Загрузил anatolr48

ЗФТШ Задание №1 10-х класс (2020 - 2021 учебный год) с решением

реклама
Министерство науки и высшего образования
Российской Федерации
Московский физико-технический институт
(национальный исследовательский университет)
Заочная физико-техническая школа
ФИЗИКА
Изменение и сохранение
импульса и энергии в механике
Задание №1 для 10-х классов
(2020 – 2021 учебный год)
г. Долгопрудный, 2020
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Составитель: В.И. Плис, доцент кафедры общей физики МФТИ.
Физика: задание №1 для 10-х классов (2020 – 2021 учебный год), 2020,
27 с.
Дата отправления заданий по физике и математике – 26 сентября 2020 г.
Составитель:
Плис Валерий Иванович
Подписано 23.06.20. Формат 60×90 1/16.
Бумага типографская. Печать офсетная.
Усл. печ. л. 1,68 Уч.-изд. л. 1,5.
Заочная физико-техническая школа
Московского физико-технического института
(национального исследовательского университета)
Институтский пер., 9, г. Долгопрудный, Москов. обл., 141700.
ЗФТШ, тел./факс (495) 408-51-45 – заочное отделение,
тел./факс (498) 744-63-51 – очно-заочное отделение,
тел. (499) 755-55-80 – очное отделение.
e-mail: zftsh@mail.mipt.ru
Наш сайт: www.school.mipt.ru
© МФТИ, ЗФТШ, 2020
Все права защищены. Воспроизведение учебно-методических материалов и
материалов сайта ЗФТШ в любом виде, полностью или частично, допускается
только с письменного разрешения правообладателей.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
2
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
§1. Введение
Настоящее задание посвящено законам изменения и сохранения импульса и энергии для материальной точки и систем материальных точек
в механике. Повторение этих разделов вызвано двумя причинами:
первая обусловлена важностью этих законов в физике; вторая причина
связана с тем, что часть учащихся в 10-ом классе начинает обучаться в
ЗФТШ впервые.
Обращаем внимание читателя, что перед работой с Заданием ему
следует изучить (повторить) соответствующие разделы школьного
учебника и выполнить упражнения, представленные в учебнике.
Механика – наука, изучающая движение тел и способы описания
движения и взаимодействия тел. Для описания механического движения следует выбрать систему отсчёта, представляющую собой тело
отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.
В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных
и движущихся часов считаются одинаковыми.
Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.
Для математически точного описания движения используются модели физических тел. Материальная точка – модель тела, применяемая в
механике в тех случаях, когда размерами тела можно пренебречь по
сравнению с характерными расстояниями, на которых рассматривается
движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве определяется положением изображающей её геометрической точки. Единственная механическая (негеометрическая) характеристика материальной
точки – её масса.
§2. Законы Ньютона.
Импульс, или количество движения материальной точки
В основе динамики материальной точки лежат законы (аксиомы)
Ньютона. Напомним ключевые определения и законы.
Система отсчёта, в которой любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной),
движется равномерно и прямолинейно или покоится, называется инерциальной.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
3
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
1-й закон: инерциальные системы отсчёта (ИСО) существуют,
2-й закон: в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:
(1)
p  F  t.
Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на
вектор скорости в данной системе отсчёта:
p  m  v.
F  сумма сил, действующих на материальную точку. Величину F  t
называют импульсом силы за время от t до t  t , в течение которого
силу можно считать неизменной по величине и направлению. Величину
p  p(t  t )  p(t ) называют приращением импульса материальной
точки за время от t до t  t. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:
в ИСО приращение импульса материальной точки равно импульсу
силы.
Отметим, что при изучении динамики второй закон Ньютона часто
формулируют следующим образом:
в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:
F
(2)
a .
m
Если масса тела остаётся неизменной, то p    mv   mv, и со-
v
приходим
t
к эквивалентности соотношений (1) и (2) в рассматриваемом случае.
В настоящем Задании представлены задачи, для решения которых
привлекается второй закон Ньютона (см.(1)), устанавливающий равенство приращений импульса материальной точки и импульса силы.
отношение (1) принимает вид m v  F t. С учётом a 
3-й закон: при взаимодействии двух материальных точек сила F12 ,
действующая на первую материальную точку со стороны второй,
равна по величине и противоположна по направлению силе F21 , действующей со стороны первой материальной точки на вторую:
F12   F21.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
4
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Третий закон Ньютона – это совокупность утверждений:
1) силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,
2) эти силы равны по величине,
3) они действуют вдоль одной прямой в противоположных направлениях.
Заметим, что согласно третьему закону Ньютона обе силы должны
быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух
взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на другом теле, как бы далеко оно ни
находилось. На самом деле скорость распространения взаимодействий
конечная; она не может превзойти скорость света в вакууме. Поэтому
третий закон Ньютона имеет определённые пределы применимости.
Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.
Второй закон Ньютона (уравнение движения) можно представить в
виде теоремы об изменении импульса материальной точки:
p
(3)
 F.
t
Скорость изменения импульса материальной точки в инерциальной
системе отсчёта равна сумме сил, действующих на эту точку.
Напомним, что для решения задач динамики материальной точки
следует:
y
привести «моментальную фотографию»
N
движущегося тела, указать приложенные к
нему силы;
Fтр
выбрать инерциальную систему отсчёта;
F
составить уравнение (3);
x
O
перейти к проекциям приращения импульса
и сил на те или иные направления;
Mg
решить полученную систему.
Рис. 1
Рассмотрим характерные примеры.
Пример № 1. К телу, первоначально покоившемуся на шероховатой
горизонтальной поверхности, прикладывают в течение времени
t1  10 c горизонтальную силу величиной F  5 H. После прекращения
действия силы тело движется до остановки t2  40 c. Определите величину Fтр силы трения скольжения, считая её постоянной.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
5
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Решение. На рис. 1 показаны ИСО и силы, действующие на тело в
процессе разгона. По второму закону Ньютона
p
 Mg  N  Fтр  F .
t
Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона


