm




Ti
τm (0.167 τm − 0.5x1 )
2TCL + τm − x1
− x2 .
Ti
2
2
x2 =
25
2
TCL + x1τm − 0.5τm
, Td =
2TCL + τm − x1
Kc = −
λ2 − 0.5τm 2 + x1τm
Ti
’
, Ti = −Tm + x1 − x 3 , x 3 =
K m (τm − x1 + 2λx 2 )
2λx 2 + τm − x1
3
− Tm x1 −
Td =
− Tm x1 −
2
0.167 τm − 0.5x1τm
 λ2 + 2λx 2Tm + Tm 2 e τ m Tm

τm − x1 + 2λx 2
− 1 ;
− x 3 , x1 = Tm 
2
Ti
Tm


(
)
x 2 not explicitly specified ( x 2 ≥ 0.707 normally); λ is ‘slightly more’ than τm .
26
Kc = −
3λ2 + 2x1τm − 0.5τm 2 − x12
Ti
,
, Ti = −Tm + 2 x1 −
K m (3λ + τm − 2x1 )
3λ + τm − 2x1
2
− 2Tm x1 + x1 −
Td =
λ3 + 0.167 τm 3 − x1τm 2 + x12 τm
3λ2 + 2x1τm − 0.5τm 2 − x12
3λ + τm − 2x1
,
Ti
3λ + τm − 2x1
3



λ  τ m Tm
.
 e
x 1 = Tm  1 +
−
1


Tm 



b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
455
4.10.3 Ideal controller in series with a first order lag
U(s)
E(s)
R(s)
+
−

 1
1
K c 1 +
+ Td s 
 Ti s
 Tf s + 1
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
K m e − sτ
Tm s − 1
m
Y(s)
Table 93: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Chandrashekar et
al. (2002).
1
Kc =
Kc
1
Kc
Ti
Td
K m e − sτ m
Tm s − 1
Comment
Direct synthesis: time domain criteria
Model: Method 1
Ti
0.5τ m
2

τ 
τ
τ
1 
4282 m  − 1334.6 m + 101 , 0 < m < 0.2 ;
Tm
Km 
Tm

 Tm 


Kc =
1.1161  Tm 


K m  τm 
0.9427
, 0. 2 ≤
τm
≤ 1. 0 .
Tm
, 0. 8 ≤
τm
≤ 1.0 .
Tm
2


τ 
τ 
τ
Ti = Tm 36.842 m  − 10.3 m  + 0.8288 , 0 ≤ m ≤ 0.8 ;
T
T
T


m
 m
 m


τ 
Ti = 76.241Tm  m 
 Tm 


τ
τ
Tf =  0.1233 m + 0.0033Tm , 0 ≤ m ≤ 1.0 .
Tm
Tm


Desired closed loop transfer function =
τ 
TCL 2 = 4.5115Tm  m 
 Tm 
5.661
, 0.8 ≤
(ηs + 1)e −sτ ;
(TCL2 s + 1)2
m
τm
≤ 1.0 ,
Tm
2

 τ m  
τm
τm



TCL 2 = 0.0326 + 0.4958
+ 2.03
 Tm , 0 ≤ T ≤ 0.8 .

Tm
T
m
 m 

6.77
b720_Chapter-04
04-Apr-2009
Handbook of PI and PID Controller Tuning Rules
456
Rule
2
Chandrashekar et
al. (2002).
Model: Method 1
Kc
Ti
Td
Kc
Ti
Td
Alternative tuning rules:
Td
Tf
τ m Tm
0.02Tm
0.0
0.0435Tm 0.0134Tm
0.10Tm
0.1
0.0884Tm 0.0250Tm
0.20Tm
0.2
3.2655 K m 1.8018Tm
0.1375Tm 0.0435Tm
0.40Tm
0.3
2.4516 K m 3.0400Tm
0.1868Tm
0.0581Tm
0.60Tm
0.4
2.0217 K m 4.6500Tm
0.2366Tm 0.0696Tm
0.80Tm
0.5
1.7525 K m 6.7286Tm
0.2866Tm 0.0784Tm
1.00Tm
0.6
1.5458 K m 10.337Tm
0.3380Tm
0.0885Tm
1.30Tm
0.7
1.3723 K m 17.693Tm
0.3910Tm
0.1005Tm
1.80Tm
0.8
1.2420 K m 33.610Tm
0.4440Tm 0.1124Tm
2.60Tm
0.9
0.1247Tm
4.20Tm
1.0
0.5975Tm
0.1138Tm
5.00Tm
1.2
0.6982Tm
0.0957Tm
6.00Tm
1.4
Ti
101.0000
Km
0.0404Tm
10.3662
Km
0.3874Tm
5.3750 K m 0.8600Tm
0.0
0.0
1.1400 K m 80.620Tm 0.4969Tm
Desired closed loop transfer function =
Kc = −
Model: Method 1; p. 118.
([Ti − 0.5τm ]s + 1)e−sτ ;
(
Td =
m
)(
)
(1)
( 2)
TCL
2s + 1 TCL 2s + 1
Ti
,
(1)
( 2)
K m TCL
+
T
2
CL 2 + 1.5τ m − Ti
(
(
)
)
(1)
( 2)
(1)
( 2)
(1)
( 2)
TCL
2TCL 2 + 0.5τ m TCL 2 + TCL 2 + 0.5TCL 2TCL 2
Ti =
Comment
TCL 2
Kc
Sree and
1.0895 K m 143.6Tm
Chidambaram
1.0536 K m 277.37Tm
(2006).
2
FA
(
τm
(1)
( 2)
+ Tm TCL
2 + TCL 2 + τ m
Tm
Tm − 0.5τm
(1)
( 2)
0.5TCL
0.5(Ti − 0.5τm )τm
2 TCL 2 τ m
, Tf = −
.
(1)
( 2)
Ti
Tm Ti − 1.5τ m − TCL
2 − TCL 2
(
)
)
,
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Kc
Ti
457
Comment
Td
Robust
Zhang et al.
(2000).
Model: Method 1
Lee et al. (2006).
Model: Method 1
3
4
Kc
Ti
Td
Recommended
τm ≤ λ ≤ 2τm .
Zhang (2006).
Model: Method 1
5
Kc
Ti
Td
Recommended
τm ≤ λ ≤ 2τm .
)
2
3
Kc =
Kc =
2τm ≤ λ ≤ 5τm , τm Tm < 1 ; λ large, τm Tm > 1 .
(
λ2 τm + λ2 + 2λτ m Tm + 2(λ + τm )Tm
λ2 τm λ (λ + 2τm )
, Ti =
+
+ 2(λ + τm ) ,
2
K mλ[λτ m + (λ + 2τm )Tm ]
Tm
Tm
λ2 τm + λ(λ + 2τm )Tm + (2λ + τm )Tm
Td = τm
4
Td
λ2 τm + λ(λ + 2τm )Tm + 2(λ + τm )Tm
2
, Tf =
2
λ2 τm Tm
.
λ2 τm + λ (λ + 2τm )Tm
2
Ti
λ2 + x1τm − 0.5τm
, Ti = −Tm + x1 −
,
− K m ( 2λ + τ m − x 1 )
2λ + τm − x1
τm (0.167 τm − 0.5x1 )
2
λ2 + x1τm − 0.5τm
2λ + τm − x1
−
;
Ti
2λ + τm − x1
2
− Tm x1 −
Td =
Desired closed loop transfer function =
λ3
5
Kc =
Tm
2
+
3λ2
+ 3λ + τm
Tm
 λ3
3λ2 
Km  2 +
T
Tm 
 m
, Ti =
λ3
Tm
2
+
2
 λ
 τ m Tm 



,
x
=
T
+
1
e
− 1 .

(λs + 1)2 1 m  Tm 

e − sτ m
3λ2
+ 3λ + τm ,
Tm
λ2
Td =
Tm
λ3
2
+
3λ
+3
Tm
3λ2
+
+ 3λ + τm
2
Tm
Tm
λτ m , Tf =
λTm
.
λ + 3Tm
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
458





1  1 + Td s 

4.10.4 Classical controller G c (s) = K c 1 +
Td s 
Ti s 

1 +

N 

E(s)
R(s)
+
−



 U(s)

1  1 + Td s 

K c 1 +
Td 
Ti s 

s
1 +
N 

K m e − sτ
Tm s − 1
m
Y(s)
Table 94: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Kc
Ti
Td
K m e − sτ m
Tm s − 1
Comment
Minimum performance index: regulator tuning
Minimum IAE – 0.91Tm K m τm
1.70τ m
0.60τ m
τ m Tm = 0.1
Shinskey (1988),
1
.
00
T
K
τ
1
.
90
τ
0
.
60
τ
τ m Tm = 0.2
m
m m
m
m
p. 381.
Method:
0.89Tm K m τm
2.00τ m
0.80τ m
τ m Tm = 0.5
Model 1;
2.25τ m
0.90τ m
N not specified. 0.86Tm K m τm
τ m Tm = 0.67
0.83Tm K m τm
Huang and Chen
(1997), (1999).
1
1
Kc
2.40τ m
1.00τ m
τ m Tm = 0.8
Direct synthesis: time domain criteria
Ti
Td
N =∞;
Model: Method 4
0 < τm Tm < 1 ; ‘Good’ servo and regulator response.
Kc =
1.02379 


T 
0.5 
 , Ti = K c K m Tm  2 x1 + τm  ,
1 + 1.61519 m 
T

K
K
1
T
−
Km 
τ

c m
m 
 m
 m


2

τ  
τ
with recommended x 1 = Tm  − 1.3735.10 −3 + 0.22091 m + 1.6653 m   ;
Tm

 Tm  

2

 τm  
τm
−4

.


Td = Tm 1.5006.10 + 0.23549
+ 0.16970
Tm
Tm  




b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Comment
Td
Direct synthesis: frequency domain criteria
Paraskevopoulos
x1τm Tm
N =∞;
2
2
Ti
et al. (2006). Ti x 2 1 + x 2
τ
> 0.15τm Tm 0.02 < m < 0.9.
3
1 + Ti 2 x 2 2
Model: Method 1
Ti
Tm
2
0 ≤ x1 ≤ 0.55 +
τm 
0.0098 
 0.31 −
 ; x1 < 0.15 .

Tm 
1 − (τm Tm ) 
Ti 2 (1 − (τm Tm ) + Td ) + Ti − (τm Tm ) + Td + x 3
x2 =
2Ti 2 ((τm Tm ) − Td )
,
2
 


τ
 2

τ
τ
τ
x 3 = Ti 2 1 − m + Td  + Ti − m + Td  + 4 m − Td Ti 1 + Ti − m + Td  ;
Tm
Tm
  Tm


 Tm
 

(
)


0.632((τ m Tm ) − Td ) + 0.436 (τ m Tm ) − Td − 0.0153 φ m φ max
m
,
Ti = x 4 1 +
max
(τm Tm ) − Td
1 − φ m φ m 

x4 =
0.0029 − 0.0682 (τm Tm ) − Td + 1.4941((τm Tm ) − Td )
(1.003 − (τm Tm ) + Td )2
(
;
 T

τ
 T
max
φm > 0.2φmax
= − m − Td  m − Td − 1 + tan −1  m − Td − 1  .
m , φm
 τm

 Tm
 τm


3
x 2 and x 3 given in footnote 2;
 T 
 
Tτ
Ti = x 4 1 + m 1 + 0.4 d m − 0.22Td  x 5  , x 4 given in footnote 2;
Tm
 
 τm 
)1 −(φ(φ φ φ ) ) ,
= −(τ T ) (T τ ) − 1 + tan ( (T τ ) − 1 ) .
(
x 5 = − 0.0153 − 0.436 τm Tm + 0.632(τm Tm )
φmax
m
m
m
m
m
−1
m
m
m
max
m
max
m
m
)
459
b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
460
Rule
Paraskevopoulos
et al. (2006).
Model: Method 1
4
04-Apr-2009
0 ≤ x1 ≤ 0.55 +
Kc =
4
Kc
Ti
Td
Comment
Kc
Ti
x1τm Tm
N=∞
τm 
0.0098 
 0.31 −
 ; x1 < 0.15 . 0.02 < τm Tm < 0.9 .

Tm 
1 − (τm Tm ) 
2
2
K max
1 + ωmin
1 + ωmax
or K min A m , K min = Ti ωmin
, K max = Ti ωmax
;
2
2
2
Am
1 + Ti ωmin
1 + Ti ωmax 2
0.03([τm Tm ] − Td )
1.14 − [τm Tm ] + Td
ωmin = 1 +


0.05
 0.973 +
Ti − x 2


[
]
−
τ
+
1
T
T
m
m
d 

0.006 +
x2
T i −([τm Tm ] − Td )(1 + Ti )
,
4
2

 x  
τ
  
τ
1.571
ωmax = 1 + 0.22 m − Td   1 +  0.1 − 0.3 m − Td  2  


Tm

 Tm
   
 Ti   (τm Tm ) − Td


 

Ti
Ti
− 0.9463 
− 0.5609 .

 (Ti + 1)([τm Tm ] − Td )
  (Ti + 1)([τm Tm ] − Td )

1+ (τ m Tm )− Td 


 max  


 A m − 1  A m − 1 




 + 0.01 − 0.18 + 5 τm − T 
Ti = x 2 1 + 0.65 
d


Tm




1 −  A m − 1  A max
− 1 


 
 m



[
[
]
]
[
+ 0.01 − 32([τm Tm ] − Td ) + 75([τm Tm ] − Td ) − 51([τm Tm ] − Td )
x2 =
2
]
 3([τm Tm ] − Td )4 − 2.3([τm Tm ] − Td )2 
+ 0.01
,
(1 − [τm Tm ] + Td )3


0.0029 − 0.0682 [τm Tm ] − Td + 1.4941([τm Tm ] − Td )
(1.003 − [τm Tm ] + Td )2
max
A m > 0.2(A max
=
m − 1) +1, A m
3
;
1.571
 τm

0.4085[[τm Tm ] − Td ] 



 T − Td 1 + 1 − 0.2864[[τ T ] − T ] 
m
m
d 
 m

1
(7.41 − 3.52[τm Tm ])(TdTm τm )3
1+
3
1 − (0.47 + 0.49[τm Tm ])(Td Tm τm )
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Paraskevopoulos
et al. (2006) –
continued.
5
5
Kc
Ti
Kc
Ti
>
Td
Comment
0.15τm
Tm
N=∞
461
K c and x 2 as given in footnote 4, with
0.03([τm Tm ] − Td )
1.14 − [τm Tm ] + Td
ωmin = 1 +


0.05
 0.973 +
Ti − x 2


[
]
−
τ
+
1
T
T
m
m
d 

0.006 +
x2
τ

T i − m − Td (1 + Ti )
 Tm

 (0.14 + 1.15[τm Tm ])(Td Tm τm )3  x 2  
  ,
1 +
2
T 
1 + 2(Td Tm τm )
 i  

2
4

 x 2  
 τm
   
τm
1.571








ωmax = 1 + 0.22
− Td  1 + 0.1 − 0.3
− Td   


[
T
T
T
τ




m
 m
  
 i   m Tm ] − Td




Ti
Ti
− 0.9463 
− 0.5609

 ;
 (Ti + 1)([τm Tm ] − Td )
  (Ti + 1)([τm Tm ] − Td )
(
5.53 − 0.41[τm Tm ])(Td Tm τm )4
1+
3
2
1 − 0.65(Td Tm τm ) 1.27 − 0.4(Ti x 2 )
[
][
]
1+ (τ m Tm )− Td 


 max  


 A m − 1  A m − 1 




 + 0.01 − 0.18 + 5 τm − T 
Ti = x 3 1 + 0.65 
d


Tm




1 −  A m − 1  A max
− 1 


 
 m



[
[
]
]
[
+ 0.01 − 32([τm Tm ] − Td ) + 75([τm Tm ] − Td ) − 51([τm Tm ] − Td )
2
3
]
2

 3([τm Tm ] − Td )4 − 2.3([τm Tm ] − Td )2    Td Tm 



+
.
1
x4  ,
+ 0.01

3



(1 − [τm Tm ] + Td )
   τm 


  T 3 0.367 + 1.78[τ T ]
m
m 
x 3 = x 2 1 +  Td m 
,
  τm 
1 − (Td Tm τm )2 


3τ m


3
2
 (A − 1)3 
 τm 
  Td Tm  Tm   τm 
τ
m
m

  2
 − 3.32

x 4 =  
,
3 



 T  + 1.2 T − 0.27  − max
m
A m − 1 
 m
  τm    Tm 



(
A max
as given in footnote 4. 0.02 < τm Tm < 0.9 .
m
)
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
462
4.10.5 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) E(s)
+
−



 b + b s + b s 2 U(s)
T
s
1
d
f1
f2
 f0
K c 1 +
+
 Ti s 1 + Td s  1 + a f 1s + a f 2s 2


N 

K m e − sτ
Tm s − 1
Y(s)
m
Table 95: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Kc
K m e − sτ m
Tms − 1
Td
Comment
0.25τm
Model: Method 1
Ti
Robust
1
Shamsuzzoha et
al. (2007).
0.667 τm
Kc
For τm Tm > 0.6 , λ = τm . Otherwise, λ = x1Tm ; x1 given for
various τm Tm and M s values:
1
Kc = −
τm Tm
M s = 3. 0
M s = 3. 6
τm Tm
M s = 3. 0
M s = 3. 6
0.05
0.1
0.2
0.3
0.015
0.04
0.09
0.14
0.015
0.04
0.08
0.13
0.4
0.5
0.6
0.21
0.32
0.41
0.18
0.26
0.36
3

4τm
λ  τ m Tm 
 e
− 1 , bf 2 = 0 ,
, b f 0 = 1 , b f 1 = Tm 1 +
K m (6τm + 18λ − 6b f 1 )
 Tm 



2
N = ∞ , af1 =
2b f 1τm + τm + 12λτ m + 18λ2
+ Tm , a f 2 = 0 .
6τ m + 18λ − 6b f 1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
463
4.10.6 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
 α + β d K c
T 

1+ d s

N 

E(s)
R(s) +
−




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
U(s)
+
K m e − sτ
Tm s − 1
m
Table 96: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Minimum IAE –
Huang and Lin
(1995).
1
Kc = −
Kc
1
Kc
Ti
Y(s)
K m e − sτ m
Tm s − 1
Comment
Td
Minimum performance index: regulator tuning
Model: Method 2
Ti
Td
α = 0 , β = 1 , N = 10; 0.01 ≤ τm Tm ≤ 0.8 .
T 
1 
τ
0.2675 + 0.1226 m + 0.8781 m 
Km 
Tm
 τm 

1.004 
(
,


Ti = Tm 0.0005 + 2.4631(τm Tm ) + 9.5795(τm Tm )
2.9123
) , T = 0.0011T + 0.4759τ .
d
m
m
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
464
Rule
Kc
Minimum ISE –
Paraskevopoulos
et al. (2004).
Minimum IAE –
Huang and Lin
(1995).
Minimum ISE –
Paraskevopoulos
et al. (2004).
2
Kc
4
(1)
Ti
Td
Comment
3
0
Model: Method 1
Ti
Minimum performance index: servo tuning
Model: Method 2
Ti
Td
Kc
α = 0 , β = 1 , N = 10; 0.01 ≤ τm Tm ≤ 0.8 .
5
Kc
0
Ti
(1)
Model: Method 1
Minimum performance index: other tuning
Paraskevopoulos
et al. (2004).
Model: Method 1
2
Kc
(1)
Kc
= Kc
(max)
=
(min)
Kc
ωmax Ti
Km
6
(max)
Kc
, Kc
0
Ti
(1)
(min)
=
1 + ω max 2 Tm 2
2
1 + ωmax Ti
2
ωmin Ti
Km
, ωmin =
1 + ω min 2 Tm 2
α =1
,
1 + ωmin 2 Ti 2
τm 
1  Ti
−

,
Tm  Tm Tm + Ti 
[4.935 τm][(Ti (Ti + τm )) − (τm Tm )] , T ω 2 >> 1 .
(τm Tm ) + π[(Ti (Ti + τm )) − (τm Tm )] i max
1.916 + 4.78(τ m Tm )
3
Ti =
τm , α = 1 , 0.05 ≤ τm Tm ≤ 0.85 .
0.88 − (τm Tm )
1.0251
4
),
K c = −(1 K m )(− 0.433 + 0.2056(τm Tm ) + 0.3135(Tm τm )
6.6423
),
Ti = Tm (− 0.0018 + 0.8193(τm Tm ) + 7.7853(τm Tm )
7.6983(τ T )
).
Td = Tm (− 0.0312 + 1.6333(τm Tm ) + 0.0399e
2.725 + 1.71(τ m Tm )
(1)
5
K c given in footnote 2. Ti =
τm , α = 1 , 0.05 ≤ τm Tm ≤ 0.85 .
0.88 − (τm Tm )
ωmax =
m
6
Kc
(1)
m
[
]
∞
∫ [e (t) + (u( t) − u ) ]dt .
given in footnote 2. Minimise performance index =
2
0
Ti = Tm 0.747 + 3.66(τm Tm ) + 18.64(τm Tm ) , 0.01 ≤ τm Tm ≤ 0.3 .
3
 4.52 + 0.476(τm Tm )2 
τm
Ti = τm 
≤ 0.85 .
 , 0.3 ≤
Tm
0.88 − (τm Tm ) 

∞
2
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Paraskevopoulos
et al. (2004) –
continued.
Chidambaram
(2000c).
Model: Method 1
7
Kc
(1)
8
Kc
9
Kc
Ti
Td
Comment
Ti
0
α =1
465
Direct synthesis: time domain criteria
Ti
‘Small’ τ m Tm .
0
τ
0.1 ≤ m ≤ 0.6
Ti
Tm
10 (1)
Chidambaram
τm Tm < 0.6
Ti
0.245
(2000c), Srinivas
1.165  Tm 
4.4Tm + 9 τ m 0.176T
τ
and


m
0.6 ≤ m ≤ 0.8
K m  τ m 
Chidambaram
T
+0.36τm
m
(2001), Sree and
( 2)
τ
Chidambaram
Ti
0.8 ≤ m ≤ 0.9
(2006),
Tm
pp. 182–184.
Model: Method 1 ξ = 0.333 ; N = ∞ , β = 1 , α = 0.74 + 0.42(τm Tm ) − 0.23(τm Tm )2
(Chidambaram, 2000c);
2
τ
1
1 
Tm
τ 
− m  (Srinivas
; β=
N =∞, α = m +
τm −
Ti K c K m
Td 
K c K m 2Ti 
and Chidambaram, 2001);
ξ ≥ 1 ; N = ∞ , β = 1 ; α = 1 (Sree and Chidambaram, 2006).
7
Kc
(1)
∞
∫ [e (t) + (du dt) ] dt.
given in footnote 2. Minimise performance index =
2
2
0
 2.58 + 3.60(τm Tm )2 
τm
Ti = τm 
≤ 0.85 .
 , 0.03 ≤
T
(
)
0
.
88
−
τ
T
m
m
m


8
Kc =
2
Tm Ti
2 2
0.04TS ξ + Ti τm
α = 1−
, Ti =
0.04TS ξ2 + Tm τm + 0.4TSξ 2
,
Tm − τm
0.2TS ξ 2 (Tm − τ m )
0.04TS 2 ξ 2 + Tm τ m + 0.4TS ξ
(Chidambaram, 2000c); α = 1 −
2
0.2TSξ 2
or
Ti
α = 0.733 + 0.6(τm Tm ) − 0.36(τm Tm ) (Sree and Chidambaram, 2006).
5.8 τ m Tm
−1.277 τ m Tm
9
K c = (2.695 K m )e
, Ti = 0.4015Tm e
,
2
α = 0.733 + 0.6(τ m Tm ) − 0.36(τ m Tm ) ; ξ = 0.333 .
2
10
Ti (1) =
0.176Tm + 0.36τm
0.179 − 0.324(τm Tm ) + 0.161(τm Tm )2
, Ti
( 2)
=
0.176Tm + 0.36τm
.
0.12 − 0.1(τm Tm )
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
466
Rule
Kc
Ti
Comment
Td
τm Tm ≤ 0.2
11
Kc
6.461τ m
Jhunjhunwala
0.898
and
0.324Tm e Tm
 Tm 

Chidambaram 0.876

 τm 
(2001).
12
Ti
Model: Method 1
Kc
τm
≤ 0.6
Tm
0
0.2 ≤
Td
β =1, N = ∞ .
Minimum ISE (Chidambaram, 2002, pp. 157–158).
Chandrashekar et
al. (2002).
Model: Method 1
11
Kc =
13
K c K m (2 − Tm ) + (K c K m − 1)Ti
1 
τm 
(Jhunjhunwala and
10.7572 − 35.1  ; α =
Km 
Tm 
2K c K m
Chidambaram, 2001); α =
12
Kc =
0
Ti
Kc
K c K m (2 + τm ) − (K c K m + 1)Ti
(Chidambaram, 2002).
2K c K m
1 
τ  τ
1.397  Tm 
13.0 − 39.712 m  , m < 0.2 ; K c =


K m 
Tm  Tm
K m  τm 
2.044 τ m
Ti = 0.856Tm e
Tm
τ
, 0 ≤ m ≤ 1 ; Ti = 0.3444Tme
Tm
0.769
2.9595 τ m
Tm
, 1≤
, 0.2 ≤
τm
≤ 1.4 ;
Tm
τm
≤ 1.4 ;
Tm
Td = 0.5643τm + 0.0075Tm , 0 ≤ τm Tm ≤ 1.4 ;
α = 0.3137 , τm Tm = 0.1 ; α = 1 − 0.4772e − (1.58τ m Tm ) , 0.2 ≤ τm Tm ≤ 1 .
13
49.535 − 21.644 τ m Tm τm
0.8668  τm 


e
,
< 0.1 ; K c =
K m  Tm 
Km
Tm
Ti = 0.1523Tm e7.9425τ m Tm ;
−0.8288
Kc =
Desired closed loop transfer function =
, 0.1 ≤
τm
≤ 0.7 ;
Tm
(ηs + 1)e −sτ ;
(TCL2 s + 1)2
m
TCL 2 = 0.025Tm + 1.75τm , τm Tm ≤ 0.1 ; TCL 2 = 2 τ m , 0.1 ≤ τm Tm ≤ 0.5 ;
TCL 2 = τm (5(τm Tm ) − 0.5) , 0.5 ≤ τm Tm ≤ 0.7 .
α = 0.505 + 3.426(τm Tm ) − 10.57(τm Tm ) , τm Tm ≤ 0.2 ;
2
α = 0.713 + 0.232(τm Tm ) , 0.2 ≤ τm Tm ≤ 0.7 (Chandrashekar et al, 2002);
α = 0.67 , τm Tm ≤ 0.1 ; α = 0.6354 + 0.437(τm Tm ) , 0.1 ≤ τ m Tm ≤ 0.7
(Sree and Chidambaram, 2006).
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Chandrashekar et
al. (2002).
Model: Method 1
14
Kc =
Kc
14
Kc
Ti
Td
Ti
0.5τ m
467
Comment
2

τ 
τ
τ
1 
4282 m  − 1334.6 m + 101 , 0 < m < 0.2 ;
T
Km 
T
T

m
m
 m


Kc =
[
]
1.1161  Tm 


K m  τm 
0.9427
, 0.2 ≤
τm
≤ 1.0 ;
Tm
Ti = Tm 36.842(τm Tm ) − 10.3(τm Tm ) + 0.8288 , 0 ≤ τm Tm ≤ 0.8 ;
2
Ti = 76.241Tm (τm Tm )
6.77
, 0.8 ≤ τm Tm ≤ 1.0 ;
α = 0.83 , τm Tm ≤ 0.1 ; α = 0.8053 − 0.1935(τm Tm ) , 0.1 ≤ τm Tm ≤ 0.7
(Chandrashekar et al., 2002);
α = 0.505 + 3.426(τm Tm ) − 10.17(τm Tm ) , τm Tm ≤ 0.2 ;
2
α = 0.713 + 0.232(τm Tm ) , 0.2 ≤ τm Tm ≤ 1.0 (Sree and Chidambaram, 2006).
(ηs + 1)e −sτ ;
(TCL2 s + 1)2
2
TCL 2 = (0.0326 + 0.4958(τm Tm ) + 2.03(τm Tm ) )Tm , 0 ≤ τm Tm ≤ 0.8 ;
5.661
TCL 2 = 4.5115Tm (τ m Tm )
, 0.8 ≤ τm Tm ≤ 1.0 , N = ∞ ; β = 0
m
Desired closed loop transfer function =
(Chandrashekar et al., 2002; Sree and Chidambaram, 2006);
[(1 − α )Tis + 1]e−sτm .
Desired closed loop transfer function =
TCL 2s 2 + 2ξTCLs + 1
If it is desired to minimise the overshoot (servo response), for ξ ≥ 1 , then α = 1 .
Otherwise, the optimum value of α is chosen by minimising the ISE (servo
response). Then, α = 1 − 2(TCL Ti ) , ξ = 1 ; α = 1 − 2(TCL ξ Ti ) , ξ < 1 ;
2
3


− ξ + ξ 2 − 1  − ξ − ξ 2 − 1  −  − ξ + ξ 2 − 1  + x1 
TCL  

 

 , ξ > 1 with

α = 1−
3
Ti 

 − ξ + ξ2 − 1  − ξ − ξ2 − 1  + x




2







3
2
x 1 = − − ξ − ξ 2 − 1  +  − ξ + ξ 2 − 1   − ξ − ξ 2 − 1  and

 
 

3
2
2
x 2 =  − ξ − ξ 2 − 1  − ξ + ξ 2 − 1  − 2 − ξ + ξ 2 − 1   − ξ − ξ 2 − 1  ;




 

N= ∞ ; β = 1 (Sree and Chidambaram, 2005a).
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
468
Rule
Chandrashekar et
al. (2002).
Model: Method 1
Kc
Ti
Td
Kc
Ti
0
Comment
6.0000 K m
Alternative tuning rules:
α
Ti
0.6000Tm
0.6667
τ m Tm = 0.1
3.2222 K m
1.4500Tm
0.7246
τ m Tm = 0.2
2.2963 K m
2.6571Tm
0.7742
τ m Tm = 0.3
1.8333 K m
4.4000Tm
0.8182
τ m Tm = 0.4
1.5556 K m
7.0000Tm
0.8571
τ m Tm = 0.5
1.3265 K m
14.6250Tm
0.8974
τ m Tm = 0.6
1.1875 K m
31.0330Tm
0.9323
τ m Tm = 0.7
Kc
Alternative tuning rules; TCL 2 = x 5 Tm :
x1 K m
x 2Tm
N = x3 x 4 ,
x 3Tm
β = 0.
Sree and
Chidambaram
(2006).
x1
x2
10.3662
5.3750
3.2655
2.4516
2.0217
1.7525
1.5458
1.3723
1.2420
1.1400
1.0895
1.0536
0.3874
0.8600
1.8018
3.0400
4.6500
6.7286
10.337
17.693
33.610
80.620
143.6
277.37
x3
Coefficient values:
x4
x5
α
0.0435 0.0134
0.10
0.742
0.0884 0.0250
0.20
0.767
0.1375 0.0435
0.40
0.778
0.1868 0.0581
0.60
0.803
0.2366 0.0696
0.80
0.828
0.2866 0.0784
1.00
0.851
0.3380 0.0885
1.30
0.874
0.3910 0.1005
1.80
0.898
0.4440 0.1124
2.60
0.923
0.4969 0.1247
4.20
0.948
0.5975 0.1138
5.00
0.965
0.6982 0.0957
6.00
0.978
pp. 118, 125. Model: Method 1
τ m Tm
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.4
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
> Ti
Paraskevopoulos
et al. (2004).
Model:
Method 1;
α = 1.
15
Kc
(1)
>
Comment
Td
(min)
1.35τm
0
(1 − τm Tm )
2
x1τ m +
x2
Coefficient values:
x1
x2
ξ
ξ
0.7269 2.5362 0.5 3.0696 3.7509
1.7016 3.0585 0.75 6.975 5.7053
(1)
x 1 τ m + x 2 Tm +
K
1
1.5
c
6
x 3 τ m Tm
x2
x3
4.59
6.16
8.21
-0.19
0.028
0.37
8.28
9.90
16.88
Kc
16
(1)
x1
x2
Kc
(1)
τm
< 0.9
Tm
12.41
19.91
12.452 8.4358
2
0.2 <
τm
< 0.7
Tm
x2
x3
ξ
1.89
3.44
51.95
95
1.5
2
0
Ti
ξ
x2
τm Tm < 0.2
x2
1.142 1.177
2.353 2.67
4.07
8.88
4.76
2
10.73
3
τm Tm < 0.2
Ti
1
1.5
0
TCL 2
x2
TCL 2
Coefficient values:
x1
x2
TCL 2
x1
x2
TCL 2
1.518 10.54
3.34 16.89
0.5
0.75
5.81
13
23.08 82.87
51.94 176.8
2
3
x1
15
0.1 <
x1
17
(1)
τm
< 0.7
Tm
Coefficient values:
x1
x2
TCL 2
TCL 2
0.409 0.2817 0.5
0.717 0.6542 0.75
Kc
0.5
0.75
1
x1
0
−5
Coefficient values:
ξ
x1
x1
0.02 <
τm
< 0.3
Tm
x 2 τ m Tm
x1
469
29.17
49.66
1
1.5
given in footnote 2. Ti (min) = Tm [1.3146(τm Tm ) − 2.3805(τm Tm )2 + x1 ],
x1 = 57.622(τm Tm ) − 158.99(τm Tm ) + 173.41(τm Tm ) .
3
16
17


x2
.
Ti = Tm  x1 −

(τm Tm ) − τm Tm 
[
]
Ti = Tm x1 + x 3 (τm Tm ) .
3
4
5
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
470
Rule
Kc
18
Prashanti and
Chidambaram
(2000).
Model: Method 1
Ti
Comment
Td
Direct synthesis: frequency domain criteria
Ti
Td
Kc
Modified method of De Paor and O’Malley (1989);
τ m Tm < 1 ; α = 0.83 ; β = 0.346 ; N = ∞ .
Alternatively,
2
α = 0.6873 + 0.3369
2
β = −1.779 + 2.44
3
τ 
τ 
τm
− 0.0378 m  + 0.045 m  ,
Tm
T
 m
 Tm 
3
τ 
τ 
τ
τm
− 5 m  + 4.81 m  , 0.05 ≤ m ≤ 0.90 .
Tm
T
T
T
m
 m
 m
α
β
τm Tm
Representative results:
α
β
τm Tm
0.691
0.719
0.756
0.787
-1.834
-1.605
-1.413
-1.346
0.05
0.10
0.20
0.30
0.818
0.850
0.884
0.920
-1.336
-1.207
-1.093
-0.884
α
β
0.40 0.960 -0.508
0.50 0.9909 -0.159
0.60
0.70
τm Tm
0.80
0.90
−6.405 τ m
Alternatively, α = 1 − 0.9726e Tm
α
α
τm Tm
τm Tm
0.223
0.543
0.773
18
Kc =
Ti =
1 
cos
Km 

0.05
0.10
0.20
0.879
0.922
0.954
0.30
0.40
0.50

τ τ
1 − τm Tm
1 − m  m +
sin
 T T
τm Tm
m  m

, β = 1 . Representative results:
α
α
τm Tm
τm Tm
0.974
0.987
0.9943
0.60
0.70
0.80

τ τ 
1 − m  m  ,
 T T 
m  m


τm Tm
Tm
, Td = Tm
tan (0.75φ) ,
 1 − τm Tm 
1 − τm Tm

 tan (0.75φ )
 τm Tm 
φ = tan −1
(Tm τm − 1) − (τm Tm ) − (τm Tm )2 .
0.9978
0.90
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
19
Prashanti and
Chidambaram
(2000).
Model: Method 1
Kc
Ti
Td
Comment
Ti
x1Ti
N=∞
2
α = 0.4835 + 0.8482
3
τ 
τ 
τm
− 0.5133 m  + 0.071 m  ,
Tm
T
 m
 Tm 
3
2
τ
τ 
τ 
β = −2.206 + 3.461 m − 0.984 m  − 0.089 m  .
T 
T 
Tm
 m
 m
α
β
τm Tm
0.458
0.563
0.664
0.697
-1.916
-1.878
-1.525
-1.307
0.05
0.10
0.20
0.30
Representative results:
α
α
β
τm Tm
0.737
0.786
0.836
0.849
-0.948
-0.729
-0.530
-0.297
0.40
0.50
0.60
0.70
β
0.861 -0.093
0.887 0.038
τm Tm
0.80
0.90
2
Alternatively, α = 0.2243 + 1.289
τ 
τm
− 0.6267 m  , β = 1 ,
Tm
 Tm 
τm
≤ 0.90 . Representative results:
Tm
α
α
α
τm Tm
τm Tm
0.05 ≤
Hägglund and
Åström (2002).
Model:
Method 1;
M s = 1.4;
0.3 < α < 0.5 .
19
Kc =
α
τm Tm
0.395
0.336
0.450
0.05
0.10
0.20
0.28 K m Tm
0.544
0.30
0.605
0.40
0.678
0.50
8τ m
0.752
0.772
0.791
0.60
0.70
0.80
0.831
0.2 K m Tm
11τ m
10τ m
0.13 K m Tm
7τ m
0.90
τm
= 0.02
Tm
7.8τ m
0.28 K m Tm
τm Tm
τm
= 0.05
Tm
0
0.28 K m Tm
19τ m
τm
= 0.10
Tm
0.28 K m Tm
135τ m
τ m Tm = 0.15
2
τ  
τ
1 
T 
τ 
2.121 − 1.906 m + 0.945 m   , Ti = m 0.176 + 0.36 m  ;
Km 
Tm
x1 
Tm 
 Tm  

x1 = 0.179 − 0.324(τm Tm ) + 0.161(τm Tm ) , τm Tm < 0.6 ;
2
x1 = 0.04 , 0.6 < τm Tm ≤ 0.8 ; x 1 = 0.12 − 0.1(τ m Tm ) , 0.8 < τ m Tm ≤ 1.0 .
471
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
472
Rule
Kc
Ti
Td
Comment
Td
N = ∞; β = 0;
Model: Method 1
Td
N = ∞; β = 0;
Model: Method 1
0
τm < Tm
Wang and Cai
(2002).
20
Kc
Ti
Xu and Shao
(2003b).
21
Kc
Ti
Kc
Ti
Robust
Zhang and Xu
(2002).
Model: Method 1
20
Kc =
Td =
21
Kc =
α=
22
For τm Tm ≤ 0.5 , λ = 2 − 5τ m ; α = 1 .
0.5236Tm − 0.4764 Tm τm
0.5236Tm 0.4764 Tm
,
−
, Ti =
K m τm
Km
τm
0.5236 Tm τm − 1
(
0.2618τm Tm τm
0.5236Tm − 0.4764 Tm τm
, α=
(
)
1.9099 τm Tm
1 + 0.9099 τm Tm
)
( A m = 3 , φ m = 60 0 ).
τ (T τ ) + Tm τm
0.5 Tm τm
0.5  Tm
Tm 
, Td =
,
+
, Ti = m m m
τm 
K m  τm
Tm τm − 1
(Tm τm ) + Tm τm
2 Tm τ m
Tm + Tm τ m
Kc =
22
( A m > 2 , φ m > 60 0 ).
λ2 + 2λTm + Tm τm
K m (λ + τm )
2
, Ti =
λ2 + 2λTm + Tm τm
.
Tm − τm
(
)
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
473
4.10.7 Two degree of freedom controller 2




T
s
1
d
 1 + b f 1s (F(s)R (s) − Y(s) ) − K Y(s) ,
+
U(s) = K c 1 +
0

T  1 + a f 1s
Ti s
1+ d s

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5s 4
R(s)
F(s)
+
−




T
s
1
d
 1 + b f 1s
K c 1 +
+
 Ti s
Td  1 + a f 1s
1+
s

N 

+ U(s)
−
K0
Table 97: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Kc
Ti
Y(s)
K m e − sτ m
Tms − 1
K m e − sτ m
Tm s − 1
Comment
Td
Direct synthesis: time domain criteria
Jacob and
Chidambaram
(1996).
Model: Method 1
Tm − Tm τm
K m (Tm + τm )
Tm − Tm τm
0
Tm τm − 1
K0 =
1
Km
Tm
τm
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , bf 3 = 0 ; a f 4 = 0 ,
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 .
Arvanitis et al.
(2000b).
Model: Method 1
1
Kc =
1
Direct synthesis: frequency domain criteria
0
Ti
Kc
a f 1 = 0 , b f 1 = 0 ; a f 2 = Ti , b f 2 = 0 ; a f 3 = 0 , b f 3 = 0 ; a f 4 = 0 ,
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
Tm [2φm + π(A m − 1)]
(
) ,
2K m τm A m 2 − 1
Ti =
2πTm
.
 2φm A m + πA m (A m − 1)  
2φm A m + πA m (A m − 1) 
−
π
π
−
3Tm 
2



2τm A m 2 − 1
Am2 − 1

 

(
)
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
474
Rule
Kc
Ti
Comment
Td
Robust
Tm − Tm τm
Tm − τ m
λK m
Chidambaram
(1997).
Model: Method 1
Tm τm − 1
+
λ > 1.7 ;
0
0.5τm
τm
<1.
Tm
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , bf 3 = 0 ; a f 4 = 0 ,
a f 5 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = (Tm τm )
0.5
2
Lee et al. (2000).
Model: Method 1
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
3
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 .
4
0.5
2
TCL + a f 2 τm − 0.5τm
,
2TCL + τm − a f 2
τm 2 (0.167 τm − 0.5a f 2 )
T 2 + a f 2 τm − 0.5τm 2
2TCL + τm − a f 2
− CL
.
Ti
2TCL + τm − a f 2
(K 0K m − 1)Ti , T = Tm − K 0K m τm + τm 2 ,
i
K m (λ + τm )
K 0K m − 1
2(λ + τm )
K0 =
4
Kc =
Km .
2
 T


Ti
, a f 2 = Tm  CL + 1 e τ m Tm − 1 ;
− K m ( 2TCL + τm − a f 2 )
 Tm




− Tm a f 2 −
Kc =
λ > 1.7
a f 5 = 0 , b f 4 = 0 , b f 5 = 0 , K 0 = (Tm τm )
2
3
0
Ti
Kc
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , bf 3 = 0 ; a f 4 = 0 ,
Ti = −Tm + a f 2 −
Td =
0
Ti
Kc
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , bf 3 = 0 ; a f 4 = 0 ,
Sree and
Chidambaram
(2006),
pp. 27–28.
Model: Method 1
Kc =
0 ≤ τm Tm < 2
Td
a f 1 = 0 , bf 1 = 0 ; N = ∞ ; bf 2 = 0 ; a f 3 = 0 , bf 3 = 0 ; a f 4 = 0 ,
Lee and Edgar
(2002).
Model: Method 1
2
Ti
Kc
Km .
2Tm − Tm τm − τm
2λK m
, Ti =
1 
cos
Km 

Tm − Tm τ m
Tm τ m − 1

Tm 
τ 
τ τ
1 − m  sin
1 − m  m +

 T T
τm  Tm 
m  m

+ 0.5τm .

