Загрузил Robin Vinh

Cournot exercise

реклама
Ex. 1
A market demand curve: P =120-Q
Cost function: TCi(Q)=30Q for each firm
For Cournot competition
a. Response function?
b. Optimum quantity and price profits?
Assume output of firm 1 and firm 2 is Q1 and Q2 respectively
→ Qt=Q1+Q2
π1 =TR1-TC1
=P1.Q1 - TC1
=(120-Q1-Q2).Q1 - 30Q1
=120Q1 - Q1^2 - Q1Q2 - 30Q1
= -Q1^2 - Q1Q2 +90Q1
Π2 =TR2-TC2
=P2.Q2 - TC2
=(120-Q1-Q2).Q2 - 30Q2
=120Q2 - Q1Q2 - Q2^2 - 30Q2
= -Q2^2 - Q1Q2 + 90Q2
Firm 1 maximizes profit when:
π1’=0 ⇔ -2Q1 - Q2 + 90 =0 (1)
→ Reaction function for firm 1: Q1= -0,5Q2+45
Firm 2 maximizes profit when:
π2’=0 ⇔ -2Q2 - Q1 + 90 =0 (2)
→ Reaction function for firm 2: Q2= -0,5Q1+45
From (1), (2), the Cournot equilibrium is achieved:
2Q1+Q2=90
Q1+2Q2=90
→ Q1=Q2=30
Market price: P=120-Q1-Q2=120-30-30=60
→ π1=π2=900
Ex. 2 A market demand curve:
P =120-Q Cost function:
TC(Q)=30Q2 for each firm For Cournot competition
a. Response function?
b. Optimum quantity and price → profits?
Assume output of firm 1 and firm 2 is Q1 and Q2 respectively
→ Qt=Q1+Q2
π1
=TR1-TC1
=P1.Q1 - TC1
=(120-Q1-Q2)Q1 - 30Q1^2
=120Q1 - Q1^2 - Q1Q2 - 30Q1^2
= -31Q1^2 - Q1Q2 + 120Q1
Π2
=TR2-TC2
=P2.Q2 - TC2
=(120-Q1-Q2).Q2 - 30Q2^2
=120Q2 - Q2^2 - Q1Q2 - 30Q2^2
= -31Q1^2 - Q1Q2 + 120Q1
Firm 1 maximizes profit when:
π1’=0 ⇔ -62Q1 - Q2 + 120=0 (1)
→ Reaction function for firm 1: Q1= -Q2/62 + 60/31
Firm 2 maximizes profit when:
π2’=0 ⇔ -62Q2 - Q1 + 120=0 (2)
→ Reaction function for firm 2: Q2= -Q1/62 + 60/31
From (1), (2), the Cournot equilibrium is achieved:
62Q1+Q2=120
Q1+62Q2=120
→ Q1=Q2=40/21=1,9047
→ Market price: P=120-Q1-Q2=116,1904
→ π1=π2=112,47
Скачать