px  F  Fтр t
и в процессе торможения  F  0 
px   Fтр t.
Просуммируем все приращения импульса тела от старта до остановки:
 Fтр  t.
 px  0 t  t  F  Fтр  t  t t
t t
1
1
1
2
Напомним, что для любой физической величины сумма приращений
равна разности конечного и начального значений. Тогда

 

px конечн  px начальн  F  Fтр t1   Fтр t2 .
С учётом равенств px конечн  0,
px начальн  0 и независимости сил
от времени приходим к ответу на вопрос задачи:
t
10
Fтр  1 F 
 5  1 H.
t1  t2
10  40
Далее рассмотрим пример, в котором
одна из сил зависит от времени.
Пример № 2. На какое максимальное
расстояние Lmax улетит мяч, если в
процессе удара футболист действует на
мяч постоянной по направлению силой,
величина которой изменяется по закону,
представленному на рис. 2. Длительность
удара   8 103 с, максимальная сила
Рис. 2
Fmax  3,5 103 H, масса мяча m  0,5 кг. Здесь и далее ускорение
свободного падения
учитывайте.
g  10 м с .
2
Сопротивление
воздуха
не
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
6
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Решение. В процессе удара на мяч действуют две силы:
mg  0,5 10  5 Н  тяжести и сила F , с которой футболист действует
на мяч,
F  Fmax  3,5 103 H.
Так как mg  Fmax , силой тяжести пренебрежём. Из кинематики известно, что
максимальная дальность полёта наблюдается
F

при старте под углом   . Процесс удара
4
mg
показан на рис. 3.
O
По второму закону Ньютона приращение
Рис. 3
импульса равно импульсу силы p  F  t.
Переходя к проекциям приращения импульса и силы на ось Ox, получаем
px  F t.
Просуммируем элементарные приращения импульса мяча за время
удара
 px  mv  0   F t.
Импульс силы
 F (t )t
0t 
за время удара численно равен площади
0t 
под графиком зависимости этой силы от времени (каждое слагаемое
F (t )t в импульсе силы можно интерпретировать как площадь
элементарного прямоугольника со сторонами F (t ) и t на графике
зависимости F (t ) ). Тогда импульс силы F за время удара равен
F 
F t  max

2
0t 
и в рассматриваемом случае не зависит от того, в какой именно момент
времени сила достигает максимального значения (площадь треугольника равна половине произведения основания на высоту!). Далее находим импульс мяча в момент окончания действия силы
1
mv  Fmax   .
2
Отсюда находим начальную скорость полёта мяча
F  3,5 103  8 103
v  max 
 28 м с
2m
2  0,5
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
7
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
и максимальную дальность (старт под углом  

4
) полёта
v 2 282

 78 м.
g
10
В рассматриваемом модельном примере получен несколько
завышенный по сравнению с наблюдениями результат.
На вступительных испытаниях и олимпиадах в вузах России регулярно предлагаются задачи динамики, в которых наряду с «традиционными» силами: силой тяжести, силой Архимеда и т. д., на тело действует сила лобового сопротивления. Такая сила возникает, например,
при движении тел в жидкостях и газах. Вопрос о движении тел в
жидкостях и газах имеет большое практическое значение. Знакомство с
действием такого рода сил уместно начинать, как это принято в физике,
с простейших модельных зависимостей, в которых сила сопротивления
принимается пропорциональной скорости или её квадрату.
Пример № 3. Мяч, брошенный с горизонтальной поверхности земли
под углом   60 к горизонту со скоростью v  10 м с, упал на землю,
имея вертикальную составляющую скорости по абсолютной величине
на   30% меньшую, чем при бросании. Найдите время полёта мяча.
Считать, что сила сопротивления движению мяча пропорциональна его
скорости.
Решение. Согласно второму закону Ньютона приращение импульса
пропорционально силе и происходит по направлению силы:
m  v   mg  k v   t.
Переходя к проекциям сил и приращения скорости на вертикальную
ось, получаем m  v y  mg  t  k  v y  t.
Lmax 
Заметим, что элементарное перемещение мяча по вертикали равно
y  v y  t , и перепишем последнее соотношение в виде:
m  v y  mg  t  k  y.
Просуммируем все приращения вертикальной проекции импульса по
всему времени полёта, т. е. от t  0 до t T:


m  v y  mg   t   k   y  .
Переходя к конечным приращениям, получаем


m v y (T )  v y (0)  mg T  0   k  y(T )  y(0) .
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
8
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Точки старта и финиша находятся в одной горизонтальной плоскости,
поэтому перемещение мяча по вертикали за время полёта нулевое
y(T )  y(0)  0.
Тогда  (1   )mv0 sin   mv0 sin    mgT . Отсюда находим продолжительность полёта мяча:
v sin 
10  sin 60o
T 0
2