τ τ 
1 − m  m  .
 T T 
m  m


b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
4.10.8 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
Y(s)
Model
−
F2 (s)
Table 98: PID controller tuning rules – unstable FOLPD model G m (s) =
Rule
Kc
1
Minimum ITSE –
Majhi and
Atherton (2000).
Model: Method 1
1
Kc =
(
Kc
Ti
K m e − sτ m
Tms − 1
Comment
Td
Minimum performance index: servo tuning
0
Ti
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = 2Tm τm K m ; b f 3 = 1 ;
b f 4 = 0.5τm Tm ; a f 5 = 0 .
0.8011Tm 1 − 0.9358 τm Tm
K m τm
) , T = T  0.1227 + 1.4550 τ − 1.2711 τ  .
2
i
m

m
Tm
m
2
Tm 
475
b720_Chapter-04
04-Apr-2009
Handbook of PI and PID Controller Tuning Rules
476
Rule
Minimum ITSE –
Majhi and
Atherton (2000).
Model:
Method 3;
Ap
K=
.
K mh
Kc
Ti
Td
2
Kc
Ti
0
3
Kc
Ti
0
Comment
0<
bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ; bf 3 = 1 ; a f 5 = 0 .
m m m
Unit impulse
noise rejection
response.
x1
bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ; bf 3 = 1 ; a f 5 = 0 .
Coefficient values (deduced from graphs):
x2
x3
x4
x1
x2
x3
x4
1.8
4.2
6.9
10.0
2.4
5.2
8.4
11.6
0.17
0.22
0.25
0.26
0.07
0.11
0.14
0.16
0.89
0.91
0.88
0.89
1.10
1.14
1.14
1.13
(
Kc =
)
1.08
0.98
0.95
0.94
0.82
0.86
0.93
1.00
13.5
16.8
21.0
24.0
15.0
18.6
23.1
27.2
0.25
0.27
0.26
0.27
0.19
0.20
0.20
0.20
-0.06
-0.05
-0.04
-0.03
-0.09
-0.09
-0.07
-0.06
2
,
ln (1 + K )
0.1227 + 1.4550 ln (1 + K ) − 1.2711[ln (1 + K )]2
ln (1 + K )
Tm , b f 4 =
.
4 tanh −1 K
2 tanh −1 K
1
1  0.8011(K + 0.9946 ) 0.7497 K + 0.9946 
−

 , K0 =
K
K m 
K + 0.0682
K + 0.0682

Ti =
4
-0.31
-0.16
-0.11
-0.08
-0.22
-0.16
-0.12
-0.10
0.8011 1 − 0.9358 ln (1 + K )
1
, K0 =
K m ln (1 + K )
Km
Ti =
3
τm
< 0.5
Tm
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
Unit step setpoint
response.
Kc =
2(K + 0.9946 )
,
K + 0.0682
0.0237(K + 34.5338)
0.0145K 3 + 0.5773K 2 + 2.6554K + 0.3488
Tm , b f 4 =
.
K + 4.1530
K 3 + 5.2158K 2 + 4.4816K + 0.2817
Equations developed from information provided by Atherton and Majhi (1998).
3

 (2Tm − τm )2 x 4 Tm − 2(Tm − τm ) 
1  (2Tm − τm )
,
K
1
x3  .
b f 4 = 0. 5 
=
−


0
2
3
2
K m 
2Tm τm

 1 − (2Tm − τm ) x 3 2Tm τm 
(
τm
<1
Tm
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
Direct synthesis: time domain criteria
(2Tm − τm ) x1 τmTm
4
x2
0
2Tm − τm
2K τ T 2
Atherton and
Majhi (1998).
Model: Method 1
τm
< 0.693
Tm
0.693 <
3
2
FA
(
)
(
))
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Td
477
Comment
Atherton and Boz
Parameters as specified by Atherton and Majhi (1998), with the
(1998), Majhi following coefficient values (deduced from graphs). Model: Method 1.
and Atherton
τm Tm < 0.8 .
(1999).
x1
x2
x3
x4
x1
x2
x3
x4
Minimum ISE –
servo – Atherton
and Boz (1998).
1.2
0.58
-0.81
2.36
8.5
1.02
-0.16
2.18
2.6
0.91
-0.55
2.49
10.8
1.03
-0.14
2.16
4.5
0.89
-0.30
2.18
13.3
1.02
-0.12
2.13
6.4
0.98
-0.22
2.23
16.0
1.00
-0.09
2.10
Minimum ISTE – 1.8
0.17
-0.31
1.08
13.0
0.28
-0.07
0.94
servo – Atherton 4.2
0.22
-0.16
0.96
16.2
0.31
-0.06
0.99
and Boz (1998).
6.9
0.25
-0.11
0.95
20.3
0.29
-0.04
0.93
10.0
0.26
-0.08
0.92
24.0
0.30
-0.04
0.95
Minimum ITSE – 1.8
0.17
-0.29
1.05
13.0
0.28
-0.06
0.94
servo – Majhi
4.2
0.22
-0.16
0.96
16.8
0.27
-0.05
0.90
and Atherton
6.9
0.25
-0.11
0.95
20.3
0.29
-0.04
0.97
(1999).
10.0
0.26
-0.08
0.92
Minimum ISTSE 2.3
0.08
-0.16
0.71
16.5
0.14
-0.04
0.64
– servo –
5.2
0.11
-0.10
0.65
20.4
0.15
-0.03
0.65
Atherton and Boz 8.4
0.14
-0.07
0.68
25.2
0.15
-0.02
0.64
(1998).
12.4
0.13
-0.04
0.63
31.2
0.14
-0.02
0.61
Minimum ISTSE 2.3
0.08
-0.16
0.69
16.5
0.14
-0.03
0.64
– servo – Majhi
5.2
0.11
-0.10
0.65
20.4
0.15
-0.03
0.67
and Atherton
8.7
0.12
-0.06
0.62
25.2
0.15
-0.02
0.65
(1999).
12.4
0.13
-0.04
0.64
Sree and
0
10Tm K m TS
0.4ξ 2TS
Chidambaram
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = τm , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
(2006),
pp. 24–26.
b f 2 = τm , a f 3 = 0 , a f 4 = 0 ; K 0 = 1 K m ; b f 3 = 1 ; b f 4 = τm ;
Model: Method 1
a =0.
f5
Direct synthesis: frequency domain criteria
0
Ti
Arvanitis et al.
5
Kc
(2000b).
Model: Method 1 α = 0 ; χ = 0 ; δ = 0 ; b f 1 = 0.5τm , a f 1 = Ti , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0.5τm , a f 3 = 0 , a f 4 = 0 ; K 0 = 0 .
5
Kc =
Tm [2φm + π(A m − 1)]
(
) ,
2K m τm A m 2 − 1
Ti =
2πTm
.
 2φm A m + πA m (A m − 1)  
2φm A m + πA m (A m − 1) 
−
π
π
−
3Tm 
2



2τ m A m 2 − 1
Am2 − 1

 

(
)
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
478
Rule
Padhy and Majhi
(2006a).
Model: Method 6
6
Kc
Ti
Td
Kc
x1
1 + (x1x 2 τm )
0
Comment
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; K 0 = (2Tm τm )
0.5
K m ; bf 3 = 1 ;
b f 4 = 0. 5 τ m ; a f 5 = 0 .
Robust
7
Park et al.
(1998).
Model: Method 1
Ti
Kc
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; bf 2 = 0 , a f 3 = 0 , a f 4 = 0 ;
K 0 = (Tm τm )
0.5
6
Kc =
Td
K m ; bf 3 = 1 ; bf 4 = 0 ; a f 5 = 0 .
) [T − 0.7071 T τ ] , x = 1.4142 T τ − 1 ,
2φm + π(A m − 1)
(
2K m τm A m 2 − 1
m
m m
1
Tm − 0.7071 Tm τm
m
m
 2φ + π(A m − 1)   2A m  2φm + π(A m − 1) 
x 2 = 0.7854A m  m
 1 −

 .
2
π  2 A m 2 − 1 
 2 A m − 1  
(
7
)
(
)
Apply minimum ITAE – regulator tuning rule or minimum ITAE – servo tuning rule defined by
Sung et al. (1996) for SOSPD model, ideal PID controller (Table 21). For these formulae, K m ,
Tm1 and ξ m are replaced by the following parameters from the unstable FOLPD model:
Km
Tm τm − 1
0.71Tm
[
0.71 Tm
0.25
τm
(Unstable FOLPD) → K m (SOSPD)
0.75
(Tm τm )0.5 − 1
0.5
− τm
0.5
]T
0.25
m
(Tm τm )0.5 − 1
(Unstable FOLPD) → Tm1 (SOSPD)
τm
−0.75
(Unstable FOLPD) → ξ m (SOSPD)
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Td
479
Comment
8
Ti
Td
Kc
Lee and Edgar
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
(2002).
Model: Method 1 ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 , a f 4 = 0 ; b f 3 = 1 ; b f 4 = 0 ;
af 5 = 0 .
9
10
Kc
Ti
x1
Kc
Ti
x1
K 0 = 0.25K u
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; b f 1 = 0 , a f 1 = Td , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = Td , a f 4 = 0 ; b f 3 = 1 ; b f 4 = 0 ;
af 5 = 0 .
8
9
Kc =
2
2

K 0 K m − 1  Tm − K 0 K m τm
τm
T − K 0 K m τm
τm
,
+
+

 , Ti = m
K m (λ + τm )  K 0 K m − 1
2(λ + τm ) 
K 0K m − 1
2(λ + τm )
Td =
4
2
3
(Tm − K 0K m τm )τm 2  ,
K 0 K m − 1  K 0 K m τm
τm
τm
−
+
+


K m (λ + τm )  2(K 0 K m − 1) 6(λ + τm ) 4(λ + τm )2 2(K 0 K m − 1)(λ + τm ) 
K0 =
1 
cos
Km 

Kc =
(K 0K m − 1)Ti , T = Tm − K 0K m τm + τm 2 + x ,
i
1
K 0K m − 1
2(λ + τm )
K m (λ + τm )

Tm 
τ 
τ τ
1 − m  sin
1 − m  m +
 T 
 T T
τ
m  m
m 
m 


τ τ 
1 − m  m  .
 T T 
m  m


 K 0K m
τm
τm 2
(Tm − K 0 K m τm ) 
x1 = τ m 
−
+
+

2
2(K 0 K m − 1)(λ + τm ) 
 2(K 0 K m − 1) 6(λ + τm ) 4(λ + τm )
K0 =
10
Kc =
1 
cos
Km 


Tm 
τ 
τ τ
1 − m  sin
1 − m  m +
 T 
 T T
τ
m  m
m 
m 


τ τ 
1 − m  m  .
 T T 
m  m


(1 + 0.25K u K m )Ti , T = Tm − 0.25K u K m τm +
K m (λ + τ m )
i
1 + 0.25K u K m
2
τm
+ x1 ,
2(λ + τm )
2
 0.25K u K m
(Tm − 0.25K u K m τ m )τ m 
τm
τm 2
−
+
+
x1 = τ m 

2
2(1 + 0.25K u K m )(λ + τ m ) 
 2(1 + 0.25K u K m 6(λ + τ m ) 4(λ + τ m )
0.5
.
0.5
;
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
480
4.11 Unstable FOLPD Model with a Zero
K (1 + sTm 3 )e −sτ m
K (1 − sTm 4 )e −sτ m
G m (s) = m
or G m (s) = m
Tm1s − 1
Tm1s − 1

1 

4.11.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
+
−

1 

K c 1 +
Ti s 

U(s)
Model
Y(s)
Table 99: PI controller tuning rules – unstable FOLPD model with a zero
K (1 − sTm 4 )e −sτ m
G m (s ) = m
Tm1s − 1
Rule
Sree and
Chidambaram
(2003c).
1
Kc
Ti
Comment
Direct synthesis: time domain criteria
x
T
1
1 m1
Model: Method 1
Ti
K mTm 4
x1 = the negative of the value of the ‘inverse jump’ of the closed loop system;
x1Tm1
[Tm 4 (1 − x 2 ) − 0.5τm (1 + x 2 )]
Tm 4
T
.
x1 ≥
; Ti = m 4
x1Tm1
Tm1
(1 − x 2 ) + x 2
Tm 4
x2 >
x1Tm1
(Sree and Chidambaram, 2003c);
x1Tm1 − Tm 4
Tm 4 + 0.5τm
x1Tm1
< x2 <
(Sree and Chidambaram, 2006, p. 106).
Tm 4 − 0.5τm
x1Tm1 − Tm 4
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
481
4.11.2 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
E(s)
R(s)
+
U(s)

 1
1
K c 1 +
+ Td s 
 Ti s
 Tf s + 1
−
Y(s)
Model
Table 100: PID controller tuning rules – unstable FOLPD model with a zero
K (1 + sTm3 )e −sτ m
K (1 − sTm 4 )e −sτ m
G m (s ) = m
or G m (s) = m
Tm1s − 1
Tm1s − 1
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2003b).
Sree and
Chidambaram
(2006).
1
1
2
Kc
Ti
0
Model: Method 1
Kc
Ti
0
Model:
Method 1;
pp. 128–130.
(1 − sTm 4 )(1 + Tis )e−sτ ;
Desired closed loop transfer function =
(
m
)(
(1)
( 2)
1 + TCL
2s 1 + TCL 2s
)
Ti
Tm 4 τm Ti
Kc = −
, Tf =
,
(1)
( 2)
(1)
( 2)
K m TCL
+
T
+
T
+
τ
−
T
T
T
+
T
2
CL 2
m4
m
i
m1 CL 2
CL 2 + Tm 4 + τ m − Ti
(
(
[
)
(
)
] ) , τ − τ < 0.62 .
(1)
( 2)
T T (1) T ( 2 ) − T τ + TCL
2 + TCL 2 + Tm 4 + τ m Tm1
Ti = m1 CL 2 CL 2 2 m 4 m
Tm1 + Tm 4 τm − τm + Tm 4 Tm1
2
(
)
m
Tm 4
(1 + sTm3 )(1 + Tis )e−sτ .
Desired closed loop transfer function =
Kc = −
m
Tm1
(
m
)(
(1)
( 2)
1 + TCL
2s 1 + TCL 2s
)
Ti
Tm3τm Ti
, Tf = −
,
(1)
( 2)
(1)
( 2)
K m TCL
Tm1 TCL
2 + TCL 2 − Tm 3 + τ m − Ti
2 + TCL 2 − Tm 3 + τ m − Ti
(
(
[
)
(
] ).
(1)
( 2)
T T (1) T ( 2) + T τ + TCL
2 + TCL 2 − Tm 3 + τ m Tm1
Ti = m1 CL 2 CL 2 2 m3 m
Tm1 − Tm3τm − τm − Tm 3 Tm1
(
)
)
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
482
Rule
Sree and
Chidambaram
(2006).
Sree and
Chidambaram
(2006).
Kc
Ti
Td
3
Kc
Ti
Td
4
Kc
Ti
0
Kc
Ti
Kc
Ti
Comment
Model:
Method 1;
pp. 128–130.
Model:
Method 1; pp.
137–138, 143.
Robust
Sree and
Chidambaram
(2006).
5
6
Tf = Tm3
Td
Model: Method 1; λ not specified; pp. 163–165.
3
(1 + sTm3 )(1 + Tis )e−sτ .
Desired closed loop transfer function =
(
)(
Ti
Kc = −
;
(1)
( 2)
K m TCL
+
T
−
Tm 3 + 1.5τm − Ti
2
CL 2
(
Ti =
m
(1)
( 2)
1 + TCL
2s 1 + TCL 2s
)
(
(1)
( 2)
(1)
( 2)
0.5τmTCL
2TCL 2 + 0.5τ m Tm1 TCL 2 + TCL 2 + Tm 3
(Tm − 0.5τm )(Tm3 + Tm1 )
)
) + T T T + x + 0.5τ ,
(1)
( 2)
CL 2 CL 2 m1
1
m
2
Td =
4
0.5τm (Ti − 0.5τm )
Ti
(
]) .
[
(1)
( 2)
0.5τ m TCL
2 TCL 2 + Tm 3 Ti − 0.5τ m
, Tf = −
(1)
( 2)
Tm1 TCL 2 + TCL 2 − Tm3 + 1.5τ m − Ti
(
Desired closed loop transfer function =
(1 − sTm 4 )(1 + Tis )e
(1 + TCL3s )3
(
− sτ m
)
;
3
Kc = −
Ti =
Tm 4 τm Ti − TCL 3
Ti
,
, Tf =
K m (3TCL3 + Tm 4 + τm − Ti )
Tm1 (3TCL3 + Tm 4 + τm − Ti )
(
)
TCL33 + Tm1 3TCL 32 − τm Tm 4 + Tm12 (3TCL3 + Tm 4 + τm )
Tm12 + Tm 4 τm − (τm + Tm 4 )Tm1
,
τm
τ
− m < 0.62 .
Tm1 Tm 4
5
Kc = −
λ2 + 2λTm1 + 0.5τm Tm1
Ti
0.5(Ti − 0.5τm )τm
, Td =
, Ti = 0.5τm +
K m (2λ + τm − Ti )
Tm1 − 0.5τm
Ti
6
Kc = −
Ti
0.5τm Tm 4 (Ti − 0.5τm ) − λ3
,
, Tf =
Tm1 (3λ + Tm 4 + τm − Ti )
K m (3λ + Tm 4 + τ m − Ti )
Ti = 0.5τm +
(
)
λ3 + (3λ + Tm 4 + 0.5τm )Tm12 + 3λ2 − 0.5Tm 4 τm Tm1
0.5τmTm 4 + Tm12 − Tm1 (Tm 4 + 0.5τm )
)
(1)
( 2)
x 1 = Tm1 TCL
2 + TCL 2 − Tm 3 + τ m ;
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
483
4.11.3 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s) E(s)
+
−
U(s)




2
T
s
1
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
 Ti s
T  1 + a f 1s + a f 2 s 2
1+ d s 

N 

K m (1 − sTm 4 )e − sτ
Tm1s − 1
m
Y(s)
Table 101: PID controller tuning rules – unstable FOLPD model with a positive zero
K (1 − sTm 4 )e −sτ m
G m (s) = m
Tm1s − 1
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2006).
1
1
Ti
Kc
(1 − sTm 4 )(1 + Tis )e−sτ .
(TCL3s + 1)3
0.5τm (Ti − 0.5τm )
, T =
,
m
Desired closed loop transfer function =
Kc = −
Ti
K m (3TCL3 + Tm 4 + 1.5τm − Ti )
3
Ti =
Model:
Method 1;
pp. 143–145.
Td
d
(
Ti
2
2
0.5τmTCL3 + Tm1 3TCL3 + 1.5τm TCL 3 − 0.5τm Tm 4
(Tm1 − 0.5τm )(Tm 4 + Tm1 )
) + x + 0.5τ ,
1
m
x1 = Tm1TCL 3 (TCL3 + 1.5τm ) + Tm1 (3TCL3 + Tm 4 + τm ) ;
2
3
3
af 2 = −
0.5τm TCL3
, bf 0 = 1 , bf 1 = 0 , bf 2 = 0 , N = ∞ ,
(
Tm1 3TCL 3 + Tm 4 + 1.5τm − Ti )
3TCL3 + 1.5τm Tm1 + Tm 4 (Ti − 0.5τm ) + 0.5τm (Ti − 0.5τm − Tm 4 )
.
3TCL3 + Tm 4 + 1.5τm − Ti
2
a f 1 = Tm1 +
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
484
4.11.4 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
 α + β d K c
T 

1+ d s

N 

R(s)
E(s)
+
−




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
Y(s)
U(s)
Model
+
Table 102: PID controller tuning rules – unstable FOLPD model with a zero
G m (s) =
Rule
K m (1 + sTm3 )e −sτ m
K (1 − sTm 4 )e −sτ m
or m
Tm1s − 1
Tm1s − 1
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2003b).
1
1
Desired closed loop transfer function =
Kc = −
Ti =
0
Ti
Kc
(1 − sTm 4 )(1 + Tis )e−sτ ; τm − τm < 0.62 .
(
(
[
(1)
( 2)
(1)
Tm1 TCL
2TCL 2 − Tm 4 τ m + TCL 2
Tm12 + Tm 4 τm −
m
)(
(1)
( 2)
1 + TCL
2s 1 + TCL 2s
) , α = 1 − 0.5
+ T + T + τ ]T )
.
( 2)
CL 2
)
Tm1
Tm 4
(1)
( 2) 
 Tm 4 + TCL
2 + TCL 2 

Ti
(1)
( 2)
K m TCL 2 + TCL 2 + Tm 4 + τm − Ti
(
Model: Method 1
m4
(τm + Tm 4 )Tm1
m
m1
Ti


,
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Sree and
Chidambaram
(2003c).
2
Sree and
Chidambaram
(2006).
Sree and
Chidambaram
(2006).
2
Kc
Ti
Td
Comment
x1Tm1
K mTm 4
Ti
0
Model:
Method 1;
x1 ≥ Tm 4 Tm1 .
3
Kc
Ti
0
4
Kc
Ti
0
Model:
Method 1;
p. 130.
Model:
Method 1;
p. 138.
x1 = the negative of the value of the ‘inverse jump’ of the closed loop system;
(x1Tm1 Tm 4 )[Tm 4 (1 − x 2 ) − 0.5τm (1 + x 2 )] , x > x1Tm1 ;
2
(x1Tm1 Tm 4 )(1 − x 2 ) + x 2
x1Tm1 − Tm 4
(1 − sTm 4 )(1 + Tis )e−sτ (Sree and Chidambaram,
Desired closed loop transfer function =
Ti =
(
m
)(
(1)
( 2)
1 + TCL
2s 1 + TCL 2s
)
(1)
( 2) 
 Tm 4 + TCL
2 + TCL 2 

2003b); α = 1 − 0.5

3
.

Ti
(1 + sTm3 )(1 + Tis )e−sτ .
Desired closed loop transfer function =
Kc = −
(
Ti
, α = 1−
(1)
( 2)
K m TCL
T
+
2
CL 2 − Tm 3 + τ m − Ti
(
(
[
m
)(
(1)
( 2)
1 + TCL
2s 1 + TCL 2s
)
)
(1)
( 2)
TCL
2 TCL 2 + Tm 3
Ti
] ).
(1)
( 2)
T T (1) T ( 2) + T τ + TCL
2 + TCL 2 − Tm 3 + τ m Tm1
Ti = m1 CL 2 CL 2 2 m3 m
Tm1 − Tm3τm − τm − Tm 3 Tm1
4
(
Desired closed loop transfer function =
Kc = −
Ti =
)
(1 − sTm 4 )(1 + Tis )e−sτ .
(1 + TCL3s )3
m
Ti
T
, α = 1 − CL3 (pp. 138, 143),
K m (3TCL3 + Tm 4 + τm − Ti )
Ti
(
)
TCL33 + Tm1 3TCL 32 − τm Tm 4 + Tm12 (3TCL3 + Tm 4 + τm )
Tm12 + Tm 4 τm − (τm + Tm 4 )Tm1
.
485
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
486
4.12 Unstable SOSPD Model (one unstable pole)
G m (s ) =
K m e − sτm
(Tm1s − 1)(1 + sTm 2 )

1 

4.12.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
E(s)
R(s)
+

1 

K c 1 +
Ti s 

−
U(s)
K m e −sτ m
(Tm1s − 1)(1 + Tm 2 s )
Y(s)
Table 103: PI controller tuning rules – unstable SOSPD model (one unstable pole)
K m e − sτ m
G m (s) =
(Tm1s − 1)(1 + sTm 2 )
Rule
Kc
Ti
Comment
Minimum performance index: regulator tuning
Minimum ITAE –
4Tm1 (τ m + Tm 2 ) Coefficients of K c , Ti
1
Poulin and Pomerleau
Kc
x 1 Tm1 − 4(τ m + Tm 2 ) deduced from graph.
(1996).
τ m Tm
x1
x2
τ m Tm
x1
x2
Model: Method 1
0.05
0.9479
2.3546
0.30
1.6163
2.6612
0.10
1.0799
2.4111
0.35
1.7650
2.7368
0.15
1.2013
2.4646
0.40
1.9139
2.8161
Process output step
0.20
1.3485
2.5318
0.45
2.0658
2.9004
load disturbance.
0.25
1.4905
2.5992
0.50
2.2080
2.9826
0.05
1.1075
2.4230
0.25
1.6943
2.7007
Process input step
0.10
1.2013
2.4646
0.35
1.8161
2.7637
load disturbance.
0.15
1.3132
2.5154
0.40
1.9658
2.8445
0.20
1.4384
2.5742
0.45
2.1022
2.9210
0.25
1.5698
2.6381
0.50
2.2379
3.0003
x 2Tm1 1 +
1
Kc =
x1Tm 2
2
4(τm + Tm 2 )2
K m (x1Tm1 − 4[τm + Tm 2 ])
.
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Poulin et al. (1996).
Model: Method 1
Kc
487
Comment
Ti
Direct synthesis: frequency domain criteria
Tm 2 + τ m < 0.16Tm1 ;
3.53
Tm1
Km
250 ≤ φ ≤ 900 .
m
Ultimate cycle
McMillan (1984).
Model: Method 1
2
Kc
Tuning rules
developed from
K u , Tu .
Ti
2





1.477 Tm1Tm 2 
1
2
Kc =
,

2
0.65 
Km
τm   (Tm1 + Tm 2 )Tm1Tm 2  
 
1 + 
  (Tm1 − Tm 2 )(Tm1 − τm )τm  
0.65
  (T + T )T T
 

m1
m 2 m1 m 2
Ti = 3.33τm 1 + 
 .
  (Tm1 − Tm 2 )(Tm1 − τm )τm  
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
488


1
+ Td s 
4.12.2 Ideal PID controller G c (s) = K c 1 +
Ti s


E(s)
R(s)
−
+
U(s)


1
K c 1 +
+ Td s 
Ti s


K m e − sτ m
(Tm1s − 1)(1 + sTm 2 )
Y(s)
Table 104: PID controller tuning rules – unstable SOSPD model (one unstable pole)
K m e −sτ m
G m (s) =
(Tm1s − 1)(1 + sTm 2 )
Rule
Kc
Wang and Jin
(2004).
1
Kc
2
Kc
Ti
Td
Comment
Direct synthesis: time domain criteria
Model: Method 1
Ti
Td
Robust
Rotstein and
Lewin (1991).
Model:
Method 1;
Tm 2 = 0.5τm ;
Ti
Td
λ determined graphically – sample values provided:
τm Tm1 = 0.2 , 0.5Tm1 ≤ λ ≤ 1.9Tm1
τm Tm1 = 0.4 , 1.3Tm1 ≤ λ ≤ 1.9Tm1
Tm 2 >> τm
(Marchetti et al.,
2001).
τm Tm1 = 0.2 , 0.4Tm1 ≤ λ ≤ 4.3Tm1
τm Tm1 = 0.4 , 1.1Tm1 ≤ λ ≤ 4.3Tm1
τm Tm1 = 0.6 , 2.2Tm1 ≤ λ ≤ 4.3Tm1
1
Kc =
K m Ti (Tm1 − τm )(Tm 2 + τm )
(TCL3 + τm )3
K m uncertainty
= 50%.
K m uncertainty
= 30%.
,
Ti =
TCL3 + 3τm TCL3 + 3(Tm1Tm 2 + τm Tm1 − τm Tm 2 )TCL 3 + τm Tm 2 (Tm1 − τm )
,
(Tm1 − τm )(Tm 2 + τm )
Td =
(Tm 2 + τm − Tm1 )TCL33 + 3Tm1Tm 2TCL3 (TCL3 + τm ) + Tm1Tm 2τm 2 .
Ti (Tm1 − τm )(Tm 2 + τm )
3
2
  λ



 λ
Tm1 λ
+ 2  + Tm 2 
λ
+ 2 Tm 2
T
T


λ


m
1

 m1

 
 , T = λ
2

Kc =
.
i
 T + 2  + Tm 2 , Td =  λ

λ2 K m
 m1

λ
+ 2  + Tm 2
 Tm1

b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Lee et al. (2000).
Shamsuzzoha et
al. (2005),
Shamsuzzoha
and Lee (2007a).
3
4
Kc
Ti
Td
Comment
Kc
Ti
Td
Model: Method 1
Kc
Ti
Td
Model:
Method 1;
λ values not
defined.
0.25Ti
Tuning rules
developed from
K u , Tu .
489
Ultimate cycle
McMillan
(1984).
Model: Method 1
3
Kc =
5
Ti
Kc
2
Ti
λ2 + x1τm − 0.5τm
,
, Ti = −Tm1 + Tm 2 + x1 −
− K m (2λ + τm − x1 )
2λ + τm − x1
τm (0.167 τm − 0.5x1 )
2λ + τm − x1
2
− Tm1x1 + Tm 2 x1 − Tm1Tm 2 −
Td =
Ti
2
−
λ2 + x1τm − 0.5τm
;
2λ + τm − x1
2
 λ


λ = desired closed loop dynamic parameter, x1 = Tm1 
+ 1 e τ m Tm1 − 1 .
 Tm1 



T
4
i
Kc = −
, Ti = Tm 2 − Tm1 + 2 x1 − x 2 ,
K m (4λ + τm − 2 x1 )
2
Td =
0.167 τm 3 − x1τm 2 + x12 τm + 4λ3
4λ + τm − 2 x1
− x2 ,
Ti
x1 − 2x1 (Tm1 − Tm 2 ) − Tm1Tm 2 −


4 τm
2
2

6λ2 − x1 + 2x1τm − 0.5τm
  λ

.
x1 = Tm1  
+ 1 e Tm − 1 , x 2 =
T
4 λ + τ m − 2 x1
  m1 

2





1.111 Tm1Tm 2 
1
5
Kc =
,

2
0.65 
K m τm   (T + T )T T
 
m1
m 2 m1 m 2
 
1 + 
  (Tm1 − Tm 2 )(Tm1 − τm )τm  
0.65
  (T + T )T T
 

m1
m 2 m1 m 2
Ti = 2τm 1 + 
 .
  (Tm1 − Tm 2 )(Tm1 − τm )τm  
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
490
4.12.3 Ideal controller in series with a first order lag
 1

1
G c (s) = K c 1 +
+ Td s 
 Tf s + 1
 Ti s
E(s)
R(s)
−
+


1
K c 1 +
+ Td s 
Ti s


U(s)
1
(Tf s + 1)
Y(s)
K m e − sτ m
(Tm1s − 1)(1 + sTm 2 )
Table 105: PID controller tuning rules – unstable SOSPD model (one unstable pole)
K m e − sτ m
G m (s) =
(Tm1s − 1)(1 + sTm 2 )
Rule
Kc
Ti
Kc
Ti
Td
Comment
Td
τ m < Tm1
Robust
Zhang and Xu
(2002).
Model: Method 1
1
Kc =
1
For τm Tm1 ≤ 0.5 , λ = 2 − 5(τ m + Tm 2 ) .
Tm 2Tm1 (Tm1 − τm ) + λ3 + 3λ2Tm1 + 3λTm12 + τmTm12
(
K m λ3 + 3λ2Tm1 + 3λTm1τm + τm 2Tm1
2
Ti = Tm 2 +
Td =
Tf =
)
2
λ3 + 3λ2Tm1 + 3λTm1 + τmTm1
,
Tm1 (Tm1 − τm )
Tm 2 (λ3 + 3λ2Tm1 + 3λTm12 + τm Tm12 )
Tm1Tm 2 (Tm1 − τ m ) + λ3 + 3λ2Tm1 + 3λTm12 + τmTm12
(
,
λ3Tm1 (Tm1 − τm )
Tm1 λ + 3λ2Tm1 + 3λTm1τm + τm 2Tm1
3
).
,
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
491



1  1 + Td s 


4.12.4 Classical controller G c (s) = K c 1 +
 Ti s  1 + Td s 
N 

R(s)
E(s)
−
+



 U(s)
Y(s)

1  1 + Td s 
K m e − sτ m

K c 1 +

T


T
s
i  1+ d s

(Tm1s − 1)(1 + sTm 2 )


N 

Table 106: PID controller tuning rules – unstable SOSPD model (one unstable pole)
K m e − sτ m
G m (s) =
(Tm1s − 1)(1 + sTm 2 )
Rule
Kc
1
Minimum ITAE
Kc
– Poulin and
Pomerleau
(1996), (1997). τ m + Tm 2
Tm1
Process output
step load
disturbance.
Process input
step load
disturbance.
x 2Tm1 1 +
1
Kc =
Ti
Minimum performance index: regulator tuning
Model: Method 1
Ti
Tm 2
0.05
0.10
0.15
0.20
0.25
0.05
0.10
0.15
0.20
0.25
x1Tm 2
Comment
Td
Coefficient values (deduced from graph):
τ m + Tm 2
x1
x2
x1
Tm1
0.9479
1.0799
1.2013
1.3485
1.4905
1.1075
1.2013
1.3132
1.4384
1.5698
2.3546
2.4111
2.4646
2.5318
2.5992
2.4230
2.4646
2.5154
2.5742
2.6381
0.30
0.35
0.40
0.45
0.50
0.30
0.35
0.40
0.45
0.50
1.6163
1.7650
1.9139
2.0658
2.2080
1.6943
1.8161
1.9658
2.1022
2.2379
x2
2.6612
2.7368
2.8161
2.9004
2.9826
2.7007
2.7637
2.8445
2.9210
3.0003
2
4(τm + Tm 2 )2
K m (x1Tm1 − 4[τm + Tm 2 ])
, Ti =
4Tm1 (τm + Tm 2 )
;
x1Tm1 − 4(τm + Tm 2 )
0≤
τm
(Td N )
≤ 2 ; 0.1Tm 2 ≤
Td
≤ 0.33Tm 2 .
N
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
492
Rule
Kc
Huang and Chen
(1997), (1999).
Model: Method 4
2
Ti
Comment
Td
Direct synthesis: time domain criteria
Ti
Tm 2
Kc
‘Good’ servo and regulator response; N = ∞ .
Direct synthesis: frequency domain criteria
Chidambaram
and Kalyan
(1996).
Ho and Xu
(1998).
Model:
Method 1;
N =∞.
3
ωpTm1 A m K m
Kc =
4
Ti
Tm 2
Ti
Tm 2
N =∞;
Model: Method 1
Representative result:
−Tm1
Tm 2
0.7854Tm1
K m τm
Paraskevopoulos
et al. (2006). Ti x1
2
Kc
Am = 2 ,
φ m = 450 .
N =∞;
Model: Method 1
2
1 + x1
5
1 + Ti 2 x12
T 
0.5 
1 + 1.11416 m 
Km 
 τm 

Tm 2
Ti
1.13076 


τ
 , Ti = K c K m Tm  2 x1 + τm  , 0 < m < 0.8 ;

Tm1
K c K m − 1  Tm Tm 


Recommended x 1 = 0.160367Tm e
3
6.06426
τm
Tm 1
.
K c and Ti are defined by De Paor and O’Malley (1989), Rotstein and Lewin (1991) or
Chidambaram (1995b), for the ideal PI control of an unstable FOLPD model [see Table 91].
1
4
.
Ti =
2
1.57ωp − ωp τm − (1 Tm1 )
5
τm Tm1 < 0.9 ; Tm 2 Tm1 > 0.3 .
Ti (1 − (τm Tm1 )) + Ti − (τm Tm1 ) + x 2
2
x1 =
2Ti 2 (τm Tm1 )
,
{T (1 − (τ T )) + T − (τ T )} + 4(τ T )T (1 + T − (τ T )) ;
(φ φ ) ,
T = x (1 + (T τ )[0.632(τ T ) + 0.436 τ T − 0.0153])
1 − (φ φ )
i
x3 =
2
2
x2 =
i
3
m
m1
m
m1
i
m
m
m1
m1
2
m
m
0.0029 − 0.0682 τm Tm1 + 1.4941(τm Tm1 )
m1
m1
,
i
i
m
m1
max
m
m
max
m
m
(1.003 − (τm Tm1 ))2
max
φm > 0.2φmax
= −(τm Tm1 ) (Tm1 τm ) − 1 + tan −1 ( (Tm1 τm ) − 1 ) .
m , φm
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Paraskevopoulos
et al. (2006).
Model: Method 1
6
Kc
Ti
Td
Comment
Kc
Ti
Tm 2
N=∞
6
A m > 0.2(A max
m − 1) +1;
493
τm
T
< 0. 9 ; m 2 > 0. 3 .
Tm1
Tm1
K c = K max A m or K min A m ,
K min = Ti ωmin
1 + ωmin 2
1 + Ti 2ωmin 2
K max = Ti ωmax
0.03[τm Tm1 ]
1.14 − [τm Tm1 ]
ωmin = 1 +


0.05
 0.973 +
Ti − x1

1 − [τm Tm1 ] 

1 + ωmax 2
1 + Ti 2ωmax 2
0.006 +
x1
,
Ti −[τm Tm1 ](1 + Ti )
,
4
2

 τ   
τ  x   1.571Tm1
ωmax = 1 + 0.22 m   1 +  0.1 − 0.3 m  1  
Tm1  Ti   τm

 Tm1    



 

Ti
Ti
− 0.9463 
− 0.5609 ,

T
+
1
τ
T
T
+
1
τ
T
(
)(
)
(
)(
)
m
m1
m
m1
 i
  i

x1 =
0.0029 − 0.0682 τm Tm1 + 1.4941(τm Tm1 )
(1.003 − [τm Tm1 ])2
;
1+ (τ m Tm1 ) 


 max  


 A m − 1  A m − 1 


+
Ti = x 2 1 + 0.65 


 A max − 1  
1
A
1
−
−


m
  
 m



[
[
]
]
2
3

τ 
 τ  3(τm Tm1 )4 − 2.3(τm Tm1 )2 
τ
τ
,
0.01− 0.18 + 5 m − 32 m + 75 m  − 51 m  +
Tm1
Tm1


(1 − (τm Tm1 ))3
 Tm1 
 Tm1 


1
.
571
T
m1
=
.
with A max
m

0.4085[τm Tm1 ] 

τm 1 +

 1 − 0.2864[τm Tm1 ] 
b720_Chapter-04
04-Apr-2009
Handbook of PI and PID Controller Tuning Rules
494
Rule
Kc
Ti
Paraskevopoulos
2
et al. (2006). Ti x 2 1 + x 2
2 2
1 + Ti x 2
Model: Method 1
7
0 ≤ x1 ≤ 0.55 +
(τm + Tm 2 )  0.31 −
Tm1
Comment
Td
x1 ( τm + Tm 2 )
Tm1
Ti
N=∞
>
Ti
0.15(τm + Tm 2 )
Tm1
0.0098

 ; x1 < 0.15 .
8
7
FA


1 − ([τm + Tm 2 ] Tm1 ) 
Ti (1 − ([τm + Tm 2 ] Tm1 ) + Td ) + Ti − ([τm + Tm 2 ] Tm1 ) + Td + x 3
2
x2 =
x3 =
2Ti 2 (([τm + Tm 2 ] Tm1 ) − Td )
,
{T (1 − ([τ + T ] T ) + T ) + T − ([τ + T ] T ) + T } + x ,
2
2
i
m
m2
m1
d
i
m
m2
m1
d
4
x 4 = 4(([τm + Tm 2 ] Tm1 ) − Td )Ti (1 + Ti − ([τm + Tm 2 ] Tm1 ) + Td ) ;
2


 τ + Tm 2

τ + Tm 2
φm
− Td  + 0.436 m
− Td − 0.0153
 0.632 m

max
Tm1
Tm1
φm

,


Ti = x 5 1 +

[
(
τm + Tm 2 ] Tm1 ) − Td
1 − φm φmax
m




(
x5 =
0.0029 − 0.0682 ([τm + Tm 2 ] Tm1 ) − Td + 1.4941(([τm + Tm 2 ] Tm1 ) − Td )
(1.003 − ([τm + Tm 2 ] Tm1 ) + Td )2
)
.
0.02 < τm Tm1 < 0.9 ; Tm 2 Tm1 < 0.3 . φm > 0.2φmax
m ,



 τm + Tm 2
Tm1
Tm1

− Td − 1 + tan −1 
− Td − 1  .
φmax
− Td 
m = −
 τm + Tm 2

 τ m + Tm 2
 Tm1


8
x 2 , x 3 and x 4 given in footnote 7;

 
Tm1 
T (τ + Tm 2 )
1 + 0.4 d m
− 0.22Td  x 6  ; x 5 given in footnote 7;
Ti = x 5 1 +

Tm1
 
 τm + Tm 2 
(
)

τ + Tm 2
τ + Tm 2  φm φmax
m
x 6 =  − 0.0153 − 0.436 m
+ 0.632 m
,

Tm1
Tm1  1 − φm φmax
m

(


 τ + Tm 2 
Tm1
Tm1

φ max
= − m
− 1 + tan −1 
−1 .
m



 Tm1  τ m + Tm 2
 τ m + Tm 2

)
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
9
K max A m or
Paraskevopoulos
et al. (2006).
Td
Comment
τm + Tm 2
Tm1
N =∞;
Model: Method 1
Ti
x3
Ti
K min A m
495
A m > 0.2(A max
m − 1) +1; 0.02 < τ m Tm1 < 0.9 .
9
K min = Ti ωmin
1 + ωmin 2
2
1 + Ti ωmin
, K max = Ti ωmax
2
0.03(x1 − Td )
1.14 − x1 + Td
ωmin = 1 +

0.05 
Ti − x 2
 0.973 +

1
x1 + Td 
−

1 + ωmax 2
with
1 + Ti 2ωmax 2
0.006 +
x2
Ti −(x1 − Td )(1 + Ti )
, x1 =
τm + Tm 2
,
Tm1
2

 x   1.571
ωmax = 1 + 0.22(x1 − Td )4 1 + 0.1 − 0.3 x1 − Td  2  

 Ti   x1 − Td


 

Ti
Ti
− 0.9463 
− 0.5609 ;

 (Ti + 1)(x1 − Td )
  (Ti + 1)(x1 − Td )

[
] (
[
]
)
x 1 − Td +1 


 max  


 A m − 1  A m − 1 


 + 0.01 5 x − T − 0.18
Ti = x 2 1 + 0.65 
1
d


 
max


1 −  Am − 1
Am − 1  




  


 3(x − T )4 − 2.3(x1 − Td )2 
+ 0.01 − 32(x1 − Td ) + 75(x1 − Td )2 − 51(x1 − Td )3 + 0.01 1 d
,
(1 − x1 + Td )3


[
[
]
[
x2 =
0.0029 − 0.0682 x1 − Td + 1.4941(x1 − Td )
(1.003 − x1 + Td )2
]
]
;

T
0.0098 
 ; x 3 < 0.15 ; m 2 < 0.3 .
0 ≤ x 3 ≤ 0.55 + x1  0.31 −

Tm1
1 − x1 

b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
496
Rule
Kc
Paraskevopoulos
et al. (2006) –
continued.
N =∞.
10
04-Apr-2009
K min = Ti ωmin
10
Ti
K max A m or
>
Tm 2 Tm1 < 0.3 ;
0.15(τm + Tm 2 )
τ
0.02 < m < 0.9.
Tm
T
Ti
K min A m
Comment
Td
m1
1 + ωmin 2
2
1 + Ti ωmin
, K max = Ti ωmax
2
1 + ωmax 2
2
2
1 + Ti ωmax
0.006 + [0.03(x1 − Td ) (1.14 − x1 + Td )]
ωmin = 1 +
(0.973 + 0.05 [1 − x1 + Td ])Ti − x 2
, x1 =
τm + Tm 2
, with
Tm1
x2
T i −(x1 − Td )(1 + Ti )
 (0.14 + 1.15x1 )(Td x1 )  x 2 
0.0029 − 0.0682 x1 − Td + 1.4941(x1 − Td )
  , x 2 =
;
1 +
2


1 + 2(Td x1 )
(1.003 − x1 + Td )2

 Ti 
3
[
][ (
]
)
ωmax = 1 + 0.22(x1 − Td )4 1 + 0.1 − 0.3 x1 − Td (x 2 T1 )2 [1.571 (x1 − Td )]



Ti
Ti
− 0.9463 
− 0.5609

(
)(
)
(
)(
)
T
1
x
T
T
1
x
T
+
−
+
−
1
d
1
d
 i
 i
 ;
(
5.53 − 0.41x1 )(Td x1 )4
1+
1 − 0.65(Td x1 )3 1.27 − 0.4(Ti x 2 )2
[
]
[


 max  

 A m − 1  A m − 1 




Ti = x 3 1 + 0.65



max

1 −  Am − 1
A
− 1 

 m
 


[
][
]
x 1 − Td +1 
]

 + 0.01 5 x − T − 0.18
1
d



[
2

 3(x − T )4 − 2.3(x1 − Td )2    Td 
1 +   x 4 
+ 0.01 1 d

 

(1 − x1 + Td )3
   x1 


[
]
]
+ 0.01 − 32(x1 − Td ) + 75(x1 − Td )2 − 51(x1 − Td )3 ,
  T  0.367 + 1.78x 
1
x 3 = x 2 1 +  d 
,
  x1  1 − (Td x1 )2 


3

(A m − 1)3  ,
 2x13 − 3.32 x12 + 1.2x1 − 0.27 −
3


A max
m −1 
1
1.571
=
.
A max
m
3


(x1 − Td )1 + 0.4085[x1 − Td ]  1 + (7.41 − 3.52x1 )(Td x1 ) 3
1 − (0.47 + 0.49x1 )(Td x1 )
 1 − 0.2864[x1 − Td ] 
T 
x 4 =  d 
 x1 
3x1
(
)
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
497
4.12.5 Two degree of freedom controller 1






βTd s 
Td s 
1
 E (s ) − K c  α +
 R (s )
+
U (s ) = K c  1 +
Td 
 Ti s 1 + Td s 

1+ s 



N 
N 






T
s
β
d
α +
K
Td  c

1+
s

N 

R(s)
E(s)
+
−




T
s
1
d

K c 1 +
+
 Ti s
Td 
1+
s

N 

−
+
U(s)
Y(s)
K m e − sτ
(Tm1 s − 1)(1 + sTm 2 )
m
Table 107: PID controller tuning rules – unstable SOSPD model (one unstable pole)
K m e − sτ m
G m (s ) =
(Tm1s − 1)(1 + sTm 2 )
Rule
Kc
Huang and Lin
(1995) –
minimum IAE.
1
Ti
Td
Comment
Minimum performance index: regulator tuning
α = 0 , β =1;
1
Ti
Td
N not specified;
Kc
Model: Method 2
Note: equations continued onto p. 498. 0.05 ≤ τ m Tm1 ≤ 0.4 ; Tm 2 ≤ Tm1 ;
Kc = −
−1.164
τ 
τ
1 
T 
− 174.167 − 31.364 m + 0.4642 m 
− 103.069 m 2 
Km 
Tm1
Tm1 
 Tm1 


2
.
54
1
.
065
1.014 
T 
 Tm1 
 Tm 2 
Tm 2 τ m
1 
 − 83.916 m 2 





−
−
+
66
.
962
59
.
496
T 
τ 
T 
Km 

Tm1 2
 m1 
 m 
 m1 


−
Tm 2 τ m 
Tm 2
τm

2
T
1 
− 70.79 m 2 + 23.121e Tm1 + 126.924e Tm1 + 26.944e Tm1  ;

Km 
τm


b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
498
Rule
Huang and Lin
(1995) –
continued.
2
Kc
Ti
Td
Comment
Kc
Ti
Td
α = 0 ,β =1,
N not specified;
Model: Method 2
2
2

T  
τ 
T
τ
Ti = Tm1 0.008 + 2.0718 m + 6.431 m  + 0.4556 m 2 + 0.7503 m 2  
Tm1
Tm1

 Tm1  
 Tm1 

3
3

 T τ 2 
τ 
T 
T τ

+ Tm1 2.4484 m 2 2m − 18.686 m  − 2.9978 m 2  − 21.135 m 2 m
 T 3 
Tm1 
Tm1 

Tm1


m
1



4

τ T 2 
 T τ 3 
τ 
+ Tm1 12.822 m m32  + 39.001 m  + 22.848 m 2 4m 

 T

 T

 Tm1 
 m1 
 m1 

4

 T 3τ 
 T 2τ 2 
T  
+ Tm1  − 4.754 m 2 4 m  − 0.527 m 2 4m  + 1.64 m 2   ;


 T
 T

 Tm1  
m1

 m1 


2
2

τ 
T  
T
τ
Td = Tm1 1.1766 m − 4.4623 m  + 0.5284 m 2 − 1.4281 m 2  
Tm1
Tm1

 Tm1 
 Tm1  

3
3
 T τ
 τ 2 T 
τ 
T 
+ Tm1 4.6 m 2 2m + 11.176 m  + 1.0886 m 2  − 5.0229 m 3m 2 
 T


Tm1
 Tm1 
 Tm1 
 m1 

4

τ T 2 
 T τ 3 
τ 
+ Tm1  − 0.0301 − 0.5039 m m32  − 9.8564 m  − 7.528 m 2 4m 

 T

 T

 Tm1 
 m1 
 m1 

4

τ T 3
 τ 2T 2 
T  
+ Tm1 − 2.3542 m m42  + 9.3804 m m4 2  − 0.1457 m 2   .