 2,0  0,3  1,5 c.
g
10
В следующем примере рассматривается удар, в ходе которого две
очень большие силы, «согласованно» действуют во взаимно перпендикулярных направлениях.
x
Nг
Nв
v
mg
y
Fтр
O
Рис. 4
Рис. 5
Пример № 4. Кубик, движущийся поступательно со скоростью v
(рис. 4) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой. Коэффициент трения 
скольжения кубика по стенке и угол  известны. Одна из граней кубика параллельна стенке. Под каким углом  кубик отскочит от стенки?
Считайте, что перпендикулярная стенке составляющая скорости кубика
в результате соударения не изменяется по величине.
Решение. Силы, действующие на кубик в процессе соударения, показаны на рис. 5. По второму закону Ньютона


p  m g  Nг  Fтр  Nв  t.
Переходя к проекциям на горизонтальные оси Ox и Oy, получаем
px   Fтр t , p y  Nв t.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
9
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Просуммируем приращения p y  Nв t по всему времени  соударения, получим:
 p y  p y ( )  p y (0)  mv sin    mv sin   
В
процессе
удара
в
любой
момент

0t 
Nв t.
времени
Fтр   Nв ,
следовательно, во столько же раз отличаются импульсы этих сил за
время соударения
 Fтр t    Nв t   2mv sin  .
0t 
0t 
Тогда легко вычислить проекцию vx ( ) скорости кубика после соударения. Для этого просуммируем приращения
px   Fтр t   Nв t
по всему времени  соударения, получим:
 px  px ( )  px (0)  mvx ( )  mv cos 


0t 
Fтр t    2mv sin  .
Отсюда vx ( )  v  cos  2 sin  . Далее, считая vx ( )  0 , получаем
tg 
v y ( )
vx ( )

sin 
.
cos   2 sin 
§3. Импульс системы материальных точек.
Теорема об изменении импульса системы материальных точек
Рассмотрим систему материальных точек массами m1 , m2 ..., движущихся в произвольной ИСО со скоростями v1 , v2 ... . Импульсом Pс системы материальных точек называют векторную сумму импульсов материальных точек, составляющих систему: Pc  p1  p2  ... .
Pc
изменения импульса системы материальных
t
точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку действуют суммарной
Найдём скорость
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
10
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
силой F1 внешние по отношению к системе тела и внутренняя сила f12
со стороны второго тела. В свою очередь, на вторую материальную
точку действуют внешние по отношению к системе тела, сумма этих
сил F2 и внутренняя сила f 21 со стороны первого тела. Тогда с учётом
второго закона Ньютона для каждого тела получаем
Pc p1 p2


 F1  f12  F2  f 21 .
t
t
t

 

По третьему закону Ньютона f12  f 21  0, и мы приходим к теореме об
изменении импульса системы материальных точек:
Pc
 F1  F2 ,
t
т. е. скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.
Из приведённого доказательства следует, что третий закон Ньютона
можно сформулировать и как требование сохранения импульса системы взаимодействующих тел, если нет никаких других внешних сил.
В этом – его более глубокое физическое содержание.
Пример № 5. Клин массой M находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой m и отпустили.
Брусок стал соскальзывать, а клин остался
m
R1
в покое. Коэффициент трения скольжения
бруска по поверхности клина равен  ,
наклонная плоскость клина составляет с
R2
Рис. 6
горизонтом угол  . Найдите горизонтальную R1 и вертикальную R2
силы (рис. 6), с которыми клин действует на опору.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
11
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Решение. По третьему закону Ньютона искомые силы связаны с силой трения R1   Fтр и силой нормаль- y
Nг
ной реакции R2   Nг , действующими
на клин со стороны опоры (рис. 7). Силы
Fтр α
Fтр и N г , наряду с силами тяжести, яв-
x
0
ляются внешними по отношению к системе «клин + брусок» и определяют
скорость изменения импульса этой системы.
mg
Mg
Рис. 7
Импульс Pc системы направлен по скорости бруска и по величине
равен произведению массы бруска на
y
его скорость Pс  p  mv(t ) . Для определения скорости изменения импульса
p бруска обратимся ко второму зако-
N
0
fтр
ну Ньютона (см. рис. 8):
p
 m g  N  f тр .
t
Переходя к проекциям приращений
импульса бруска и сил на оси Oy и
Ox,
с
учётом
соотношения
x
mg
Рис. 8
f тр   N получаем:
p y
 0  N  mg cos  ,
t
px
 mg  sin    cos   .
t
По теореме об изменении импульса системы «клин + брусок»
Pc
 Mg  mg  N г  Fтр .
t
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
12
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Переходя в последнем равенстве к проекциям на горизонтальное и
вертикальное направления (рис. 7), с учётом
Pc, x  px cos 
получаем Pc, y   px sin  ,
Pc, x
  px cos  
 mg  sin    cos   cos   Fтр ,
t
t
Pc, y    px sin  

 mg  sin    cos   sin     M  m  g  Nг .
t
t
Отсюда находим искомые силы
R1  Fтр  mg  sin    cos  cos ,

R2  Nг   M  m  g  mg  sin    cos  sin  .
К этим же результатам можно прийти, анализируя движение на
«традиционном языке» сил и ускорений с использованием формулы (2).
§4. Сохранение импульса системы материальных точек
Из теоремы об изменении импульса системы материальных точек
Pc
  Fi
t
i
следует сохранение импульса или его проекций в следующих случаях:
если  Fi  0, то Pc остаётся неизменным по величине и наi
правлению;
если существует направление x такое, что
i Fi, x  0, то
Pc, x  const;
наконец, если на малом интервале времени внешние силы конечные и
импульс этих сил за время действия во много раз меньше по величине
импульса системы
i Fi t  Pc (t ) , то из равенства


Pc  Pc (t  t )  Pc (t )    Fi  t


 i

следует, что приращение Pс импульса системы мало, т. е. на рассматриваемом интервале времени сохраняется импульс системы
Pc (t  t )  Pc (t ).
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
13
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Пример № 6. Артиллерист стреляет ядром массы m так, чтобы оно
упало в неприятельском лагере. На вылетающее из пушки ядро очень
быстро садится барон Мюнхгаузен, масса которого 5 m. Какую часть
пути до неприятельского лагеря ему придётся идти пешком?
Решение. Вы, конечно, догадались, что эта задача иллюстрирует последний из перечисленных случаев сохранения импульса системы.
В процессе «посадки» барона на ядро на систему «ядро + барон» действуют внешние силы – это силы тяжести и силы сопротивления воздуха.
Но барон столь ловок и устраивается на ядро столь быстро, что импульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса mv0 ядра непосредственно перед «посадкой». Тогда скорость v0 ядра за мгновение до встречи со
сказочным персонажем и скорость v1 системы «барон на ядре» связаны
законом сохранения импульса системы
mv0  6mv1 ,
так что скорость ядра сразу после того, как Мюнхгаузен устроится на
нём поудобнее, уменьшится в 6 раз. Следовательно, в такое же число
раз уменьшатся: длительность полёта (равная удвоенному частному от
деления начальной вертикальной составляющей скорости на величину
ускорения свободного падения) и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится
35
в 36 раз, тогда оставшиеся после благополучного приземления
рас36
стояния до неприятельского лагеря барону предстоит пройти пешком!
Пример № 7. На гладкой горизонтальной поверхности лежит
соломинка массой M и длиной L. Жук массой m перемещается по
соломинке с одного конца на другой. На какое расстояние S
переместится соломинка?
Решение. Рассмотрим систему тел «жук + соломинка». На каждом
элементарном промежутке времени приращение Pс импульса этой
системы равно суммарному импульсу действующих на систему
внешних сил: т. е. сил тяжести и силы нормальной реакции
Pc  M v1  mv2  (M  m) g  N t ,


здесь v1  скорость соломинки, v2  скорость жука. Обе скорости
определены в лабораторной системе отсчёта. Сумма сил тяжести и
нормальной реакции равна нулю. Тогда импульс системы
«жук + соломинка» в процессе движения остаётся постоянным, равным
своему начальному значению: M v1  m v2  0.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
14
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Поскольку задано перемещение жука в системе отсчёта, связанной с
соломинкой, обратимся к правилу сложения скоростей
v2  v1  u ,
здесь u  скорость жука относительно соломинки. Перейдём в этом
равенстве к проекциям на горизонтальную ось, получим
v2, x  v1, x  ux .
С учётом правила сложения скоростей закон сохранения импульса принимает вид M v1, x  m  v1, x  ux   0 , т. е. в любой момент времени
m
ux . Тогда элементарные перемещения: x1  v1,x t  соM m
ломинки относительно лабораторной системы отсчёта и x  ux t 
v1,x  
жука относительно соломинки, связаны соотношением
m
x1  
x.
M m
Суммируя элементарные перемещения по всему времени движения и
переходя к абсолютным величинам, приходим к ответу на вопрос заm
L.
дачи: S 
mM
Пример № 8. Клин массой 2m и углом наклона к горизонту
  cos  2 / 3 находится на гладкой
горизонтальной поверхности стола (см.
A
рис. 9). Через блок, укреплённый на
m
2m
3m
вершине клина, перекинута лёгкая
B
нить, связывающая грузы, массы которых равны m и 3m. Груз массой 3m
Рис. 9
может скользить вдоль вертикальной
направляющей AB, закреплённой на клине. Этот груз удерживают
неподвижно на расстоянии H  27 см от стола, а затем отпускают. В
результате грузы и клин движутся поступательно. На какое расстояние
S сместится клин к моменту удара груза массой 3m о стол? Массы
блока и направляющей AB считайте пренебрежимо малыми.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
15
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Решение. Рассмотрим систему тел «клин + грузы» (рис. 10). На
каждом элементарном промежутке времени
приращение Pс им-пульса системы равно
суммарному импульсу действующих на
систему внешних сил (рис. 10): тяжести и
нормальной реакции горизонтальной опоры
Pс  6 m g  N t. Проекции сил тяжести и
нормальной реакции на горизонтальную ось
нулевые.
Следовательно,
в
процессе
Рис. 10
движения горизонтальная составляющая
импульса системы «клин + грузы» остаётся постоянной, равной своему
начальному значению – нулю:
 2m  3m vx,к  m vx,г  0;