 T
 T

 Tm1  
m1

 m1 


2
Note: equations continued onto p. 499. 0.05 ≤ τ m Tm1 ≤ 0.25 , Tm1 < Tm 2 ≤ 10Tm1 ;
Kc = −
2.1984
τ 
1 
T 
τ
1750.08 + 1637.76 m + 1533.91 m 
− 7.917 m 2 
Km 
Tm1
Tm1 
 Tm1 


−
0.791
3.2927
1.0757 
T 
 Tm1 
 Tm 2 
Tm 2 τ m
1 
6.187 m 2 





−
6
.
451
+
0
.
002452
T 
τ 
T 
Km 

Tm1 2
 m1 
 m 
 m1 


−
Tm 2 τ m 
Tm 2
τm

2
T
1 
1.3729 m 2 − 1739.77e Tm1 − 0.000296e Tm1 + 2.311e Tm1  ;

Km 
τm


b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
2
2

T  
τ 
T
τ
Ti = Tm1 51.678 − 57.043 m + 1337.29 m  + 0.1742 m 2 − 0.1524 m 2  

Tm1
Tm1
 Tm1  
 Tm1 

3
3
4

τ 
T 
τ  
T τ
+ Tm1 7.7266 m 2 2m − 6011.57 m  + 0.0213 m 2  + 9135.52 m  

Tm1
 Tm1 
 Tm1 
 Tm1  

2 
3 


T τ 2 

 + 0.0645 τ m Tm 2  + 274.851 Tm 2 τ m 
+ Tm1  − 65.283 m 2 m
 T 3 
 T 3 
 T 4 

 m1 
 m1 
 m1 
4

 T 3τ 
 T 2τ 2 
T  
+ Tm1 0.003926 m 2 4 m  − 2.0997 m 2 4m  − 0.001077 m 2  
 T

 T


 Tm1  
m1
 m1 



Tm 2 τ m 
τm
Tm 2

2
+ Tm1  − 49.007e Tm1 + 0.000026e Tm1 + 0.2977e Tm1  ;




2

 τm 
Tm 2 
τm



+
Td = Tm1 − 0.0605 + 4.6998
0
.
0117
− 29.478

Tm1
Tm1 

 Tm1 


2
3

 τm  
 Tm 2 
Tm 2 τ m






+ 0.6874
+ 140.135
+ Tm1 − 0.0129
2
Tm1 
Tm1  

Tm1




3
2 


 τ m 2 Tm 2 
 Tm 2 

 − 0.1289 τ m Tm 2 



+ Tm1 0.002455
1
.
4712
+

 T 3 
 T 3 

 Tm1 
 m1 
 m1 

4
3 


 Tm 2 τ m 3 
 τm 

 + 0.007725 τ m Tm 2 



0
.
6884
+ Tm1 − 238.864
+

 T 4 
 T 4 

 Tm1 
 m1 
 m1 

4

 τ m 2 Tm 2 2 
 Tm 2  



.


− 0.000135
+ Tm1 − 0.1222
 T 4 
Tm1  


m
1




499
b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
500
Rule
Kc
Minimum IAE –
Huang and Lin
(1995).
3
04-Apr-2009
3
Kc
Ti
Comment
Td
Minimum performance index: servo tuning
α = 0 , β =1;
Ti
Td
N not specified;
Model: Method 2
Note: equations continued onto p. 501. 0.05 ≤ τ m Tm1 ≤ 0.4 , Tm 2 ≤ Tm1 ;
τ 
1 
τ
Kc = −
10.741 − 13.363 m + 0.099 m 
Km 
Tm1
 Tm1 

T 
1 
 − 708.481 m 2 
−
T 
Km 
 m1 

−1.344
0.995
+ 9.915
+ 727.914
Tm 2 τ m
Tm1 2
Tm 2 
Tm1 

T 
+ 84.273 m1 
 τm 
1.031
 Tm 2 


 Tm1 
Tm 2 τ m 
τm
Tm 2

2
Tm 2
1 
Tm 1
Tm 1
−
− 90.959
+ 9.034e
− 2.386e
− 16.304e Tm1 


Km
τm


2.12

τ 
T 
τ
Ti = Tm1 − 149.685 − 141.418 m − 88.717 m  − 17.29 m 2 
Tm1
Tm1 

 Tm1 


0.985
0.286
1.988 

T 
τ 
 Tm 2 
T τ



+ Tm1 20.518 m 2 
− 12.82 m 2 2m + 3.611 m 
Tm1 
Tm1 
Tm1 


Tm1





Tm 2 τ m 
τm
Tm 2

2
Tm 2
Tm1
Tm1

+ Tm1 0.000805
+ 141.702e
− 2.032e
+ 10.006e Tm1  ;


τm


2

τ 
T 
τ
Td = Tm1  − 0.4144 + 15.805 m − 142.327 m  + 0.7287 m 2 
Tm1
Tm1 

 Tm1 


2
3
3

T  
τ 
T 
T τ
+ Tm1 0.1123 m 2  − 18.317 m 2 2m + 486.95 m  − 10.542 m 2  

Tm1
 Tm1  
 Tm1 
 Tm1 

4

 τ 2T 
τ T 2 
τ  
+ Tm1 204.009 m 3m 2  + 47.26 m m32  + 396.349 m  
 T

 T


 Tm1  
 m1 
 m1 


 τ 3T 
τ T 3
 τ 2 T 2 
+ Tm1  − 138.038 m 4m 2  + 52.155 m m42  − 646.848 m m4 2 

 T

 T

 T

m1
 m1 
 m1 


4
5

 τ m 4 Tm 2 
 τm 
 Tm 2 







4731
.
72
425
.
789
+
−
+ Tm1 19.302
T 
 T 5 
Tm1 

m1 


m
1



0.997 



b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Minimum IAE –
Huang and Lin
(1995) –
continued.
4
Kc
Ti
Td
Comment
Kc
Ti
Td
α = 0 , β =1;
N not specified;
Model: Method 2

τ T 4 
 τ 3T 2 
 τ 2 T 3 
+ Tm1  − 289.476 m m52  − 841.807 m m5 2  + 1313.72 m m5 2 
 T

 T

 T

m1
m1
 m1 





5
6

 τ 5 T 
τ 
T 
+ Tm1  − 3.7688 m 2  + 6264.79 m  − 161.469 m 6m 2 
 T


 Tm1 
 Tm1 
 m1 


τ T 5
 τ 4T 2 
 τ 2 T 4 
+ Tm1 204.689 m m62  + 25.706 m m6 2  − 791.857 m m6 2 
 T

 T

 T


m1
m1
 m1 




3
6

 τ m Tm 2 
 Tm 2  





+ Tm1 648.217
− 5.71
 .
 T 2 

 Tm1  
 m1 

4
Note: equations continued onto p. 502. 0.05 ≤ τ m Tm1 ≤ 0.25 , Tm1 < Tm 2 ≤ 10Tm1 ;
Kc = −
−0.3055
τ 
1 
T 
τ
+ 10.442 m 2 
− 130.2 + 85.914 m + 34.82 m 
Km 
Tm1
Tm1 
 Tm1 


−
0.5174
1.0077
0.9879 
T 
 Tm1 
 Tm 2 
Tm 2 τ m
1 
 − 22.547 m 2 





−
+
14
.
698
52
.
408
T 
τ 
T 
Km 

Tm1 2
 m1 
 m 
 m1 


−
Tm 2 τ m 
Tm 2
τm

2
T 
1 
− 51.47 m 2  + 53.378e Tm1 − 0.000001e Tm1 + 0.286e Tm1  ;

Km 
τ
 m 


2

τ  
T 
τ
Ti = Tm1 72.806 − 268.746 m − 4.9221 m 2  + 2468.19 m  
Tm1

 Tm1  
 Tm1 

2
3
3

T  
τ 
T 
T τ
+ Tm1 0.6724 m 2  + 151.351 m 2 2m − 6914.46 m  − 0.0092 m 2  

Tm1
 Tm1  
 Tm1 
 Tm1 

4

 τ 2T 
τ T 2 
τ  
+ Tm1  − 795.465 m 3m 2  − 14.27 m m32  + 5580.17 m  
 T

 T


 Tm1  
 m1 
 m1 


 τ 3T 
τ T 3
 τ 2 T 2 
+ Tm1 1417.65 m 4m 2  + 0.4057 m m42  + 55.536 m m4 2 
 T

 T

 T


m1
 m1 
 m1 


501
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
502
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2006).
5
Ti
Kc
Td
Model:
Method 1;
p. 189;
β =1; N = ∞ .
Tm 2 τ m 
Tm 2
τm
4

2
T 
+ Tm1  − 0.001119 m 2  − 44.903e Tm1 + 0.000034e Tm1 − 15.694e Tm1 


 Tm1 


19.056
7.3464 

τ 
 Tm 2 
;


+ Tm1 678778 m 
Tm1 
Tm1 






1.1798

 τm 
Tm 2 
τm



−
Td = Tm1 175.515 − 86.2
0
.
008207
+ 348.727

Tm1
Tm1 

 Tm1 


0.1064
0.0355
0.0827 

 Tm 2 
 τm 
 Tm 2 
Tm 2 τ m








+ Tm1 − 55.619
+ 0.0418
+ 78.959
T 
Tm1 
Tm1 


Tm1 2
m1 





Tm 2 τ m 
Tm 2
τm

2
 Tm 2 
Tm 1
Tm 1

 − 187.01e
+ Tm1 0.005048
+ 0.000001e
− 0.0149e Tm1  .


 τm 


5
Kc =
1.13076 

T 

0.5 
 , Ti = K c K m Tm1  2 x1 + τm  ; α = 1 + τm ;
1 + 1.11416 m1 

T
K
K
1
T
K c K m Ti
Km 
τ
−

c m
m1 
 m 
 m1


Recommended x 1 = 0.160367Tm1e
6.06426
τm
T m1
; 0<
τm
< 0.8 (Huang and Chen, 1999).
Tm1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
4.12.6 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
−
Y(s)
Model
F2 (s)
Table 108: PID controller tuning rules – unstable SOSPD model (one unstable pole)
K m e − sτ m
G m (s) =
(Tm1s − 1)(1 + sTm 2 )
Rule
Kc
Majhi and
Atherton (1999),
Atherton and Boz
(1998).
Model: Method 1
Minimum ISE –
servo – Atherton
and Boz (1998).
1
Ti =
x5 =
−1
x1
τm + Tm 2
−1
1
Ti
x 2x5 K m
Comment
Td
Direct synthesis: time domain criteria
0
Ti
α = 0 ; χ = 0 ; δ = 0 ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ; ε = 0 ; φ = 0 ;
b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = [1 − x 5 x 3 ] K m , b f 3 = 1 ; a f 5 = 0 .
Coefficient values deduced from graphs:
x1
x2
x3
x4
x1
x2
x3
x4
1.2
2.6
4.5
6.4
− Tm1−1
0.58
0.91
0.89
0.98
-0.81
-0.55
-0.30
-0.22
2.36
2.49
2.18
2.23
8.5
10.8
13.3
16.0
1.02
1.03
1.02
1.00
 x x − (Tm1 − Tm 2 − τm )  τm − Tm 2
≤ 0.8 ;
, bf 4 =  6 4
,
1 − x 5x 3
Tm1


(Tm1Tm 2 + τmTm1 − τmTm 2 )3 , x = (Tm1Tm 2 + τ m Tm1 − τ m Tm 2 )2 .
τm 2Tm12Tm 2 2
-0.16
-0.14
-0.12
-0.09
6
τ m Tm1Tm 2
2.18
2.16
2.13
2.10
503
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
504
Rule
Kc
Ti
Comment
Td
Parameters as specified by Majhi and Atherton (1999) and Atherton
and Boz (1998).
x1
x2
x3
x4
x1
x2
x3
x4
Minimum ISTE –
servo – Atherton
and Boz (1998).
1.8
4.2
6.9
10.0
Minimum ITSE – 1.8
servo – Majhi
4.2
and Atherton
6.9
(1999).
10.0
Minimum ISTSE 2.3
– servo –
5.2
Atherton and Boz 8.4
(1998).
12.4
Minimum ISTSE 2.3
– servo – Majhi
5.2
and Atherton
8.7
(1999).
12.4
0.17
-0.31
1.08
13.0
0.28
-0.07
0.94
0.22
-0.16
0.96
16.2
0.31
-0.06
0.99
0.25
-0.11
0.95
20.3
0.29
-0.04
0.93
0.26
-0.08
0.92
24.0
0.30
-0.04
0.95
0.17
-0.29
1.05
13.0
0.28
-0.06
0.94
0.22
-0.16
0.96
16.8
0.27
-0.05
0.90
0.25
-0.11
0.95
20.3
0.29
-0.04
0.97
0.26
-0.08
0.92
0.08
-0.16
0.71
16.5
0.14
-0.04
0.64
0.11
-0.10
0.65
20.4
0.15
-0.03
0.65
0.14
-0.07
0.68
25.2
0.15
-0.02
0.64
0.13
-0.04
0.63
31.2
0.14
-0.02
0.61
0.08
-0.16
0.69
16.5
0.14
-0.03
0.64
0.11
-0.10
0.65
20.4
0.15
-0.03
0.67
0.12
-0.06
0.62
25.2
0.15
-0.02
0.65
0.13
-0.04
0.64
Direct synthesis: frequency domain criteria
Continued on
2
next page.
T
T
K
i
d
Kwak et al.
(2000).
Model: Method 3
2
c
Optimal gain margin: regulator response. 0 ≤ Tm1 τm ≤ 1 − (Tm 2 Tm1 ) .
[
+ 2.189(T τ )
ξ ] , τ T < 0.9 or
K = (1 K )[− 0.365 + 0.260((τ T ) − 1.4 ) + 2.189(T τ )
ξ ] , τ T ≥ 0. 9 ;
T = T [2.212(τ T )
− 0.3] , τ T < 0.4 or
T = T [− 0.975 + 0.910((τ T ) − 1.845) + x [5.25 − 0.88((τ T ) − 2.8) ] ,
K c = (1 K m ) − 0.67 + 0.297(Tm1 τm )
2.001
0.766
m1
m
m
2
c
m
m
m
m1
m
m
0.766
m1
m1
m
m1
0.520
i
m1
i
m1
m
m1
m
m1
2
m
m1
2
1
m
m1
τm Tm1 ≥ 0.4 with x1 = 1 − e − (ξ m [0.15 + 0.33(τ m Tm1 )]) ;
Td =
(
Tm1
1.171
x 2 1.45 + 0.969(Tm1 τm )
)− 1.9 + 1.576(T τ )
0.530
m1
m
,
with x 2 = 1 − e − (ξ m [−0.15 + 0.939(Tm1 τ m )
1.121
]) .
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kwak et al.
(2000) –
continued.
3
Kc
Ti
Td
Kc
Ti
Td
505
Comment
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 , a f 1 = 0 , a f 2 = 0 ;
ε = 0 ; φ = 0 ; ϕ = 0 ; b f 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; b f 3 = 1 ; a f 5 = 0 .4
Robust
5
Lee et al. (2000).
Model: Method 1
Ti
Kc
0 ≤ τm Tm1 < 2
Td
α = 0 ; β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; bf 1 = 0 ,
[
]
a f 1 = Tm1 ((λ Tm1 ) + 1) e τ m Tm1 − 1 , a f 2 = 0 ; ε = 0 ; φ = 0 ; ϕ = 0 ;
3
2
bf 2 = 0 , a f 3 = a f 1 , a f 4 = 0 ; K 0 = 0 .
Optimal gain margin: servo response. 0 ≤ Tm1 τm ≤ 1 − (Tm 2 Tm1 ) .
[

ξ ], ξ ≤ 0.9 or
K = (1 K )[− 0.544 + 0.308(τ T ) + 1.408(T τ )
ξ ] , ξ > 0.9 .
K c = (1 K m ) − 0.04 + 0.333 + 0.949(Tm1 τm )
0.983
m
m
0.832
c
m
m
m1
m1
Ti = Tm1 [2.055 + 0.072(τm Tm1 )]ξ m , τ m Tm1 ≤ 1 or
m
m
m
Ti = Tm1 [1.768 + 0.329(τm Tm1 )]ξ m , τ m Tm1 > 1 ;
Td =
4
K0 =
[
Tm1
x1 0.55 + 1.683(Tm1 τm )
1.090
1
G m ( jωu )(1 + jb f 4ωu ) K m
, x1 = 1 − e −1.149ξ m (τ m Tm1 )
1.060
]
.
(
)
, b f 4 = x 3 + x 4 (τm Tm1 ) + x 5 (τm Tm1 )2 Tm1 , with
2
3
4
2
3
4
x 3 = −0.0030 + 0.6482x 6 − 2.2841x 6 + 2.6221x 6 − 0.9611x 6 ,
x 4 = 0.2446 − 1.0410 x 6 − 13.6723x 6 − 16.7622 x 6 + 5.1471x 6 ,
2
3
4
x 5 = 0.1685 + 0.8289 x 6 − 9.3630 x 6 + 2.9855x 6 + 7.3803x 6 , x 6 = Tm 2 Tm1 .
5
Kc =
Ti
, recommended τm ≤ λ ≤ 2τm ;
− K m (2λ + τm − a f 1 )
2
Ti = −Tm1 + Tm 2 + a f 1 −
λ2 + a f 1τm − 0.5τm
,
2λ + τm − a f 1
τm (0.167 τm − 0.5a f 1 )
2λ + τm − a f 1
2
− Tm1a f 1 + Tm 2a f 1 − Tm1Tm 2 −
Td =
Ti
Desired closed loop transfer function =
e − sτ m
(λs + 1)2
2
−
λ2 + a f 1τm − 0.5τm
;
2λ + τm − a f 1
(Lee et al., 2006).
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
506
4.13 Unstable SOSPD Model (two unstable poles)
G m (s ) =
K m e − sτm
(Tm1s − 1)(Tm 2s − 1)


1
+ Td s 
4.13.1 Ideal PID controller G c (s) = K c 1 +
 Ti s

R(s)
E(s)
−
+


1
K c 1 +
+ Td s 
Ti s


U(s)
K m e − sτ
(Tm1s − 1)(Tm 2 s − 1)
m
Y(s)
Table 109: PID controller tuning rules – unstable SOSPD model (two unstable poles)
K m e − sτ m
G m (s) =
(Tm1s − 1)(Tm 2 s − 1)
Rule
Kc
Wang and Jin
(2004).
1
Kc =
1
Kc
Ti
K m Ti (Tm1 − τm )(Tm 2 − τm )
(TCL3 + τm )3
Td
Comment
Direct synthesis: time domain criteria
Model: Method 1
Ti
Td
,
Ti =
TCL3 + 3τm TCL3 + 3(Tm1Tm 2 + τm Tm1 − τm Tm 2 )TCL 3 + τm Tm 2 (Tm1 − τm )
,
(Tm1 − τm )(τm − Tm 2 )
Td =
(Tm 2 + τm − Tm1 )TCL33 + 3Tm1Tm 2TCL3 (TCL3 + τm ) + Tm1Tm 2τm 2 .
Ti (Tm1 − τm )(Tm 2 − τm )
3
2
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Kc
Ti
Kc
Ti
Td
Comment
Td
Model: Method 1
Robust
Lee et al. (2000).
2
Kc =
2
Ti
, λ = desired closed loop dynamic parameter;
K m (4λ + τm − x1 )
2
Ti = −Tm1 − Tm 2 + x1 − x 2 , x 2 =
6λ2 − x 3 + x1τm − 0.5τm
;
4 λ + τ m − x1
3
x 3 − (Tm1 + Tm 2 ) x1 + Tm1Tm 2 −
Td =
2
4λ3 + x 3τm + 0.167 τm − 0.5x1τm
4λ + τm − x1
− x2 ;
Ti
x1 , x 3 values determined by solving 1 −
(x s + x s + 1)e
3
2
1
(λs + 1)
4
−τms
s=
1
1
,
Tm1 Tm 2
=0.
507
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
508
4.13.2 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

R(s)
+
E(s)
−




U(s)
2
T
s
1
d
 b f 0 + b f 1s + b f 2 s
K c 1 +
+
Model
 Ti s
Td  1 + a f 1 s + a f 2 s 2
s
1+

N 

Y(s)
Table 110: PID controller tuning rules – unstable SOSPD model (two unstable poles)
K m e − sτ m
G m (s) =
(Tm1s − 1)(Tm 2 s − 1)
Rule
Kc
Ti
Kc
Ti
Td
Comment
Td
Model: Method 1
Robust
Shamsuzzoha
and Lee (2007d).
1
Recommended λ = τm .
4
τm
4
τm
 λ

 λ

Tm12 
+ 1 e Tm1 − Tm 2 2 
+ 1 e Tm 2 + Tm 2 2 − Tm12
Ti
 Tm1 
 Tm 2

1
Kc =
, Ti =
K m (4λ + τm − Ti )
Tm1 − Tm 2

4 τm
 Tm1 
λ

+ 1 e − 1 − Ti Tm
 Tm1 



, b f 0 = 1 , b f 1 = 0.5τm , b f 2 = 0 , N = ∞ ,
Ti
2 
Tm1 
Td =

 0.5τm Ti − Ti Td + 2λτ m + 6λ2
a f 2 = 0 , a f 1 = 0.1
+ Tm1 + Tm 2  , for large parametric
4
T
τ
+
λ
−
m
i



 0.5τm Ti − Ti Td + 2λτ m + 6λ2
+ Tm1 + Tm 2  .
uncertainties; otherwise, a f 1 = 
τm + 4λ − Ti


b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
509
4.13.3 Two degree of freedom controller 2




T
s
1
d
 1 + b f 1s (F(s) R (s) − Y(s) ) − K Y(s) ,
U(s) = K c 1 +
+
0
 Ti s
T  1 + a f 1s
1+ d s 

N 

1 + b f 2 s + b f 3s 2 + b f 4 s 3 + b f 5s 4
F(s) =
1 + a f 2 s + a f 3s 2 + a f 4 s 3 + a f 5 s 4
R(s)
F(s)
+
−




T
s
1
d
 1 + b f 1s
K c 1 +
+
 Ti s
Td  1 + a f 1 s
1+
s

N 

+ U(s)
−
Kc
Ti
Kc
Ti
Y(s)
K0
Table 111: PID tuning rules – unstable SOSPD model G m (s) =
Rule
Model
K m e − sτ m
(Tm1s − 1)(Tm 2 s − 1)
Td
Comment
Td
N=∞
Robust
1
Lee et al. (2000).
Model: Method 1
a f 1 = 0 , bf 1 = 0 ; bf 2 = 0 ; bf 3 = 0 ; a f 4 = 0 , a f 5 = 0 , bf 4 = 0 ,
b f 5 = 0 , K 0 = 0 ; recommended τm ≤ λ ≤ 2τm .
1
Desired closed loop transfer function = e −sτ m (λs + 1)4 (Lee et al., 2006).
2
Kc =
6λ2 − a f 3 + a f 2 τm − 0.5τm
Ti
,
, Ti = −Tm1 − Tm 2 + a f 2 − x1 , x1 =
K m (4λ + τm − a f 2 )
4λ + τ m − a f 2
a f 3 − (Tm1 + Tm 2 )a f 2 + Tm1Tm 2 −
Td =
a f 2 , a f 3 determined by 1 −
4λ3 + a f 3τm + 0.167 τm 3 − 0.5a f 2 τm 2
4λ + τm − a f 2
− x1 ;
Ti
(a s + a s + 1)e
f3
2
f2
(λs + 1)
4
−τms
s=
1
1
,
Tm1 Tm 2
=0; 0≤
τm
<2.
Tm
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
510
Rule
2
Shamsuzzoha et
al. (2006b).
Model: Method 1
Kc
Ti
Td
Comment
Kc
Ti
Td
N=∞
a f 1 = 0 , bf 1 = 0 ; a f 2 = 0 , bf 2 = 0 ; a f 3 = 0 , bf 3 = 0 ; a f 4 = 0 ,
a f 5 = 0 , bf 4 = 0 , bf 5 = 0 , K 0 = 0 .
λ , ξ , a f 1 not specified.
2
Kc =
Td =
Ti
, Ti = x1 − Tm1 − Tm 2 − x 2 ,
K m (4λξ + τm − x1 )
x 3 − x1 (Tm1 + Tm 2 ) + Tm1Tm 2 −
2
τ
0.167 τm 3 − 0.5x1τm 2 + x 3τm + 4λ3ξ
4λξ + τm − x1
− x2 ,
Ti
2
τ
m
m
2
λ2
2λξ  Tm1
2λξ  Tm1
2 λ
2

+
+
−
+
+
1
e
+ Tm 2 2 − Tm12
1
e
T
Tm1 
m2 
2
T 2 T


T
T
m1
m2
 m1

 m2

,
x1 =
Tm1 − Tm 2
2
x2 =
τ
m
2
2λξ  Tm1
x
4λ2ξ 2 + 2λ2 − x 3 + x1τm − 0.5τm 2
2 λ
, x 3 = Tm1 
−1− 1 .
1
e
+
+

T 2 T
T
4λξ + τm − x1
m
1
m1

 m1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
511
4.14 Unstable SOSPD Model with a Zero
K m (1 + Tm3 s )e −sτ m
K m (1 + Tm 3s )e −sτ m
G m (s) =
or
G
(
s
)
=
or
m
2
2
− Tm1 s 2 + 2ξ mTm1s + 1
Tm1 s 2 − 2ξ m Tm1s + 1
G m (s) =
K m (1 − Tm 4 s )e −sτm
2
Tm1 s 2 − 2ξ m Tm1s + 1

1 

4.14.1 Ideal PI controller G c (s) = K c 1 +
 Ti s 
R(s)
+

1  U(s)

K c 1 +
Model
Ti s 

E(s)
−
Y(s)
Table 112: PI controller tuning rules – unstable SOSPD model with a zero
K m (1 − Tm 4s )e −sτ m
G m (s ) =
2
Tm1 s 2 − 2ξ m Tm1s + 1
Rule
Kc
Sree and
Chidambaram (2004).
1
1
Kc
Direct synthesis: time domain criteria
Model: Method 1
Ti
Desired closed loop transfer function =
Kc =
Ti
(1)
( 2)
K m TCL + TCL + x1 + Tm 4 + τm − Ti
Ti = −
x1 =
(
(
)
(1 − sTm 4 )(1 + Tis)e−sτ .
(1 + sTCL(1) )(1 + sTCL(2) )(1 + sx1 )
m
);
(1)
( 2)
(1) ( 2 )
Tm12 TCL
+ TCL
+ x1 + Tm 4 + τm − TCL
TCL x1
(
Comment
Ti
Tm 4 τm − Tm12
)
;
(1)
( 2)
+ TCL
+ Tm 4 + τm (− 2ξ m Tm 4 τm + Tm1 (Tm 4 + τm ) ) − x 2
Tm1 TCL
(1) ( 2 )
(1)
( 2)
(− 2ξmTm1 + Tm 4 + τm )TCL
+ TCL
+ 2ξ m Tm1 )
TCL − Tm12 + (Tm 4 τm − Tm12 )(TCL
−1
2
(1) ( 2 )
x 2 = (Tm 4 τm − Tm1 )(TCL
TCL − τm Tm 4 ) ; − τm ([2ξ m Tm1 ] + Tm 4 ) < 0.62 .
,
b720_Chapter-04
04-Apr-2009
Handbook of PI and PID Controller Tuning Rules
512
Rule
Kc
Ti
Sree and
Chidambaram (2006).
Kc
2
2
K c given in footnote 1; Ti = −
x1 =
FA
(
)
(
Comment
Model: Method 1;
pp. 147–148.
Ti
)
(1)
( 2)
(1)
Tm12 TCL
+ TCL
+ x1 + Tm 4 + τm − Tm1TCL
Tm 4
Tm 4 τm − Tm12
(
, with
)(
(1)
( 2)
(1) ( 2 )
Tm1 TCL
+ TCL
+ Tm 4 + τm (− 2ξ mTm 4 τm + Tm1 (Tm 4 + τm ) ) − Tm 4 τm − Tm12 TCL
TCL − τmTm 4
(1) ( 2 )
(1)
( 2)
(− 2ξmTm1 + Tm 4 + τm )(TCL
TCL − Tm12 ) + (Tm 4 τm − Tm12 )(TCL
+ TCL
− Tm12 )
)
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
513
4.14.2 Ideal controller in series with a first order lag

 1
1
+ Td s 
G c (s) = K c 1 +
 Ti s
 Tf s + 1
R(s)
E(s)
−
+
U(s)

 1
1
K c 1 +
+ Td s 
 Ti s
 Tf s + 1
Y(s)
Model
Table 113: PID controller tuning rules – unstable SOSPD model with a zero
K m (1 − Tm 4s )e −sτ m
K m (1 + Tm3s )e−sτ m
G m (s ) =
or
2 2
2
Tm1 s − 2ξmTm1s + 1
Tm1 s 2 − 2ξ mTm1s + 1
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2004).
1
1
Ti
Kc
Desired closed loop transfer function =
Kc =
Model: Method 1
Td
(1 − sTm 4 )(1 + Tis)e−sτ .
(1 + sTCL(1) )(1 + sTCL(2) )(1 + sx1 )
m
Ti
,
K (T + T + x + T + 0.5τ − T )
(1)
CL
m
( 2)
CL
2
m4
m
i
(1) ( 2 )
0.5(Ti − 0.5τm )τm
0.5τmTCL
TCL x 2
,
Td =
, Tf =
2 (1)
( 2)
Ti
Tm1 TCL + TCL + x 2 + Tm 4 + 0.5τm − Ti
(
(
(1)
( 2)
x − Tm12 TCL
+ TCL
+ x 2 + Tm 4 + τm
Ti = 1
2
0.5Tm1 Tm 4 τm − Tm14
)
) with
(
)
)(T T + 0.5τ [T + T − T ]T + 2ξ T x )
2
(1) ( 2 )
(1) ( 2 )
( 2 ) ( 3)
( 3) (1)
(1) ( 2 )
x1 = TCL
TCL x 2 + 0.5τmTm1 TCL
TCL + TCL
TCL + TCL
TCL + ξmTm1τmTCL
TCL x 2 ,
x2 =
(
4
2
Tm1 0.5Tm 4 τm − Tm1
(1) ( 2 )
CL CL
m
(1)
CL
( 2)
CL
m4
( 2)
CL
x4
(
2
(1)
( 2)
x 3 = TCL
+ TCL
+ Tm 4 + τm ,
]
)( [
)
+ (2ξT − T − 0.5τ ) (T [T T + 0.5τ (T + T )]+ ξ T τ T T − T ) .
2
(
2
2
m
2
m1
(1)
( 2)
(1) ( 2 )
x 4 = −Tm1 0.5Tm 4 τm − Tm1 Tm1 TCL
+ TCL
+ 0.5τm + 2ξ m Tm1 − 0.5τmTCL
TCL
m1
m4
(1) ( 2 )
CL CL
)
(1) ( 2 )
Tm1 (− 2ξ m Tm1 + Tm 4 + 0.5τm ) 0.5τm TCL
TCL − Tm 4 x 3
,
x4
4
+
m m4 3
m
(1)
CL
( 2)
CL
(1) ( 2 )
m m1 m CL CL
4
m1
b720_Chapter-04
FA
Handbook of PI and PID Controller Tuning Rules
514
Rule
Sree and
Chidambaram
(2006).
2
04-Apr-2009
2
Kc
Ti
Td
Comment
Kc
Ti
Td
p. 165;
Model: Method 1
(1 + sTm3 )(1 + Tis)e−sτ .
(1 + sTCL(1) )(1 + sTCL(2) )(1 + sx 2 )
m
Desired closed loop transfer function =
Kc =
Ti
,
(1)
( 2)
K m TCL
+ TCL
+ x 2 − Tm3 + 1.5τm − Ti
(
)
(
(1)
( 2)
x − Tm14 TCL
+ TCL
+ x 2 − Tm 3 + τm
Ti = 1
2
− 0.5Tm1 Tm3τm − Tm14
) + 0.5τ , T = 0.5(T − 0.5τ )τ ,
m
(1) ( 2 )
0.5τm TCL
TCL x 2
2 (1)
( 2)
Tm1 TCL + TCL + x 2 − Tm3 + 1.5τm − Ti
Tf =
(
2
i
d
m
m
Ti
);
(
)
)(T T + 0.5τ [T + T + T ]T − 2ξ T x )
(1) ( 2 )
(1) ( 2 )
( 2)
(1)
(1) ( 2 )
x1 = TCL
TCL x 2 + 0.5τ m Tm1 TCL
TCL + TCL
x 2 + x 2 TCL
− ξ m Tm1τ m TCL
TCL Tm3 ,
x2 =
(
4
2
Tm1 − 0.5Tm3τ m − Tm1
(1) ( 2 )
CL CL
m
(1)
CL
( 2)
CL
m3
( 2)
CL
x4
(
(1)
( 2)
x 3 = TCL
+ TCL
− Tm 3 + τm ,
2
(
2
)( [
]
2
(1)
( 2)
(1) ( 2 )
x 4 = Tm1 0.5Tm3τm + Tm1 Tm1 TCL
+ TCL
+ 0.5τm + 2ξm Tm1 − 0.5τm TCL
TCL
(
2
+ Tm1 2ξTm1 + Tm3 − 0.5τm
)
)
(1) ( 2 )
Tm1 (− 2ξ m Tm1 − Tm3 + 0.5τm ) 0.5τm TCL
TCL + Tm3 x 3
,
x4
4
+
m m3 3
2
)
(T [T T + 0.5τ (T + T )]+ ξ T τ T T − T ) .
2
m1
(1) ( 2 )
CL CL
m
(1)
CL
(2)
CL
(1) ( 2 )
m m1 m CL CL
4
m1
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Sree and
Chidambaram
(2006).
3
3
Kc
Ti
Td
Comment
Kc
Ti
Td
p. 148;
Model: Method 1
Desired closed loop transfer function =
Kc =
(1 − sTm 4 )(1 + Tis)e−sτ .
(1 + sTCL(1) )(1 + sTCL(2) )(1 + sx 2 )
0.5(Ti − 0.5τm )τm
, T =
,
m
Ti
(1)
( 2)
K m TCL
+ TCL
+ x 2 + Tm 4 + 1.5τm − Ti
(
(1) ( 2 )
0.5τm TCL
TCL x 2
Tf =
2 (1)
( 2)
Tm1 TCL + TCL + x 2 + Tm 4 + 1.5τm − Ti
(
Ti =
(
(1)
( 2)
x1 − Tm14 TCL
+ TCL
+ x 2 + Tm 4 + τm
0.5Tm12Tm 4 τm − Tm14
515
)
d
Ti
);
) + 0.5τ , with
m
(
)
)(T T + 0.5τ [T + T − T ]T + 2ξ T x )
2
(1) ( 2 )
(1) ( 2 )
( 2)
(1)
(1) ( 2 )
x1 = TCL
TCL x 2 + 0.5τm Tm1 TCL
TCL + TCL
x 2 + x 2TCL
+ ξ m Tm1τmTCL
TCL Tm 4 ,
x2 =
(
4
2
Tm1 0.5Tm 4 τm − Tm1
(1) ( 2 )
CL CL
m
(1)
CL
( 2)
CL
m4
( 2)
CL
m m4 3
x4
(
(1)
( 2)
x 3 = TCL
+ TCL
+ Tm 4 + τm ,
2
(
2
)( [
]
2
2
(1)
( 2)
(1) ( 2 )
x 4 = −Tm1 0.5Tm 4 τm − Tm1 Tm1 TCL
+ TCL
+ 0.5τm + 2ξ m Tm1 − 0.5τmTCL
TCL
(
2
+ Tm1 2ξTm1 − Tm 4 − 0.5τm
)
)
(1) ( 2 )
Tm1 (− 2ξ m Tm1 + Tm 4 + 0.5τm ) 0.5τm TCL
TCL − Tm 4 x 3
,
x4
4
+
)
(T [T T + 0.5τ (T + T )]+ ξ T τ T T − T ) .
2
m1
(1) ( 2 )
CL CL
m
(1)
CL
( 2)
CL
(1) ( 2 )
m m1 m CL CL
4
m1
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
516
4.14.3 Generalised classical controller




2

T
s
1
d
 b f 0 + b f 1s + b f 2 s 
+
G c (s) = K c 1 +
2
T  1 + a f 1s + a f 2 s 

Ti s
1 + d s 

N 

E(s)
R(s) +
−


U(s)


2
T
s
b
+
b
s
+
b
s
1
d
f1
f2
 f0
K c 1 +
+
Model
 Ti s
Td  1 + a f 1 s + a f 2 s 2
s
1
+


N 

Y(s)
Table 114: PID controller tuning rules – unstable SOSPD model with a zero
K m (1 + Tm 3s )e −sτ m
K m (1 − Tm 4s )e −sτ m
G m (s ) =
or
2 2
2
− Tm1 s + 2ξ m Tm1s + 1
Tm1 s 2 − 2ξ mTm1s + 1
Rule
Kc
Rao and
Chidambaram
(2006a), (2006b).
1
1
Ti
Kc
Comment
Td
Direct synthesis: time domain criteria
x1x 2 − x 3x 4
x 5x 3 − x 6 x 2
Model: Method 1
x x −x x
x x −x x
1 5
Desired closed loop transfer function =
6 4
1 2
3 4
(T T s + T s + 1)(1 − sT )e
i d
2
i
(λs + 1)3
m4
− sτ m
,
recommended λ = 1.2τm ; b f 0 = 1 , b f 1 = 0.5τ m , b f 2 = 0 , N = ∞ .
Kc =
1
Ti
2
, x1 = − τmTm1Tm 4ξ m − Tm1 (Tm 4 + 0.5τm ) ,
K m 3λ + τm + Tm 4 − Ti
(
)
x 2 = 0.5Tm1 6λ2 + 3τm λ − Tm 4 τ m − 2ξm Tm1 (3λ + τm + Tm 4 ) − 0.5τm λ3 ,
2
3
x 3 = λ2Tm1 (λ + 1.5τm ) − λ3τm Tm1ξ m − Tm1 (3λ + τm + Tm 4 ) ,
2
4
x 4 = Tm1 − 0.5τm Tm 4 , x 5 = −Tm1 (2ξm Tm1 + Tm 4 + 0.5τm ) ,
2
2
2
(
2
)
x 6 = Tm1 0.5τm Tm 4 − Tm1 ;
af1 =
0.5τ m
Tm1
2
3
λ − Tm 4 Ti Td
λ3
0.05τm
, Tm 4 = 0 .
, Tm 4 ≠ 0 ; a f 1 =
2
3λ + τ m + Tm 4 − Ti
Tm1 3λ + τm − Ti
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Td
Comment
Kc
x 5 x 3 − x 6 x1
x 2 x 3 − x 4 x1
x 5 − x 2Ti
Ti x1
Model:
Method 1;
λ not specified.
Kc
x 3 x 4 − x 6 x1
x 4 x 2 − x1x 5
x 3 − x 2Ti
Ti x1
Model:
Method 1;
λ not specified.
Kc
Ti
517
Robust
Sree and
Chidambaram
(2006),
pp. 168–169.
Sree and
Chidambaram
(2006),
pp. 167–168.
2
Kc =
2
3
Ti
2
2
, x1 = Tm1 , x 2 = −Tm1 (0.5τm − 2ξm Tm1 ) ,
K m (4λ + 0.5τm − Ti )
x 3 = −0.5τm Tm1 , x 4 = −Tm1 , x 5 = λ4 + 6λ2Tm1 + 2ξ m Tm1 (4λ + 0.5τm ) ,
2
4
2
3
x 6 = −2ξ m Tm1λ4 + 4Tm1 λ3 − Tm1 (4λ + 0.5τm ) ; b f 0 = 1 , b f 1 = 0.5τm , b f 2 = 0 , N = ∞ ,
2
af 2 = −
3
Kc =
λ4Tm3
(
4
)
4λ + 0.5τm − Ti Tm12
, a f 1 = Tm3 −
λ4
(4λ + 0.5τm − Ti )Tm12
.
Ti
λ5
, bf 2 = 0 , N = ∞ ,
, af 2 =
2
K m (5λ + Tm 4 + 0.5τm − Ti )
Tm1 (5λ + Tm 4 + 0.5τm − Ti )
x 3 − x 2Ti
+ Ti (Tm 4 + 0.5τm )
x1
, b f 0 = 1 , b f 1 = 0.5τm ,
5λ + Tm 4 + 0.5τm − Ti
10λ2 − 0.5Tm 4 τm −
a f 1 = 2ξ mTm1 +
(
)
x1 = Tm1 0.5Tm 4 τm − Tm1 , x 2 = Tm1 (Tm 4 + 0.5τm − 2ξ mTm1 ) ,
2
2
(
4
)
x 3 = 2ξm Tm1λ5 − Tm1 10λ2 − 0.5Tm 4 τm + 2ξ mTm1[5λ + Tm 4 + 0.5τm ] + 5Tm1 λ4 ,
4
x 4 = Tm1 (Tm 4 + 0.5τm − 2ξ mTm1 ) ,
2
2
[
]
x 5 = Tm1 2ξm Tm1 (Tm 4 + 0.5τm ) − 4ξ m Tm1 + Tm1 − 0.5Tm 4 τm ,
2
5
x6 = λ
2
(
3
− 2ξ m Tm1 10λ2 − 0.5Tm 4 τm
)
2
2
2
(
4
− 4ξm Tm1 5λ + Tm 4 + 0.5τm
) − 10Tm12λ3
+ Tm1 (5λ + Tm 4 + 0.5τm ) .
4
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
518
4.14.4 Two degree of freedom controller 1
U (s) = G c (s)E (s) − F1 (s)R (s) ,