здесь v x,к  проекция скорости клина и груза массой 3m на горизонтальную ось, v x,г  проекция скорости груза массой m на эту же ось.
В системе отсчёта, связанной с клином, модули любых элементарных
перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции
на горизонтальную ось за время движения равен H cos . Тогда воспользуемся результатами предыдущей задачи. По правилу сложения
скоростей vг  vк  u , здесь u  скорость лёгкого груза в системе отсчёта, связанной с клином. С учётом этого соотношения закон сохранения импульса принимает вид
 2m  3m  vx,к  m  vx,к  ux   0.
Отсюда находим связь проекций скорости
u
m
vx,к  
u x   x
6m
6
и элементарных перемещений:
x
xк  
,
6
где xк  перемещение клина относительно лабораторной системы,
x  проекция перемещения лёгкого груза на горизонтальную ось в
системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи:
H cos  27  2
S

 3 см.
6
63
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
16
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Рассмотренные примеры подчёркивают важную роль законов сохранения. Решение прямой задачи динамики, т. е. определение траектории
по заданным силам и начальным условиям, упрощается в тех случаях,
когда удаётся заменить уравнения Ньютона другими, эквивалентными
им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона и связывающие скорости
(импульсы) точек с их координатами, называют законами сохранения.
Проиллюстрируем это на примере задач о столкновениях частиц.
§5. Задачи на столкновения и законы сохранения
импульса и энергии
В физике под столкновениями понимают процессы взаимодействия
между телами (частицами) в широком смысле слова, а не только в буквальном – как соприкосновение тел. Сталкивающиеся тела на большом
расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы – тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния.
Столкновения, сопровождающиеся изменением внутреннего состояния
тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения) импульсами, энергиями. Процесс столкновения сводится к изменению этих величин в
результате взаимодействия. Законы сохранения энергии и импульса
позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно
ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы не известны. Так обстоит дело, например, в физике элементарных частиц.
Происходящие в обычных условиях столкновения макроскопических тел почти всегда бывают в той или иной степени неупругими –
уже хотя бы потому, что они сопровождаются некоторым нагреванием
тел, т. е. переходом части их кинетической энергии в тепло. Тем не менее, в физике понятие об упругих столкновениях играет важную роль –
с такими столкновениями часто приходится иметь дело в физическом
эксперименте в области атомных явлений, да и обычные столкновения
можно часто с достаточной степенью точности считать упругими.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
17
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Сохранение импульса тел (частиц) при столкновении обусловлено
тем, что совокупность тел, участвующих в столкновении, составляет
либо изолированную систему, т. е. на тела, входящие в систему, не
действуют внешние силы, либо замкнутую: внешние силы отличны от
нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит
дело с применением закона сохранения энергии при столкновениях.
Обращение к сохранению энергии требует порой учёта различных
форм внутренней энергии.
Можно сказать, что действие законов сохранения импульса и
энергии в процессах столкновения подтверждено широким спектром
опытных данных.
Переходя к характерным примерам, отметим, что исследование
столкновений традиционно проводится как в лабораторной системе
отсчёта (ЛСО), т. е. в инерциальной системе отсчёта, связанной с
лабораторией, где проводится опыт, так и в системе центра масс, с
которой Вы познакомитесь в следующих Заданиях. Напомним также,
что центральным ударом шаров (шайб), называют удар, при котором
скорости шаров (шайб) направлены вдоль прямой, проходящей через
их центры.
Неупругие столкновения
Пример № 9. Частица массой m с кинетической энергией K
сталкивается с неподвижной частицей массой M . Найдите приращение
Q внутренней энергии системы частиц в результате абсолютно
неупругого столкновения («слипания»).
Решение. Рассмотрим абсолютно неупругий удар двух тел в ЛСО.
Налетающая частица движется до столкновения в положительном
направлении оси Ox со скоростью v, кинетическая энергия частицы
mv 2
K
. В результате абсолютно неупругого удара (слипания) частицы
2
движутся с одинаковой скоростью u . По закону сохранения импульса
mv  (m  M )u.
По закону сохранения энергии
mv2 (m  M )u 2

 Q.
2
2
Из приведённых соотношений находим
M
Q
K.
mM
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
18
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Отметим, что в предельных случаях
Q  K , m  M ,
M
Q
K  K , m  M .
m
Как видим, при неупругом столкновении лёгкой частицы с массивной
(например, электрона с атомом) происходит почти полный переход её
кинетической энергии во внутреннюю энергию массивной частицы.
При равенстве масс (m  M )
K
Q .
2
Отсюда следует, например, что при столкновении двух одинаковых автомобилей, один из которых неподвижен, а другой движется по направлению к нему, половина кинетической энергии идёт на разрушение.
Упругие столкновения
Пример № 10. На гладкой горизонтальной поверхности лежит
гладкий шар массой M . На него налетает гладкий шар того же радиуса
массой m, движущийся со скоростью v. Происходит упругий
центральный удар шаров. Найдите скорости v1 и v2 шаров после
соударения. При каком условии налетающий шар будет двигаться
после соударения в прежнем направлении?
Решение. Задачу рассмотрим в ЛСО, ось Ox которой направим по
линии центров шаров в момент соударения. Внешние силы,
действующие на шары в процессе соударения, это силы тяжести и силы
нормальной реакции опоры. Их сумма равна нулю. Следовательно,
импульс системы шаров в процессе взаимодействия не изменяется. По
закону сохранения импульса
mv  mv1  M v2 .
Переходя к проекциям на ось Ox, получаем
mv  mv1x  M v2 ,
здесь учтено, что направление скорости налетающего шара после
соударения не известно. По закону сохранения энергии
mv2 mv12x M v22


.
2
2
2
Полученные соотношения перепишем в виде
m(v  v1x )  M v2 ,
m(v2  v12x )  M v22 .
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
19
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Разделив второе равенство на первое (v  v1x ), приходим к линейной
системе
v2  v  v1x ,
m(v  v1x )  M v2 ,
решение которой имеет вид
mM
v1x 
v,
mM
2m
v2 
v.
mM
Налетающий шар будет двигаться после соударения в прежнем направлении  v1x  0  при m  M , т. е. если масса налетающего шара больше
массы покоящегося шара.
y
Пример № 11. Две гладкие упругие
v1
v1y
круглые шайбы движутся поступательно по
v2x
гладкой горизонтальной поверхности. Скоx
v1x
рости v1 и v2 шайб непосредственно перед O
соударением известны и показаны на рис.
11. Найдите скорости v1 и v2 шайб после
v2y
v2
абсолютно упругого нецентрального соударения. Массы шайб m1 и m2 .
Рис. 11
Решение. Задачу рассмотрим в ИСО, оси координат Ox и Oy которой
лежат в горизонтальной плоскости, при этом ось Ox направлена по
линии центров шайб в момент соударения (рис. 11). В течение времени
соударения на систему шайб действуют только вертикальные внешние
силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю.
Тогда импульс системы шайб в процессе взаимодействия сохраняется:
p1  p2  p1  p2 ,
здесь p1  m1v1, p2  m2 v2 , p1  m1v1 , p2  m2 v2  импульсы шайб до и
после соударения.
Так как шайбы идеально гладкие, то в процессе соударения внутренние силы – силы упругого взаимодействия – направлены только по
оси Ox. Эти силы не изменяют y - составляющие импульсов шайб.
Тогда из p1 y  p1 y , p2 y  p2 y находим y - составляющие скоростей
шайб после соударения:
v1 y  v1 y , v2 y  v2 y ,
т. е. в проекции на ось Oy скорости шайб в результате соударения не
изменились.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
20
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Найдём x - составляющие скоростей шайб после упругого
соударения. При таком соударении сохраняется кинетическая энергия
m1  v12x  v12y 
2

m2  v22x  v22 y 
2


m1  v1x    v1y 
2
2
2
  m  v    v   .
2
2
2
2x
2y
2
С учётом равенства y  составляющих скоростей шайб до и после соударения последнее равенство принимает вид:
2
2
m  v 
m1v12x m2 v22x m1  v1x 