T
s
β
T
s
1
d
d
E (s) , F1 (s) = K c  α +

+
G c (s) = K c 1 +
Td 
Td 


Ti s
1+
s
s
1+


N 
N 


F1 (s)
+
R(s)
E(s)
−
−
G c (s)
U(s)
Model
+
Y(s)
Table 115: PID controller tuning rules –– unstable SOSPD model with a zero
K m (1 − Tm 4 s )e −sτ
G m (s) =
Rule
m
2 2
Tm1 s − 2ξ m Tm1s + 1
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
Sree and
Chidambaram
(2004).
1
1
Desired closed loop transfer function =
Kc =
Ti
(1)
( 2)
K m TCL
+ TCL
+ x1 + Tm 4 + τm − Ti
(
(
( 2)
T 2 T (1) + TCL
+ x1 + Tm 4 + τm
Ti = − m1 CL
Tm 4 τm − Tm12
x1 =
0
Ti
Kc
(
Model: Method 1
(1 − sTm 4 )(1 + Tis)e−sτ .
(1 + sTCL(1) )(1 + sTCL(2) )(1 + sx1 )
m
)
 2ξ
1 
 < 0.62 ;
, − τm  m +

 Tm1 Tm 4 
)− T T x ,
(1) ( 2 )
CL CL 1
)
(1)
( 2)
+ TCL
+ Tm 4 + τm (− 2ξ m Tm 4 τm + Tm1 (Tm 4 + τm ) ) − x 2
Tm1 TCL
(1) ( 2 )
(1)
( 2)
(− 2ξmTm1 + Tm 4 + τm )TCL
+ TCL
+ 2ξ m Tm1 )
TCL − Tm12 + (Tm 4 τm − Tm12 )(TCL
(
)(
)
(1) ( 2 )
and with x 2 = Tm 4 τm − Tm12 TCL
TCL − τm Tm 4 , α = 1 −
(
)
(1)
( 2)
Tm 4 + 0.5 TCL
+ TCL
.
Ti
,
b720_Chapter-04
04-Apr-2009
FA
Chapter 4: Controller Tuning Rules for Non-Self-Regulating Process Models
Rule
Sree and
Chidambaram
(2004) –
continued.
Sree and
Chidambaram
(2006).
2
Kc
Ti
Td
Comment
2
Kc
Ti
Td
Model:
Method 1;
β = 0, N = ∞.
3
Kc
Ti
0
Model:
Method 1;
p. 154.
(
(1)
( 2)
T + 0.5 TCL
+ TCL
Ti
, α = 1 − m4
(1)
( 2)
Ti
K m TCL + TCL + x 2 + Tm 4 + 0.5τ m − Ti
2 (1)
( 2)
0.5 Ti − 0.5τm τm
x − Tm1 TCL + TCL + x 2 + Tm 4 + τm
, Td =
Ti = 1
,
2
4
Ti
0.5Tm1 Tm 4 τm − Tm1
Kc =
(
(
)
)
2
(
(
519
),
)
)
(1) ( 2 )
(1) ( 2 )
( 2 ) ( 3)
( 3) (1)
(1) ( 2 )
x1 = TCL
TCL x 2 + 0.5τmTm1 TCL
TCL + TCL
TCL + TCL
TCL + ξmTm1τmTCL
TCL x 2 ,
x2 =
(
)(
4
Tm1
2
x 4 0.5Tm 4 τ m − Tm1
)(
(
4
+ Tm1
(1)
( 2)
x 3 = TCL
+ TCL
+ Tm 4 + τm ,
2
(
2
[
]
)
x )(− 2ξ T + T + 0.5τ )(0.5τ T T − T x ) ,
(1) ( 2 )
(1)
( 2)
( 2)
TCL
TCL + 0.5τm TCL
+ TCL
− Tm 4 TCL
+ 2ξ m Tm 4 x 3
)( [
4
m m1
m4
]
2
m
(1)
( 2)
(1) ( 2 )
x 4 = −Tm1 0.5Tm 4 τm − Tm1 Tm1 TCL
+ TCL
+ 0.5τm + 2ξ m Tm1 − 0.5τmTCL
TCL
( [
(
2 (1) ( 2 )
(1)
( 2)
− x 5 Tm1 TCL
TCL + 0.5τ m TCL
+ TCL
3
Desired closed loop transfer function =
Kc =
Ti
(1)
( 2)
K m TCL
+ TCL
+ x1 + Tm 4 + τm − Ti
(
Ti = −
x1 =
(
(1)
( 2)
Tm12 TCL
+ TCL
+ x1
(
)]
4
(1) ( 2 )
+ ξ m Tm1τm TCL
TCL − Tm1
),
Tm 4 τm − Tm12
m
(1 − sTm 4 )(1 + Tis)e
(1 + sTCL(1) )(1 + sTCL(2) )(1 + sx1 ) .
)
(1)
m1 CL m 4
)
(1) ( 2 )
(1)
( 2)
(− 2ξmTm1 + Tm 4 + τm )(TCL
TCL − Tm12 ) + (Tm 4 τm − Tm12 )(TCL
+ TCL
− Tm12 )
)(
)
(1) ( 2 )
and with x 2 = Tm 4 τm − Tm12 TCL
TCL − τm Tm 4 , α = 1 −
(1) ( 2 )
TCL
TCL − Tm 4
Ti
3
x 5 = −2ξTm1 + Tm 4 + 0.5τm .
)+ T + τ − T T T ,
m4
2
m4
)
− sτ m
(1)
( 2)
Tm1 TCL
+ TCL
+ Tm 4 + τm (− 2ξ m Tm 4 τm + Tm1 (Tm 4 + τm ) ) − x 2
(
(1) ( 2 )
m CL CL
.
,
b720_Chapter-04
04-Apr-2009
FA
Handbook of PI and PID Controller Tuning Rules
520
4.14.5 Two degree of freedom controller 3 U (s) = F1 (s)R (s) − F2 (s)Y(s)




(
)
1
−
β
T
s
1 + b f 1s
[
]
1
−
χ
δ
d

,
F1 (s) = K c  [1 − α ] +
+
+


T
Ti s
1 + Ti s
1 + a f 1s + a f 2 s 2
d
1
+
s


N 





[
]
K (b + b f 4 s )
1
−
ϕ
T
s
1+ bf 2s
[
]
−
φ
1
d 
F2 (s) = K c  [1 − ε] +
+
− 0 f3
2

 1 + a f 3s + a f 4 s
T
Ti s
1+ a f 5s
1+ d s 

N 

R(s)
+
F1 (s)
U(s)
Y(s)
Model
−
F2 (s)
Table 116: PID controller tuning rules –– unstable SOSPD model with a zero
Rule
Kc
Ti
Comment
Td
Direct synthesis: time domain criteria
x1x 2 − x 3x 4
x 5x 3 − x 6 x 2
x1x 5 − x 6 x 4
x1x 2 − x 3 x 4
Rao and
1
Kc
Chidambaram
(2006b).
Model: Method 1 β = 0 ; χ = 0 ; δ = 0 ; N = ∞ ; b f 1 = 0.5τm ; a f 2 = 0 ; ε = 0 ; φ = χ ;
ϕ = 0 ; bf 2 = 0 , a f 3 = 0 ; a f 4 = 0 ; K 0 = 0 .
1
(
)
Desired closed loop transfer function = TiTds 2 + Tis + 1 (1 − sTm 4 )e−sτ m
K c = Ti (K m (3λ + τm + Tm 4 − Ti )) , recommended λ = 1.2τm ;
af1 =
(λs + 1)3 ;
λ3 − Tm 4Ti Td
λ3
0.05τm
,
=
, Tm 4 = 0 with
a
T
≠
0
;
m
4
f
1
Tm12 3λ + τm + Tm 4 − Ti
Tm12 3λ + τm − Ti
0.5τm
x1 = − τmTm1Tm 4ξ m − Tm1 (Tm 4 + 0.5τm ) , x 4 = Tm1 − 0.5τm Tm 4 ,
2
(
2
)
x 2 = 0.5Tm1 6λ2 + 3τm λ − Tm 4 τm − 2ξm Tm1 (3λ + τm + Tm 4 ) − 0.5τm λ3 ,
2
3
x 3 = λ2Tm1 (λ + 1.5τm ) − λ3τm Tm1ξ m − Tm1 (3λ + τm + Tm 4 ) ,
2
4
(
)
x 5 = −Tm1 (2ξm Tm1 + Tm 4 + 0.5τm ) , x 6 = Tm1 0.5τm Tm 4 − Tm1 ;
2
2
2
Formulate φ = (Ti − Tm 4 + b f 1 ) (Ti + K m K cTi − 0.5τm K m K c − Tm 4 K m K c ) ;
α = 1 − ((Tm 4 − b f 1 ) Ti ) − (x 7 Ti )[(Ti K m K c ) + Ti − Tm 4 − 0.5τm ] ;
if φ > 1 , x 7 = 1 ; if φ ≤ 1 , 0.6 ≤ x 7 ≤ 0.7 .
b720_Chapter-05
17-Mar-2009
FA
Chapter 5
Performance and Robustness Issues in the
Compensation of FOLPD Processes with PI
and PID Controllers
5.1 Introduction
This chapter will discuss the compensation of FOLPD processes using PI and
PID controllers whose parameters are specified using appropriate tuning rules.
The gain margin, phase margin and maximum sensitivity of the compensated
system as the ratio of time delay to time constant of the process varies, are used
as ways of judging the performance and robustness of the system. This work
follows the method of Ho et al. (1995b), (1996), in which good approximations
for the gain and phase margins of the PI or PID controlled system are analytically
calculated. The method will be extended to determine analytically the maximum
sensitivity of the compensated system. Insight will be obtained into the range of
time delay to time constant ratios over which it is sensible to apply various tuning
rules, to compensate a FOLPD process.
The chapter is organised as follows. Formulae for calculating analytically the
gain margin, phase margin and maximum sensitivity are outlined in Sections 5.2
and 5.3. The performance and robustness of FOLPD processes compensated with
a variety of PI and PID tuning rules are evaluated in Section 5.4. In Section 5.5,
tuning rules are designed to achieve constant gain and phase margins for all
values of delay, for a number of process models and controller structures.
Conclusions of the work are drawn in Section 5.6. This work was previously
published by O’Dwyer (1998), (2001a).
521
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
522
5.2 The Analytical Determination of Gain and Phase Margin
5.2.1 PI tuning formulae
The controller and process model are respectively given by

1 

G c (s) = K c 1 +
 Ti s 
G m (s ) =
(5.1)
K m e −sτ m
1 + sTm
(5.2)
K m e − jωτ m K c ( jωTi + 1)
1 + jωTm
jωTi
(5.3)
Then
G m ( jω)G c ( jω) =
From the definition of gain and phase margin, the following sets of equations are
obtained:
[
]
φ m = arg G c ( jωg )G m ( jωg ) + π
(5.4)
1
G c ( jω p )G m ( jω p )
(5.5)
Am =
where ωg and ωp are given by
G c ( j ω g ) G m ( jω g ) = 1
[
]
arg G c ( jωp )G m ( jωp ) = − π
(5.6)
(5.7)
From Equation (5.3),
G m ( jω)G c ( jω) =
K m K c 1 + ω2 Ti
ωTi 1 + ω2 Tm
2
2
∠ − 0.5π + tan −1 ωTi − tan −1 ωTm − ωτ m (5.8)
b720_Chapter-05
17-Mar-2009
FA
Chapter 5: Performance and Robustness Issues...
523
Therefore, from Equation (5.4)
φ m = π − 0.5π + tan −1 ωg Ti − tan −1 ωg Tm − ωg τ m
(5.9)
with ωg given by the solution of Equation (5.6), i.e.
2
K m K c 1 + ωg Ti
2
ωg Ti 1 + ωg Tm
2
2
=1
(5.10)
Also, from Equations (5.5) and (5.8),
Am =
1
G m ( jω p ) G c ( jω p )
=
2
2
2
2
ωp Ti
1 + ωp Tm
KmKc
1 + ωp Ti
(5.11)
with ωp given by the solution of Equation (5.7), i.e.
− 0.5π + tan −1 ωp Ti − tan −1 ωp Tm − ωp τ m = − π
(5.12)
From Equation (5.10), ωg may be determined analytically to be
ωg =
(
2
2
) (K K
Ti K c K m − 1 +
2
c
2
m
2Ti Tm
)
2
2
2
2
− 1 Ti + 4 K c K m Tm
2
2
(5.13)
An analytical solution of Equation (5.12) (to determine ωp ) is not possible. An
approximate analytical solution may be obtained if the following approximation
for the arctan function is made:
tan −1 x ≈
π
π π
x , x < 1 and tan −1 x ≈ −
, x >1
4
2 4x
(5.14)
This is quite an accurate approximation, as is shown in Figures 1a and 1b
(next page). Considering Equation (5.12), four possibilities present themselves if
the approximation in Equation (5.14) is to be used. These possibilities, together
with the formula for ωp that may be determined analytically for each of these
cases, are
(i)
1
1 

π ± π 2 − 4πτ m  −
 Ti Tm 
ωp Ti > 1, ωp Tm > 1 : ω p =
4τ m
(5.15)
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
524
π ± π2 −
ωp Ti > 1, ωp Tm < 1 : ωp =
(ii)
π
(0.25πTm + τ m )
Ti
2(0.25πTm + τ m )
(5.16)
π
(iii)
ωp Ti < 1, ωp Tm > 1 : ωp =
Tm
4τ m − πTi
(5.17)
(iv)
ωp Ti < 1, ωp Tm < 1 : ωp =
2π
4τ m + π(Tm − Ti )
(5.18)
The gain and phase margin of the compensated system for each of the tuning
rules, as a function of τ m Tm , may be calculated by applying Equations (5.9),
(5.11), (5.13) and the relevant approximation for ωp from Equations (5.15) to
(5.18).
Figure 1a: Arctan x and its approximation (Equation 5.14)
arctan x
approximation
Figure 1b: % error in taking approximation (Equation 5.14) to arctan(x)
b720_Chapter-05
17-Mar-2009
FA
Chapter 5: Performance and Robustness Issues...
525
5.2.2 PID tuning formulae
The classical PID controller structure is considered, whose transfer function is
given as

1  1 + sTd 


G c (s) = K c 1 +
 Ti s  1 + sαTd 
(5.19)
and the process model is given by Equation (5.2). Substituting Equations (5.2)
and (5.19) into Equations (5.4) and (5.5) gives
φ m = 0.5π + tan −1 ωg Ti + tan −1 ωg Td − tan −1 ωg Tm − tan −1 ωg αTd − ωg τ m (5.20)
and
Am =
(1 + ω T )(1 + ω α T )
(1 + ω T )(1 + ω T )
2
ωp Ti
p
KcKm
2
m
2 2
p
i
2
2
p
2
p
2
d
2
(5.21)
d
From Equation (5.6), ωg is given by the solution of
2
K m K c 1 + ωg Ti
2
ωg Ti 1 + ωg Tm
2
2
2
1 + ωg Td
2
2
1 + α 2 ωg Td
2
=1
(5.22)
The equation for ωg may be determined to be
6
4
2
ωg + a 1ω g + a 2 ωg + a 3 = 0
2
with
a1 =
(
2
)
2
2
2
2
2
2
Ti Tm α 2 Td
2
a2 =
2
2
2
Ti Tm + α 2 Td − K c K m Ti Td
2
2
Ti − K c K m (Ti + Td )
2
2
Ti Tm α 2 Td
2
(5.23)
2
,
2
and a 3 = −
Kc Km
2
2
2
Ti Tm α 2 Td
2
.
Following the procedure outlined by Ho et al. (1996), the analytical solution of
Equation (5.23) is given as
ωg =
2
with Q =
3
R + Q3 + R 2 + 3 R − Q3 + R 2 −
3
9a a − 27a 3 − 2a 1
3a 2 − a 1
and R = 1 2
.
9
54
a1
3
(5.24)
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
526
From Equation (5.7), ω p is given by the solution of
0.5π + tan −1 ωp Td + tan −1 ωp Ti − tan −1 ωp Tm − tan −1 ωp αTd − ωp τ m = 0 (5.25)
As with Equation (5.12), an analytical solution of this equation is not possible.
An approximate analytical solution may be obtained if the approximation
detailed in Equation (5.14) is made. Looking at Equation (5.25), twelve
possibilities present themselves if the approximation in Equation (5.14) is to be
used; these possibilities are
(1) ωp Ti > 1, ωp Tm > 1
(2) ωp Ti > 1, ωp Tm < 1
(a) ω p Td ≤ 1, ω p αTd < 1
(a) ω p Td ≤ 1, ωp αTd < 1
(b) ω p Td > 1, ωp αTd < 1
(b) ω p Td > 1, ωp αTd < 1
(c) ω p Td > 1, ω p αTd > 1
(c) ω p Td > 1, ωp αTd > 1
(3) ωp Ti < 1, ωp Tm > 1
(4) ωp Ti < 1, ωp Tm < 1
(a) ω p Td ≤ 1, ωp αTd < 1
(a) ω p Td ≤ 1, ωp αTd < 1
(b) ω p Td > 1, ωp αTd < 1
(b) ω p Td > 1, ωp αTd < 1
(c) ω p Td > 1, ωp αTd > 1
(c) ω p Td > 1, ωp αTd > 1
The formulae for ωp that may be determined for each of these cases are as
follows:
(1) ωp Ti > 1, ωp Tm > 1
(a) ωp Td ≤ 1, ωp αTd < 1 :
1
1 

π ± π 2 − π(4τ m − πTd (1 − α )) −
 Ti Tm 
ωp =
(5.26)
4τ m − πTd (1 − α )
b720_Chapter-05
17-Mar-2009
FA
Chapter 5: Performance and Robustness Issues...
527
(b) ωp Td > 1, ωp αTd < 1 :
 1
1
1 

+ −
2π ± 4π 2 − π(4τ m + πTd α )
 Td Ti Tm 
ωp =
(5.27)
4τ m + πTd α
(c) ωp Td > 1, ωp αTd > 1 :
 1
1
1
1 

π ± π 2 − 4πτ m 
+ −
−
 Td Ti αTd Tm 
ωp =
(5.28)
4τ m
(2) ωp Ti > 1, ωp Tm < 1 :
(a) ωp Td ≤ 1, ωp αTd < 1 :
2π ± 4π 2 +
ωp =
π
(πTd − πTm − παTd − 4τ m )
Ti
πTm + 4 τ m + παTd − πTd
(5.29)
(b) ωp Td > 1, ωp αTd < 1 :
 1
1
3π ± 9π 2 − π
+ (πTm + παTd + 4τ m )
 Td Ti 
ωp =
(5.30)
πTm + 4τ m + παTd
(c) ωp Td > 1, ωp αTd > 1 :
 1
1
1
2π ± 4π 2 + π
−
− (πTm + 4τ m )
 αTd Td Ti 
ωp =
(5.31)
πTm + 4τ m
(3) ωp Ti < 1, ωp Tm > 1 :
(a) ωp Td ≤ 1, ωp αTd < 1 : ωp =
π
Tm (4τ m + π[αTd − Td − Ti ])
(5.32)
b720_Chapter-05
528
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
(b) ωp Td > 1, ωp αTd < 1 :
 1
1 
− π ± π 2 − π
− (πTi − παTd − 4 τ m )
 Tm Td 
ωp =
(5.33)
πTi − 4τ m − παTd
(c) ωp Td > 1, ωp αTd > 1 : ωp =
π
π
π
−
−
Td Tm αTd
πTi − 4τ m
(5.34)
(4) ωp Ti < 1, ωp Tm < 1 :
(a) ωp Td ≤ 1, ωp αTd < 1 : ωp =
2π
π(αTd − Td ) + π(Tm − Ti ) + 4τ m
(5.35)
(b) ωp Td > 1, ωp αTd < 1 :
2π ± 4π 2 −
ωp =
π
(πTm − πTi + παTd + 4τ m )
Td
πTm − πTi + 4τ m − παTd
(5.36)
(c) ωp Td > 1, ωp αTd > 1 :
 1
1 
π ± π 2 − π
− (πTi − πTm − 4τ m )
 αTd Td 
ωp =
(5.37)
4τ m − πTm − πTi
The gain and phase margin of the compensated system for each of the
tuning rules, as a function of τ m Tm , may now be calculated by applying
Equations (5.20), (5.21), (5.24) and the relevant approximation for ωp from
Equations (5.26) to (5.37). As Equation (5.19) shows, the procedure applies to
tuning rules defined for the classical PID controller structure only; however, Ho
et al. (1996) suggest that the method may be applied to tuning rules defined for
the ideal PID controller structure, by using equations that approximately convert
these tuning rules into their equivalent in the classical controller structure.
b720_Chapter-05
17-Mar-2009
Chapter 5: Performance and Robustness Issues...
FA
529
5.3 The Analytical Determination of Maximum Sensitivity
The maximum sensitivity is the reciprocal of the shortest distance from the
Nyquist curve to the (-1,0) point on the Rl-Im axis. It is defined as follows:
1
all ω 1 + G ( jω)G ( jω)
m
c
M max = Max
(5.38)
For a FOLPD process model controlled by a PI controller,
G m ( jω)G c ( jω) =
1 + ω2 Ti
2
KcKm
2
ωTi
1 + ω2 T
(5.39)
m
and
arg[G m ( jω)G c ( jω)] = −0.5π − tan −1 ωTm + tan −1 ωTi − ωτ m
(5.40)
For a FOLPD process model controlled by a PID controller,
2
G m ( jω)G c ( jω) =
2
(1 + ω2 Ti )(1 + ω2 Td )
KcKm
2
2
(1 + ω2 T )(1 + α 2 ω2 T ) ωTi
m
(5.41)
d
and arg[G m ( jω)G c ( jω)] =
− 0.5π − tan −1 ωTm − tan −1 ωαTd + tan −1 ωTi + tan −1 ωTd − ωτ m
(5.42)
The maximum sensitivity may be calculated over an appropriate range of
frequencies corresponding to phase lags of 100 0 to 260 0 .
5.4 Simulation Results
Space considerations dictate that only representative simulation results may be
provided; an extensive set of simulation results covering 103 PI controller tuning
rules and 125 PID controller tuning rules (for the ideal and classical controller
structures) are available (O’Dwyer, 2000). The MATLAB package has been used in
the simulations. Figures 2 to 7 show how gain margin, phase margin and maximum
sensitivity vary as the ratio of time delay to time constant varies, if some PI tuning
rules are used (Figures 2 to 4) and corresponding PID tuning rules for the classical
controller structure (with α = 0.1) are used (Figures 5 to 7). In these results, Z-N
refers to the process reaction curve method of Ziegler and Nichols (1942); W-W
refers to the process reaction curve method of Witt and Waggoner (1990); IAE reg,
ISE reg and ITAE reg refer to the tuning rules for regulator applications that
minimise the integral of absolute error criterion, the integral of squared error criterion
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
530
and the integral of time multiplied by absolute error criterion, respectively, as defined
by Murrill (1967) for PI tuning rules and Kaya and Scheib (1988) for PID tuning
rules based on the classical controller structure. Figures 8 to 15 show gain and phase
margin comparisons between corresponding PI and PID controller tuning rules.
It is clear that the gain margin is generally less when the PID rather than the PI
tuning rules are considered, over the ratios of time delay to time constant taken; the
difference between the phase margins is less clear cut. This suggests that these PID
tuning rules should provide a greater degree of performance than the corresponding
PI tuning rules, but may be less robust. Comparing the individual tuning rules, it is
striking that the ISE based tuning rules have generally the smallest gain margin and
have also a small phase margin, suggesting that this is a less robust tuning strategy.
The results in Figures 4 and 7 confirm these comments.
Figure 2: Gain margin
Figure 3: Phase margin
Figure 4: Max. sensitivity
120
4
- = Z-N
* = IAE reg
+ = ITAE reg
o = ISE reg
3.5
3
8
7
100
6
80
5
2.5
60
2
40
4
3
20
1.5
1
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Ratio of τ m to Tm
Ratio of τ m to Tm
Ratio of τ m to Tm
Figure 5: Gain margin
Figure 6: Phase margin
Figure 7: Max. sensitivity
2.5
- = W-W
* = IAE reg
+ = ITAE reg
o = ISE reg
2
2
100
6
90
5.5
80
5
70
4.5
60
4
50
3.5
40
3
30
2.5
1.5
1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Ratio of τ m to Tm
1.8
2
20
2
10
1.5
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Ratio of τ m to Tm
1.8
2
1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Ratio of τ m to Tm
2
b720_Chapter-05
17-Mar-2009
Chapter 5: Performance and Robustness Issues...
FA
531
No general conclusion can be reached as to the best tuning rule (as expected);
it is interesting, though, that a full panorama of simulation results (O’Dwyer,
2000) show that many tuning rules may be applied at ratios of time delay to time
constant greater than that normally recommended. One example may be seen in
Figures 5 to 7, where the gain margin, phase margin and maximum sensitivity
(associated with the use of the PID tuning rule for obtaining minimum IAE in the
regulator mode) tends to level out when the ratio of time delay to time constant is
greater than 1; normally, the tuning rule is used when the ratio is less than 1
(Murrill, 1967). On the other hand, it is clear from Figures 8 and 9 that there is a
significant degradation of performance when using the PID tuning rule of Witt
and Waggoner (1990) and the PI tuning rule of Ziegler and Nichols (1942) for
large ratios of time delay to time constant, which is compatible with application
experience.
The decision between the use of a PI and PID controller to compensate the
process depends on the ratio of time delay to time constant in the FOLPD model,
together with the desired trade-off between performance and robustness, as
expected. It turns out, however, that the analytical method explored allows the
calculation of a far wider range of gain and phase margins for PI controllers; it is
also true that stability tends to be assured when a PI controller is used (O’Dwyer,
2000). Thus, a cautious design approach is to use a PI controller, particularly at
larger ratios of time delay to time constant.
Finally, the volume of tuning rules and data generated means that the use of
an expert system to recommend a tuning rule based on user defined requirements
is indicated; work is ongoing on such an implementation (Feeney and O’Dwyer,
2002).
b720_Chapter-05
17-Mar-2009
Handbook of PI and PID Controller Tuning Rules
532
Figure 8: Gain margin comparison
Figure 9: Phase margin comparison
4
120
3.5
100
- = W-W PID
o = Z-N PI
3
80
2.5
60
2
40
1.5
20
1
FA
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Ratio of τ m to Tm
Ratio of τ m to Tm
Figure 10: Gain margin comparison
Figure 11: Phase margin comparison
2
100
3
90
2.8
- = IAE reg PID
o = IAE reg PI
2.6
80
2.4
70
2.2
60
2
50
1.8
40
1.6
30
1.4
20
1.2
10
1
0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Ratio of τ m to Tm
1.6
1.8
2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Ratio of τ m to Tm
1.8
2
b720_Chapter-05
17-Mar-2009
FA
Chapter 5: Performance and Robustness Issues...
Figure 12: Gain margin comparison
533
Figure 13: Phase margin comparison
2.5
100
- = ISE reg PID
o = ISE reg PI
90
80
70
2
60
50
40
1.5
30
20
10
1
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
0
2
0.8
1
1.2
1.4
1.6
1.8
Figure 14: Gain margin comparison
Figure 15: Phase margin comparison
2.8
90
- = ITAE reg PID
o = ITAE reg PI
70
2.2
60
2
50
1.8
40
1.6
30
1.4
20
1.2
10
0.2
0.4
0.6
0.8
1
2
80
2.4
0
0.6
Ratio of τ m to Tm
100
1
0.4
Ratio of τ m to Tm
3
2.6
0.2
1.2
1.4
Ratio of τ m to Tm
1.6
1.8
2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Ratio of τ m to Tm
1.8
2
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
534
5.5 Design of Tuning Rules to Achieve Constant Gain and Phase Margins,
for All Values of Delay
Normally, the gain and phase margins of the compensated systems tend to
increase as the time delay increases, supporting the common view that PI and
PID controllers are less suitable for the control of dominant time delay processes.
However, for the PI control of a FOLPD process model, O’Dwyer (2000) shows
that the tuning rules proposed by Chien et al. (1952), Haalman (1965) and
Pemberton (1972a), among others, facilitate the achievement of a constant gain
and phase margin as the time delay of the process model varies. All of these
tuning rules have the following structure: K c = aTm K m τ m , Ti = Tm . Following
this observation, original approaches to the design of tuning rules for PI, PD and
PID controllers are proposed, for a wide variety of process models, which allow
constant gain and phase margins for the compensated system.
This work is organised as follows. In Section 5.5.1, PI controller tuning
rules are specified for processes modelled in FOLPD form and IPD form. In
Section 5.5.2, PID controller tuning rules are described for processes modelled in
FOLPD form, SOSPD form and SOSPD form with a negative zero. Section 5.5.3
deals with the design of PD controller tuning rules for the control of processes
modelled in FOLIPD form.
5.5.1 PI controller design
5.5.1.1 Processes modelled in FOLPD form
For such processes and controllers, Equations (5.1) and (5.2) apply, i.e.,
G m (s) =
K m e − sτ m
1 + sTm

1 

G c (s) = K c 1 +
 Ti s 
with
From Section 5.2.1,
φ m = π − 0.5π + tan −1 ω g Ti − tan −1 ω g Tm − ω g τ m
(Equation 5.9)
b720_Chapter-05
17-Mar-2009
Chapter 5: Performance and Robustness Issues...
FA
535
with ω g given by the solution of
2
K m K c 1 + ωg Ti
2
ωg Ti 1 + ωg Tm
2
2
=1
(Equation 5.10)
and
Am =
2
2
2
2
ωpTi
1 + ωp Tm
K mK c
1 + ωp Ti
(Equation 5.11)
with ωp given by the solution of
− 0.5π + tan −1 ω p Ti − tan −1 ω p Tm − ω p τ m = −π
(Equation 5.12)
If K c and Ti are designed as follows:
Kc =
aTm
K mτm
(5.43)
and
Ti = Tm
(5.44)
Then Equation (5.12) becomes
− 0.5π − ωp τm = −π
i.e.
ω p = π 2τ m
(5.45)
(5.46)
Substituting Equation (5.46) into Equation (5.11) gives
A m = πTm 2K m K c τ m
(5.47)
Substituting Equation (5.44) into Equation (5.10) gives
i.e.
K m K c ω g Tm = 1
(5.48)
ω g = K m K c Tm
(5.49)
Substituting Equations (5.44) and (5.49) into Equation (5.9) gives
φ m = 0 . 5 π − K m K c τ m Tm
(5.50)
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
536
Finally, substituting Equation (5.43) into Equation (5.47) gives
A m = π 2a
(5.51)
and substituting Equation (5.43) into Equation (5.50) gives
φ m = 0 .5 π − a
(5.52)
Some typical tuning rules are shown in Table 117.
Table 117: Typical PI controller tuning rules – FOLPD process model
a
Kc
Ti
Am
φm
π6
π3
1.047Tm K m τ m
Tm
1.5
π 4
0.785Tm K m τm
Tm
2.0
π 4
π6
0.524Tm K m τm
Tm
3.0
π3
These rules are also provided in Table 9. It may also be demonstrated that, if K c
and Ti are designed as follows:
Kc =
aTm
τm
Tu K u
2
Tu + 4π 2 Tm
2
(5.53)
and
Ti = Tm
(5.54)
where K u and Tu are the ultimate gain and ultimate period, respectively, then
the constant gain and phase margins provided in Equations (5.51) and (5.52) are
obtained.
5.5.1.2 Processes modelled in IPD form
A similar analysis to that of Section 5.5.1.1 may be done for the design of PI
controllers for processes modelled in IPD form. The process is modelled as
follows:
G m (s) = K m e −sτ m s
(5.55)
Corresponding to Equations (5.4) and (5.9), the phase margin is
φ m = π − 0.5π + tan −1 ω g Ti − 0.5π − ω g τ m
(5.56)
b720_Chapter-05
17-Mar-2009
FA
Chapter 5: Performance and Robustness Issues...
537
with ωg given by the solution of
2
K m K c 1 + ω g Ti
2
=1
2
ω g Ti
(5.57)
If K c and Ti are designed as follows:
Kc =
a
K m τm
(5.58)
and
Ti = bτ m
(5.59)
then it may be shown that
 a2
a
ωg = 
±
2
2
2bτ m
 2τ m

a b + 4

2
0.5
2
(5.60)
and, substituting Equations (5.59) and (5.60) into Equation (5.56),
φ m = tan −1 0.5a 2 b 2 + 0.5ab a 2 b 2 + 4 


0.5
− 0.5a 2 + 0.5
a
a 2b2 + 4
b
(5.61)
Corresponding to Equations (5.5) and (5.11), the gain margin,
2
Am =
ω p Ti
2
K m K c 1 + ω p Ti
2
(5.62)
with ω p given by the solution of
− 0.5π + tan −1 ω p Ti − 0.5π − ω p τ m = −π
(5.63)
i.e. ω p is given by the solution of
tan −1 ω p Ti = ω p τ m
(5.64)
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
538
An analytical solution to this equation is not possible, though if the
π
(when ω p Ti > 1 ) is used, simple
approximation tan −1 ω p Ti ≈ 0.5π −
4ω p Ti
calculations show that the following analytical solution for ω p may be obtained:
0.5 
π
2
0.5π + 0.25π − 
τ m 
b 
ωp =
(5.65)
The inequality ω p Ti > 1 may be shown to be equivalent to b > 1.273.
Substituting Equations (5.58), (5.59) and (5.65) into Equation (5.62), calculations
show that:
b π
π2 π 
 +
− 
4a  2
4 b


Am =
1+
2 
2
b π
π
π
 +
− 
4 2
4 b


2
(5.66)
2
Some typical tuning rules are shown in Table 118.
Table 118: Typical PI controller tuning rules – IPD process model
Kc
Ti
Am
φm
0.558 K m τm
1.4τ m
1.5
46.2 0
0.484 K m τm
1.55τm
2.0
45.5 0
0.458 K m τm
3.35τ m
3.0
59.9 0
0.357 K m τm
4.3τ m
4.0
60.0 0
0.305 K m τm
12.15τ m
5.0
75.0 0
It may also be shown that the maximum sensitivity is a constant if K c and Ti are
specified according to Equations (5.58) and (5.59). The maximum sensitivity
may be calculated to be:

a2 
M max = 1 − 2a cos(ω r τ m ) − 2 2 
ω r τ m 

−0.5
(5.67)
b720_Chapter-05
17-Mar-2009
FA
Chapter 5: Performance and Robustness Issues...
539
with ω r τ m being a constant obtained numerically from the solution of the
2
2
equation (a 2 ω r τ m ) + cos ω r τ m = sin(ω r τ m ) / ω r τ m .
It may also be shown that, if K c and Ti are designed as follows:
K c = aK u
(5.68)
Ti = bTu
(5.69)
and
then the following constant gain and phase margins are determined:
2b  π
π2 π 
 +
− 
4 4b 
πa  2


Am =
1+
2
π
π2 π 

+
− 
4 4b 
a 2 π 2  2

1
[
and φ m = tan −1 2π 2 a 2 b 2 + 2πab 4π 2 a 2 b 2 + 4
− 0.125π 2 a 2 +
2
(5.70)
]
0 .5
πa
4π 2 a 2 b 2 + 4
16b
(5.71)
5.5.2 PID controller design
5.5.2.1 Processes modelled in FOLPD form – classical controller
The classical PID controller is given by

1  1 + sTd 


G c (s) = K c 1 +
 Ti s  1 + sαTd 
(Equation 5.19)
and the process model is given by
G m (s) =
K m e − sτ m
1 + sTm
(Equation 5.2)
From Section 5.2.2,
φm = 0.5π + tan −1 ωg Ti + tan −1 ωg Td − tan −1 ωg Tm − tan −1 ωg αTd − ωg τm
(Equation 5.20)
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
540
with ωg given by the solution of
2
K m K c 1 + ω g Ti
2
ω g Ti 1 + ω g Tm
Also
Am =
ω p Ti
KcK m
2
2
2
1 + ω g Td
2
2
1 + α 2 ω g Td
=1
2
(Equation 5.22)
(1 + ω T )(1 + ω α T )
(1 + ω T )(1 + ω T )
2
p
2
2
m
2
p
2
p
2
i
2
p
2
d
2
(Equation 5.21)
d
with ω p given by
0.5π + tan −1 ω p Td + tan −1 ω p Ti − tan −1 ω p Tm − tan −1 ω p αTd − ω p τ m = 0
(Equation 5.25)
If K c , Ti and Td are designed as follows:
aTm
K mτm
Ti = αTm
Kc =
(5.72)
(5.73)
and
Td = Tm
(5.74)
then, Equation (5.25) becomes
0.5π − ω p τ m = 0
(5.75)
ω p = π 2τ m
(5.76)
i.e.
and Equation (5.21) becomes
A m = α πTm 2K m K c τ m
(5.77)
K m K c ω g Tm = 1
(5.78)
ω g = K m K c Tm
(5.79)
Equation (5.22) becomes
i.e.
b720_Chapter-05
17-Mar-2009
Chapter 5: Performance and Robustness Issues...
FA
541
Finally, substituting Equations (5.73), (5.74) and (5.79) into Equation (5.20)
gives
φ m = 0 .5 π − K m K c τ m α T m
(5.80)
Substituting Equations (5.72), (5.73), (5.74) and (5.76) into Equation (5.21) gives
A m = πα 2a
(5.81)
and substituting Equation (5.72) into Equation (5.80) gives
φ m = 0.5π − a α
(5.82)
This design reduces to the PI controller design when α = 1 .
5.5.2.2 Processes modelled in SOSPD form – series controller
For such processes and controllers,
K m e − sτ m
G m (s) =
(1 + sTm1 )(1 + sTm 2 )
(5.83)

1 
(1 + sTd )
G c (s) = K c 1 +
 Ti s 
(5.84)
with
Therefore,
G m (s)G c (s) =
K m K c e −sτ m (1 + sTi )(1 + sTd )
Ti s(1 + sTm1 )(1 + sTm 2 )
(5.85)
If Ti and Td are designed as follows:
Ti = Tm1
(5.86)
Td = Tm 2
(5.87)
and
then, from Equation (5.85)
G m (s)G c (s) =
K m K c e −sτ m
Ti s
(5.88)
b720_Chapter-05
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
542
which is equal to G m (s)G c (s) in Section 5.5.1.1 when Ti = Tm . Therefore,
designing
aTm
Kc =
(5.89)
K mτm
will allow A m = π 2a and φ m = 0.5π − a , as before.
5.5.2.3 Processes modelled in SOSPD form with a negative zero –
classical controller
For such processes,
K m e −sτ m (1 + sTm 3 )
G m (s) =
(1 + sTm1 )(1 + sTm 2 )
(5.90)
with G c (s) given by Equation (5.19). Therefore,
G m (s)G c (s) =
K m K c e −sτ m (1 + sTm 3 )(1 + sTi )(1 + sTd )
Ti s(1 + sTm1 )(1 + sTm 2 )(1 + αsTd )
(5.91)
If Ti , Td and α are designed as follows:
Ti = Tm1
(5.92)
Td = Tm 2
(5.93)
α = Tm 3 Tm 2
(5.94)
aTm
K mτm
(5.95)
and
therefore, designing
Kc =
will allow A m = π 2a and φ m = 0.5π − a , as in Sections 5.5.1.1 and 5.5.2.2.
5.5.3 PD controller design
In this case, the process is modelled in FOLIPD form, i.e.
K m e −sτ m
s(1 + sTm )
(5.96)
G c (s) = K c (1 + Td s )
(5.97)
G m (s) =
with
b720_Chapter-05
17-Mar-2009
Chapter 5: Performance and Robustness Issues...
FA
543
Therefore,
G m (s)G c (s) =
K m K c e −sτ m (1 + sTd )
s(1 + sTm )
(5.98)
Therefore, designing
Kc =
aTm
K mτm
(5.99)
and
Td = Tm
(5.100)
will allow A m = π 2a and φ m = 0.5π − a , as in Sections 5.5.1.1, 5.5.2.2 and
5.5.2.3.
5.6 Conclusions
This chapter has considered the performance and robustness of a PI and PID
controlled FOLPD process, with the parameters of the controllers determined by
a variety of tuning rules. The original contributions of this work are as follows:
(a) an expansion of the analytical approach of Ho et al. (1995b), (1996) to
determine the approximate gain and phase margin analytically under all operating
conditions, (b) the analytical determination of the approximate maximum
sensitivity of the compensated system and (c) the application of the algorithms
using a wide variety of PI and PID tuning rules. The implementation of
autotuning algorithms in commercial controllers means that choice of a suitable
tuning rule is an important issue; the techniques discussed allow an analytical
evaluation to be performed of candidate tuning rules.
Finally, the chapter discusses an original approach to design tuning rules for
both PI and PID controllers, for a variety of delayed process models, with the
objective of achieving constant gain and phase margins for all values of delay. In
one of the cases discussed (PI control of an IPD process model), an analytical
approximation is used in the development; this approximation may also be used
to determine further tuning rules for other process models with delay, and for
other PID controller structures.
b720_Appendix-01
17-Mar-2009
FA
Appendix 1
Glossary of Symbols and Abbreviations
a f 1 , a f 2 , a f 3 , a f 4 , a f 5 , a f 6 = Denominator parameters of a filter associated with
some PID controller structures
a 1 , a 2 , a 3 , b1 , b 2 , b 3 = Parameters of a third order process model
a 1 , a 2 , a 3 , a 4 , a 5 , b1 , b 2 , b 3 , b 4 , b 5 = Parameters of a fifth order process model
A 1 , A 2 , A 3 , A 4 , A 5 = Areas calculated from the process open loop step
response (see, for example, Vrančić et al., 1996)
A m = Gain margin
A p = Peak output amplitude of limit cycle determined from relay autotuning
b f 1 , b f 2 , b f 3 , b f 4 , b f 5 , b f 6 = Numerator parameters of a filter associated with
some PID controller structures
D R = Desired closed loop damping ratio
d(t) = Disturbance variable (time domain)
du dt = Time derivative of the manipulated variable (time domain)
e(t) = Desired variable, r(t), minus controlled variable, y(t) (time domain)
E(s) = Desired variable, R(s), minus controlled variable, Y(s)
FOLPD model = First Order Lag Plus time Delay model
FOLIPD model = First Order Lag plus Integral Plus time Delay model
F1 (s), F2 (s) = Transfer functions of components of some PID controller
structures
G c (s) = PID controller transfer function
G CL (s) = Closed loop transfer function
544
b720_Appendix-01
17-Mar-2009
FA
Appendix 1: Glossary of Symbols and Abbreviations
545
G CL ( jω) = Desired closed loop frequency response
G m (s) = Process model transfer function
G p (s) = Process transfer function
G p ( jω) = Process transfer function at frequency ω
G p ( jω) = Magnitude of G p ( jω)
G p ( jωφ ) = Magnitude of G p ( jω) , at frequency ω , corresponding to phase lag
of φ
∠G p ( jω) = Phase of G p ( jω)
± h = Relay amplitude (relay autotuning)
IE = Integral of Error =
∞
∫ e( t )dt
0
IAE = Integral of Absolute Error =
∞
∫ e( t ) dt
0
IMC = Internal Model Controller
IPD model = Integral Plus time Delay model
I 2 PD model = Integral Squared Plus time Delay model
ISE = Integral of Squared Error =
∞
∫ e ( t)dt
2
0
ISTES = Integral of Squared Time multiplied by Error, all to be Squared =
∞
∫ [t e( t)] dt
2
2
0
ISTSE = Integral of Squared Time multiplied by Squared Error
=
∞
∫ t e ( t)dt
2 2
0
ITSE = Integral of Time multiplied by Squared Error =
ITAE = Integral of Time multiplied by Absolute Error =
K c = Proportional gain of the controller
KH =
τm2
ξ m Tm1 τ m 
2
−
T
−
 (Hwang, 1995)

m
1
2
9
2τ m K m  18

9
∞
∫ te ( t )dt
2
0
∞
∫ t e( t ) dt
0
b720_Appendix-01
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
546
K H1 =
 τ m 2 τ m Tm 1.884K c K u τ m 
−
+

2 
18
9ω u
2K m τ m  18

9
+
2
2
2
2
9  τm
49Tm
7T τ
4.71K u K c (τm + 1.6Tm ) 1.775K c K u 


−
+
+ m m−
2
2K m τm  324
324
162
81ωu
81ωu


(Hwang, 1995)
K H2 =
9
2K m τ m
 τm
1.884K u K c τ m 
ξ τ T
9
2
− Tm1 − m m m1 +
x1

+
2
18
9
9
ω
u

 2K m τ m
2
2
with
4
2
2
2
2
2
3
3


τ
49τm ξm Tm1 τm Tm1 7Tm1ξm τm 10τm Tm1 ξ m
4
−
+
+
− x2 
x1 =  Tm1 + m +
324
81
9
81
9


and
x2 =
2
2
2
3
0.471K u K c 10τ m
4T τ (8ξ m τ m + 9Tm1 )  1.775K u K c τ m
+ m1 m
−

2
81
ωu
81ω u

 81
(Hwang, 1995)
K i = Integral gain of the controller
K L = Gain of a load disturbance process model
K m = Gain of the process model
K p = Gain of the process
K u = Ultimate proportional gain
∧
K u = Ultimate proportional gain estimate determined from relay autotuning
K φ = Proportional gain when G c ( jω)G p ( jω) has a phase lag of φ
K 0 = Weighting parameter used in some two degree of freedom PID controller
structures
K x % = Proportional gain required to achieve a decay ratio of 0.01x
K φ0 = Controller gain when G c ( jω)G p ( jω) has a phase lag of φ 0
min = Minimum
max = Maximum
b720_Appendix-01
17-Mar-2009
Appendix 1: Glossary of Symbols and Abbreviations
FA
547
M s = Closed loop sensitivity
M max = Maximum value of closed loop sensitivity, M s
M t = Complementary closed loop sensitivity
n = Order of a process model with a repeated pole
N = Parameter that determines the amount of filtering on the derivative term on
some PID controller structures
OS = Closed loop response overshoot (often a percentage)
PI controller = Proportional Integral controller
PID controller = Proportional Integral Derivative controller
r = Desired variable (time domain)
2
r1 =
0.7071M max − M max 1 − 0.5M max
2
2
M max − 1
(Chen et al.,1999a)
R(s) = Desired variable (Laplace domain)
s = Laplace variable
SOSPD model = Second Order System Plus time Delay model
SOSIPD model = Second Order System plus Integral Plus time Delay model
t = Time
Tar = Average residence time = time taken for the open loop process step
response to reach 63% of its final value
Td = Derivative time of the controller
TCL = Desired closed loop system time constant
TCL 2 = Desired parameter of second order closed loop system response
(1)
( 2)
( 3)
TCL , TCL , TCL = Desired dynamic parameters of the closed loop system
response
Tf = Time constant of the lag in some PID controller structures
Ti = Integral time of the controller
TL = Time constant of a load disturbance FOLPD process model
Tm = Time constant of a FOLPD process model
Tm1, Tm2, Tm3, Tm4 = Time constants of second, third or fourth order process models,
as appropriate
b720_Appendix-01
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
548
Tm1i , Tm2i , Tm3i , Tm4i = Time constants of a general process model
Tp = Time constant of a FOLPD process
Tp1, Tp2, Tp3 = Time constants of second or third order process, as appropriate
TR = Closed loop rise time
TS = Closed loop settling time
Tu = Ultimate period
∧
T u = Ultimate period estimate determined from relay autotuning
Tx % = Period of the waveform with a decay ratio of 0.01x , when the closed loop
system is under proportional control
TOSPD model = Third Order System Plus time Delay model
u(t) = Manipulated variable (time domain)
u ∞ = Final value of the manipulated variable (time domain)
U(s) = Manipulated variable (Laplace domain)
V = Closed loop response overshoot (as a fraction of the controlled variable final
value)
y(t) = Controlled variable (time domain)
y ∞ = Final value of the controlled variable (time domain)
Y(s) = Controlled variable (Laplace domain)
α , β , χ , δ , ε , φ , ϕ = Weighting factors in some PID controller structures
2
ε=
6Tm1 + 4ξ m Tm1 τ m + K H K m τ m
ε1 =
6Tm1 + 4Tm1 ξ m τ m + K u K m τ m
2
2τ m Tm1 ω u
2
(Hwang, 1995)
2Tm ωu + K H1 K m τ m ωu − 1.884 K u K c
(Hwang, 1995)
0.471K c K u ω H1 τ m
2
ε2 =
(Hwang, 1995)
2
2Tm1 τ m ω H
2
ε0 =
2
2
6Tm1 ωu + 4Tm1ξ m τ m ω u + K H 2 K m τ m ωu − 1.884 K u K c τ m
2
2
(0.471K u K c τ m + 2 τ m Tm1 ωu )ω H 2
(Hwang, 1995)
b720_Appendix-01
17-Mar-2009
FA
Appendix 1: Glossary of Symbols and Abbreviations
549
± ε 4 = Relay hysteresis width (relay autotuning)
φ = Phase lag
φc = Phase of the plant at the crossover frequency of the compensated system,
with a ‘conservative’ PI controller (Pecharromán and Pagola, 2000)
φ m = Phase margin
φω = Phase lag at an angular frequency of ω
κ = 1 Km Ku
λ = Parameter that determines robustness of compensated system.
τ = τ m (τ m + Tm )
τ CL = Desired closed loop system time delay
τ L = Time delay of a load disturbance process model
τ m = Time delay of the process model
τ am = τ 'm − τ m , τ 'm is obtained using the tangent and point method of Ziegler and
Nichols (1942). Subsequently, τ m is estimated from the process step
response (Schaedel, 1997).
ω = Angular frequency
ω bw = − 3 dB closed loop system bandwidth (Shi and Lee, 2002)
ω−6dB = Frequency where closed loop system magnitude is –6dB (Shi and Lee,
2004)
ωc = Maximum cut-off frequency
ωd = Bandwidth of stochastic disturbance signal (Van der Grinten, 1963)
ω CL = 2π TCL
ωg = Specified gain crossover frequency (Shi and Lee, 2002)
ωH =
1+ KHKm
2T τ ξ
K K τ
Tm1 + m1 m m + H m m
3
6
2
ω H1 =
2
(Hwang, 1995)
1 + K H1 K m
2
0.942 K c K u τ m
τ m Tm K H1 K m τ m
+
−
3
6
3ωu
(Hwang, 1995)
b720_Appendix-01
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
550
1 + K H2 K m
ωH 2 =
2
2
Tm1 +
0.942 K c K u τ m
2ξ m τ m Tm1 K H 2 K m τ m
+
−
3
6
3ωu
(Hwang, 1995)
ω M max = Frequency where the sensitivity function is maximised (Rotach, 1994)
ωn = Undamped natural frequency of the compensated system
ωp =
A m φ m + 0.5πA m (A m − 1)
(A
2
m
)
− 1 τm
(see, for example, Hang et al. 1993a, 1993b)
ω pc = Phase crossover frequency
ωr = Resonant frequency (Rotach, 1994)
ωu = Ultimate frequency
^
ω u = Ultimate frequency estimate obtained from relay autotuning
ω φ = Angular frequency when G c ( jω)G p ( jω) has a phase lag of φ
^
ω φ = Estimate of angular frequency when G c ( jω)G p ( jω) has a phase lag of φ
ξ = Damping factor of the compensated system
ξ m = Damping factor of an underdamped process model
ξ des
m = Desired damping factor of an underdamped process model
ξ m ni , ξ mdi = Damping factors of a general underdamped process model
b720_Appendix-02
17-Mar-2009
FA
Appendix 2
Some Further Details on Process Modelling
Processes with time delay may be modelled in a variety of ways. The modelling
strategy used will influence the value of the model parameters, which will in turn
affect the controller values determined from the tuning rules. The modelling
strategy used in association with each tuning rule, as described in the original
papers, is indicated in the tables in Chapters 3 and 4. Some outline details of
these modelling strategies are provided, together with references that describe the
modelling method in detail. The references are given in the bibliography. For all
models, the label ‘Model: Method 1’ indicates that the model method has not
been defined or that the model parameters are assumed known; interestingly, this
is the modelling method assigned to a majority of tuning rules.
A2.1 FOLPD Model
A2.1.1 Parameters estimated from the open loop process step or impulse
response
Method 2:
Parameters estimated using a tangent and point method (Ziegler and
Nichols, 1942).
Method 3: K m , τ m determined from the tangent and point method of Ziegler
and Nichols (1942); Tm determined at 60% of the total process
variable change (Fertik and Sharpe, 1979).
Method 4: K m , τ m assumed known; Tm estimated using a tangent method
(Wolfe, 1951).
551
b720_Appendix-02
552
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Method 5:
Parameters estimated using a second tangent and point method
(Murrill, 1967).
Method 6: Parameters estimated using a third tangent and point method
(Davydov et al., 1995).
Method 7: τ m and Tm estimated using the two-point method; K m estimated
from the open loop step response (ABB, 2001).
Method 8: τ m and Tm estimated from the process step response:
Tm = 1.4( t 67% − t 33% ) , τ m = t 67% − 1.1Tm ; K m assumed known
(Chen and Yang, 2000). 1
Method 9: τ m and Tm estimated from the process step response:
Tm = 1.245( t 70% − t 33% ) , τ m = 1.498t 33% − 0.498t 70% ; K m assumed
known (Vítečková et al., 2000b). 2
Method 10: τ m and Tm estimated from the process step response:
Tm = 0.910(t 75% − t 25% ) , τ m = 1.262 t 25% − 0.262 t 75% ; K m is
estimated from the process step response (Arrieta Orozco and Alfaro
Ruiz, 2003; Arrieta Orozco, 2003). 3
Method 11: K m estimated from the process step response; τ m = time for which
the process variable does not change; Tm determined at 63% of the
total process variable change (Gerry, 1999).
Method 12: K m estimated from the process step response; τ m = time for which
the process variable has to change by 5% of its total value; Tm
determined at 63% of the total process variable change
(Kristiansson, 2003).
Method 13: K m estimated from the process step response; τ m is the time for
which the process variable has to change until it is outside a
predefined noise band; Tm = 0.25(t 98% − τ m ) (McMillan, 2005). 4
1
t 67% , t 33% are the times taken by the process variable to change by 67% and 33%, respectively,
of its total value.
2
t 70% is the time taken by the process variable to change by 70% of its total value.
t 75% , t 25% are the times taken by the process variable to change by 75% and 25%, respectively,
of its total value.
4
t 98% is the time taken by the process variable to change by 98% of its total value.
3
b720_Appendix-02
17-Mar-2009
Appendix 2: Some Further Details on Process Modelling
FA
553
Method 14: Parameters estimated using a least squares method in the time
domain (Cheng and Hung, 1985).
Method 15: The model parameters are estimated by minimising a function of the
error between the process and model open loop step response
(Zhuang, 1992).
Method 16: Parameters estimated from linear regression equations in the time
domain (Bi et al., 1999).
Method 17: Parameters estimated using the method of moments (Åström and
Hägglund, 1995).
Method 18: Model parameters estimated using the area method (Klán, 2000).
Method 19: Parameters estimated from the process step response and its first
time derivative (Tsang and Rad, 1995).
Method 20: Parameters estimated from the process step response using
numerical integration procedures (Nishikawa et al., 1984).
Method 21: Parameters estimated from the process impulse response (Peng and
Wu, 2000).
Method 22: Parameters estimated using a ‘process setter’ block (Saito et al.,
1990).
Method 23: Parameters estimated from a number of process step response data
values (Kraus, 1986).
Method 24: Parameters estimated in the sampled data domain using two process
step tests (Pinnella et al., 1986).
Method 25: A model is obtained using the tangent and point method of Ziegler
and Nichols (1942); label the parameters K 'm , Tm' and τ 'm .
Subsequently, τ m is estimated from the process step response; then,
a parameter labelled τ am = τ 'm − τ m is defined (Schaedel, 1997).
Method 26: A model is obtained using the tangent and point method of Ziegler
and Nichols (1942); label the parameters K 'm , Tm' and τ 'm .
Subsequently, τ m is estimated from the process step response
(Henry and Schaedel, 2005).
Method 27: Parameters estimated from the open loop step response (Clarke,
2006).
b720_Appendix-02
554
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
A2.1.2 Parameters estimated from the closed loop step response
Method 28: K m estimated from the open loop step response. T90% and τ m
estimated from the closed loop step response under proportional
control (Åström and Hägglund, 1988).
Method 29: Parameters estimated using a method based on the closed loop
transient response to a step input under proportional control (Sain
and Özgen, 1992).
Method 30: Parameters estimated using a second method based on the closed
loop transient response to a step input under proportional control
(Hwang, 1993).
Method 31: Parameters estimated using a third method based on the closed loop
transient response to a step input under proportional control (Chen,
1989; Taiwo, 1993).
Method 32: Parameters estimated from a step response autotuning experiment –
Honeywell UDC 6000 controller (Åström and Hägglund, 1995).
Method 33: Parameters estimated from the closed loop step response when
process is in series with a PID controller (Morilla et al., 2000).
Method 34: Parameters estimated by modelling the closed loop response as a
second order system (Ettaleb and Roche, 2000).
A2.1.3 Parameters estimated from frequency domain closed loop information
Method 35: Model parameters estimated using a relay autotuning method (Yu,
2006).
Method 36: Parameters estimated from two points, determined on process
frequency response, using a relay and a relay in series with a delay
(Tan et al., 1996).
Method 37: Tm and τ m estimated from the ultimate gain and period, determined
using a relay in series with the process in closed loop; K m assumed
known (Hang and Cao, 1996).
Method 38: Tm and τ m estimated from the ultimate gain and period, determined
using a relay in series with the process in closed loop; K m
estimated from the process step response (Hang et al., 1993b).
b720_Appendix-02
17-Mar-2009
Appendix 2: Some Further Details on Process Modelling
FA
555
Method 39: Tm and τ m estimated from data obtained when a relay is introduced
in series with the process in closed loop; K m assumed known
(Padhy and Majhi, 2006a).
Method 40: Parameters estimated from data obtained when a relay is introduced
in series with the process in closed loop (Padhy and Majhi, 2006b).
Method 41: Tm and τ m estimated from the ultimate gain and period, determined
using the ultimate cycle method of Ziegler and Nichols (1942); K m
estimated from the process step response (Hang et al., 1993b).
Method 42: Tm and τ m estimated at ω1800 ; K m estimated at ω 0 0 (Tavakoli
et al., 2006).
Method 43: Tm and τ m estimated from relay autotuning method (Lee and Sung,
1993); K m estimated from the closed loop process step response
under proportional control (Chun et al., 1999).
Method 44: Parameters estimated in the frequency domain from the data
determined using a relay in series with the closed loop system in a
master feedback loop (Hwang, 1995).
Method 45: K u and Tu estimated from relay autotuning method; τ m estimated
from the open loop process step response, using a tangent and point
method (Wojsznis et al., 1999).
Method 46: Parameters estimated by including a dynamic compensator outside
or inside an (ideal) relay feedback loop (Huang and Jeng, 2003).
Method 47: Parameters estimated from measurements performed on the
manipulated and controlled variables when a relay with hysteresis is
introduced in place of the controller (Zhang et al., 1996b).
Method 48: Non-gain parameters estimated using a relay, with hysteresis, in
series with the process in closed loop; K m is estimated with the aid
of a small step signal added to the reference (Potočnik et al., 2001).
Method 49: Parameters estimated using a relay in series with the process in
closed loop (Perić et al., 1997).
Method 50: Parameters estimated using an iterative method, based on data from
a relay experiment (Leva and Colombo, 2004).
b720_Appendix-02
556
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Method 51: K m estimated from relay autotuning method; τ m , Tm estimated
using a least squares algorithm based on the data recorded from the
relay autotuning method, with the aid of neural networks (Huang
et al., 2005a).
Method 52: Parameters estimated from data obtained when an asymmetrical
relay is introduced in series with the process in closed loop (Majhi,
2005).
Method 53: Parameters estimated from data obtained when an asymmetrical
relay is introduced in series with the process in closed loop (Prokop
and Korbel, 2006).
A2.1.4 Other methods
Method 54: Parameter estimates back-calculated from a discrete time
identification method (Ferretti et al., 1991).
Method 55: Parameter estimates determined graphically from a known higher
order process (McMillan, 1984).
Method 56: Parameter estimates determined from a known higher order process
(Skogestad, 2003).
Method 57: The parameters of a second order model plus time delay are
estimated using a system identification approach in discrete time;
the parameters of a FOLPD model are subsequently determined
using standard equations (Ou and Chen, 1995).
Method 58: Parameter estimates back-calculated from a discrete time
identification non-linear regression method (Gallier and Otto, 1968).
Method 59: Parameter estimates determined using a recursive least squares
method (Bai and Zhang, 2007).
b720_Appendix-02
17-Mar-2009
FA
Appendix 2: Some Further Details on Process Modelling
557
A2.2 FOLPD Model with a Zero
Method 2:
Method 3:
Non-delay parameters are estimated in the discrete time domain
using a least squares approach; time delay assumed known (Chang
et al., 1997).
Parameters estimated graphically from the open-loop step response
(Slätteke, 2006).
A2.3 SOSPD Model
A2.3.1 Parameters estimated from the open loop process step response
Method 2:
Method 3:
Method 4:
Method 5:
Method 6:
5
K m , Tm1 and τ m are determined from the tangent and point method
of Ziegler and Nichols (1942) (Shinskey, 1988, page 151); Tm 2
assumed known.
FOLPD model parameters estimated using a tangent and point
method (Ziegler and Nichols, 1942); corresponding SOSPD
parameters subsequently deduced (Auslander et al., 1975).
Parameters estimated using a tangent and point method (Murata and
Sagara, 1977).
Tm1 = Tm 2 . τ m , Tm1 estimated from process step response:
Tm1 = 0.794( t 70% − t 33% ) ,
τ m = 1.937 t 33% − 0.937 t 70% .
Km
5
assumed known (Vítečková et al., 2000b).
Tm1 = Tm 2 . K m , τ m and Tm1 estimated from the process step
response; τ m = time for which the process variable does not change;
Tm1 determined at 73% of the total process variable change
(Pomerleau and Poulin, 2004).
t 70% , t 33% are the times taken by the process variable to change by 70% and 33%, respectively,
of its total value.
b720_Appendix-02
558
Method 7:
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Parameters estimated from the underdamped or overdamped
transient response in open loop to a step input (Jahanmiri and
Fallahi, 1997).
A2.3.2 Parameters estimated from the closed loop step response
Method 8:
Method 9:
Parameters estimated from a step response autotuning experiment –
Honeywell UDC 6000 controller (Åström and Hägglund, 1995).
Parameters estimated from the servo or regulator closed loop
transient response, under PI control (Rotach, 1995).
A2.3.3 Parameters estimated from frequency domain closed loop information
Method 10: In this method, Tm1 = Tm 2 = Tm . Tm and τ m estimated from K u ,
Tu determined using a relay autotuning method; K m estimated
from the process step response (Hang et al., 1993a).
Method 11: Parameters estimated using a two-stage identification procedure
involving (a) placing a relay and (b) placing a proportional
controller, in series with the process in closed loop (Sung et al.,
1996).
Method 12: Parameters estimated using a two-stage identification procedure
involving (a) placing a relay in series with the process in closed loop
and (b) introducing an excitation to the relay feedback system
through an external DC input at the output of the relay (Huang et al.,
2003).
Method 13: Parameters estimated from data determined by inserting a relay in
series with the process in closed loop (Lavanya et al., 2006a).
Method 14: Parameters estimated in the frequency domain from the data
determined using a relay in series with the closed loop system in a
master feedback loop (Hwang, 1995).
b720_Appendix-02
17-Mar-2009
Appendix 2: Some Further Details on Process Modelling
FA
559
Method 15: Parameters estimated from values determined from an experiment
using an amplitude dependent gain in series with the process in
closed loop (Pecharromán and Pagola, 1999).
Method 16: Parameters estimated from data obtained when the process phase lag
is − 90 0 and − 180 0 , respectively (Wang et al., 1999).
Method 17: Model parameters estimated by including a dynamic compensator
outside or inside an (ideal) relay feedback loop (Huang and Jeng,
2003).
Method 18: K m estimated from a relay autotuning method; τ m , Tm1 and
ξ m estimated using a least squares algorithm based on the data
recorded from the relay autotuning method, with the aid of neural
networks (Huang et al., 2005a).
Method 19: Model parameters estimated using a two-stage identification
procedure involving (a) placing a relay and (b) placing a relay which
operate on the integral of the error, in series with the process in
closed loop (Naşcu et al., 2006).
Method 20: Model parameters estimated using a relay autotuning method
(Thyagarajan and Yu, 2003).
A2.3.4 Other methods
Method 21: Parameter estimates back-calculated from a discrete time
identification method (Ferretti et al., 1991).
Method 22: Parameter estimates back-calculated from a second discrete time
identification method (Wang and Clements, 1995).
Method 23: Parameter estimates back-calculated from a third discrete time
identification method (Lopez et al., 1969).
Method 24: Model parameters estimated assuming higher order process
parameters are known (Skogestad, 2003).
Method 25: Parameter estimates back-calculated from a discrete time
identification non-linear regression method (Gallier and Otto, 1968).
b720_Appendix-02
560
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
A2.4 SOSPD Model with a Zero
Method 2:
Method 3:
Parameters estimated from a closed loop step response test using a
least squares approach (Wang et al., 2001a).
Tm1 = Tm 2 . K m , τ m , Tm1 and Tm 3 (or Tm 4 ) are estimated from the
process step response; the latter three parameters are estimated using
a tabular approach (Pomerleau and Poulin, 2004).
A2.5 TOSPD Model
Method 2:
Method 3:
Parameters estimated using a tangent and point method (Murata and
Sagara, 1977).
Model parameters estimated using least squares regression in the
time domain; the model input is a step signal (Yu, 2006, p. 107).
A2.6 General Model
Method 2:
A FOLPD model is obtained using the tangent and point method of
Ziegler and Nichols (1942); label the parameters K 'm , Tm' and τ 'm .
(
Method 3:
Method 4:
)
Then, n = 10 τ 'm Tm' + 1 . Subsequently, τ m is estimated from the
open loop step response, and Tar is estimated using ‘known
methods’ (Schaedel, 1997).
Parameters estimated using a tangent and point method (Murata and
Sagara, 1977).
Model parameters Taa , τ m and Tar are estimated using the area
method (Gorez and Klàn, 2000).
A2.7 Non-Model Specific
Modelling methods have not been specified in the tables in most cases, as
typically the tuning rules are based on K u and Tu . Modelling methods have
been specified whenever relevant data have been estimated using a relay method.
b720_Appendix-02
17-Mar-2009
FA
Appendix 2: Some Further Details on Process Modelling
Method 2:
Method 3:
Method 4:
561
K u and Tu estimated from an experiment using a relay in series
with the process in closed loop (Jones et al., 1997).
K u and Tu estimated with the assistance of a relay (Lloyd, 1994).
ω900 and A p estimated using a relay in series with an integrator
(Tang et al., 2002).
Method 5:
Method 6:
∧
∧
K u and Tu estimated from values determined from an experiment
using an amplitude dependent gain in series with the process in
closed loop (Pecharromán and Pagola, 1999).
Parameters estimated from an experiment using a relay in series
with the process in closed loop (Chen and Yang, 1993).
A2.8 IPD Model
A2.8.1 Parameters estimated from the open loop process step response
Method 2:
Method 3:
Method 4:
Method 5:
τ m assumed known; K m estimated from the slope at start of the
process step response (Ziegler and Nichols, 1942).
K m , τ m estimated from the process step response (Hay, 1998).
K m , τm estimated from the process step response (Clarke, 2006).
K m , τ m estimated from the process step response using a tangent
and point method (Bunzemeier, 1998).
A2.8.2 Parameters estimated from the closed loop step response
Method 6:
Parameters estimated from the servo or regulator closed loop
transient response, under PI control (Rotach, 1995).
b720_Appendix-02
562
Method 7:
Method 8:
Method 9:
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Parameters estimated from the servo closed loop transient response
under proportional control (Srividya and Chidambaram, 1997).
Parameters estimated from the closed loop response, under the
control of an on-off controller (Zou et al., 1997).
Parameters estimated from the closed loop response, under the
control of an on-off controller (Zou and Brigham, 1998).
A2.8.3 Parameters estimated from frequency domain closed loop information
Method 10: Parameters estimated from K u and Tu values, determined from an
experiment using a relay in series with the process in closed loop
(Tyreus and Luyben, 1992).
Method 11: Parameters estimated from values determined from an experiment
using an amplitude dependent gain in series with the process in
closed loop (Pecharromán and Pagola, 1999).
Method 12: Parameters estimated from data determined when a relay is placed in
series, in closed loop, with the closed loop compensated process,
under PI or PID control (NI Labview, 2001).
A2.9 FOLIPD Model
Method 2:
Method 3:
Method 4:
Method 5:
Parameters estimated from the open loop process step response and
its first and second time derivatives (Tsang and Rad, 1995).
Parameters estimated using the method of moments (Åström and
Hägglund, 1995).
Parameters estimated from values determined from an experiment
using an amplitude dependent gain in series with the process in
closed loop (Pecharromán and Pagola, 1999).
Parameters estimated from the open loop response of the process to
a pulse signal (Tachibana, 1984).
b720_Appendix-02
17-Mar-2009
Appendix 2: Some Further Details on Process Modelling
Method 6:
Method 7:
Method 8:
FA
563
Parameters estimated from the waveform obtained by introducing a
single symmetrical relay in series with the process in closed loop
(Majhi and Mahanta, 2001).
K m estimated from the response of the process to a square wave
pulse; other process parameters estimated from the waveform
obtained by introducing a relay in series with the process in closed
loop (Wang et al., 2001a).
Parameters estimated using a relay in series with the process in
closed loop (Perić et al., 1997).
A2.10 SOSIPD model
Method 2:
Parameters estimated from values determined from an experiment
using an amplitude dependent gain in series with the process in
closed loop (Pecharromán and Pagola, 1999).
A2.11 Unstable FOLPD Model
Method 2:
Method 3:
Method 4:
Method 5:
Method 6:
Parameters estimated by least squares fitting from the open loop
frequency response of the unstable process; this is done by
determining the closed loop magnitude and phase values of the
(stable) closed loop system and using the Nichols chart to determine
the open loop response (Huang and Lin, 1995; Deshpande, 1980).
Parameters estimated using a relay feedback approach (Majhi and
Atherton, 2000).
Parameters estimated using a biased relay feedback test (Huang and
Chen, 1999).
Parameters estimated using a single symmetric relay feedback
feedback test (Vivek and Chidambaram, 2005).
Tm and τ m estimated from data obtained when a relay is introduced
in series with the process in closed loop; K m assumed known
(Padhy and Majhi, 2006a).
b720_Appendix-02
564
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
A2.12 Unstable SOSPD Model (one unstable pole)
Method 2:
Method 3:
Method 4:
Parameters estimated by least squares fitting from the open loop
frequency response of the unstable process; this is done by
determining the closed loop magnitude and phase values of the
(stable) closed loop system and using the Nichols chart to determine
the open loop response (Huang and Lin, 1995; Deshpande, 1980).
Parameters estimated by minimising the difference in the frequency
responses between the high order process and the model, up to the
ultimate frequency. The gain and delay are estimated from analytical
equations, with the other parameters estimated using a least squares
method (Kwak et al., 2000).
Parameters estimated using a biased relay feedback test (Huang and
Chen, 1999).
b720_Bibliography
17-Mar-2009
FA
Bibliography
ABB (1996). Operating Guide for Commander 300/310, Section 7.
ABB (2001). Instruction manual for 53SL6000 [Online]. Document: PN24991.pdf. Available at
www.abb.com [accessed 1 September 2004].
Abbas, A. (1997). A new set of controller tuning relations, ISA Transactions, 36, pp. 183–187.
Aikman, A.R. (1950). The frequency response approach to automatic control problems,
Transactions of the Society of Instrument Technology, pp. 2–16.
Alenany, A., Abdelrahman, O. and Ziedan, I. (2005). Simple tuning rules of PID controllers for
integrator/dead time processes, Proceedings of the International Conference for Global Science
and Technology (Cairo, Egypt) [Online]. Available at www.icgst.com/ACSE05/papers/
P1110504001.pdf [accessed 13 April 2006].
Alfaro Ruiz, V.M. (2005a). Actualización del método de sintonización de controladores de Ziegler
y Nichols, Ingeniería, 15(1–2), pp. 39–52 (in Spanish).
Alfaro Ruiz, V.M. (2005b). Estimación del desempeño IAE de los reguladores y servomecanismos
PID, Ingeniería, 15(1), pp. 79–90 (in Spanish).
Alvarez-Ramirez, J., Morales, A. and Cervantes, I. (1998). Robust proportional-integral control,
Industrial Engineering Chemistry Research, 37, pp. 4740–4747.
Andersson, M. (2000). A MATLAB tool for rapid process identification and PID design (MSc
thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden).
Ang, K.H., Chong, G. and Li, Y. (2005). PID control system analysis, design and technology, IEEE
Transactions on Control Systems Technology, 13(4), pp. 559–576.
Anil, C. and Sree, R.P. (2005). Design of PID controllers for FOPTD systems with an integrator
and with/without a zero, Indian Chemical Engineer, Section A, Vol. 47, No. 4, pp. 235–242.
Araki, M. (1985). 2-degree of freedom control system, Systems and Control (Japan), 29,
pp. 649–656 (in Japanese).
Arbogast, J.E., Cooper, D.J. and Rice, R.C. (2006). Model-based tuning methods for PID
controllers [Online]. Available at http://www.bin95.com/PID_Controller_Design.htm [accessed
3 January 2007].
Arbogast, J.E. and Cooper, D.J. (2007). Extension of IMC tuning correlations for non-self
regulating (integrating) processes, ISA Transactions, 46, pp. 303–311.
Argelaguet, R., Pons, M., Martin Aguilar, J. and Quevedo, J. (1997). A new tuning of PID
controllers based on LQR optimization, Proceedings of the European Control Conference
[Online]. Available at www.cds.caltech.edu/conferences/related/ECC97/proceeds/251_500/
ECC486.PDF [accessed 6 October 2006].
565
b720_Bibliography
566
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Argelaguet, R., Pons, M., Quevedo, J. and Aguilar, J. (2000). A new tuning of PID controllers
based on LQR optimization, Preprints of Proceedings of PID ’00: IFAC Workshop on Digital
Control, pp. 303–308.
Arrieta Orozco, O. (2003). Comparación del desempeño de los métodos de sintonización de
controladores PI y PID basados en criterios integrales, Proyecto Eléctrico, Universidad de Costa
Rica [Online]. Available at http://www2.eie.ucr.ac.cr/~oarrieta/proyecto_%20Tesis_%20
Licenciatura.pdf [accessed 6 September 2006] (in Spanish).
Arrieta Orozco, O. and Alfaro Ruiz, V.M. (2003). Sintonización de controladores PI y PID
utilizando los criterios integrales IAE e ITAE, Ingeniería, 13(1–2), pp. 31–39. [Online].
Available at http://www2.eie.ucr.ac.cr/~oarrieta/oarrieta_valfaro03.pdf [accessed 6 September
2006] (in Spanish).
Arrieta Orozco, O. (2006). Sintonización de controladores PI y PID empleando un índice de
desempeño de criterio múltiple, Dissertation, Licenciado en Ingeniería Eléctrica, Universidad de
Costa Rica [Online]. Available at http://www2.eie.ucr.ac.cr/~oarrieta/Tesis_Licenciatura.pdf
[accessed 28 January 2008] (in Spanish).
Arrieta, O. and Vilanova, R. (2007). PID autotuning settings for balanced servo/regulation
operation, Proceedings of the 15th Mediterranean Conference on Control and Automation
(Athens, Greece), paper T028–015.
Arvanitis, K.G., Akritidis, C.B., Pasgianos, G.D. and Sigrimis, N.A. (2000a). Controller tuning for
second order dead-time fertigation mixing process, Proceedings of EurAgEng Conference on
Agricultural Engineering, Paper No. 00–AE–011.
Arvanitis, K.G., Sigrimis, N.A., Pasgianos, G.D. and Kalogeropoulos, G. (2000b). On-line
controller tuning for unstable processes with application to a biological reactor, Proceedings of
the IFAC Conference on Modelling and Control in Agriculture, Horticulture and Post-Harvest
Processing, pp. 191–196.
Arvanitis, K.G., Syrkos, G., Stellas, I.Z. and Sigrimis, N.A. (2003a). Controller tuning for
integrating processes with time delay. Part I: IPDT processes and the pseudo-derivative feedback
control configuration, Proceedings of 11th Mediterranean Conference on Control and
Automation, Paper No. T7–040.
Arvanitis, K.G., Syrkos, G., Stellas, I.Z. and Sigrimis, N.A. (2003b). Controller tuning for
integrating processes with time delay. Part III: The case of first order plus integral plus deadtime processes, Proceedings of 11th Mediterranean Conference on Control and Automation,
Paper No. T7–042.
Åström, K.J. (1982). Ziegler–Nichols auto-tuner, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden, Report TFRT–3167.
Åström, K.J. and Hägglund, T. (1984). Automatic tuning of simple regulators with specifications
on phase and amplitude margins, Automatica, 20, pp. 645–651.
Åström, K.J. and Hägglund, T. (1988). Automatic Tuning of PID Controllers (Instrument Society
of America, North Carolina).
Åström, K.J. and Hägglund, T. (1995). PID Controllers: Theory, Design and Tuning, 2nd Edition
(Instrument Society of America, North Carolina).
Åström, K.J. and Hägglund, T. (1996) in The Control Handbook, Editor: W.S. Levine (CRC, Boca
Raton/IEEE Press, New York), pp. 198–209.
Åström, K.J. and Hägglund, T. (2000). The future of PID control, Preprints of Proceedings of PID
’00: IFAC Workshop on Digital Control, pp. 19–30.
b720_Bibliography
17-Mar-2009
Bibliography
FA
567
Åström, K.J. and Hägglund, T. (2004). Revisiting the Ziegler–Nichols step response method for
PID control, Journal of Process Control, 14, pp. 635–650.
Åström, K.J. and Hägglund, T. (2006). Advanced PID Control (Instrument Society of America,
North Carolina).
Atherton, D.P. and Boz, A.F. (1998). Using standard forms for controller design, Proceedings of
the UKACC International Conference on Control, pp. 1066–1071.
Atherton, D.P. and Majhi, S. (1998). Tuning of optimum PIPD controllers, Proceedings of Control
’98. Third Portuguese Conference on Automatic Control (Coimbra, Portugal).
Atkinson, P. (1968). Feedback Control Theory for Engineers (Heinemann Educational Books Ltd.,
London).
Atkinson, P. and Davey, R.L. (1968). A theoretical approach to the tuning of pneumatic three-term
controllers, Control, March, pp. 238–242.
Auslander, D.M., Takahashi, Y. and Tomizuka, M. (1975). The next generation of single loop
controllers: hardware and algorithms for the discrete/decimal process controller, Transactions of
the ASME: Journal of Dynamic Systems, Measurement and Control, September, pp. 280–282.
Bai, J. and Zhang, X. (2007). A new adaptive PI controller and its application in HVAC systems,
Energy Conversion and Management, 48, pp. 1043–1054.
Bain, D.M. and Martin, G.D. (1983). Simple PID tuning and PID closed-loop simulation,
Proceedings of the American Control Conference, pp. 338–342.
Barberà, E. (2006). First order plus dead-time (FOPDT) processes: a new procedure for tuning PI
and PID controllers [Online]. Available at http://www.angel.qui.ub.es/abstracts/T10-004.pdf
[accessed 9 May 2006].
Bateson, N. (2002). Introduction to Control System Technology (Prentice-Hall Inc., New Jersey).
Bekker, J.E., Meckl, P.H. and Hittle, D.C. (1991). A tuning method for first-order processes with PI
controllers, ASHRAE Transactions, 97(2), pp. 19–23.
Belanger, P.W. and Luyben, W.L. (1997). Design of low-frequency compensators for improvement
of plantwide regulatory performances, Industrial Engineering Chemistry Research, 36,
pp. 5339–5347.
Benjanarasuth, T., Ngamwiwit, J., Komine, N. and Ochiai, Y. (2005). CDM based two-degree of
freedom PID controllers tuning formulas, Proceedings of the School of Information Technology
and Electronics of Tokai University, Series E, 30, pp. 53–58 [Online]. Available at
http://ci.nii.ac.jp/vol_issue/nels/AA11898836/ISS0000391486_jp.html [accessed 30 January
2008].
Bennett, S. (1993). A History of Control Engineering 1930-1955 (IEE Control Engineering Series
47, Peter Peregrinus Ltd., Stevenage).
Bequette, B.W. (2003). Process Control: Modeling, Design and Simulation (Pearson Education,
Inc., New Jersey).
Bi, Q., Cai, W.-J., Lee, E.-L., Wang, Q.-G., Hang, C.-C. and Zhang, Y. (1999). Robust
identification of first-order plus dead-time model from step response, Control Engineering
Practice, 7, pp. 71–77.
Bi, Q., Cai, W.-J., Wang, Q.-G., Hang, C.-C., Lee, E.-L., Sun, Y., Liu, K.-D., Zhang, Y. and
Zou, B. (2000). Advanced controller auto-tuning and its application in HVAC systems, Control
Engineering Practice, 8, pp. 633–644.
Bialkowski, W.L. (1996) in The Control Handbook, Editor: W.S. Levine (CRC, Boca Raton/IEEE
Press, New York), pp. 1219–1242.
b720_Bibliography
568
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Blickley, G.J. (1990). Modern control started with Ziegler–Nichols tuning, Control Engineering, 2
October, pp. 11–17.
Boe, E. and Chang, H.-C. (1988). Dynamics and tuning of systems with large delay, Proceedings of
the American Control Conference, pp. 1572–1578.
Bohl, A.H. and McAvoy, T.J. (1976a). Linear feedback vs. time optimal control. I. The servo
problem, Industrial Engineering Chemistry Process Design and Development, 15, pp. 24–30.
Bohl, A.H. and McAvoy, T.J. (1976b). Linear feedback vs. time optimal control. II. The regulator
problem, Industrial Engineering Chemistry Process Design and Development, 15, pp. 30–33.
Borresen, B.A. and Grindal, A. (1990). Controllability – back to basics, ASHRAE Transactions –
Research, pp. 817–819.
Boudreau, M.A. and McMillan, G.K. (2006). New directions in bioprocess modeling and control:
Appendix C – unification of controller tuning relationships [Online]. Available at
http://www.modelingandcontrol.com/NewDirectionsAppendixC.pdf [accessed 18 April 2007].
Brambilla, A., Chen, S. and Scali, C. (1990). Robust tuning of conventional controllers,
Hydrocarbon Processing, November, pp. 53–58.
Branica, I., Petrović, I and Perić, N. (2002). Toolkit for PID dominant pole design, Proceedings of
the 9th IEEE Conference on Electronics, Circuits and Systems, 3, pp. 1247–1250.
Bryant, G.F., Iskenderoglu, E.F. and McClure, C.H. (1973). Design of controllers for time delay
systems, in Automation of Tandem Mills, Editor: G.F. Bryant (The Iron and Steel Institute,
London), pp. 81–106.
Buckley, P.S. (1964). Techniques of Process Control (John Wiley and Sons, New York).
Buckley, P., Shunta, J. and Luyben, W. (1985). Design of Distillation Column Control Systems
(Elsevier, Amsterdam).
Bunzemeier, A. (1998). Ein vorschlag zur regelung integral wirkender prozesse mit
eingangsstorung, Automatisierungstechnische Praxis, 40, pp. 26–35 (in German).
Calcev, G. and Gorez, R. (1995). Iterative techniques for PID controller tuning, Proceedings of the
34th Conference on Decision and Control (New Orleans, LA), pp. 3209–3210.
Callender, A. (1934). Preliminary notes on automatic control (ICI (Alkali) Ltd, Northwich, U.K.,
Central File Number R.525/15/3).
Callender, A., Hartree, D.R. and Porter, A. (1935/6). Time-lag in a control system, Philosophical
Transactions of the Royal Society of London Series A, 235, pp. 415–444.
Camacho, O.E., Smith, C. and Chacón, E. (1997). Toward an implementation of sliding mode
control to chemical processes, Proceedings of the IEEE International Symposium on Industrial
Electronics (Guimarães, Portugal), 3, pp. 1101–1105.
Carr, D. (1986). AN-CNTL-13: PID control and controller tuning techniques [Online]. Available at
http://www.eurotherm.com/training/tutorial/instrumentation/an13_2.doc [accessed 3 September
2004].
Chandrashekar, R., Sree, R.P. and Chidambaram, M. (2002). Design of PI/PID controllers for
unstable systems with time delay by synthesis method, Indian Chemical Engineer Section A,
44(2), pp. 82–88.
Chang, D.-M., Yu, C.-C. and Chien, I.-L. (1997). Identification and control of an overshoot leadlag plant, Journal of the Chinese Institute of Chemical Engineers, 28, pp. 79–89.
Chao, Y.-C., Lin, H.-S., Guu, Y.-W. and Chang, Y.-H. (1989). Optimal tuning of a practical PID
controller for second order processes with delay, Journal of the Chinese Institute of Chemical
Engineers, 20, pp. 7–15.
b720_Bibliography
17-Mar-2009
Bibliography
FA
569