 2 2x .
2
2
2
2
Обратимся к закону сохранения импульса и перейдём к проекциям импульсов шайб на ось Ox :
m1v1x  m2 v2 x  m1v1x  m2 v2 x .
Таким образом, исходная задача сведена к задаче об абсолютно упругом центральном ударе: именно такой вид приняли бы законы сохранения энергии и импульса, если бы скорости шайб были направлены по
линии центров. Полученную нелинейную систему уравнений можно
свести к линейной. Для этого следует (как и в предыдущей задаче) в
обоих уравнениях по одну сторону знака равенства объединить слагаемые, относящиеся к первой шайбе, а по другую – ко второй, и разделить (v1x  v1x ) полученные соотношения. Это приводит к линейному
уравнению
v1x  v1x  v2 x  v2 x .
Решая систему из двух последних уравнений, находим
(m  m2 ) v1x  2m2 v2 x
,
v1x  1
m1  m2
2m v  (m2  m1 ) v2 x
.
v2 x  1 1x
m1  m2
Полученные соотношения для v1x , v1y и v2 x , v2 y решают вопрос о
проекциях и величинах скоростей шайб после соударения
v1 
 v1x 
2
  v1y  ,
2
v2 
 v2 x 
2
  v2 y  ,
2
а также об углах 1 и  2 , которые векторы скорости v1 и v2 образуют
с положительным направлением оси Ox,
v1y
v2 y
.
tg1 
, tg 2 
v2 x
v1x
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
21
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Построенное в общем виде решение задач упругого центрального и
нецентрального соударений открывает дорогу к анализу целого ряда
задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц). Приведём пример.
Пример № 12. Гладкая круглая шайба масm1
v
сой m1 движется со скоростью v вдоль хорды,
R
расстояние до которой от центра гладкого тон2
кого однородного обруча равно R / 2 (рис. 12).
m2
Обруч массой m2 и радиусом R лежит на гладком горизонтальном столе. Через какое время 
после первого удара шайба окажется на миниРис. 12
мальном расстоянии от центра движущегося
обруча? Каково это расстояние? Удар считайте абсолютно упругим.
Решение. Воспользуемся результатами, полученными в предыдущем примере. В ЛСО, ось Ox которой направлена по линии центров
шайбы и обруча в момент соударения, проекции скоростей шайбы и
центра обруча на ось Ox после соударения равны соответственно
(m  m2 ) v1x  2m2 v2 x (m1  m2 ) v1x
v1x  1

,
m1  m2
m1  m2
2m v  (m2  m1 ) v2 x 2m1v1x
v2 x  1 1x

,
m1  m2
m1  m2
здесь v1x  v cos

 проекция скорости шайбы на ось Ox до соударе6
ния, v2 x  0  обруч до соударения покоился.
Из этих соотношений следует, что в системе отсчёта, связанной с обручем, проекция скорости шайбы на линию центров после соударения
v1x отн  v1x  v2 x   v1x   v cos

6
просто изменила знак, а перпендикулярная линии центров составляющая, как было показано, в рассматриваемом соударении не изменяется. Следовательно, в системе, связанной с обручем, шайба отразится по
закону «угол падения равен углу отражения», и минимальное расстояние от шайбы до центра обруча снова будет равно R / 2. Искомое время

R cos 2

6  cos  R  3 R .
6 v
2 v
v1x отн
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
22
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
Контрольные вопросы
1. Какие системы отсчёта называют инерциальными? Наблюдатель,
стоящий на остановке, видит самолёт, движущийся на взлёте прямолинейно и ускоренно. Будет ли инерциальной система отсчёта, связанная
с ускоряющимся самолётом? Ответ обоснуйте.
2. Приведите определения: импульса материальной точки, приращения импульса материальной точки за время от t до t  t и импульса
силы, действующей на рассматриваемую точку, за время от t до t  t .
3. Сформулируйте теорему об изменении импульса материальной
точки.
Упражнение. Материальная точка массой m  2 кг движется в однородном силовом поле. В некоторый момент времени её скорость
v0  1м с . В результате действия неизменной по величине и направле
нию силы F вектор импульса материальной точки за время   0,4 с

повернулся на угол  
и стал равен по величине начальному.
2
Найдите величину F силы, действующей в однородном поле на материальную точку.
4. Приведите определение импульса системы материальных точек.
5. В каких случаях сохраняется импульс системы материальных точек, в том числе и при наличии внешних сил?
6. Допустим, что в изолированной системе, состоящей из двух материальных точек, внутренние силы не удовлетворяют третьему закону


Ньютона, т. е. f12   f 21 . Будет ли сохраняться импульс такой системы?
Ответ поясните.
7. Сформулируйте теорему об изменении импульса системы материальных точек.
Упражнение. Снаряд массой m  10 кг , выпущенный со скоростью
v0  400 м с под углом   30 к горизонту, через T  10 с разрывается
на осколки. Через какое время  после разрыва снаряда суммарный

импульс P осколков будет направлен горизонтально, если известно,
что все осколки ещё находятся в полёте? Найдите модуль P T   
импульса в этот момент времени. Силы сопротивления воздуха, действующие на снаряд и осколки, не учитывайте.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
23
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
8. Какие соударения называют неупругими?
Два свинцовых шарика одинаковой массы, летящие со скоростями
v1  60 м с и v2  80 м с , слипаются в результате абсолютно неупругого
удара. Скорости шариков перед слипанием взаимно перпендикулярны.
1) С какой по величине скоростью v3 движутся слипшиеся шарики?
2) На сколько t C повысится температура шариков?
Удельная теплоёмкость свинца с  130 Дж  кг C . Температуры
шариков перед слипанием одинаковы.
9. Какие соударения называют упругими?
Упражнение. Движущаяся по гладкой горизонтальной поверхности
шайба налетает на покоящуюся шайбу. После абсолютно упругого центрального удара шайбы движутся со скоростями, отличающимися по
M
абсолютной величине в n  3 раза. Найдите отношение k 
масс
m
покоившейся и налетающей шайб.
10. Шайба, скользящая по гладкой горизонтальной поверхности,
сталкивается с такой же по массе покоящейся шайбой. В результате
абсолютно упругого соударения вектор скорости налетающей шайбы