Chau, P.C. (2002). Process Control – A First Course with MATLAB (Cambridge University Press,
New York).
Chen, C.-L. (1989). A simple method for on-line identification and controller tuning, AIChE
Journal, 35, pp. 2037–2039.
Chen, F. and Yang, Z. (1993). Self-tuning PM method and its formulas deduction in PID
regulators, Acta Automatica Sinica, 19(6), pp. 736–740 (in Chinese).
Chen, G. (1996). Conventional and fuzzy PID controllers: an overview, International Journal of
Intelligent Control and Systems, 1, pp. 235–246.
Chen, C.-L., Huang, H.-P. and Lo, H.-C. (1997). Tuning of PID controllers for self-regulating
processes, Journal of the Chinese Institute of Chemical Engineers, 28, pp. 313–327.
Chen, C.-L., Hsu, S.-H. and Huang, H.-P. (1999a). Tuning PI/PD controllers based on gain/phase
margins and maximum closed loop magnitude, Journal of the Chinese Institute of Chemical
Engineers, 30, pp. 23–29.
Chen, C.-L., Huang, H.-P. and Hsieh, C.-T. (1999b). Tuning of PI/PID controllers based on
specification of maximum closed-loop amplitude ratio, Journal of Chemical Engineering of
Japan, 32, pp. 783–788.
Chen, C.-L. and Yang, S.-F. (2000). PI tuning based on peak amplitude ratio, Preprints of
Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain), pp. 195–198.
Chen, C.-L., Yang, S.-F. and Wang, T.-C. (2001). Tuning of the blending PID controllers based on
specification of maximum closed-loop amplitude ratio, Journal of the Chinese Institute of
Chemical Engineers, 32, pp. 565–570.
Chen, D. (2002). Design and analysis of decentralized PID control systems (PhD thesis, University
of California, Santa Barbara).
Chen, D. and Seborg, D.E. (2002). PI/PID controller design based on direct synthesis and
disturbance rejection, Industrial Engineering Chemistry Research, 41, pp. 4807–4822.
Chen, P., Zhang, W. and Zhu, L. (2006). Design and tuning method of PID controller for a class of
inverse response processes, Proceedings of the American Control Conference, pp. 274–279.
Cheng, G.S. and Hung, J.C. (1985). A least-squares based self-tuning of PID controller,
Proceedings of the IEEE South East Conference (Raleigh, North Carolina, USA), pp. 325–332.
Cheng, Y.-C. and Yu, C.-C. (2000). Nonlinear process control using multiple models: relay
feedback approach, Industrial Engineering Chemistry Research, 39, pp. 420–431.
Chesmond, C.J. (1982). Control System Technology (Edward Arnold, London).
Chidambaram, M. (1994). Design of PI controllers for integrator/dead-time processes, Hungarian
Journal of Industrial Chemistry, 22, pp. 37–39.
Chidambaram, M. (1995a). Design formulae for PID controllers, Indian Chemical Engineer
Section A, 37(3), pp. 90–94.
Chidambaram, M. (1995b). Design of PI and PID controllers for an unstable first-order plus time
delay system, Hungarian Journal of Industrial Chemistry, 23, pp. 123–127.
Chidambaram, M. and Kalyan, V.S. (1996). Robust control of unstable second order plus time
delay systems, Proceedings of the International Conference on Advances in Chemical
Engineering (ICAChE-96) (Chennai, India: Allied Publishers, New Delhi, India), pp. 277–280.
Chidambaram, M. (1997). Control of unstable systems: a review, Journal of Energy, Heat and
Mass Transfer, 19, pp. 49–56.
Chidambaram, M. (1998). Applied Process Control (Allied Publishers PVT Ltd., India).
b720_Bibliography
570
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Chidambaram, M. (2000a). Set point weighted PI/PID controllers for stable systems, Chemical
Engineering Communications, 179, pp. 1–13.
Chidambaram, M. (2000b). Set-point weighted PI/PID controllers for integrating plus dead-time
processes, Proceedings of the National Symposium on Intelligent Measurement and Control
(Chennai, India), pp. 324–331.
Chidambaram, M. (2000c). Set-point weighted PI/PID controllers for unstable first–order plus time
delay systems, Proceedings of the International Conference on Communications, Control and
Signal Processing (Bangalore, India), pp. 173–177.
Chidambaram, M. (2002). Computer Control of Processes (Alpha Science International Ltd., UK).
Chidambaram, M. and Sree, R.P. (2003). A simple method of tuning PID controllers for
integrator/dead-time processes, Computers and Chemical Engineering, 27, pp. 211–215.
Chidambaram, M., Sree, R.P. and Srinivas, M.N. (2005). Reply to the comments by Dr. A. Abbas
on “A simple method of tuning PID controllers for stable and unstable FOPTD systems” [Comp.
Chem. Engineering V28 (2004) 2201–2218], Computers and Chemical Engineering, 29, p. 1155.
Chien, K.L., Hrones, J.A. and Reswick, J.B. (1952). On the automatic control of generalised
passive systems, Transactions of the ASME, February, pp. 175–185.
Chien, I.-L. (1988). IMC-PID controller design – an extension, Proceedings of the IFAC Adaptive
Control of Chemical Processes Conference (Copenhagen, Denmark), pp. 147–152.
Chien, I.-L. and Fruehauf, P.S. (1990). Consider IMC tuning to improve controller performance,
Chemical Engineering Progress, October, pp. 33–41.
Chien, I.-L., Huang, H.-P. and Yang, J.-C. (1999). A simple multiloop tuning method for
PID controllers with no proportional kick, Industrial Engineering Chemistry Research 38,
pp. 1456–1468.
Chien, I.-L., Chung, Y.-C., Chen, B.-S. and Chuang, C.-Y. (2003). Simple PID controller tuning
method for processes with inverse response plus dead time or large overshoot response plus dead
time, Industrial Engineering Chemistry Research, 42, pp. 4461–4477.
Chiu, K.C., Corripio, A.B. and Smith, C.L. (1973). Digital controller algorithms. Part III. Tuning PI
and PID controllers, Instruments and Control Systems, December, pp. 41–43.
Chun, D., Choi, J.Y. and Lee, J. (1999). Parallel compensation with a secondary measurement,
Industrial Engineering Chemistry Research, 38, pp. 1575–1579.
Clarke, D.W. (2006). PI auto-tuning during a single transient, IEE Proceedings – Control Theory
and Applications, 153(6), pp. 671–683.
Cluett, W.R. and Wang, L. (1997). New tuning rules for PID control, Pulp and Paper Canada,
3(6), pp. 52–55.
Cohen, G.H. and Coon, G.A. (1953). Theoretical considerations of retarded control, Transactions
of the ASME, May, pp. 827–834.
Connell, B. (1996). Process Instrumentation Applications Manual (McGraw-Hill, New York).
ControlSoft Inc. (2005). PID loop tuning pocket guide (Version 2.2, DS405-02/05) [Online].
Available at http://www.controlsoftinc.com [accessed 30 June 2005].
Coon, G.A. (1956). How to find controller settings from process characteristics, Control
Engineering, 3(May), pp. 66–76.
Coon, G.A. (1964). Control charts for proportional action, ISA Journal, 11(November), pp. 81–82.
Cooper, D.J. (2006a). PID control of the heat exchanger [Online]. Available at http://www.
controlguru.com/wp/p86.html [accessed 14 February 2007].
b720_Bibliography
17-Mar-2009
Bibliography
FA
571
Cooper, D.J. (2006b). PID with CO filter control of the heat exchanger [Online]. Available at
http://www.controlguru.com/wp/p86.html [accessed 14 February 2007].
Corripio, A.B. (1990). Tuning of Industrial Control Systems (Instrument Society of America,
North Carolina).
Cox, C.S., Arden, W.J.B. and Doonan, A.F. (1994). CAD Software facilities tuning of traditional
and predictive control strategies, Proceedings of the ISA Advances in Instrumentation and
Control Conference (Anaheim), 49(2), pp. 241–250.
Cox, C.S., Daniel, P.R. and Lowdon, A. (1997). Quicktune: a reliable automatic strategy for
determining PI and PPI controller parameters using a FOLPD model, Control Engineering
Practice, 5, pp. 1463–1472.
Cuesta, A., Grau, L. and López, I. (2006). CACSD tools for tuning multi-rate PID controllers in
time and frequency domains, Proceedings of the IEEE Conference on Computer Aided Control
System Design, pp. 3036–3041.
Davydov, N.I., Idzon, O.M. and Simonova, O.V. (1995). Determining the parameters of PIDcontroller settings using the transient response of the controlled plant, Thermal Engineering
(Russia), 42, pp. 801–807.
De Oliveira, R., Corrêa, R.G. and Kwong, W.H. (1995). An IMC-PID tuning procedure based on
the integral squared error (ISE) criterion: a guide tour to understand its features, Proceedings of
the IFAC Workshop on Control Education and Technology Transfer Issues (Curitiba, Brazil),
pp. 87–91.
De Paor, A.M. and O’ Malley, M. (1989). Controllers of Ziegler–Nichols type for unstable
processes with time delay, International Journal of Control, 49, pp. 1273–1284.
De Paor, A.M. (1993). A fiftieth anniversary celebration of the Ziegler–Nichols PID controller,
International Journal of Electrical Engineering Education, 30, pp. 303–316.
Desbiens, A. (2007). La commande automatique des systèmes dynamiques. Available at
http://wcours.gel.ulaval.ca/2008/h/20701/default/5notes/Livre_Commande_AD.pdf
[accessed
27 May 2008] (in French).
Deshpande, P.B. (1980). Process identification of open-loop unstable systems, AIChE Journal, 26,
pp. 305–308.
Devanathan, R. (1991). An analysis of minimum integrated error solution with application to selftuning controller, Journal of Electrical and Electronics Engineering, Australia, 11, pp. 172–177.
Dutton, K., Thompson, S. and Barraclough, B. (1997). The Art of Control Engineering (AddisonWesley Longman, Boston).
ECOSSE Team (1996a). The ECOSSE Control Hypercourse [Online]. Available at http://eweb.
chemeng.ed.ac.uk/courses/control/course/map/controllers/correlations.html [accessed 24 May
2005].
ECOSSE Team (1996b). The ECOSSE Control Hypercourse [Online]. Available at
http://eweb.chemeng.ed.ac.uk/courses/control/course/map/controllers/damped.html
[accessed
24 May 2005].
Edgar, T.F., Smith, C.L., Shinskey, F.G., Gassman, G.W., Schafbuch, P.J., McAvoy, T.J.
and Seborg, D.E. (1997). Process Control in Perry’s Chemical Engineers’ Handbook, Editors:
R.H. Perry and D.W. Green (McGraw-Hill International Edition, Chemical Engineering Series,
New York), pp. 8–1 to 8–84.
Ender, D.B. (1993). Process control performance: not at good as you think, Control Engineering,
September, pp. 180–190.
b720_Bibliography
572
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Eriksson, L.M. and Johansson, M. (2007). Simple PID tuning rules for varying time-delay systems,
Proceedings of the 46th IEEE Conference on Decision and Control (New Orleans, LA),
pp. 1801–1807.
Ettaleb, L. and Roche, A. (2000). On-line tuning of malfunctioning control loops, Proceedings of
Control Systems 2000 (Victoria, British Columbia, Canada), pp. 139–144.
EZYtune software package [Online]. Available at http://www.unac.com.au/ezytune [accessed
28 June 2003].
Faanes, A. and Skogestad, S. (2004). pH-neutralization: integrated process and control design,
Computers and Chemical Engineering, 28, pp. 1475–1487.
Farrington, G.H. (1950). Communications on “The practical application of frequency response
analysis to automatic process control”, Proceedings of the Institution of Mechanical Engineers
(London), 162, pp. 346–347.
Feeney, M. and O’Dwyer, A. (2002). Towards an expert system approach for PI controller design
of delayed processes, Proceedings of the Irish Signals and Systems Conference (University
College Cork, Ireland), pp. 175–180.
Ferretti, G., Maffezzoni, C. and Scattolini, R. (1991). Recursive estimation of time delay in
sampled systems, Automatica, 27, pp. 653–661.
Fertik, H.A. (1975). Tuning controllers for noisy processes, ISA Transactions, 14, pp. 292–304.
Fertik, H.A. and Sharpe, R. (1979). Optimizing the computer control of breakpoint chlorination,
Advances in Instrumentation: Proceedings of the ISA Conference and Exhibit (Chicago), 34(1),
pp. 373–386.
Foley, M.W., Ramharack, N.R. and Copeland, B.R. (2005). Comparison of PI controller tuning
methods, Industrial Engineering Chemistry Research, 44(17), pp. 6741–6750.
Ford, R.L. (1953). The determination of the optimum process-controller settings and their
confirmation by means of an electronic simulator, Proceedings of the IEE Part 2, 101 (April),
pp. 141–155 and pp. 173–177.
Foxboro (1994). I/A/Series EXACT Multivariable Control Product Specifications (PSS 21S-3A2
B3, Foxboro Company, USA).
Frank, P.M. and Lenz, R. (1969). Entwurf erweiterter PI-regler für totzeitstrecken mit verzögerung
erster ordnung, Elektrotechnische Zeitschrift ETZ A, 90(3), pp. 57–63 (in German).
Friman, M. and Waller, K.V. (1997). A two channel relay for autotuning, Industrial Engineering
Chemistry Research, 36, pp. 2662–2671.
Fruehauf, P.S., Chien, I.-L. and Lauritsen, M.D. (1993). Simplified IMC-PID tuning rules,
Proceedings of ISA/93 Advances in Instrumentation and Control Conference (Chicago), 48,
pp. 1745–1766.
Fukura, S. and Tamura, H. (1983). PI controller tuning of second order lag plus dead time
processes subject to a reference input, Transactions of the Society of Instrument and Control
Engineers, Japan, 19(6), pp. 514–515 (in Japanese).
Gaikward, R. and Chidambaram, M. (2000). Design of PID controllers for unstable systems,
Proceedings of the National Symposium on Intelligent Measurement and Control (Chennai,
India), pp. 332–339.
Gallier, P.W. and Otto, R.E. (1968). Self-tuning computer adapts DDC algorithms, Instrumentation
Technology, February, pp. 65–70.
b720_Bibliography
17-Mar-2009
Bibliography
FA
573
García, R.F. and Castelo, F.J.P. (2000). A complement to autotuning methods on PID controllers,
Preprints of Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain),
pp. 101–104.
Geng, G. and Geary, G.M. (1993). On performance and tuning of PID controllers in HVAC
systems, Proceedings of the 2nd IEEE Conference on Control Applications (Vancouver, B.C.,
Canada), pp. 819–824.
Gerry, J.P. and Hansen, P.D. (1987). Choosing the right controller, Chemical Engineering, May 25,
pp. 65–68.
Gerry, J.P. (1998). How to control processes with large dead times [Online]. Available at
http://www.expertune.com/artdt.html [accessed 27 June 2005].
Gerry, J.P. (1999). Tuning process controllers starts in manual [Online]. Available at http://www.
expertune.com/ArtInTechMay99.html [accessed 27 June 2005].
Gerry, J.P. (2003). How to control a process with long dead time [Online]. Available at
http://www.expertune.com/learncast.html [accessed 27 June 2005].
Gong, X., Gao, J. and Zhou, C. (1996). Extension of IMC tuning to improve controller
performance, Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, pp. 1770–1775.
Gong, X.F., Gao, J. and Zhou, C. (1998). Extension of IMC tuning of PID control parameter,
Control and Decision (China), 13(4), pp. 337–341 (in Chinese).
Gong, X.F. (2000). Normalised tuning method of PID controller parameters, Journal of Zhejiang
University (China), 43(1), pp. 43–48 (in Chinese).
Gonzalez, A.M. (1994). Un planteamiento continuo de la autosintonia de controladores PI y PID
(PhD dissertation, Dept. de Informatica y Automatica, UNED, Madrid, Spain; in Spanish).
Goodwin, G.C., Graebe, S.F. and Salgado, M.E. (2001). Control System Design (Prentice Hall,
New Jersey).
Gorecki, H., Fuska, S., Grabowski, P. and Korytowski, A. (1989). Analysis and Synthesis of Time
Delay Systems (John Wiley and Sons, New York).
Gorez, R. and Klàn, P. (2000). Nonmodel-based explicit design relations for PID controllers,
Preprints of Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain),
pp. 141–148.
Gorez, R. (2003). New design relations for 2-DOF PID-like control systems, Automatica, 39,
pp. 901–908.
Gu, D., Liu, T. and Zhang, W. (2003). Study on the relationship between two typical modeling
methods in process control, Proceedings of the 42nd IEEE Conference on Decision and Control,
pp. 4082–4083.
Haalman, A. (1965). Adjusting controllers for a deadtime process, Control Engineering, July,
pp. 71–73.
Haeri, M. (2002). Tuning rules for the PID controller using a DMC strategy, Asian Journal of
Control, 4, pp. 410–417.
Haeri, M. (2005). PI design based on DMC strategy, Transactions of Institute of Measurement and
Control, 27, pp. 21–36.
Hägglund, T. and Åström, K.J. (1991). Industrial adaptive controllers based on frequency response
techniques, Automatica, 27, pp. 599–609.
Hägglund, T. and Åström, K.J. (2002). Revisiting the Ziegler–Nichols tuning rules for PI control,
Asian Journal of Control, 4, pp. 364–380.
b720_Bibliography
574
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Hägglund, T. and Åström, K.J. (2004). Revisiting the Ziegler–Nichols tuning rules for PI control –
Part II The frequency response method, Asian Journal of Control, 6(4), pp. 469–482.
Hang, C.C. and Åström, K.J. (1988a). Refinements of the Ziegler–Nichols tuning formulae for PID
auto-tuners, Proceedings of the ISA/88 International Conference and Exhibition. Advances in
Instrumentation, 43, pp. 1021–1030.
Hang, C.C. and Åström, K.J. (1988b). Practical aspects of PID auto-tuners based on relay feedback,
Proceedings of the IFAC Adaptive control of Chemical Processes Conference (Copenhagen,
Denmark), pp. 153–158.
Hang, C.C., Åström, K.J. and Ho, W.K. (1991). Refinements of the Ziegler–Nichols tuning
formula, IEE Proceedings, Part D, 138, pp. 111–118.
Hang, C.C., Ho, W.K. and Cao, L.S. (1993a). A comparison of two design methods for PID
controllers, Proceedings of the ISA/93 Advances in Instrumentation and Control Conference
(Chicago, U.S.A.), 48, pp. 959–967.
Hang, C.C., Lee, T.H. and Ho, W.K. (1993b). Adaptive Control (Instrument Society of America,
North Carolina).
Hang, C.C., Ho, W.H. and Cao, L.S. (1994). A comparison of two design methods for PID
controllers, ISA Transactions, 33, pp. 147–151.
Hang, C.C. and Cao, L. (1996). Improvement of transient response by means of variable set-point
weighting, IEEE Transactions on Industrial Electronics, 43, pp. 477–484.
Hansen, P.D. (1998). Controller structure and tuning for unmeasured load disturbance, Proceedings
of the American Control Conference (Philadelphia, Pennsylvania), 1, pp. 131–136.
Hansen, P.D. (2000). Robust adaptive PID controller tuning for unmeasured load rejection,
Preprints of Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain),
pp. 487–494.
Harriott, P. (1964). Process Control (McGraw-Hill, New York).
Harriott, P. (1988). Optimum controller settings for processes with dead time: effects of type and
location of disturbance, Industrial Engineering Chemistry Research, 27(11), pp. 2060–2063.
Harris, T.J. and Tyreus, B.D. (1987). Comments on Internal Model Control. 4. PID controller
design, Industrial Engineering Chemistry Research, 26, pp. 2161–2162.
Harrold, D. (1999). Process controller tuning guidelines [Online]. Available at http://www.
manufacturing.net/ctl/index.asp?layout=articlePrint&articleID=CA188338 [accessed 2 May
2003].
Hartree, D.R., Porter, A., Callender, A. and Stevenson, A.B. (1937). Time-lag in a control
system – II, Proceedings of the Royal Society of London, 161(A), pp. 460–476.
Hassan, G.A. (1993). Computer-aided tuning of analog and digital controllers, Control and
Computers, 21(1), pp. 1–6.
Hay, J. (1998). Regeltechniek 1 (Die Keure n.v., Brugge, Belgium; in Flemish).
Hazebroek, P. and Van der Waerden, B.L. (1950). The optimum tuning of regulators, Transactions
of the ASME, April, pp. 317–322.
Heck, E. (1969). Stetige regler an regelstrecken – bestehend aus verzögerungsgliedern erster
ordnung, Heizung-Lüeftung-Haustechnik, 20(9), September, pp. 333–337 (in German).
Henry, J. and Schaedel, H.M. (2005). International co-operation in control engineering education
using online experiments, European Journal of Engineering Education, 30(2), pp. 265–274.
b720_Bibliography
17-Mar-2009
Bibliography
FA
575
Hill, A.G. and Adams, C.B. (1988). Effect of disturbance dynamics on optimum control of 3rd and
4th order processes, Proceedings of the ISA/88 International Conference and Exhibition (Houston,
Texas), 43(3), pp. 967–983.
Hill, A.G. and Venable, S.W. (1989). The effect of model error on optimum PID controller tuning,
Proceedings of the ISA/89 International Conference and Exhibition (Philadelphia, PA), 44(1),
pp. 51–64.
Hiroi, K. and Terauchi, Y. (1986). Two degrees of freedom algorithm, Proceedings of the ISA/86
International Conference and Exhibition. Advances in Instrumentation, pp. 789–796.
Ho, W.K., Hang, C.C., Zhou, J.H. and Yip, C.K. (1994). Adaptive PID control of a process
with underdamped response, Proceedings of the Asian Control Conference (Tokyo, Japan),
pp. 335–338.
Ho, W.K., Hang, C.C. and Cao, L.S. (1995a). Tuning of PID controllers based on gain and phase
margin specifications, Automatica, 31, pp. 497–502.
Ho, W.K., Hang, C.C. and Zhou, J.H. (1995b). Performance and gain and phase margins of wellknown PI tuning formulas, IEEE Transactions on Control Systems Technology, 3, pp. 245–248.
Ho, W.K., Gan, O.P., Tay, E.B. and Ang, E.L. (1996). Performance and gain and phase margins of
well-known PID tuning formulas, IEEE Transactions on Control Systems Technology, 4,
pp. 473–477.
Ho, W.K., Hang, C.C. and Zhou, J. (1997). Self-tuning PID control of a plant with under-damped
response with specifications on gain and phase margins, IEEE Transactions on Control Systems
Technology, 5, pp. 446–452.
Ho, W.K., Lim, K.W. and Xu, W. (1998). Optimal gain and phase margin tuning for PID
controllers, Automatica, 34, pp. 1009–1014.
Ho, W.K. and Xu, W. (1998). PID tuning for unstable processes based on gain and phase-margin
specifications, IEE Proceedings – Control Theory and Applications, 145, pp. 392–396.
Ho, W.K., Lim, K.W., Hang, C.C. and Ni, L.Y. (1999). Getting more phase margin and
performance out of PID controllers, Automatica, 35, pp. 1579–1585.
Ho, W.K., Lee, T.H., Han, H.P. and Hong, Y. (2001). Self-tuning IMC-PID control with interval
gain and phase margins assignment, IEEE Transactions on Control Systems Technology, 9,
pp. 535–541.
Horn, I.G., Arulandu, J.R., Gombas, C.J., VanAntwerp, J.G. and Braatz, R.D. (1996). Improved
filter design in internal model control, Industrial Engineering Chemistry Research, 35,
pp. 3437–3441.
Hougen, J.O. (1979). Measurement and Control Applications (Instrument Society of America,
North Carolina).
Hougen, J.O. (1988). A software program for process controller parameter selection, Proceedings
of the ISA/88 International Conference and Exhibition. Advances in Instrumentation, 43(1),
pp. 441–456.
Huang, H.-P. and Chao, Y.-C. (1982). Optimal tuning of a practical digital PID controller,
Chemical Engineering Communications, 18, pp. 51–61.
Huang, C.-T. and Lin, Y.-S. (1995). Tuning PID controller for open-loop unstable processes with
time delay, Chemical Engineering Communications, 133, pp. 11–30.
Huang, C.-T., Chou, C.-J. and Wang, J.-L. (1996). Tuning of PID controllers based on the
second order model by calculation, Journal of the Chinese Institute of Chemical Engineers, 27,
pp. 107–120.
b720_Bibliography
576
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Huang, H.-P. and Chen C.-C. (1997). Control-system synthesis for open-loop unstable process with
time delay, IEE Proceedings – Control Theory and Applications, 144, pp. 334–346.
Huang, H.-P., Chien, I.-L., Lee, Y.-C. and Wang, G.-B. (1998). A simple method for tuning
cascade control systems, Chemical Engineering Communications, 165, pp. 89–121.
Huang, H.-P. and Chen, C.-C. (1999). Auto-tuning of PID controllers for second-order unstable
process having dead time, Journal of Chemical Engineering of Japan, 32, pp. 486–497.
Huang, H.-P., Lee, M.-W. and Chen, C.-L. (2000). Inverse-based design for a modified PID
controller, Journal of the Chinese Institute of Chemical Engineers, 31, pp. 225–236.
Huang, C.-T. (2002). Private communication to Mr. T. Kealy, DIT.
Huang, H.-P. and Jeng, J.-C. (2002). Monitoring and assessment of control performance for single
loop systems, Industrial Engineering Chemistry Research, 41, pp. 1297–1309.
Huang, H.-P., Roan, M.-L. and Jeng, J.-C. (2002). On-line adaptive tuning for PID controllers, IEE
Proceedings – Control Theory and Applications, 149, pp. 60–67.
Huang, H.-P. and Jeng, J.-C. (2003). Identification for monitoring and autotuning of PID
controllers, Journal of Chemical Engineering of Japan, 36, pp. 284–296.
Huang, H.-P., Luo, K.-Y. and Jeng, J.-C. (2003). Model based auto-tuning system using
relay feedback, Proceedings of the IFAC Advanced Control of Chemical Processes Conference
(Hong Kong, China), pp. 625–630.
Huang, H.-P. and Jeng, J.-C. (2005). Process reaction curve and relay methods – identification and
PID tuning, in PID Control: New Identification and Design Methods, Editors: M.A. Johnson and
M.H. Moradi (Springer-Verlag Ltd., London).
Huang, H.-P., Jeng, J.-C. and Luo, K.-Y. (2005a). Auto-tune system using single-run relay
feedback test and model-based controller design, Journal of Process Control, 15, pp. 713–727.
Huang, H.-P., Lin, F.-Y. and Jeng, J.-C. (2005b). Multi-loop PID controllers design for MIMO
processes containing integrator(s), Journal of Chemical Engineering of Japan, 38(9),
pp. 742–756.
Huba, M. and Žáková, K. (2003). Contribution to the theoretical analysis of the Ziegler–Nichols
method, Journal of Electrical Engineering, Slovakia, 54(7–8), pp. 188–194.
Huba, M. (2005). P- und PD-Polvorgaberegler für Regelstrecken mit begrenzter Stellgröße (P and
PD pole assignment controllers for constrained systems), Automarisierundstechnik, 53(6),
pp. 273–284 (in German).
Hwang, S.-H. and Chang, H.-C. (1987). A theoretical examination of closed-loop properties and
tuning methods of single-loop PI controllers, Chemical Engineering Science, 42, pp. 2395–2415.
Hwang, S.-H. (1993). Adaptive dominant pole design of PID controllers based on a single closedloop test, Chemical Engineering Communications, 124, pp. 131–152.
Hwang, S.-H. (1995). Closed-loop automatic tuning of single-input-single-output systems,
Industrial Engineering Chemistry Research, 34, pp. 2406–2417.
Hwang, S.-H. and Fang, S.-M. (1995). Closed-loop tuning method based on dominant pole
placement, Chemical Engineering Communications, 136, pp. 45–66.
Idzerda, H.H., Ensing, L., Janssen, J.M.L. and Offereins, R.P. (1955). Design and applications of
an electronic simulator for control systems, Transactions of the Society of Instrument
Technology, September, pp. 105–122.
Isaksson, A.J. and Graebe, S.F. (1999). Analytical PID parameter expressions for higher order
systems, Automatica, 35, pp. 1121–1130.
b720_Bibliography
17-Mar-2009
Bibliography
FA
577
Isermann, R. (1989). Digital Control Systems Volume 1. Fundamentals, Deterministic Control,
2nd Revised Edition (Springer-Verlag, New York).
ISMC (1999). RAPID: Robust Advanced PID Control Manual (Intelligent System Modeling and
Control nv, Belgium).
Jacob, E.F. and Chidambaram, M. (1996). Design of controllers for unstable first-order plus time
delay systems, Computers in Chemical Engineering, 20, 579–584.
Jahanmiri, A. and Fallahi, H.R. (1997). New methods for process identification and design of
feedback controller, Transactions of the Institute of Chemical Engineers, 75(A), pp. 519–522.
Jhunjhunwala, M. and Chidambaram, M. (2001). PID controller tuning for unstable systems by
optimization method, Chemical Engineering Communications, 185, pp. 91–113.
Johnson, E.F. (1956). Use of frequency response analysis in chemical engineering process control,
Chemical Engineering Progress, 52(2), pp. 64-F to 68-F.
Jones, K.O., Williams, D. and Montgomery, P.A. (1997). On-line application of an auto-tuning PID
controller for dissolved oxygen concentration in a fermentation process, Transactions of the
Institute of Measurement and Control, 19, pp. 253–262.
Jones, R.W. and Tham, M.T. (2006). Control strategies for process intensified systems,
Proceedings of the SICE-ICASE International Joint Conference (Busan, Korea), pp. 4618–4623.
Juang, W.-S. and Wang, F.-S. (1995). Design of PID controller by concept of Dahlin’s Law,
Journal of the Chinese Institute of Chemical Engineers, 26, pp. 133–136.
Jyothi, S.N., Arvind, S. and Chidambaram, M. (2001). Design on PI/PID controller for systems
with a zero, Indian Chemical Engineer Section A, 43(4), pp. 288–293.
Kamimura, K., Yamada, A., Matsuba, T., Kimbara, A., Kurosu, S. and Kasahara, M. (1994). CAT
(Computer-aided tuning) software for PID controllers, ASHRAE Transactions: Research, 100(1),
pp. 180–190.
Kang, T.-W. (1989). Effect of disturbance dynamics optimum control of second-order plus dead
time process (Ph.D. thesis, Oklahoma State University, Oklahoma).
Karaboga, D. and Kalinli, A. (1996). Tuning PID controller parameters using Tabu search
algorithm, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,
pp. 134–136.
Kasahara, M., Matsuba, T., Murasawa, I., Hashimoto, Y., Kamimura, K., Kimbara, A. and
Kurosu, S. (1997). A tuning method of two degrees of freedom PID controller, ASHRAE
Transactions: Research, 103, pp. 278–289.
Kasahara, M., Matsuba, T., Kuzuu, Y., Yamazaki, T., Hashimoto, Y., Kamimura, K. and
Kurosu, S. (1999). Design and tuning of robust PID controller for HVAC systems, ASHRAE
Transactions: Research, 105(2), pp. 154–166.
Kasahara, M., Yamazaki, T., Kuzuu, Y., Hashimoto, Y., Kamimura, K., Matsuba, T. and
Kurosu, S. (2001). Stability analysis and tuning of PID controller in VAV systems, ASHRAE
Transactions: Research, 107, pp. 285–296.
Kaya, A. and Scheib, T.J. (1988). Tuning of PID controls of different structures, Control
Engineering, July, pp. 62–65.
Kaya, I. and Atherton, D.P. (1999). A PI-PD controller design for integrating processes,
Proceedings of the American Control Conference (San Diego), pp. 258–262.
Kaya, I. (2003). A PI-PD controller design for control of unstable and integrating processes, ISA
Transactions, 42, pp. 111–121.
b720_Bibliography
578
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Kaya, I., Tan, N. and Atherton, D.P. (2003). A simple procedure for improving performance of PID
controllers, Proceedings of the IEEE Conference on Control Applications (USA), pp. 882–885.
Keane, M.A., Yu, J. and Koza, J.R. (2000). Automatic synthesis of both the topology and tuning of
a common parameterized controller for two families of plants using genetic programming,
Proceedings of the Genetic and Evolutionary Computation Conference (Las Vegas, Nevada),
pp. 496–504.
Keane, M.A., Koza, J.R. and Streeter, M.J. (2005). Apparatus for improved general-purpose PID
and non-PID controllers, US Patent No. 6,847,851 B1.
Keviczky, L. and Csáki, F. (1973). Design of control systems with dead time in the time domain,
Acta Technica Academiae Scientiarum Hungaricae, 74(1–2), pp. 63–84.
Khan, B.Z. and Lehman, B. (1996). Setpoint PI controllers for systems with large normalised dead
time, IEEE Transactions on Control Systems Technology, 4, pp. 459–466.
Khodabakhshian, A. and Golbon, N. (2004). Unified PID design for load frequency control,
Proceedings of the IEEE International Conference on Control Applications (Taipei, Taiwan),
pp. 1627–1632.
Kim, I.-H., Fok, S., Fregene, K., Lee, D.-H., Oh, T.-S. and Wang, D.W.L. (2004). Neural-network
bases system identification and controller synthesis for an industrial sewing machine,
International Journal of Control, Automation and Systems, 2(1), pp. 83–91.
King, R. (2006). Private communication, March 6.
Kinney, T.B. (1983). Tuning process controllers, Chemical Engineering, September 19, pp. 67–72.
Klán, P. (2000). Moderní metody nastavení PID regulátorů [Modern methods of setting PID
controllers]. Část I: Procesy s přechodovou charakteristikou typu “S”, Automa, 9, pp. 54–57 (in
Czech).
Klán, P. and Gorez, R. (2000). Vyvážené nastavení PI regulátorů, Automa, 4, pp. 49–53 (in
Czech).
Klán, P. (2001). Moderní metody nastavení PID regulátorů. Část II: Integrační procesy, Automa, 1,
pp. 52–54 (in Czech).
Klán, P. and Gorez, R. (2005a). Nastavení PI regulátorů chránící akční členy [PI control with
actuator preservation], Automa, 2, pp. 50–52 (in Czech).
Klán, P. and Gorez, R. (2005b). On aggressiveness of PI control, Proceedings of the IFAC World
Congress (Prague, Czech Republic).
Klein, M., Walter, H. and Pandit, M. (1992). Digitaler PI-regler: neue einstellregeln mit hilfe der
streckensprungantwort (Digital PI-control: new tuning rules based on step response
identification), at-Automatisierungstechnik, 40(8), pp. 291–299 (in German).
Koivo, H.N. and Tanttu, J.T. (1991). Tuning of PID controllers: survey of SISO and MIMO
techniques, Proceedings of the IFAC Intelligent Tuning and Adaptive Control Symposium
(Singapore), pp. 75–80.
Kookos, I.K., Lygeros, A.I. and Arvanitis, K.G. (1999). On-line PI controller tuning for
integrator/dead time processes, European Journal of Control, 5, pp. 19–31.
Kosinsani, S. (1985). Effect of disturbance dynamic characteristics on optimum PID controller
tuning constants (PhD thesis, Oklahoma State University, Oklahoma).
Kotaki, M., Yamakawa, Y., Yamazaki, T., Kamimura, K. and Kurosu, S. (2005a). A tuning method
for PID controller that considers changes in system characteristics, ASHRAE Transactions,
111(2), pp. 13–22.
b720_Bibliography
17-Mar-2009
Bibliography
FA
579
Kotaki, M., Yamazaki, T., Matuba, T., Kamimura, K. and Kurosu, S. (2005b). A tuning method for
PID controller under consideration of changes in plant characteristics, Transactions of the
Society of Instrument and Control Engineers, Japan, 41(2), pp. 177–179 (in Japanese).
Kothare, M.V., Somani, M.K. and Chidambaram, M. (1992). Design formulae for proportional
controllers, Hungarian Journal of Industrial Chemistry, 20, pp. 65–69.
Kraus, T.W. (1986). Pattern-recognizing self-tuning controller, US Patent Number 4,602,326.
Kristiansson, B. and Lennartson, B. (1998a). Robust design of PID controllers including autotuning rules, Proceedings of the American Control Conference, 5, pp. 3131–3132.
Kristiansson, B. and Lennartson, B. (1998b). Optimal PID controllers for unstable and resonant
plants, Proceedings of the Conference on Decision and Control (Tampa, Florida, U.S.A.),
pp. 4380–4381.
Kristiansson, B. and Lennartson, B. (2000). Near optimal tuning rules for PI and PID controllers,
Preprints of Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain),
pp. 369–374.
Kristiansson, B., Lennartson, B. and Fransson, C.-M. (2000). From PI to H ∞ control in a unified
framework, Proceedings of the 39th IEEE Conference on Decision and Control (Sydney,
Australia), pp. 2740–2745.
Kristiansson, B. and Lennartson, B. (2002a). Robust and optimal tuning of PI and PID controllers,
IEE Proceedings – Control Theory and Applications, 149, pp. 17–25.
Kristiansson, B. and Lennartson, B. (2002b). Convenient almost optimal and robust tuning of PI
and PID controllers, Proceedings of the IFAC World Congress (Barcelona, Spain).
Kristiansson, B. (2003). PID controllers design and evaluation (PhD thesis, Chalmers University of
Technology, Sweden).
Kristiansson, B. and Lennartson, B. (2003). Evaluation and tuning of robust PID controllers,
Proceedings of the Nordic Process Control Workshop XI [Online]. Available at
http://www.itk.ntnu.no/groups/npcw11/ [accessed 21 March 2005].
Kristiansson, B. and Lennartson, B. (2006). Robust tuning of PI and PID controllers, IEEE Control
Systems Magazine, February, pp. 55–69.
Kuhn, U. (1995). Ein praxisnahe einstellregel fur PID-regler: die T-summen-regel, atp –
Automatisierungstechnische Praxis, 37(5), pp. 10–16 (in German).
Kukal, J. (2006). O volbĕ parametrů PI a PID regulátorů, Automatizace, 49(1), pp. 16–20 (in
Czech).
Kuwata, R. (1987). An improved ultimate sensitivity method and PID; I-PD control characteristics,
Transactions of the Society of Instrument and Control Engineers (SICE), Japan, 23(3), March,
pp. 232–239 (in Japanese).
Kwak, H.J., Sung, S.W. and Lee, I.-B. (2000). Stabilizability conditions and controller design for
unstable processes, Transactions of the Institute of Chemical Engineers, 78(A), pp. 549–556.
Landau, I.D. and Voda, A. (1992). An analytical method for the auto-calibration of PID controllers,
Proceedings of the 31st Conference on Decision and Control (Tucson, Arizona, U.S.A.),
pp. 3237–3242.
Larionescu, S. (2002). Reglarea automată a instalaţiilor pe baza unui model intern [Online].
Available at http://www.geocities.com/larionescu/Infos1.htm [accessed 27 May 2008] (in
Romanian).
b720_Bibliography
580
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Latzel, W. (1988). Einstellregeln für kontinuierliche und Abtast-Regler nach der Methode der
Betragsanpassung (On the setting of continuous and sampled data controllers by the method of
gain adjustment), Automatisierungstechnik, 36, pp. 170–178 (in German).
Lavanya, K., Umamaheswari, B. and Panda, R.C. (2006a). Identification of second order plus dead
time systems using relay feedback test, Indian Chemical Engineer Section A, 48(3), pp. 94–102.
Lavanya, K., Umamaheswari, B. and Panda, R.C. (2006b). System identification and controller
tuning rule for DC-DC converter using ripple voltage waveform, Proceedings of the
International Conference on Power Electronics, Drives and Energy Systems (PEDES ’06),
pp. 1–4.
Lee, J., Choi, J.Y., Lee, S.D. and Kwon, Y.S. (1992). Improved method for a PID controller tuning
by the dominant pole placement, Journal of the Korean Institute of Chemical Engineers, 30(5),
pp. 631–634 (in Korean).
Lee, J. and Sung, S.W. (1993). Comparison of two identification methods for PID controller tuning,
AIChE Journal, 39, pp. 695–697.
Lee, Y., Park, S., Lee, M. and Brosilow, C. (1998). PID controller tuning to obtain desired closedloop responses for SI/SO systems, AIChE Journal, 44, pp. 106–115.
Lee, Y., Lee, J. and Park, S. (2000). PID tuning for integrating and unstable processes with time
delay, Chemical Engineering Science, 55, pp. 3481–3493.
Lee, J. and Edgar, T.F. (2002). Improved PI controller with delayed or filtered integral mode,
AIChE Journal, 48, pp. 2844–2850.
Lee, W.S. and Shi, J. (2002). Modified IMC-PID controllers and generalised PID controllers for
first-order plus dead-time processes, Proceedings of the Seventh International Conference on
Control, Automation, Robotics and Vision (Singapore), pp. 898–903.
Lee, C.-H. and Teng, C.-C. (2003). Calculation of PID controller parameters by using a fuzzy
neural network, ISA Transactions, 42, pp. 391–400.
Lee, J., Park, H.C. and Sung, S.W. (2005). Analytical expression of ultimate gains and ultimate
periods with phase-optimal approximations of time delays, The Canadian Journal of Chemical
Engineering, 83, pp. 990–995.
Lee, Y., Park, S. and Lee, M. (2006). Consider the generalized IMC-PID method for PID controller
tuning of time-delay processes, Hydrocarbon Processing, January, pp. 87–91.
Lelic, M. and Gajic, Z. (2000). A reference guide to PID controllers in the nineties, Preprints of
Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain), pp. 73–82.
Lennartson, B. and Kristiansson, B. (1997). Pass band and high frequency robustness for PID
control, Proceedings of the 36th IEEE Conference on Decision and Control (San Diego,
California), pp. 2666–2671.
Leonard, F. (1994). Optimum PIDS controllers, an alternative for unstable delayed systems,
Proceedings of the IEEE Conference on Control Applications (Glasgow), pp. 1207–1210.
Leva, A. (1993). PID autotuning algorithm based on relay feedback, IEE Proceedings, Part D, 140,
pp. 328–338.
Leva, A., Maffezzoni, C. and Scattolini, R. (1994). Self-tuning PI-PID regulators for stable systems
with varying delay, Automatica, 30, pp. 1171–1183.
Leva, A. and Colombo, A.M. (2000). Estimating model mismatch overbounds for the robust
autotuning of industrial regulators, Automatica, 26, pp. 1855–1861.
Leva, A. (2001). Model-based tuning: the very basics and some useful techniques, Journal A:
Benelux quarterly journal on Automatic Control, 42(3).
b720_Bibliography
17-Mar-2009
Bibliography
FA
581
Leva, A. and Colombo, A.M. (2001). Implementation of a robust PID autotuner in a control design
environment, Transactions of the Institute of Measurement and Control, 23, pp. 1–20.
Leva, A., Cox, C. and Ruano, A. (2003). IFAC Professional Brief – Hands-on PID autotuning: a
guide to better utilization [Online]. Available at http://www.ifac-control.org/publications/pbriefs/
PB_Final_LevaCoxRuano.pdf [accessed 28 June 2005].
Leva, A. and Colombo, A.M. (2004). On the IMC-based synthesis of the feedback block of ISAPID regulators, Transactions of the Institute of Measurement and Control, 26, pp. 417–440.
Leva, A. (2005). Model-based proportional-integral-derivative autotuning improved with relay
feedback identification, IEE Proceedings – Control Theory and Applications, 152, pp. 247–256.
Leva, A., Bascetta, L. and Schiavo, F. (2006). Model-based proportional-integral/proportionalintegral-derivative (PI/PID) autotuning with fast relay identification, Industrial Engineering
Chemistry Research, 45(12), pp. 4052–4062.
Leva, A. (2007). Model-based PI(D) tuning with ad-hoc regulator expressions, Proceedings of the
American Control Conference (New York), pp. 5802–5807.
Li, Z., Su, X. and Lin, P. (1994). A practical algorithm for PID auto-tuning, Advances in Modelling
and Analysis C (ASME Press), 40(2), pp. 17–27.
Li, Y.-N., Zhang, W.-D. and Liu, T. (2004). New design method of PID controller for inverse
response processes with time delay, Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai
Jiaotong University, 38(4), pp. 506–509 (in Chinese).
Lim, C.M., Tan, W.C. and Lee, T.S. (1985). Tuning of PID controllers for first and second-order
lag processes with dead time, International Journal of Electrical Engineering Education, 22,
pp. 345–353.
Lipták, B. (1970, Editor), Instrument Engineers Handbook Volume II: Process Control (Chilton
Book Co., Philadelphia)
Lipták, B. (2001). Controller tuning II: Problems and Methods [Online]. Available at
http://www.controlmagazine.com [accessed 21 November 2003].
Litrico, X. and Fromion, V. (2006). Tuning of robust distant downstream PI controllers for an
irrigation canal pool. I: Theory, Journal of Irrigation and Drainage Engineering, July/August,
pp. 359–368.
Litrico, X., Fromion, V. and Baume, J.-P. (2006). Tuning of robust distant downstream PI
controllers for an irrigation canal pool. II: Implementation issues, Journal of Irrigation and
Drainage Engineering, July/August, pp. 369–379.
Litrico, X., Malaterre, P.-O., Baume, J.-P., Vion, P.-Y. and Ribot-Bruno, J. (2007). Automatic
tuning of PI controllers for an irrigation canal pool, Journal of Irrigation and Drainage
Engineering, January/February, pp. 27–37.
Liu, T., Gu, D. and Zhang, W. (2003). A H infinity design method of PID controller for secondorder processes with integrator and time delay, Proceedings of the 42nd IEEE Conference on
Decision and Control (Maui, Hawaii), pp. 6044–6049.
Lloyd, S.G. (1994). Tuning arrangements for turning the control parameters of a controller, U.S.
Patent Number 5,283,729.
Lopez, A.M. (1968). Optimisation of system response (PhD dissertation, Louisiana State
University, Louisiana).
Lopez, A.M., Smith, C.L. and Murrill, P.W. (1969). An advanced tuning method, British Chemical
Engineering, 14, pp. 1553–1555.
b720_Bibliography
582
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Loron, L. (1997). Tuning of PID controllers by the non-symmetrical optimum method, Automatica,
33, pp. 103–107.
Luo, K.-N., Kuo, C.-Y. and Sheu, L.-T. (1996). A novel method for fuzzy self-tuning PID
controllers, Proceedings of the Asian Fuzzy Systems Symposium, pp. 194–199.
Luyben, W.L. (1993). Dynamics and control of recycle systems. 1. Simple open loop and closed
loop systems, Industrial Engineering Chemistry Research, 32, 466–475.
Luyben, W.L. (1996). Tuning proportional-integral-derivative controllers for integrator/deadtime
processes, Industrial Engineering Chemistry Research, 35, pp. 3480–3483.
Luyben, W.L. and Luyben, M.L. (1997). Essentials of Process Control (McGraw-Hill International
Edition, Singapore).
Luyben, W.L. (1998). Tuning temperature controllers on openloop unstable reactors, Industrial
Engineering Chemistry Research, 37, pp. 4322–4331.
Luyben, W.L. (2000). Tuning proportional-integral controllers for processes with both inverse
response and deadtime, Industrial Engineering Chemistry Research, 39, pp. 973–976.
Luyben, W.L. (2001). Effect of derivative algorithm and tuning selection on the PID control of
dead-time processes, Industrial Engineering Chemistry Research, 40, pp. 3605–3611.
MacLellan, G.D.S. (1950). Communications on “The practical application of frequency response
analysis to automatic process control”, Proceedings of the Institution of Mechanical Engineers
(London), 162, pp. 347–348.
Madhuranthakam, C.R., Elkamel, A. and Budman, H. (2008). Optimal tuning of PID controllers for
FOPDT, SOPDT and SOPDT with lead processes, Chemical Engineering and Processing, 47,
pp. 251–264.
Maffezzoni, C. and Rocco, P. (1997). Robust tuning of PID regulators based on step-response
identification, European Journal of Control, 3, pp. 125–136.
Majhi, S. (1999). Relay feedback process identification and controller design (PhD thesis,
University of Sussex).
Majhi, S. and Atherton, D.P. (1999). Autotuning and controller design for processes with small
time delays, IEE Proceedings – Control Theory and Applications, 146(5), pp. 415–425.
Majhi, S. and Atherton, D.P. (2000). Online tuning of controllers for an unstable FOPDT process,
IEE Proceedings – Control Theory and Applications, 147, pp. 421–427.
Majhi, S. and Mahanta, C. (2001). Tuning of controllers for integrating time delay processes,
Proceedings of the IEEE Region 10 Int. Conference on Electrical and Electronic Technology
(TENCON 2001), 1, pp. 317–320.
Majhi, S. and Litz, L. (2003). On-line tuning of PID controllers, Proceedings of the American
Control Conference (Denver, Colorado), pp. 5003–5004.
Majhi, S. (2005). On-line PI control of stable processes, Journal of Process Control, 15,
pp. 859–867.
Mann, G.K.I., Hu, B.-G. and Gosine, R.G. (2001). Time-domain based design and analysis of new
PID tuning rules, IEE Proceedings – Control Theory and Applications, 148, pp. 251–261.
Mantz, R.J. and Tacconi, E.J. (1989). Complementary rules to Ziegler and Nichols’ rules for a
regulating and tracking controller, International Journal of Control, 49, pp. 1465–1471.
Manum, H. (2005). Extensions of Skogestad’s SIMC tuning rules to oscillatory and unstable
processes [Online]. Available at http://www.nt.ntnu.no/users/skoge/diplom/prosjekt05/manum/
rapport.pdf [accessed 9 May 2006].
b720_Bibliography
17-Mar-2009
Bibliography
FA
583
Marchetti, G. and Scali, C. (2000). Use of modified relay techniques for the design of modelbased controllers for chemical processes, Industrial Engineering Chemistry Research, 39,
pp. 3325–3334.
Marchetti, G., Scali, C. and Lewin, D.R. (2001). Identification and control of open-loop unstable
processes by relay methods, Automatica, 37, pp. 2049–2055.
Marlin, T.E. (1995). Process Control (McGraw-Hill Inc., New York).
Mataušek, M.R. and Kvaščev, G.S. (2003), A unified step response procedure for autotuning of PI
controller and Smith predictor for stable processes, Journal of Process Control, 13, pp. 787–800.
Matsuba, T., Kasahara, M., Murasawa, I., Hashimoto, Y., Kamimura, K., Kimbara, A. and
Kurosu, S. (1998). Stability limit of room air temperature of a VAV system, ASHRAE
Transactions, 104(2), pp. 257–265.
McAnany, D.E. (1993). A pole placement technique for optimum PID control parameters,
Proceedings of the ISA Advances in Instrumentation and Control Conference (Chicago), 48,
pp. 1775–1782.
McAvoy, T.J. and Johnson, E.F. (1967). Quality of control problem for dead-time plants, Industrial
and Engineering Chemistry Process Design and Development, 6, pp. 440–446.
McMillan, G.K. (1984). Control loop performance, Proceedings of the ISA/84 International
Conference and Exhibition (Houston, Texas), 39, pp. 589–603.
McMillan, G.K. (1994). Tuning and Control Loop Performance – A Practitioner’s Guide,
3rd Edition (Instrument Society of America, North Carolina).
McMillan, G.K. (2005). Good Tuning: A pocket guide, 2nd Edition (ISA, North Carolina).
Mesa, F., Lozano, J.L. and Marin, L. (2006). On the consideration of FOPDT and SOPDT
responses as bounds of PI tuning, Proceedings of the IEEE MELECON Conference,
pp. 421–424.
Mizutani, M. and Hiroi, K. (1991). New two degrees of freedom PID algorithm with 1st lag mean
(super 2dof PID algorithm), Proceedings of the ISA Advances in Instrumentation and Control,
46(2), pp. 1125–1132.
Mollenkamp, R.A., Smith, C.L. and Corripio, A.B. (1973). Using models to tune industrial
controllers, Instruments and Control Systems, September, pp. 46–47.
Morari, M. and Zafiriou, E. (1989). Robust Process Control (Prentice-Hall Inc., Englewood Cliffs,
New Jersey).
Morilla, F., González, A. and Duro, N. (2000). Auto-tuning PID controllers in terms of relative
damping, Preprints of Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa,
Spain), pp. 161–166.
Moros, R. (1999). Strecke mit Ausgleich höherer Ordung [Online]. Available at
http://techni.tachemie.uni-leipzig.de/reg/regeintn.html [accessed 28 January 2005] (in German).
Murata, H. and Sagara, S. (1977). The noninteger order lag element plus dead time approximation
of the process dynamics and its application to the optimal setting of the PI controller, Systems
and Control (Japan), 21(9), pp. 517–524 (in Japanese).
Murrill, P.W. (1967). Automatic Control of Processes (International Textbook Co., Pennsylvania).
Naşcu, I., De Keyser, R., Folea, S. and Buzdugan, T. (2006). Development and evaluation of a PID
auto-tuning controller, Proceedings of the IEEE-TTTC International Conference on Automation,
Quality, Testing and Robotics.
NI Labview (2001). PID control toolkit user manual [Online]. Available at http://www.ni.com/
pdf/manuals/322192a.pdf [accessed 3 September 2004].
b720_Bibliography
584
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Nishikawa, Y., Sannomiya, N., Ohta, T. and Tanaka, H. (1984). A method for auto-tuning of PID
control parameters, Automatica, 20, pp. 321–332.
Nomura, M., Saito, T. and Kitamori, T. (1993). A simple tuning method based on partial model
mateching for PID controller, Transactions of the Institution of Electrical Engineers of Japan,
113-C(1), pp. 59–68 (in Japanese).
Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J. and Camacho, E.F. (2000). Robust PID tuning
application to a mobile robot path tracking problem, Preprints of Proceedings of PID ’00: IFAC
Workshop on digital control (Terrassa, Spain), pp. 648–653.
Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J. and Camacho, E.F. (2001). Mobile robot path
tracking using a robust PID controller, Control Engineering Practice, 9, pp. 1209–1214.
O’Connor, G.E. and Denn, M.M. (1972). Three mode control as an optimal control, Chemical
Engineering Science, 27, pp. 121–127.
O’Dwyer, A. (1998). Performance and robustness in the compensation of FOLPD processes with PI
and PID controllers, Proceedings of the Irish Signals and Systems Conference (Dublin Institute
of Technology, Ireland), pp. 227–234.
O’Dwyer, A. (2000). Performance and robustness of PI and PID tuning rules, Technical Report
AOD-00-12 (Dublin Institute of Technology, Ireland).
O’Dwyer, A. (2001a). PI and PID controller tuning rule design for processes with delay, to achieve
constant gain and phase margins for all values of delay, Proceedings of the Irish Signals and
Systems Conference (N.U.I. Maynooth, Ireland), pp. 96–100.
O’Dwyer, A. (2001b). Series PID controller tuning rules, Technical Report AOD–01–13 (Dublin
Institute of Technology, Ireland).
Ogawa, S. (1995). PI controller tuning for robust performance, Proceedings of the 4th IEEE
Conference on Control Applications, pp. 101–106.
Ogawa, M. and Katayama, T. (2001). A robust tuning method for I-PD controller incorporating a
constraint on manipulated variable, Transactions of the Society of Instrument and Control
Engineers, Japan, E-1(1), pp. 265–273.
Okada, Y., Yamakawa, Y., Yamazaki, T. and Kurosu, S. (2006). Tuning method of PI controller for
given damping coefficient, Proceedings of the SICE-ICASE International Joint Conference
(Busan, Korea), pp. 5204–5207.
OMEGA Books (2005). Introduction to temperature controllers [Online]. Available at:
http://www.gii.upv.es/personal/gbenet/IIN/tema_transductores/OmegaBooks/tech_ref_temp.PDF
[accessed 4 February 2008], pp. Z-111–Z-117.
Oppelt, W. (1951). Einige Faustformeln zur Einstellung von Regelvorgängen, Chemie Ingenieur
Technik, 23(8), pp. 190–193 (in German).
Ou, W.-H. and Chen, Y.-W. (1995). Adaptive actual PID control with an adjustable identification
interval, Chemical Engineering Communications, 134, pp. 93–105.
Ou, L., Zhang, W. and Gu, D. (2005a). Stabilization of LTI time-delayed processes using analytical
PID controllers, Proceedings of the IFAC World Congress (Prague, Czech Republic).
Ou, L., Tang, Y., Gu, D. and Zhang, W. (2005b). Stability analysis of PID controllers for integral
processes with time delay, Proceedings of the American Control Conference, pp. 4247–4252.
Ou, L., Gu, D, Zhang, W. and Cai, Y. (2005c). H ∞ PID controller stabilization for stable processes
with time delay, Proceedings of the IEEE International Conference on Industrial Technology
(ICIT), pp. 655–659.
b720_Bibliography
17-Mar-2009
Bibliography
FA
585
Oubrahim, R. and Leonard, F. (1998). PID tuning by a composed structure, Proceedings of the
UKACC International Conference on Control (Swansea), 2, pp. 1333–1338.
Ozawa, K., Noda, Y., Yamazaki, T., Kamimura, K. and Kurosu, S. (2003). A tuning method for
PID controller using optimisation subject to constraints on control input, ASHRAE Transactions:
Research, 109, pp. 79–88.
Padhy, P.K. and Majhi, S. (2006a). Relay-based PI-PD design for stable and unstable FOPDT
processes, Computers and Chemical Engineering, 30, pp. 790–796.
Padhy, P.K. and Majhi, S. (2006b). An exact method for on-line identification of FOPDT
processes, Proceedings of the IEEE International Conference on Industrial Technology,
pp. 1528–1532.
Pagola, F.L. and Pecharromán, R.R. (2002). PID auto-tuning based on a second point of frequency
response, Proceedings of the 15th IFAC World Congress on Automatic Control [Online].
Available at http://www.iit.upco.es/docs/02flph01.pdf [accessed 23 August 2006].
Panda, R.C., Yu, C.-C. and Huang, H.-P. (2004). PID tuning rules for SOPDT systems: review and
some new results, ISA Transactions, 43, pp. 283–295.
Panda, R.C., Hung, S.-B. and Yu, C.-C. (2006). An integrated modified Smith predictor with PID
controller for integrator plus deadtime processes, Industrial Engineering Chemistry Research,
45, pp. 1397–1407.
Paraskevopoulos, P.N., Pasgianos, G.D. and Arvanitis, K.G. (2004). New tuning and identification
methods for unstable first order plus dead-time processes based on pseudoderivative feedback
control, IEEE Transactions on Control Systems Technology, 12, pp. 455–464.
Paraskevopoulos, P.N., Pasgianos, G.D. and Arvanitis, K.G. (2006). PID-type controller tuning for
unstable first order plus dead time processes based on gain and phase margin specifications,
IEEE Transactions on Control Systems Technology, 14(5), pp. 926–936.
Park, H.I., Sung, S.W., Lee, I.-B. and Lee, J. (1997). A simple autotuning method using
proportional controller, Chemical Engineering Communications, 161, 163–184.
Park, J.H., Sung, S.W. and Lee, I.-B. (1998). An enhanced PID control strategy for unstable
processes, Automatica, 34, pp. 751–756.
Parr, E.A. (1989). Industrial Control Handbook, Vol. 3 (BSP Professional Books, Oxford).
Paz Ramos, M.A., Morales, L.E.M., Juan, L.B.M. and Bazán, G.R. (2005). Genetic rules to tune
proportional + derivative controllers for integrative processes with time delays, Proceedings of
the 15th International Conference on Electronics, Communications and Computers
(CONIELECOMP 2005).
Pecharromán, R.R. and Pagola, F.L. (1999). Improved identification for PID controllers autotuning, Proceedings of the 5th European Control Conference (Karlsruhe, Germany), Paper F453.
Pecharromán, R.R. (2000a). Private communication, 9 May.
Pecharromán, R. (2000b). Ajuste automático de reguladores industriales. Algoritmo robustos de
identificación y síntesis (PhD thesis, Universidad Pontificia Comillas, Madrid, Spain; in
Spanish).
Pecharromán, R.R. and Pagola, F.L. (2000). Control design for PID controllers auto-tuning based
on improved identification, Preprints of Proceedings of PID ’00: IFAC Workshop on digital
control (Terrassa, Spain), pp. 89–94.
Pemberton, T.J. (1972a). PID: The logical control algorithm, Control Engineering, 19(5),
pp. 66–67.
b720_Bibliography
586
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Pemberton, T.J. (1972b). PID: The logical control algorithm II, Control Engineering, 19(7),
pp. 61–63.
Peng, H. and Wu, S.-C. (2000). Journal of Cent. South Univ. Technol. (China), 7, pp. 165–169.
Penner, A. (1988). Tuning rules for a PI controller, Proceedings of the ISA International
Conference and Exhibition (Houston, Texas), 43(3), pp. 1037–1051.
Perić, N., Petrović, I. and Branica, I. (1997). A method of PID controller autotuning, Proceedings
of the IFAC Conference on Control of Industrial Systems (Belfort, France), pp. 597–602.
Pessen, D.W. (1953). Optimum three-mode controller settings for automatic start-up, Transactions
of the ASME, July, pp. 843–849.
Pessen, D.W. (1954). How to “tune in” a three-mode controller, Instrumentation, 7(3), pp. 29–32.
Pessen, D.W. (1994). A new look at PID-controller tuning, Transactions of the ASME. Journal of
Dynamic Systems, Measurement and Control, 116, pp. 553–557.
Pettit, J.W. and Carr, D.M. (1987). Self-tuning controller, US Patent No. 4,669,040.
Pinnella, M.J., Wechselberger, E., Hittle, D.C. and Pedersen, C.O. (1986). Self-tuning digital
integral control, ASHRAE Transactions, 92(2B), pp. 202–209.
PMA (Prozeβ-und Maschinen-Automation) GmbH (2006). Industrieregler KS40-1, KS41-1, KS421 Manuelle Optimierung, p. 18 [Online]. Available at http://www.pma-online.de/de/pdf/ba_ks401_41-1_42-1_d_9499-040-62718.pdf [accessed 15 September 2006] (in German).
Pohjola, M. (2006). PID controller design in networked control systems (MSc thesis, Department
of Automation and Systems Technology, Helsinki University of Technology, Helsinki, Finland).
Polonyi, M.J.G. (1989). PID controller tuning using standard form optimization, Control
Engineering, March, pp. 102–106.
Pomerleau, A. and Poulin, É. (2004). Manipulated variable based PI tuning and detection of poor
settings: an industrial experience, ISA Transactions, 43, pp. 445–457.
Potočnik, B., Škrjanc, I., Matko, D. and Zupančič, B. (2001). Samonastavljivi PI regulator na
podlagi metode z relejskim preskusom, Elektrotehniški vestnik (Electrotechnical Review)
Ljubljana Slovenija, 68, pp. 115–122 (in Slovenian).
Poulin, É. and Pomerleau. A. (1996). PID tuning for integrating and unstable processes, IEE
Proceedings – Control Theory and Applications, 143, pp. 429–435.
Poulin, É., Pomerleau, A. Desbiens, A. and Hodouin, D. (1996). Development and evaluation of an
auto-tuning and adaptive PID controller, Automatica, 32, pp. 71–82.
Poulin, É. and Pomerleau. A. (1997). Unified PID design method based on a maximum peak
resonance specification, IEE Proceedings - Control Theory and Applications, 144, pp. 566–574.
Poulin, É. and Pomerleau, A. (1999). PI settings for integrating processes based on ultimate cycle
information, IEEE Transactions on Control Systems Technology, 7, pp. 509–511.
Pramod, S. and Chidambaram, M. (2000). Closed loop identification of transfer function model for
unstable bioreactors for tuning PID controllers, Bioprocess and Biosystems Engineering, 22,
pp. 185–188.
Prashanti, G. and Chidambaram, M. (2000). Set-point weighted PID controllers for unstable
systems, Journal of the Franklin Institute, 337, pp. 201–215.
Prokop, R., Husták, P. and Prokopová, Z. (2000). Robust PID-like controllers – design and tuning,
Preprints of Proceedings of PID ’00: IFAC Workshop on Digital Control (Terrassa, Spain),
pp. 320–325.
Prokop, R., Korbel, J. and Matušů, R. (2005). PI autotuners based on biased relay identification,
Proceedings of the IFAC World Congress (Prague, Czech Republic).
b720_Bibliography
17-Mar-2009
Bibliography
FA
587
Prokop, R. and Korbel, J. (2006). Relé ve zpĕtné vazbĕ aneb převrat v návrhu regulátorů,
Automatizace, 48(3), pp. 190–195 (in Czech).
Pulkkinen, J., Koivo, H.N. and Mäkelä, K. (1993). Tuning of a robust PID controller – application
to heating process in extruder, Proceedings of the 2nd IEEE Conference on Control Applications
(Vancouver, B.C., Canada), pp. 811–816.
Ramasamy, M. and Sundaramoorthy, S. (2007). PID controller tuning for desired closed loop
responses for SISO systems using impulse response, Computers and Chemical Engineering,
doi:10.1016/j.compchemeng.2007.08.019 [accessed 13 May 2008].
Rao, A.S. and Chidambaram, M. (2006a). Control of unstable processes with two RHP poles, a
zero and time delay, Asia-Pacific Journal of Chemical Engineering, 1, pp. 63–69.
Rao, A.S. and Chidambaram, M. (2006b). Enhanced two-degrees-of-freedom control strategy for
second-order unstable processes with time delay, Industrial Engineering Chemistry Research,
45, pp. 3604–3614.
Ream, N. (1954). The calculation of process control settings from frequency characteristics,
Transactions of the Society of Instrument Technology, 6(1), pp. 19–28.
Reswick, J.B. (1956). Disturbance-response feedback – a new control concept, Transactions of the
ASME, January, pp. 153–162.
Rice, R. and Cooper, D.J. (2002), Design and tuning of PID controllers for integrating (non-selfregulating) processes, Proceedings of the ISA Annual Meeting (Chicago, IL), 424, Paper P057.
Rice, R.C. (2004). A rule based design methodology for the control of non-self regulating processes
(PhD thesis, University of Connecticut).
Rice, B. (2006). Integrating (non-self regulating process behavior) [Online]. Available at
http://wwww.controlguru.com/wp/p79.html [accessed 14 February 2007].
Rivera, D.E., Morari, M. and Skogestad, S. (1986). Internal Model Control. 4. PID controller
design, Industrial and Engineering Chemistry Process Design and Development, 25,
pp. 252–265.
Rivera, D.E. and Jun, K.S. (2000). An integrated identification and control design methodology for
multivariable process system applications, IEEE Control Systems Magazine, June, pp. 25–37.
Robbins, L.A. (2002). Tune control loops for minimum variability, Chemical Engineering
Progress, January, pp. 68–70.
Rotach, Y. Va. (1994). Calculation of the robust settings of automatic controllers, Thermal
Engineering (Russia), 41, pp. 764–769.
Rotach, V. Ya. (1995). Automatic tuning of PID-controllers – expert and formal methods, Thermal
Engineering (Russia), 42, pp. 794–800.
Rotstein, G.E. and Lewin, D.E. (1991). Simple PI and PID tuning for open-loop unstable systems,
Industrial Engineering Chemistry Research, 30, pp. 1864–1869.
Rovira, A.A., Murrill, P.W. and Smith, C.L. (1969). Tuning controllers for setpoint changes,
Instruments and Control Systems, 42 (December), pp. 67–69.
Rutherford, C.I. (1950). The practical application of frequency response analysis to automatic
process control, Proceedings of the Institution of Mechanical Engineers (London), 162,
pp. 334–354.
Sadeghi, J. and Tych, W. (2003). Deriving new robust adjustment parameters for PID controllers
using scale-down and scale-up techniques with a new optimization method, Proceedings of
ICSE: 16th Conference on Systems Engineering (Coventry), pp. 608–613.
b720_Bibliography
588
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Sain, S.G. and Özgen, C. (1992). Identification and tuning of processes with large deadtime,
Control and Computers, 20(3), pp. 73–78.
Saito, T., Kawakami, J., Takahashi, S., Suehiro, T., Matsumoto, H. and Tachibana, K. (1990). PID
controller system, US Patent No. 4,903,192.
Sakai, Y., Nakai, Y., Miyabe, A. and Kawano, T. (1989). Self-tuning controller, US Patent
4,881,160.
Schaedel, H.M. (1997). A new method of direct PID controller design based on the principle of
cascaded damping ratios, Proceedings of the European Control Conference (Brussels, Belgium),
Paper WE–A H4.
Schlegel, M. (1998). Nová metoda pro návrh PI(D) regulátoru – teorie pro praxi (New method for
the design of a PI(D) controller – theory for practice), Automatizace, 41(2), February, pp. 70–78
(in Czech).
Schneider, D.M. (1988). Control of processes with time delays, IEEE Transactions on Industry
Applications, 24, pp. 186–191.
Seki, H., Ogawa, M. and Ohshima, M. (2000). Retuning PID temperature controller for an unstable
gas-phase polyolefin reactor, Preprints of Proceedings of PID ’00: IFAC Workshop on digital
control (Terrassa, Spain), pp. 473–478.
Setiawan, A., Albright, L.D. and Phelan, R.M. (2000). Application of pseudo-derivative-feedback
algorithm in greenhouse air temperature control, Computers and Electronics in Agriculture, 26,
pp. 283–302.
Shamsuzzoha, M., Lee, K., Lee, M. and Lee, J. (2004). Design of IMC filter for improved
disturbance rejection of PID controller, Theory and Applications of Chemical Engineering
(Korea), 10(2), pp. 1288–1291.
Shamsuzzoha, M., Lee, M. and Lee, J. (2005). IMC-PID controller tuning for improved disturbance
rejection of unstable time delay processes, Theory and Applications of Chemical Engineering
(Korea), 11(2), pp. 1782–1785.
Shamsuzzoha, M. and Lee, M. (2006a). IMC based control system design of PID cascaded filter,
Proceedings of the SICE-ICASE International Joint Conference (Bexco, Busan, Korea),
pp. 2485–2490.
Shamsuzzoha, M. and Lee, M. (2006b). Design of robust PID controllers for unstable processes,
Proceedings of the SICE-ICASE International Joint Conference (Bexco, Busan, Korea),
pp. 3324–3329.
Shamsuzzoha, M., Park, J. and Lee, M. (2006a). IMC based method for control system design
of PID cascaded filter, Theories and Applications of Chemical Engineering (Korea), 12(1),
pp. 111–114.
Shamsuzzoha, M., Park, J. and Lee, M. (2006b). PID controller design for unstable process with
negative/positive zero, Theory and Applications of Chemical Engineering (Korea), 12(2),
pp. 1474–1477.
Shamsuzzoha, M., Lee, M. and Park, J. (2006c). Robust PID controller design of time delay
processes with/without zero, Proceedings of the IEEE International Conference on Industrial
Technology, pp. 2256–2261.
Shamsuzzoha, M. and Lee, M. (2007a). IMC-PID controller design for improved disturbance
rejection of time delayed processes, Industrial Engineering Chemistry Research, 46,
pp. 2077–2081.
b720_Bibliography
17-Mar-2009
Bibliography
FA
589
Shamsuzzoha, M. and Lee, M. (2007b). PID controller design strategy for first order time delay
processes, Theory and Applications of Chemical Engineering (Korea), 13(1), pp. 121–124.
Shamsuzzoha, M. and Lee, M. (2007c). An enhanced performance PID filter controller for first
order time delay processes, Journal of Chemical Engineering of Japan, 40(6), pp. 501–510.
Shamsuzzoha, M. and Lee, M. (2007d). Enhanced performance for two-degree-of-freedom control
scheme for second order unstable processes with time delay, International Conference on
Control, Automation and Systems (ICCAS), pp. 240–245.
Shamsuzzoha, M., Yoon, M. and Lee, M. (2007). Analytical controller design of integrating and
first order unstable time delay process, Proceedings of the 8th International IFAC Symposium on
Dynamics and Control of Process Systems, Preprints Volume 2, pp. 397–402.
Shen, J.-C. (1999). Tuning PID controller for a plant with under-damped response, Proceedings of
the IEEE International Conference on Control Applications (Hawaii), pp. 115–120.
Shen, J.-C. (2000). New tuning method for PID control of a plant with underdamped response,
Asian Journal of Control, 2(1), pp. 31–41.
Shen, J.-C. (2002). New tuning method for PID controller, ISA Transactions, 41, pp. 473–484.
Shi, J. and Lee, W.S. (2002). IMC-PID controllers for first-order plus dead-time processes: a
simple design with guaranteed phase margin, Proceedings of IEEE Region 10 Conference on
Computers, Communications, Control and Power Engineering (Beijing, China), pp. 1397–1400.
Shi, J. and Lee, W.S. (2004). Set point response and disturbance rejection tradeoff for second-order
plus dead time processes, Proceedings of the 5th Asian Control Conference (Melbourne,
Australia).
Shigemasa, T., Iino, Y. and Kanda, M. (1987). Two degrees of freedom PID auto-tuning controller,
Proceedings of the ISA International Conference and Exhibition. Advances in Instrumentation
and Control, pp. 703–711.
Shin, C.-H., Yoon, M.-H. and Park, I.-S. (1997). Automatic tuning algorithm of the PID controller
using two Nyquist points identification, Proceedings of the Society of Instrument and Control
Engineers annual conference (Tokyo, Japan), pp. 1225–1228.
Shinskey, F.G. (1988). Process Control Systems – Application, Design and Tuning, 3rd Edition
(McGraw-Hill Inc., New York).
Shinskey, F.G. (1994). Feedback Controllers for the Process Industries (McGraw-Hill Inc., New
York).
Shinskey, F.G. (1996). Process Control Systems – Application, Design and Tuning, 4th Edition
(McGraw-Hill Inc., New York).
Shinskey, F.G. (2000). PID-deadtime control of distributed processes, Preprints of Proceedings of
PID ’00: IFAC Workshop on digital control (Terrassa, Spain), pp. 14–18.
Shinskey, F.G. (2001). PID-deadtime control of distributed processes, Control Engineering
Practice, 9, pp. 1177–1183.
Shinskey, F.G. (2003). Process control diagnostics [Online]. Available at http://www.isa.org/
CustomSource/ISA/Div_PDFs/PDF_News/CPI_1.pdf [accessed 6 February 2008].
Siemens (2005). Application data AD-353-119 Rev 1. Procidia TM Control Solutions Digital
Controller Tuning [Online]. Available at http://www.sea.siemens.com/instrbu/docs/pdf/AD353119r1.pdf [accessed 16 June 2006].
Sklaroff, M. (1992). Adaptive controller in a process control system and a method therefor, US
Patent 5,170,341.
b720_Bibliography
590
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Skoczowski, S. and Tarasiejski, L (1996). Tuning of PID controllers based on gain and phase
margin specifications using Strejc’s process model with time delay, Proceedings of the 3rd
International Symposium on Methods and Models in Automation and Robotics (MMAR ’96)
(Miedzyzdroje, Poland), pp. 765–770.
Skoczowski, S. (2004). Model following PID control with a fast model, Proceedings of
CONTROLO 2004: the 6th Portuguese Conference on Automatic Control.
Skogestad, S. (2001). Probably the best simple PID tuning rules in the world, AIChE Annual
Meeting (Reno, Nevada, U.S.A.) [Online]. Available at http://www.nt.ntnu.no/users/skoge/
publications/2001/skogestad_reno/tuningpaper.pdf [accessed 24 September 2004].
Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning, Journal
of Process Control, 13, pp. 291–309.
Skogestad, S. (2004a). Lower limit on controller gain for acceptable disturbance rejection,
Proceedings of the International Symposium on Advanced Control of Chemical Processes
(Hong Kong, China).
Skogestad, S. (2004b). Simple analytic rules for model reduction and PID controller tuning,
Modeling, Identification and Control, 25, pp. 85–120.
Skogestad,
S.
(2004c).
[Online].
Available
at
http://www.nt.ntnu.no/users/skoge/
publications/2003/tuningPID/more/extensions/oscillating.txt [Accessed 9 March 2005].
Skogestad. S. (2006a). Tuning for smooth PID control with acceptable disturbance rejection
[Online]. Available at http://www.nt.ntnu.no/users/skoge/publications/2006/skogestad_iecr_
smooth_pid/smooth06.pdf [paper dated 8 March 2006; accessed 9 May 2006].
Skogestad, S. (2006b). Tuning for smooth PID control with acceptable disturbance rejection,
Industrial Engineering Chemistry Research, 45, pp. 7817–7822.
Slätteke, O. (2006). Modeling and control of the paper machine drying section (PhD thesis, Lund
University, Sweden).
Smith, C.L., Corripio, A.B. and Martin, J. (1975). Controller tuning from simple process models,
Instrumentation Technology, December, pp. 39–44.
Smith, C.A. and Corripio, A.B. (1997). Principles and Practice of Automatic Process Control,
2nd Edition (John Wiley and Sons, New York).
Smith, L. (1998). A modified Smith predictor for extruded diameter control, InstMC Mini
Symposium in UKACC International Conference on Control (Swansea), Lecture 5.
Smith, C.L. (2002). Intelligently tune PI controllers, Chemical Engineering, August, pp. 169–177.
Smith, C.L. (2003). Intelligently tune PID controllers, Chemical Engineering, January, pp. 56–62.
Somani, M.K., Kothare, M.V. and Chidambaram, M. (1992). Design formulae for PI controllers,
Hungarian Journal of Industrial Chemistry, 20, pp. 205–211.
Sree, R.P. and Chidambaram, M. (2003a). Simple method of tuning PI controllers for stable inverse
response systems, Journal of the Indian Institute of Science, 83 (May–August), pp. 73–85.
Sree, R.P. and Chidambaram, M. (2003b). Control of unstable bioreactor with dominant unstable
zero, Chemical and Biochemical Engineering Quarterly, 17(2), pp. 139–145.
Sree, R.P. and Chidambaram, M. (2003c). A simple method of tuning PI controllers for unstable
systems with a zero, Chemical and Biochemical Engineering Quarterly, 17(3), pp. 207–212.
Sree, R.P. and Chidambaram, M. (2004). Control of unstable reactor with an unstable zero, Indian
Chemical Engineer Section A, 46(1), pp. 21–26.
b720_Bibliography
17-Mar-2009
Bibliography
FA
591
Sree, R.P., Srinivas, M.N. and Chidambaram, M. (2004). A simple method of tuning PID
controllers for stable and unstable FOPTD systems, Computers and Chemical Engineering, 28,
pp. 2201–2218.
Sree, R.P. and Chidambaram, M. (2005a). Set point weighted PID controllers for unstable systems,
Chemical Engineering Communications, 192, pp. 1–13.
Sree, R.P. and Chidambaram, M. (2005b). A simple and robust method of tuning PID controllers
for integrator/dead time processes, Journal of Chemical Engineering of Japan, 38(2),
pp. 113–119.
Sree, R.P. and Chidambaram, M. (2006). Control of Unstable Systems (Alpha Science International
Ltd., Oxford).
Srinivas, M.N. and Chidambaram, M. (2001). Set-point weighted PID controllers, Proceedings of
the International Conference on Quality, Reliability and Control (ICQRC-2001) (Mumbai,
India), pp. C22–1–C22–5.
Srividya, R. and Chidambaram, M. (1997). On-line controllers tuning for integrator plus delay
systems, Process Control and Quality, 9, pp. 59–66.
St. Clair, D.W. (1997). Controller Tuning and Control Loop Performance, 2nd Edition (Straight
Line Control Co. Inc., Newark, Delaware).
St. Clair, D.W. (2000). The PID algorithm [Online]. Available at http://members.aol.com/
pidcontrol/pid_algorithm.html [accessed 28 June 2005].
Streeter, M.J., Keane, M.A. and Koza, J.R. (2003). Automatic synthesis using genetic programming
of improved PID tuning rules, Preprint of Proceedings of Intelligent Control Systems and Signal
Processing Conference (Ed: A.D. Ruano), pp. 494–499.
Sung, S.W. O., J., Lee, I.-B., Lee, J. and Yi, S.-H. (1996). Automatic tuning of PID controller
using second-order plus time delay model, Journal of Chemical Engineering of Japan, 29,
pp. 991–999.
Suyama, K. (1992). A simple design method for sampled-data PID control systems with adequate
step responses, Proceedings of the International Conference on Industrial Electronics, Control,
Instrumentation and Automation, pp. 1117–1122.
Suyama, K. (1993). A simple design method for sampled-data I-PD control systems, Proceedings
of the Annual Conference of the IEEE Industrial Electronics Society (Hawaii), pp. 2293–2298.
Syrcos, G. and Kookos, I. K. (2005). PID controller tuning using mathematical programming,
Chemical Engineering and Processing, 44, pp. 41–49.
Tachibana, Y. (1984). Identification of a system with dead time and its application to auto tuner,
Electrical Engineering in Japan, 104, pp. 128–137.
Taguchi, H., Doi, M. and Araki, M. (1987). Optimal parameters of two-degrees-of-freedom PID
control systems, Transactions of the Society of Instrument and Control Engineers (SICE), Japan,
23(9), pp. 889–895 (in Japanese).
Taguchi, H. and Araki, M. (2000). Two-degree-of-freedom PID controllers – their functions and
optimal tuning, Preprints of Proceedings of PID ’00: IFAC Workshop on digital control
(Terrassa, Spain), pp. 95–100.
Taguchi, H. and Araki, M. (2002). On tuning of two-degree-of-freedom PID controllers with
consideration on location of disturbance input, Transactions of the Society of Instrument and
Control Engineers (SICE), Japan, 38(5), pp. 441–446 (in Japanese).
Taguchi, H., Kokawa, M. and Araki, M. (2002). Optimal tuning of two-degree-of-freedom PD
controllers, Proceedings of the 4th Asian Control Conference (Singapore), pp. 268–273.
b720_Bibliography
592
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Taiwo, O. (1993). Comparison of four methods of on-line identification and controller tuning, IEE
Proceedings, Part D, 140, pp. 323–327.
Tan, K.K., Lee, T.H. and Wang, Q.G. (1996). Enhanced automatic tuning procedure for process
control of PI/PID controller, AIChE Journal, 42, pp. 2555–2562.
Tan, W., Liu, J. and Sun, W. (1998a). PID tuning for integrating processes, Proceedings of the
IEEE International Conference on Control Applications (Trieste, Italy), 2, pp. 873–876.
Tan, W., Liu, K. and Tam, P.K.S. (1998b). PID tuning based on loop-shaping H ∞ control, IEE
Proceedings – Control Theory and Applications, 145(6), pp. 485–490.
Tan, K.K., Wang, Q.-G., Hang, C.C. and Hagglund, T.J. (1999a). Advances in PID Control
(Advances in Industrial Control Series, Springer-Verlag, London).
Tan, W., Yuan, Y. and Niu, Y. (1999b). Tuning of PID controller for unstable process, Proceedings
of the IEEE International Conference on Control Applications (Hawaii), pp. 121–124.
Tan, K.K., Lee, T.H. and Jiang, X. (2001). On-line relay identification, assessment and tuning of
PID controller, Journal of Process Control, 11, pp. 483–496.
Tang, W., Shi, S. and Wang, M. (2002). Autotuning PID control for large time-delay processes and
its application to paper basis weight control, Industrial and Engineering Chemistry Research, 41,
pp. 4318–4327.
Tang, W., Wang, M., Chao, Y., He, L. and Itoh, H. (2007). A study on the internal relationship
among Smith predictor, Dahlin controller & PID, Proceedings of the IEEE International
Conference on Automation and Logistics (Jinan, China), pp. 3101–3106.
Tavakoli, S. and Fleming, P. (2003). Optimal tuning of PI controllers for first order plus dead
time/long dead time models using dimensional analysis, Proceedings of the European Control
Conference (Cambridge).
Tavakoli, S. and Tavakoli, M. (2003). Optimal tuning of PID controllers for first order plus time
delay models using dimensional analysis, Proceedings of the 4th IEEE International Conference
on Control and Automation (Canada), pp. 942–946.
Tavakoli, S., Griffin, I. and Fleming, P.J. (2005). Robust PI controller for load disturbance rejection
and setpoint regulation, Proceedings of the IEEE Conference on Control Applications (Toronto,
Canada), pp. 1015–1020.
Tavakoli, S., Griffin, I. and Fleming, P.J. (2006). Tuning of decentralized PI (PID) controllers for
TITO processes, Control Engineering Practice, 14, pp. 1069–1080.
Thomasson, F.Y. (1997). Tuning guide for basic control loops, Proceedings of the Process Control,
Electrical and Information (TAAPI) Conference, pp. 137–148.
Thyagarajan, T. and Yu, C.-C. (2003). Improved autotuning using the shape factor from relay
feedback, Industrial Engineering Chemistry Research, 42, pp. 4425–4440.
Tinham, B. (1989). Tuning PID controllers, Control and Instrumentation, September, pp. 79–83.
Trybus, L. (2005). A set of PID tuning rules, Archives of Control Sciences, 15(LI)(1), pp. 5–17.
Tsang, K.M., Rad, A.B. and To, F.W. (1993). Online tuning of PID controllers using delayed state
variable filters, Proceedings of the IEEE Region 10 Conference on Computer, Communication,
Control and Power Engineering (Beijing, China), 4, pp. 415–419.
Tsang, K.M. and Rad, A. B. (1995). A new approach to auto-tuning of PID controllers,
International Journal of Systems Science, 26(3), pp. 639–658.
Tyreus, B.D. and Luyben, W.L. (1992). Tuning PI controllers for integrator/dead time processes,
Industrial Engineering Chemistry Research, 31, pp. 2625–2628.
b720_Bibliography
17-Mar-2009
Bibliography
FA
593
Urrea, R., Castellanos-Sahagun, E., Alvarez, J. and Alvarez-Ramirez, J. (2006). Distillate cascade
composition control using a two-temperature measurement secondary component, Industrial
Engineering Chemistry Research, 45, pp. 6828–6841.
Valentine, C.C. and Chidambaram, M. (1997a). Robust PI and PID control of stable first order plus
time delay systems, Indian Chemical Engineer Section A, 39(1), pp. 9–14.
Valentine, C.C. and Chidambaram, M. (1997b). PID control of unstable time delay systems,
Chemical Engineering Communications, 162, pp. 63–74.
Valentine, C.C. and Chidambaram, M. (1998). Robust control of unstable first order plus time
delay systems, Indian Chemical Engineer Section A, 40(1), pp. 19–23.
Van der Grinten, P.M.E.M. (1963). Finding optimum controller settings, Control Engineering,
December, pp. 51–56.
Van Overschee, P. and De Moor, B. (2000). RaPID: the end of heuristic PID tuning, Preprints of
Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa, Spain), pp. 687–692.
VanDoren, V.J. (1998). Ziegler–Nichols methods facilitate loop tuning, Control Engineering,
December.
Velázquez-Figueroa, C. (1997). Automated rule-based dynamic modeling and controller design
(PhD thesis, University of Connecticut).
Venkatashankar, V. and Chidambaram, M. (1994). Design of P and PI controllers for unstable first
order plus time delay systems, International Journal of Control, 60, pp. 137–144.
Vilanova, R. (2006). PID controller tuning rules for robust step-response of first-order-plus-deadtime models, Proceedings of the American Control Conference, pp. 256–261.
Vilanova, R. and Balaguer, P. (2006). ISA-PID controller tuning: a combined min-max/
ISE approach, Proceedings of the IEEE International Conference on Control Applications,
pp. 2956–2961.
Visioli, A. (2001). Tuning of PID controllers with fuzzy logic, IEE Proceedings – Control Theory
and Applications, 148(1), pp. 180–184.
Visioli, A. (2002). Improving the load disturbance rejection performances of IMC-tuned PID
controllers, Proceedings of the 15th IFAC Triennial World Congress (Barcelona, Spain),
pp. 295–300.
Visioli, A. (2005). Experimental evaluation of a plug&control strategy for level control,
Proceedings of the IFAC World Congress (Prague, Czech Republic).
Visioli, A. (2006). Practical PID Control (Advances in Industrial Control, Springer, London).
Vítečková, M. (1999). Seřízení číslicových I analogových regulátorů pro regulované soustavy s
dopravním zpoždĕním (Digital and analog controller tuning for processes with time delay),
Automatizace, 42(2), pp. 106–111 (in Czech).
Vítečková, M., Víteček, A. and Smutný, L. (2000a). Controller tuning for controlled plants with
time delay, Preprints of Proceedings of PID ’00: IFAC Workshop on digital control (Terrassa,
Spain), pp. 283–288.
Vítečková, V., Víteček, A. and Smutný, L. (2000b). Simple PI and PID controllers tuning for
monotone self-regulating plants, Preprints of Proceedings of PID ’00: IFAC Workshop on
digital control (Terrassa, Spain), pp. 289–294.
Vítečková, M. and Víteček, A. (2002). Analytical controller tuning method for proportional nonoscillatory plants with time delay, Proceedings of the International Carpathian Control
Conference (Malenovice, Czech Republic), pp. 297–302.
b720_Bibliography
594
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Vítečková, M. and Víteček, A. (2003). Analytical digital and analog controller tuning method for
proportional non-oscillatory plants with time delay, Proceedings of the 2nd IFAC Conference on
Control Systems Design (Bratislava, Slovak Republic), pp. 59–64.
Vítečková, M. (2006). Simple PI and PID controller tuning, Transactions of the VŠB – Technical
University of Ostrava, Mechanical Series 2006, 2 (LII), pp. 225–230; [Online]. Available at
http://www.fs.vsb.cz/transactions/2006-2/1562_Viteckova_Miluse.pdf
[accessed 9 January
2007].
Vivek, S. and Chidambaram, M. (2005). An improved relay autotuning of PID controllers for
unstable FOPDT systems, Computers and Chemical Engineering, 29, pp. 2060–2068.
Voda, A. and Landau, I.D. (1995). The autocalibration of PI controllers based on two frequency
measurements, International Journal of Adaptive Control and Signal Processing, 9,
pp. 395–421.
Vrančić, D. (1996). Design of anti-windup and bumpless transfer protection. Part II: PID controller
tuning by multiple integration method (PhD thesis, University of Ljubljana, J. Stefan Institute,
Ljubljana, Slovenia).
Vrančić, D., Peng, Y., Strmčnik, S. and Hanus, R. (1996). A new tuning method for PI controllers
based on a process step response, Proceedings of CESA ’96 IMACS MultiConference Symposium
on Control, Optimisation and Supervision (Lille, France), 2, pp. 790–794.
Vrančić, D., Peng, Y., Strmčnik, S. and Juričić, D. (1999). A multiple integration tuning method for
filtered PID controller, Preprints of Proceedings of IFAC 14th World Congress (Beijing, China),
Paper 3b–02–3.
Vrančić, D. and Lumbar, S. (2004). Improving PID controller disturbance rejection by means of
magnitude optimum, Report DP-8955 (J. Stefan Institute, Ljubljana, Slovenia).
Vrančić, D., Kocijan, J. and Strmčnik, S. (2004a). Simplified disturbance rejection tuning method
for PID controllers, Proceedings of the 5th Asian Control Conference (Melbourne, Australia).
Vrančić, D., Kristiansson, B. and Strmčnik, S. (2004b). Reduced MO tuning method for PID
controllers, Proceedings of the 5th Asian Control Conference (Melbourne, Australia).
Vrančić, D., Strmčnik, S. and Kocijan, J. (2004c). Improving disturbance rejection of PI controllers
by means of the magnitude optimum method, ISA Transactions, 43, pp. 73–84.
Wade, H.L. (1994). Regulatory and Advanced Regulatory Control: System Development (ISA,
North Carolina).
Wang, T.-S. and Clements, W.C. (1995). Adaptive multivariable PID control of a distillation
column with unknown and varying dead time, Chemical Engineering Communications, 132,
pp. 1–13.
Wang, F.-S., Juang, W.-S. and Chan, C.-T. (1995a). Optimal tuning of PID controllers for single
and cascade control loops, Chemical Engineering Communications, 132, pp. 15–34.
Wang, L., Barnes, T.J.D. and Cluett, W.R. (1995b). New frequency-domain design method for PID
controllers, IEE Proceedings – Control Theory and Applications, 142, pp. 265–271.
Wang, L. and Cluett, W.R. (1997). Tuning PID controllers for integrating processes, IEE
Proceedings – Control Theory and Applications, 144(5), pp. 385–392.
Wang, Y.-G. and Shao, H.-H. (1999a). PID autotuner based on gain- and phase-margin
specification, Industrial Engineering Chemistry Research, 38, pp. 3007–3012.
Wang, Y.-G. and Shao, H.-H. (1999b). Automatic tuning of optimal PI controllers, Proceedings of
the IEEE 38th Conference on Decision and Control, pp. 3802–3803.
b720_Bibliography
17-Mar-2009
Bibliography
FA
595
Wang, Q.-G., Lee, T.-H., Fung, H.-W., Bi, Q. and Zhang, Y. (1999). PID tuning for improved
performance, IEEE Transactions on Control Systems Technology, 7(4), pp. 457–465.
Wang, X.-S. (2000). PID controller tuning method for improving performance, Optics and
Precision Engineering (China), 8(4), pp. 381–384 (in Chinese).
Wang, L. and Cluett, W.R. (2000). From Plant Data to Process Control (Taylor and Francis Ltd.,
New York).
Wang, Y.-G. and Shao, H.-H. (2000a). Optimal tuning for PI controller, Automatica, 36,
pp. 147–152.
Wang, Y.-G. and Shao, H.-H. (2000b). PID auto-tuner based on sensitivity specification,
Transactions of the Institute of Chemical Engineers, 78(A), pp. 312–316.
Wang, Q.-G., Zhang, Y. and Guo, X. (2000a). Robust closed-loop controller auto-tuning,
Proceedings of the 15th IEEE International Symposium on Intelligent Control (Rio, Patras,
Greece), pp. 133–138.
Wang, Y.-G., Shao, H.-H. and Wang, J. (2000b). PI tuning for processes with large dead time,
Proceedings of the American Control Conference (Chicago), pp. 4274–4278.
Wang, Y.-G. and Cai, W.-J. (2001). PID tuning for integrating processes with sensitivity
specification, Proceedings of the IEEE Conference on Decision and Control (Orlando, Florida),
pp. 4087–4091.
Wang, Q.-G., Zhang, Y. and Guo, X. (2001a). Robust closed-loop identification with application to
auto-tuning, Journal of Process Control, 11, pp. 519–530.
Wang, Y.-G., Cai, W.-J. and Shi, Z.-G. (2001b). PID autotuning for integrating processes with
specifications on gain and phase margins, Proceedings of the American Control Conference
(Arlington, VA), pp. 2181–2185.
Wang, Y.-G. and Cai, W.-J. (2002). Advanced proportional-integral-derivative tuning for
integrating and unstable processes with gain and phase margin specifications, Industrial
Engineering Chemistry Research, 41, pp. 2910–2914.
Wang, Y., Schinkel, M, Schmitt-Hartmann, T. and Hunt, K.J. (2002). PID and PID-like controller
design by pole assignment within D-stable regions, Asian Journal of Control, 4(4), pp. 423–432.
Wang, J.-Y. (2003). Control system design using the NCD technique (Masters thesis, Feng Chia
University, Taiwan) [Online]. Available at http://ethesys.lib.fcu.edu.tw [Accessed 25 October
2006] (in Chinese).
Wang, H. and Jin, X. (2004). Direct synthesis approach of PID controller for second-order delayed
unstable processes, Proceedings of the 5th World Congress on Intelligent Control and
Automation (Hangzhou, P.R. China), pp. 19–23.
Wang, J.-G., Zhang, J.-G. and Zhao, Z.-C. (2005). Extended IMC-PID control for integrator and
dead time process, Electric Machines and Control (China), 9(2), March, pp. 133–135 (in
Chinese).
Wills, D.M. (1962a). Tuning maps for three-mode controllers, Control Engineering, April,
pp. 104–108.
Wills, D.M. (1962b). A guide to controller tuning, Control Engineering, August, pp. 93–95.
Wilton, S.R. (1999). Controller tuning, ISA Transactions, 38, pp. 157–170.
Witt, S.D. and Waggoner, R.C. (1990). Tuning parameters for non-PID three-mode controllers,
Hydrocarbon Processing, June, pp. 74–78.
Wojsznis, W.K. and Blevins, T.L. (1995). System and method for automatically tuning a process
controller, US Patent Number 5,453,925.
b720_Bibliography
596
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Wojsznis, W.K., Blevins, T.L. and Thiele, D. (1999). Neural network assisted control loop tuner,
Proceedings of the IEEE International Conference on Control Applications (Hawaii), 1,
pp. 427–431.
Wolfe, W.A. (1951). Controller settings for optimum control, Transactions of the ASME, May,
pp. 413–418.
Xing, J., Wang, P. and Wang, L. (2001). A self-tuning PID controller based on expert system,
Proceedings of the IFAC New Technologies for Computer Control Conference (Hong Kong,
China), pp. 479–484.
Xu, J. and Shao, H. (2003a). Advanced PID tuning for integrating processes with a new robustness
specification, Proceedings of the American Control Conference (Denver, CO), pp. 3961–3966.
Xu, J. and Shao, H. (2003b). Advanced PID tuning for unstable processes based on a new
robustness specification, Proceedings of the American Control Conference (Denver, CO),
pp. 368–372.
Xu, J. and Shao, H. (2003c). A novel method of PID tuning for integrating processes, Proceedings
of the 42nd IEEE Conference on Decision and Control (Maui, Hawaii), pp. 139–142.
Xu, J. and Shao, H. (2004a). A new tuning method of PID controller for integrating processes,
Chinese Journal of Scientific Instrument, 25(6), December, pp. 714–716, 720 (in Chinese).
Xu, J. and Shao, H. (2004b). PI tuning for large dead-time processes with a new robustness
specification, Journal of Systems Engineering and Electronics (China), 15(3), September,
pp. 333–336.
Xu, J.-H., Sun, R. and Shao, H.-H. (2004). PI controller tuning for large dead-time processes,
Kongzhi Yu Juece/Control and Decision, 19(1), pp. 99–101 (in Chinese).
Xu, Y., Deng, H., Zhang, P. and Yang, J. (2005). Tuning PI/PID active queue management
controllers supporting TCP/IP flows, Proceedings of the International Conference on
Communications, Circuits and Systems, 1, pp. 630–634.
Yang, J. C.-Y. and Clarke, D.W. (1996). Control using self-validating sensors, Transactions of the
Institute of Measurement and Control, 18, pp. 15–23.
Yi, C. and De Moor, B.L.R. (1994). Robustness analysis and control system design for a hydraulic
servo system, IEEE Transactions on Control Systems Technology, 2(3), pp. 183–197.
Young, A.J. (1955). An Introduction to Process Control System Design (Longman, Green and
Company, London).
Yu, S. W. (1988). Optimal PI tuning for load disturbances, Journal of the Chinese Institute of
Chemical Engineers, 19(6), pp. 349–357.
Yu, C.-C. (1999). Autotuning of PID Controllers (Advances in Industrial Control Series, SpringerVerlag Ltd., London).
Yu, C.-C. (2006). Autotuning of PID Controllers, 2nd Edition (Advances in Industrial Control
Series, Springer-Verlag Ltd., London).
Zhang, D. (1994). Process dynamics and controller selection of DCS, Proceedings of the ISA
Advances in Instrumentation and Control Conference (Anaheim), 49(2), pp. 231–240.
Zhang, G., Shao, C. and Chai, T. (1996a). A new method for independently tuning PID parameters,
Proceedings of the 35th Conference on Decision and Control (Kobe, Japan), pp. 2527–2532.
Zhang, W.D., Sun, Y.X. and Xu, X.M. (1996b). Modified PID controller based on H ∞ theory,
Proceedings of the IEEE International Conference on Industrial Technology, pp. 9–12.
Zhang, W., Sun, Y. and Xu, X. (1999a). PID control for integrator and dead time process, Acta
Automatica Sinica, 25(4), pp. 518–523 (in Chinese).
b720_Bibliography
17-Mar-2009
Bibliography
FA
597
Zhang, W., Xu, X. and Sun, Y. (1999b). Quantitative performance design for integrating processes
with time delay, Automatica, 35, pp. 719–723.
Zhang, W., Xu, X. and Zhang, W. (2000). PID design of unstable processes by using closed loop
constraints, Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 34(5),
May, pp. 589–592 (in Chinese).
Zhang, W. and Xu, X. (2002). H ∞ PID controller design for runaway processes with time delay,
ISA Transactions, 41, pp. 317–322.
Zhang, J.-G., Liu, Z.-Y. and Pei, R. (2002a). Two-degree-of-freedom PID control for integrator and
dead time process, Kongzhi Yu Juece/Control and Decision, 17(6), November, pp. 886–889 (in
Chinese).
Zhang, W., Xi, Y., Yang, G. and Xu, X. (2002b). Design PID controllers for desired time-domain
or frequency-domain response, ISA Transactions, 41, pp. 511–520.
Zhang, J., Li, L., Chen, Z. and Zhao, Z. (2002c). IMC tuning of two-degree-of-freedom regulator,
Chinese Journal of Scientific Instrument, 23(1), pp. 28–30, 48 (in Chinese).
Zhang, W., Gu, D. and Xu, X. (2003). A unified approach to design the RZN PID controller for
stable and unstable processes with time delay, Proceedings of the 42nd IEEE Conference on
Decision and Control, pp. 4080–4081.
Zhang, F.-B., Wang, G.-D., Zhang, D.-H. and Liu, X.-H. (2005). Optimal ITAE tuning formulae
for parameters of PID controller, Journal of Northeastern University (Natural Science), 26(8),
pp. 755–758.
Zhang, W. (2006). Optimal design of the refined Ziegler–Nichols proportional-integral-derivative
controller for stable and unstable processes with time delays, Industrial Engineering Chemistry
Research, 45, pp. 1408–1419.
Zhang, J., Wang, J. and Zhao, Z. (2006). A novel two-degree-of-freedom PID controller for
integrator and dead time process, Proceedings of the 6th World Congress on Intelligent Control
and Automation (Dalian, China), pp. 6388–6391.
Zhong, Q.-C. and Li, H.-X. (2002). 2-degree-of-freedom proportional-integral-derivative-type
controller incorporating the Smith principle for processes with dead time, Industrial Engineering
Chemistry Research, 41, pp. 2448–2454.
Zhuang, M. (1992). Computer-aided PID controller design (PhD thesis, University of Sussex, UK).
Zhuang, M. and Atherton, D.P. (1993). Automatic tuning of optimum PID controllers, IEE
Proceedings, Part D, 140, pp. 216–224.
Ziegler, J.G. and Nichols, N.B. (1942). Optimum settings for automatic controllers, Transactions of
the ASME, November, pp. 759–768.
Zou, H., Hedstrom, K.P., Warrior, J. and Hays, C.L. (1997). Field based process control system
with auto-tuning, US Patent Number 5,691,896.
Zou, H. and Brigham, S.E. (1998). Process control system with asymptotic auto-tuning, US Patent
Number 5,818,714.
b720_Bibliography
17-Mar-2009
This page intentionally left blank
FA
b720_Index
17-Mar-2009
FA
Index
Åström and Hägglund (2004), 20, 98, 174,
360, 381
Åström and Hägglund (2006), 21, 22, 72,
74, 76, 109, 110–111, 145, 177, 227, 276,
321, 326, 356, 362, 390, 424
Atherton and Boz (1998), 175, 274, 477,
503–504
Atherton and Majhi (1998), 476–477
Atkinson (1968), 341
Atkinson and Davey (1968), 324
Auslander et al. (1975), 206
ABB (1996), 325
ABB (2001), 9, 32, 52, 152, 157, 319
Abbas (1997), 57, 100
Aikman (1950), 321
Alenany et al. (2005), 360, 378
Alfa-Laval, 7, 322
Alfaro Ruiz (2005a), 80, 122, 124, 207, 326,
359
Allen Bradley, 5, 8
Alvarez-Ramirez et al. (1998), 357
Andersson (2000), 74, 357
Anil and Sree (2005), 422, 423
Araki (1985), 156
Arbogast and Cooper (2007), 365, 367, 370
Arbogast et al. (2006), 74
Argelaguet et al. (1997), 156
Argelaguet et al. (2000), 156
Arrieta and Vilanova (2007), 125–127
Arrieta Orozco (2003), 39, 43, 47, 49, 122,
123, 124
Arrieta Orozco and Alfaro Ruiz (2003), 39,
43, 47, 49, 122, 123, 124
Arrieta Orozco (2006), 43, 49, 86, 87–88,
91, 94
Arvanitis et al. (2000a), 221, 232, 261, 275
Arvanitis et al. (2000b), 473, 477
Arvanitis et al. (2003a), 373, 376, 377
Arvanitis et al. (2003b), 400–409, 413
Åström (1982), 322, 325
Åström and Hägglund (1984), 325
Åström and Hägglund (1988), 79, 325
Åström and Hägglund (1995), 21, 56, 108,
164, 248, 319, 322, 325, 331, 347, 351,
359, 389, 413
Åström and Hägglund (2000), 19
Bai and Zhang (2007), 70
Bailey, 5, 6, 7, 8, 10
Bain and Martin (1983), 46, 53
Barberà (2006), 49, 94
Bateson (2002), 322, 327, 349
Bekker et al. (1991), 55
Belanger and Luyben (1997), 370
Benjanarasuth et al. (2005), 353, 379
Bequette (2003), 21, 24, 120
Bialkowski (1996), 74, 283, 287, 357, 436
Bi et al. (1999), 57
Bi et al. (2000), 57, 221
Blickley (1990), 324
Boe and Chang (1988), 77
Bohl and McAvoy (1976b), 210, 230, 241,
250
Borresen and Grindal (1990), 32, 79
Boudreau and McMillan (2006), 223, 357
Brambilla et al. (1990), 74, 112, 203, 227
Branica et al. (2002), 109
Bryant et al. (1973), 20, 52, 197–198
Buckley (1964), 21
599
b720_Index
600
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Buckley et al. (1985), 354
Bunzemeier (1998), 351, 368
Calcev and Gorez (1995), 319, 325
Callender (1934), 359
Callender et al. (1935/6), 18, 23, 30, 78
Camacho et al. (1997), 100
Carr (1986), 324
Chandrashekar et al. (2002), 441, 455–456,
466–468
Chang et al. (1997), 182
Chao et al. (1989), 189, 190, 194, 239, 240,
241–242, 242–243, 244, 245, 246–247
Chau (2002), 326
Chen and Seborg (2002), 58, 103, 221–222,
357, 361, 389
Chen and Yang (1993), 318, 325, 330
Chen and Yang (2000), 68
Chen et al. (1997), 75
Chen et al. (1999a), 64, 354, 362, 389
Chen et al. (1999b), 64, 226
Chen et al. (2006), 283
Cheng and Hung (1985), 86, 93
Cheng and Yu (2000), 354
Chesmond (1982), 322, 327
Chidambaram (1994), 354
Chidambaram (1995a), 107–108
Chidambaram (1995b), 443, 452
Chidambaram (1997), 440, 448, 474
Chidambaram (1998), 443, 452
Chidambaram (2000a), 161, 176
Chidambaram (2000b), 376
Chidambaram (2000c), 441, 465
Chidambaram (2002), 28, 33, 58, 80, 103,
162, 181, 222, 280, 383, 420, 441–442,
449, 466
Chidambaram and Kalyan (1996), 492
Chidambaram and Sree (2003), 353, 361,
362, 376
Chidambaram et al. (2005), 59
Chien (1988), 74, 130, 146, 285, 287, 357,
366, 369, 394, 396
Chien and Fruehauf (1990), 130, 146, 285,
287, 357, 366, 369, 394, 396
Chien et al. (1952), 31, 78
Chien et al. (1999), 160–161, 376
Chien et al. (2003), 277, 282, 284, 286, 290,
292
Chiu et al. (1973), 52, 220
Chun et al. (1999), 75
Clarke (2006), 72, 356
Cluett and Wang (1997), 66–67, 101, 353,
361
Cohen and Coon (1953), 31, 78
Concept, 6
Connell (1996), 79
Controller structures
Classical controller, 6–7, 25, 134–148,
238–250, 286–287, 341–342, 368–370,
395–396, 423, 425, 436, 458–461, 491–
496
Controller with filtered derivative, 6, 122–
133, 236–237, 284–285, 298, 305–307,
316, 336–340, 366–367, 394
Generalised classical controller, 8, 26,
149–151, 251–252, 288, 343–345, 371,
397–398, 462, 483, 508, 516–517
Ideal controller in series with a first order
lag, 6, 24, 118–121, 182, 232–235, 282–
283, 297, 315, 332–335, 364–365, 392–
393, 422, 455–457, 481–482, 490, 513–
515
Ideal PI controller, 5, 18–22, 28–29, 30–
77, 180–181, 183–205, 277–278, 293–
295, 310–311, 318–323, 350–358, 383–
384, 385–387, 430, 438, 440–446, 480,
486–487, 511–512
Ideal PID controller, 4, 5, 23, 78–117,
206–231, 279–281, 296, 303–304, 312–
314, 324–331, 359–363, 388–391, 420–
421, 424, 447–454, 488–489, 506–507
Two degree of freedom controller 1, 8–9,
27, 152–167, 253–263, 289–291, 299–
301, 308–309, 317, 346–348, 372–377,
399–415, 426, 431–435, 437, 439, 463–
472, 484–485, 497–502, 518–519
Two degree of freedom controller 2, 9,
168–169, 378–380, 416–417, 427–428,
473–474, 509–510
Two degree of freedom controller 3, 10–
11, 170–179, 264–276, 292, 302, 349,
381–382, 418–419, 429, 475–479, 503–
505, 520
ControlSoft Inc. (2005), 80
Coon (1956), 350, 385
Coon (1964), 350, 385
Cooper (2006a), 165, 179
Cooper (2006b), 120, 179
Corripio (1990), 324, 341
Cox et al. (1994), 323
b720_Index
17-Mar-2009
Index
Cox et al. (1997), 67
Cuesta et al. (2006), 60
Davydov et al. (1995), 57, 128, 311, 316
De Oliveira et al. (1995), 74
De Paor (1993), 325
De Paor and O’Malley (1989), 442, 452
Desbiens (2007), 181, 203, 278
Devanathan (1991), 45, 90
Dutton et al. (1997), 330
ECOSSE Team (1996a), 45
ECOSSE Team (1996b), 322, 327
Edgar et al. (1997), 38, 137–138, 153, 319,
341, 346
Eriksson and Johansson (2007), 174, 178
Ettaleb and Roche (2000), 57
Faanes and Skogestad (2004), 33, 58, 74,
136, 147
Farrington (1950), 324
Fanuc, 5
Fertik (1975), 19, 42, 49, 136, 140
Fertik and Sharpe (1979), 32
Fischer and Porter, 6, 7, 10
Fisher–Rosemount, 10
Foley et al. (2005), 59
Ford (1953), 359
Foxboro, 6, 7, 10, 134
Frank and Lenz (1969), 33, 40, 41, 43
Friman and Waller (1997), 64, 109, 319
Fruehauf et al. (1993), 56, 99, 352
Fukura and Tamura (1983), 50, 197
Gaikward and Chidambaram (2000), 443,
452
Gain margin, analytical calculation, 522–
528
Gain margin, figures, 530, 532–533
Gain and phase margins, constant, 534–543
PI controller, FOLPD model, 534–536
PI controller, IPD model, 536–539
PD controller, FOLIPD model, 542–543
PID controller, FOLPD model,
classical controller, 539–541
PID controller, SOSPD model,
series controller, 541–542
PID controller, SOSPD model with
a negative zero, classical controller,
542
FA
601
Gallier and Otto (1968), 45, 90, 191, 214
García and Castelo (2000), 328
Genesis, 9
Geng and Geary (1993), 77, 116
Gerry (1998), 19, 89
Gerry (1999), 74, 113
Gerry (2003), 45
Gerry and Hansen (1987), 19
Gong et al. (1996), 130
Gong et al. (1998), 23, 131
Gong (2000), 113
Gonzalez (1994), 56, 100
Goodwin et al. (2001), 129
Gorecki et al. (1989), 55, 62, 99, 105, 352,
360, 362
Gorez (2003), 58, 104, 109
Gorez and Klàn (2000), 220, 312, 313
Gu et al. (2003), 117
Haalman (1965), 19, 40, 239, 352, 388
Haeri (2002), 163
Haeri (2005), 59
Hägglund and Åström (1991), 322
Hägglund and Åström (2002), 68, 165, 376,
471
Hägglund and Åström (2004), 21, 70–71,
202–203, 205, 321, 355–356
Hang and Åström (1988a), 167
Hang and Åström (1988b), 325
Hang and Cao (1996), 167
Hang et al. (1991), 55, 167
Hang et al. (1993a), 63, 223, 233
Hang et al. (1993b), 63, 134, 318, 341
Hang et al. (1994), 236
Hansen (1998), 275
Hansen (2000), 21, 376, 426
Harriott (1964), 327
Harriott (1988), 39, 47, 184
Harris and Tyreus (1987), 146, 178
Harrold (1999), 135, 342
Hartmann and Braun, 6
Hartree et al. (1937), 25
Hassan (1993), 189, 210–211
Hay (1998), 32–33, 79–80, 322, 327, 351,
352, 359
Hazebroek and Van der Waerden (1950),
30–31, 39–40, 352
Heck (1969), 32
Henry and Schaedel (2005), 65
Hill and Adams (1988), 77
b720_Index
602
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Hill and Venable (1989), 36–37, 83–85
Hiroi and Terauchi (1986), 152, 170
Ho and Xu (1998), 443, 492
Ho et al. (1994), 223
Ho et al. (1995a), 223–224
Ho et al. (1997), 224
Ho et al. (1998), 87, 92
Ho et al. (1999), 63, 87, 92
Ho et al. (2001), 178
Honeywell, 5, 7, 9, 11, 56, 248
Horn et al. (1996), 120, 151
Hougen (1979), 61, 146, 199, 247, 294, 354,
369, 387, 396
Hougen (1988), 199, 248, 369
Huang and Chao (1982), 136, 138, 139, 140,
141, 142, 143, 238, 240, 242, 243, 244,
245, 246
Huang and Chen (1997), 458, 492
Huang and Chen (1999), 458, 492, 502
Huang and Jeng (2002), 19, 46
Huang and Jeng (2003), 97–98, 218–219
Huang and Jeng (2005), 71, 146, 232, 249
Huang and Lin (1995), 463, 464, 497–502
Huang et al. (1996), 38, 46, 185–187, 191–
193, 264–268, 270–273
Huang et al. (1998), 74, 228
Huang et al. (2000), 165, 176, 261, 276,
290, 292
Huang et al. (2002), 121
Huang et al. (2003), 146, 251
Huang et al. (2005a), 71, 77, 146, 148, 232,
235
Huang et al. (2005b), 379, 416
Huba (2005), 429
Huba and Žáková (2003), 353, 387
Hwang (1995), 44, 48, 89, 96–97, 190, 195–
196, 213, 215–217
Hwang and Chang (1987), 318
Hwang and Fang (1995), 44, 51, 89, 97
Idzerda et al. (1955), 318
Intellution, 5
Isaksson and Graebe (1999), 75
Jacob and Chidambaram (1996), 440, 473
Jahanmiri and Fallahi (1997), 251
Jhunjhunwala and Chidambaram (2001),
448, 466
Johnson (1956), 318
Jones and Tham (2006), 296, 302
Jones et al. (1997), 323, 329
Juang and Wang (1995), 100
Jyothi et al. (2001), 29, 182, 291, 383–384,
420–421
Kamimura et al. (1994), 21, 56
Kang (1989), 208
Karaboga and Kalinli (1996), 326
Kasahara et al. (1997), 160
Kasahara et al. (1999), 131–132
Kasahara et al. (2001), 161
Kaya (2003), 381
Kaya and Atherton (1999), 381
Kaya and Scheib (1988), 136, 138, 139, 140,
142, 171, 172
Keane et al. (2000), 218
Keane et al. (2005), 331
Keviczky and Csáki (1973), 19, 20, 53, 194
Khan and Lehman (1996), 48, 55, 57
Khodabakhshian and Golbon (2004), 278
Kim et al. (2004), 163
King (2006), 73, 112
Kinney (1983), 341
Klán (2000), 58, 312
Klán (2001), 376, 390, 413
Klán and Gorez (2000), 319
Klán and Gorez (2005a), 59
Klán and Gorez (2005b), 59
Klein et al. (1992), 32, 61
Kookos et al. (1999), 354
Kosinsani (1985), 34, 82
Kotaki et al. (2005a), 153–154, 164
Kotaki et al. (2005b), 153–155
Kraus (1986), 134
Kristiansson (2003), 69, 149–150, 204, 228,
234, 251, 320, 332, 344
Kristiansson and Lennartson (1998a), 337–
338
Kristiansson and Lennartson (1998b), 338
Kristiansson and Lennartson (2000), 320,
338–339
Kristiansson and Lennartson (2002a), 320,
340, 366, 394
Kristiansson and Lennartson (2002b), 69,
119, 334
Kristiansson and Lennartson (2003), 320,
321
Kristiansson and Lennartson (2006), 69–70,
119, 120, 321, 335, 392
Kristiansson et al. (2000), 343
b720_Index
17-Mar-2009
FA
Index
603
Kuhn (1995), 57, 128
Kukal (2006), 60, 104
Kuwata (1987), 20, 27, 53, 77, 116, 158,
159, 160, 166–167, 198, 204, 231, 259,
262–263, 294, 295, 296, 300, 301, 311,
317, 352, 375, 386, 413, 415, 430, 435,
437, 438, 439
Kwak et al. (2000), 504–505
Loron (1997), 438
Luo et al. (1996), 326
Luyben (1993), 77
Luyben (1996), 370
Luyben (1998), 443
Luyben (2000), 278
Luyben (2001), 74, 120
Luyben and Luyben (1997), 326
Landau and Voda (1992), 231
Larionescu (2002), 314, 316
Latzel (1988), 61, 129–130
Lavanya et al. (2006a), 237
Lavanya et al. (2006b), 73
Lee and Edgar (2002), 121, 168–169, 178–
179, 233, 379, 382, 416, 419, 474, 479
Lee and Shi (2002), 147, 151
Lee and Teng (2003), 313
Lee et al. (1992), 63, 106, 164, 177
Lee et al. (1998), 75, 113, 228
Lee et al. (2000), 454, 474, 489, 505, 507,
509
Lee et al. (2005), 323
Lee et al. (2006), 113, 227, 281, 362, 390,
421, 457, 505
Leeds and Northup, 5, 79
Lennartson and Kristiansson (1997), 337
Leonard (1994), 360
Leva (1993), 322, 336
Leva (2001), 65, 74, 112, 132
Leva (2005), 165
Leva (2007), 74
Leva and Colombo (2000), 132
Leva and Colombo (2004), 165
Leva et al. (1994), 70, 224–225
Leva et al. (2003), 68–69, 132, 202, 226
Leva et al. (2006), 132
Li et al. (1994), 105
Li et al. (2004), 283
Lim et al. (1985), 118, 232
Lipták (1970), 327
Lipták (2001), 33, 80
Litrico and Fromion (2006), 356, 363
Litrico et al. (2006), 356
Litrico et al. (2007), 358
Liu et al. (2003), 417, 427–428
Lloyd (1994), 328
Lopez (1968), 81, 86, 87, 183, 188, 207,
208–209
Lopez et al. (1969), 188, 210
MacLellan (1950), 321, 327
Madhuranthakam et al. (2008), 155, 156,
256, 257, 269, 289–290
Maffezzoni and Rocco (1997), 130
Majhi (1999), 323, 329, 346, 347
Majhi (2005), 50
Majhi and Atherton (1999), 175, 274, 477,
503–504
Majhi and Atherton (2000), 440, 475–476
Majhi and Mahanta (2001), 419
Majhi and Litz (2003), 250
Mann et al. (2001), 54, 102
Mantz and Tacconi (1989), 348
Manum (2005), 21, 222, 442
Marchetti and Scali (2000), 181, 203, 228,
278, 280, 295, 296
Marchetti et al. (2001), 453, 488
Marlin (1995), 38, 46, 81, 91
Mataušek and Kvaščev (2003), 69
Matsuba et al. (1998), 77, 116
Maximum sensitivity, analytical calculation,
529
Maximum sensitivity, figures, 530
Maximum sensitivity, constant, 538
McAnany (1993), 56
McAvoy and Johnson (1967), 187, 240, 324
McMillan (1984), 76, 116, 387, 391, 487,
489
McMillan (1994), 32, 318, 322, 325, 327
McMillan (2005), 22, 59, 322, 325, 335
Mesa et al. (2006), 60
Modicon, 6
Modcomp, 8
Mollenkamp et al. (1973), 52, 220
Moore, 10, 11
Morari and Zafiriou (1989), 130
Morilla et al. (2000), 102
Moros (1999), 31, 80
Murata and Sagara (1977), 34, 46, 183, 191,
293, 310
Murrill (1967), 32, 33, 40, 41, 79, 81, 86, 87
b720_Index
604
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Naşcu et al. (2006), 235
NI Labview (2001), 323, 329–330, 350, 351,
359
Normey-Rico et al. (2000), 168, 378
Normey-Rico et al. (2001), 378
Nomura et al. (1993), 20, 23, 27, 56, 99–
100, 160
O’Connor and Denn (1972), 90
O’Dwyer (2001a), 63, 146, 249, 287, 355,
390
O’Dwyer (2001b), 135–136, 342
Ogawa (1995), 75, 357
Ogawa and Katayama (2001), 162
Okada et al. (2006), 54
OMEGA Books (2005), 152, 348
Omron, 8
Oppelt (1951), 31
Ou and Chen (1995), 139, 142
Ou et al. (2005a), 364, 446
Ou et al. (2005b), 365, 393
Ou et al. (2005c), 132
Oubrahim and Leonard (1998), 263, 415
Ozawa et al. (2003), 163
Padhy and Majhi (2006a), 177, 478
Padhy and Majhi (2006b), 73
Pagola and Pecharromán (2002), 323
Panda et al. (2004), 204, 228, 232, 234, 249
Panda et al. (2006), 357
Paraskevopoulos et al. (2004), 464–465, 469
Paraskevopoulos et al. (2006), 444–445,
459–461, 492–496
Park et al. (1997), 212, 214
Park et al. (1998), 478
Parr (1989), 32, 79, 318, 322, 323, 324, 327,
328
Paz Ramos et al. (2005), 360
Pecharromán (2000a), 257, 258, 374, 410,
431
Pecharromán (2000b), 258–259, 374–375,
411, 432–433
Pecharromán and Pagola (2000), 257–258,
374, 410, 432
Pemberton (1972a), 34, 220
Pemberton (1972b), 219–220
Peng and Wu (2000), 81
Penner (1988), 358
Perić et al. (1997), 77, 116, 387, 391
Pessen (1953), 341
Pessen (1954), 341
Pessen (1994), 86, 148, 318
Pettit and Carr (1987), 324
Phase margin, analytical calculation, 522–
528
Phase margin, figures, 530, 532–533
Pinnella et al. (1986), 54
PMA (2006), 33, 80
Polonyi (1989), 296
Pomerleau and Poulin (2004), 199, 277, 282
Potočnik et al. (2001), 66
Poulin and Pomerleau (1996), 352, 386,
395–396, 486, 491
Poulin and Pomerleau (1997), 395–396, 491
Poulin and Pomerleau (1999), 353, 387
Poulin et al. (1996), 201, 249, 286, 396, 487
Pramod and Chidambaram (2000), 449
Prashanti and Chidambaram (2000), 470–
471
Process models
Delay model, 12, 18–27
Delay model with a zero, 12, 28–29
Fifth order system plus delay model, 13,
303–309
FOLIPD model, 14, 385–419
FOLIPD model with a zero, 14, 420–423
FOLPD model, 13, 30–179
FOLPD model with a zero, 13, 180–182
General model, 14, 310–317
General model with integrator, 15, 438–
439
IPD model, 14, 350–382
IPD model with a zero, 14, 383–384
I 2 PD model, 14, 424–429
Non-model specific, 14, 318–349
SOSIPD model, 14, 430–435
SOSIPD model with a zero, 14, 436
SOSPD model, 13, 183–276
SOSPD model with a zero, 13, 277–292
TOSIPD model, 14, 437
TOSPD model, 13, 293–302
Unstable FOLPD model, 15, 440–479
Unstable FOLPD model with a zero, 15,
480–485
Unstable SOSPD model (one unstable
pole), 15, 486–505
Unstable SOSPD model (two unstable
poles), 15, 506–510
Unstable SOSPD model with a zero, 15,
511–520
b720_Index
17-Mar-2009
Index
Prokop et al. (2000), 57
Prokop et al. (2005), 319
Pulkkinen et al. (1993), 75
Ramasamy and Sundaramoorthy (2007),
330–331, 333, 344–345
Rao and Chidambaram (2006a), 516
Rao and Chidambaram (2006b), 516, 520
Ream (1954), 23, 52, 197
Reswick (1956), 31
Rice (2004), 362, 370
Rice (2006), 377
Rice and Cooper (2002), 364, 369
Rivera et al. (1986), 74, 112
Rivera and Jun (2000), 120, 228, 233, 364,
390, 393
Robbins (2002), 319, 326
Rotach (1994), 327–328
Rotach (1995), 199, 220, 352, 361
Rotstein and Lewin (1991), 446, 453, 488
Rovira et al. (1969), 45, 48, 90, 93
Rutherford (1950), 321, 327
Sadeghi and Tych (2003), 91, 92, 93
Sain and Özgen (1992), 79
Saito et al. (1990), 99
Sakai et al. (1989), 32
SATT Instruments, 11
Schaedel (1997), 65, 118, 128, 144, 201,
248, 297, 298, 311, 315
Schlegel (1998), 21
Schneider (1988), 55
Seki et al. (2000), 325
Setiawan et al. (2000), 158
Shamsuzzoha and Lee (2006a), 151, 252,
288, 363
Shamsuzzoha and Lee (2006b), 454
Shamsuzzoha and Lee (2007a), 115, 166,
229–230, 262, 363, 377, 391, 415, 454,
489
Shamsuzzoha and Lee (2007b), 150
Shamsuzzoha and Lee (2007c), 169
Shamsuzzoha and Lee (2007d), 508
Shamsuzzoha et al. (2004), 151
Shamsuzzoha et al. (2005), 454, 489
Shamsuzzoha et al. (2006a), 398
Shamsuzzoha et al. (2006b), 510
Shamsuzzoha et al. (2006c), 114, 229, 363,
390, 422
Shamsuzzoha et al. (2007), 371, 462
FA
605
Shen (1999), 254
Shen (2000), 255–256
Shen (2002), 158, 347
Shi and Lee (2002), 147
Shi and Lee (2004), 252
Shigemasa et al. (1987), 159
Shin et al. (1997), 329
Shinskey (1988), 19, 35, 39, 137, 138, 153,
156, 208, 238, 351, 368, 372, 458
Shinskey (1994), 19, 39, 138, 157, 184, 239,
254, 351, 368, 372, 385, 395, 399
Shinskey (1996), 19, 38, 39, 137, 152, 184,
187, 239, 253, 254, 368–369, 372
Shinskey (2000), 33, 135
Shinskey (2001), 33
Shinskey (2003), 39, 138
Siemens, 6
Sklaroff (1992), 56, 248
Skoczowski (2004), 59, 249
Skoczowski and Tarasiejski (1996), 314
Skogestad (2001), 20, 352
Skogestad (2003), 20, 21, 22, 58, 248, 352,
353, 396, 425
Skogestad (2004a), 358
Skogestad (2004b), 221, 353, 418, 429
Skogestad (2004c), 222
Skogestad (2006a), 61
Skogestad (2006b), 61, 249
Slätteke (2006), 180, 181
Smith (1998), 67
Smith (2002), 50, 56, 74, 357, 358
Smith (2003), 93, 228, 326
Smith and Corripio (1997), 34, 46, 53, 138,
140, 144
Smith et al. (1975), 53, 220, 247
Somani et al. (1992), 62, 106, 200–201
Square D, 9
Sree and Chidambaram (2003a), 181, 182
Sree and Chidambaram (2003b), 481, 484–
485
Sree and Chidambaram (2003c), 480, 485
Sree and Chidambaram (2004), 511, 513,
518–519
Sree and Chidambaram (2005a), 467
Sree and Chidambaram (2005b), 361
Sree and Chidambaram (2006), 353, 362,
376, 389, 442, 444, 450–452, 456, 465,
466–467, 468, 474, 477, 480, 481–482,
483, 485, 502, 511, 514–515, 517, 519
Sree et al. (2004), 59, 104, 442, 449–450
b720_Index
606
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Srinivas and Chidambaram (2001), 162, 465
Srividya and Chidambaram (1997), 354
St. Clair (1997), 32, 135, 341
Streeter et al. (2003), 331
Sung et al. (1996), 212, 214
Suyama (1992), 53, 99, 220
Suyama (1993), 159
Syrcos and Kookos (2005), 90
Tachibana (1984), 388
Taguchi and Araki (2000), 157, 260, 299–
300, 375, 411–412, 433
Taguchi and Araki (2002), 157, 412
Taguchi et al. (1987), 156, 257, 410
Taguchi et al. (2002), 375, 412, 433–434
Tan et al. (1996), 70, 108, 201
Tan et al. (1998a), 393
Tan et al. (1998b), 120, 364, 393
Tan et al. (1999a), 135, 326, 342
Tan et al. (1999b), 446, 453
Tan et al. (2001), 326, 342
Tang et al. (2002), 323, 330
Tang et al. (2007), 121, 133, 147–148
Tavakoli and Fleming (2003), 47
Tavakoli and Tavakoli (2003), 123
Tavakoli et al. (2005), 158, 375
Tavakoli et al. (2006), 47
Taylor, 11
Thomasson (1997), 74, 75, 357
Thyagarajan and Yu (2003), 205
Tinham (1989), 324
Toshiba, 7, 9, 159
Trybus (2005), 60, 222–223, 313–314
Tsang and Rad (1995), 144, 397
Tsang et al. (1993), 144, 149, 397
Tuning rules:
Direct synthesis, frequency domain
criteria, 21, 29, 61–73, 105–112, 118–
120, 129–130, 146, 149–150, 164–165,
177–178, 181, 182, 199–203, 223–227,
232, 236, 249–250, 261–262, 276, 278,
280, 286–287, 290–291, 294, 297, 298,
301, 303–304, 305–307, 308–309, 311,
314, 315, 319–321, 331, 334–335, 336–
340, 347–348, 349, 354–356, 362, 366,
369, 376, 381, 383–384, 387, 389–390,
392, 394, 396, 398, 413–414, 419, 420–
421, 424, 438, 442–445, 452, 459–461,
470–472, 473, 477–478, 487, 492–496,
504–505
Direct synthesis, time domain criteria, 20–
21, 23, 27, 28, 52–61, 98–105, 118,
128–129, 144–145, 149, 158–164, 168,
175–176, 181, 182, 197–199, 219–223,
232, 247–248, 251, 259–260, 274–276,
277, 280, 282–283, 284, 286, 290, 292,
294, 300, 311, 312–314, 316, 317, 330–
331, 333, 344–345, 352–353, 360–362,
375–376, 378–379, 383, 386–387, 388–
389, 396, 397, 413, 416, 418, 420, 423,
425, 426, 429, 430, 435, 438, 439, 440–
442, 448–452, 455–456, 458, 465–469,
473, 476–477, 480, 481–482, 483, 484–
485, 488, 492, 502, 503–504, 506, 511–
512, 513–515, 516, 518–519, 520
Minimum performance index, regulator
tuning, 19, 33–45, 81–90, 122–123,
136–139, 152–155, 171, 180, 183–190,
207–213, 238–243, 253–256, 264–269,
289, 293, 310, 341, 346, 351–352, 360,
368–369, 372–373, 385–386, 388, 395–
396, 399–404, 447, 458, 463–464, 486,
491, 497–499
Minimum performance index, servo
tuning, 19, 45–51, 90–97, 123–124,
140–143, 156, 172–173, 191–197, 213–
217, 243–247, 257, 269–273, 279, 290,
293, 310, 347, 360, 373, 378, 386, 388,
405–409, 440, 448, 464, 475–476, 500–
501
Minimum performance index, servo/
regulator tuning, 125–127, 257–259,
299–300, 448
Minimum performance index, other
tuning, 19–20, 51–52, 97–98, 156–158,
174, 218–219, 296, 332, 343–344, 347,
352, 360, 374–375, 381, 410–412, 431–
434, 464–465
Other tuning rules, 22, 205, 321–323,
327–330, 358
Process reaction curve methods, 18–19,
23, 25, 30–33, 78–80, 134–136, 152,
170, 206–207, 350–351, 359, 368, 385
Robust, 21–22, 23, 24, 74–76, 112–115,
120–121, 130–133, 146–148, 151, 165–
166, 168–169, 178–179, 181, 182, 203–
204, 227–230, 233–235, 236–237, 251–
252, 278, 280–281, 283, 285, 287, 288,
295, 296, 302, 314, 316, 357–358, 362–
363, 364–365, 366–367, 369–370, 371,
b720_Index
17-Mar-2009
Index
377, 379–380, 382, 387, 390–391, 393,
394, 396, 415, 416–417, 419, 421, 422,
427–428, 436, 446, 453–454, 457, 462,
472, 474, 478–479, 482, 488–489, 490,
505, 507, 508, 509–510, 517
Ultimate cycle, 22, 26, 76–77, 116–117,
148, 151, 166–167, 169, 204–205, 230–
231, 235, 250, 262–263, 278, 283, 295,
296, 301, 318–319, 324–326, 335, 341–
342, 348, 358, 363, 370, 371, 387, 391,
415, 435, 437, 487, 489
Turnbull, 7
Tyreus and Luyben (1992), 326, 352
Urrea et al. (2006), 22
Valentine and Chidambaram (1997a), 57,
102
Valentine and Chidambaram (1997b), 448
Valentine and Chidambaram (1998), 440
Van der Grinten (1963), 20, 98, 219, 388
VanDoren (1998), 152, 348
Velázquez-Figueroa (1997), 386, 387, 388
Venkatashankar and Chidambaram (1994),
443
Vilanova (2006), 121
Vilanova and Balaguer (2006), 133
Visioli (2001), 360, 447
Visioli (2002), 179
Visioli (2005), 74
Visioli (2006), 61
Vítečková (1999), 53, 220–221, 353, 389
Vítečková (2006), 61, 105, 199, 223
Vítečková and Víteček (2002), 54, 103
Vítečková and Víteček (2003), 54, 103
Vítečková et al. (2000a), 53, 220–221, 353,
389
Vítečková et al. (2000b), 53, 221
Vivek and Chidambaram (2005), 450
Voda and Landau (1995), 53, 64
Vrančić (1996), 294, 301, 305, 319, 336–
337, 348
Vrančić and Lumbar (2004), 307, 308–309
Vrančić et al. (1996), 294, 319
Vrančić et al. (1999), 303–304, 306, 337
Vrančić et al. (2004a), 294, 307, 308–309
Vrančić et al. (2004b), 294
Wade (1994), 322, 327
Wang (2000), 226
FA
607
Wang (2003), 23, 75–76, 113–114, 237
Wang and Cai (2001), 414
Wang and Cai (2002), 414, 472
Wang and Clements (1995), 220
Wang and Cluett (1997), 352–353, 361
Wang and Cluett (2000), 66–67, 101
Wang and Jin (2004), 488, 506
Wang and Shao (1999a), 225
Wang and Shao (1999b), 68
Wang and Shao (2000a), 68
Wang and Shao (2000b), 226
Wang et al. (1995a), 91, 93, 279
Wang et al. (1995b), 319, 334
Wang et al. (1999), 225
Wang et al. (2000a), 67
Wang et al. (2000b), 280
Wang et al. (2001a), 280
Wang et al. (2001b), 419
Wang et al. (2002), 144–145
Wang et al. (2005), 365
Wills (1962a), 214, 219, 230
Wills (1962b), 207, 213
Wilton (1999), 51–52, 218
Witt and Waggoner (1990), 134–135, 137,
139, 141, 143
Wojsznis and Blevins (1995), 116
Wojsznis et al. (1999), 116–117, 326
Wolfe (1951), 19, 31, 350
Xing et al. (2001), 92, 95, 96
Xu and Shao (2003a), 414
Xu and Shao (2003b), 472
Xu and Shao (2003c), 414
Xu and Shao (2004a), 414, 418
Xu and Shao (2004b), 71
Xu et al. (2004), 71
Xu et al. (2005), 60
Yang and Clarke (1996), 63, 223, 249
Yi and De Moor (1994), 336
Yokogawa, 5, 8
Young (1955), 322
Yu (1988), 35, 40–41, 42
Yu (1999), 326
Yu (2006), 21, 22, 24, 26, 130, 151, 295,
357, 366, 371
Zhang (1994), 56, 286
Zhang (2006), 457
Zhang and Xu (2002), 472, 490
b720_Index
608
17-Mar-2009
FA
Handbook of PI and PID Controller Tuning Rules
Zhang et al. (1996a), 328
Zhang et al. (1996b), 147
Zhang et al. (1999a), 364, 369
Zhang et al. (1999b), 357, 393
Zhang et al. (2000), 457
Zhang et al. (2002a), 379
Zhang et al. (2002b), 121, 132, 147, 233
Zhang et al. (2002c), 169
Zhang et al. (2003), 169
Zhang et al. (2005), 93
Zhang et al. (2006), 380
Zhong and Li (2002), 75, 236, 358
Zhuang (1992), 41, 44, 48, 50, 51, 86, 88,
92, 95, 172–173
Zhuang and Atherton (1993), 41, 44, 48, 50,
51, 86, 88, 92, 95, 107, 172–173
Ziegler and Nichols (1942), 30, 78, 318,
324, 350, 359
Zou and Brigham (1998), 362
Zou et al. (1997), 112, 362
Скачать