повернулся на угол 1  . Под каким углом  2 к направлению дви3
жения налетающей шайбы будет двигаться вторая шайба?
Задачи
1. К телу массой m  1,0 кг , первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени T  10 с горизонтальную силу. Коэффициент трения скольжения
тела по поверхности равен   0,1 . Найдите проекцию vx T  скорости
тела в момент времени T  10 с в следующих случаях:
а) сила не изменяется со временем, её величина равна F  2,0 H,
направление действия силы неизменно;
б) величина силы равномерно по времени уменьшается от F  2,0 H
до нуля, направление действия силы неизменно.
Положительное направление оси Ox совпадает с направлением действия силы.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
24
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
2 Плоский склон горы образует с горизонтом угол   30 . Из миномета, расположенного на склоне, производят выстрел, под таким углом  к поверхности склона, что продолжительность полета мины
наибольшая. Мина падает на склон на расстоянии S  800 м от точки
старта.
1) Под каким углом  к поверхности склона произведён выстрел?
2) Найдите величину v0 начальной скорости мины.
Ускорение свободного падения g  10 м с2 . Сопротивление воздуха
пренебрежимо мало.
3. Мяч массой m брошен с горизонтальной поверхности земли под
углом к горизонту. Допустим, что в процессе полёта на мяч действует
не только сила тяжести, но и сила сопротивления пропорциональная
скорости F  k  v, k 0. Перемещение мяча по вертикали за время полёта от старта до наивысшей точки траектории равно H. На сколько
уменьшается время полёта мяча от старта до наивысшей точки траектории при учёте силы сопротивления?
4. Шайба массы m  0,2 кг летит с горизонтальной скоростью
v0  10 м с
на
высоте
h  0,45 м .
После
удара
плашмя
о
горизонтальную поверхность льда, шайба подскакивает на прежнюю
высоту. Под каким углом  к вертикали отскочила шайба от
поверхности льда? Коэффициент трения скольжения шайбы по
поверхности льда равен   0, 4 .
5. Клин массы M  2 кг покоится на шероховатой горизонтальной
поверхности. По гладкой наклонной плоскости клина, образующей
π
с горизонтом, прямолинейно движется шайба массы m .
4
Коэффициент трения скольжения клина по горизонтальной
поверхности равен   0, 2 . Найдите наибольшую величину массы m
угол α 
шайбы.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
25
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
6. Соломинка массы M и длины L лежит на гладкой
горизонтальной поверхности. На концах соломинки сидят два жука,
массы которых одинаковы и равны m. Одновременно жуки поползли
навстречу друг другу со скоростями u1 и u2 , (u1  u2 ) относительно
соломинки. С какой скоростью v движется при этом соломинка?
Найдите перемещение S x соломинки, к тому моменту времени, когда
жуки встретятся.
7. Вагон массой m1  60 тонн , движущийся по прямолинейному горизонтальному пути, догоняет другой движущийся вагон массой
m2  40 тонн и сцепляется с ним. В процессе сближения расстояние
между вагонами сокращалось со скоростью u  0,5 м с . Найдите убыль
K  Kпосле  Kдо кинетической энергии вагонов в результате абсо-
лютно неупругого столкновения.
8. На железнодорожной тележке массой M  200 кг жёстко закреплён вертикальный щит, повернутый на угол   30
от перпендикулярного рельсам положения m
(см. рис. 13). В щит бросают мешок с песком массой m  50 кг , горизонтальная
составляющая начальной скорости которого равна v0  1,5 м с и направлена
v0
M
Рис. 13
вдоль рельсов. Найдите скорость v тележки после того как мешок,
ударившись о щит, сполз по нему вниз и упал на тележку.
Трением мешка о щит и сопротивлением движению тележки можно
пренебречь. До удара тележка была неподвижна.
9. Шайба движется по гладкому горизонтальному столу и налетает
на такую же неподвижную шайбу. После удара шайбы разлетаются
симметрично относительно направления скорости налетающей шайбы.
π
Угол между направлениями движения шайб равен α  . Какая часть
3
кинетической энергии налетающей шайбы перешла в теплоту?
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
26
2020-2021 уч. год, №1, 10 кл. Физика.
Изменение и сохранение импульса и энергии в механике
10.
Шайба
массой
скользит
по гладкому
m1  0,1кг
горизонтальному столу со скоростью v1  2 м с . Навстречу ей движется шайба массой m2  0,2 кг со скоростью v2  1м с . Центры шайб
движутся по параллельным прямым. Происходит абсолютно упругий
нецентральный удар. Во сколько раз изменится кинетическая энергия
каждой шайбы в результате соударения? Шайбы гладкие.
11. Вниз по шероховатой наклонной плоскости равнозамедленно
движется брусок. В тот момент, когда скорость бруска равна v1  1м с ,
на брусок падает движущийся по вертикали со скоростью v2  4 м с
пластилиновый шарик и прилипает к нему, а брусок останавливается.
1) С какой высоты h упал шарик?
2) Найдите величину a ускорения, с которым двигался брусок перед
соударением.
Движение шарика до соударения – свободное падение с нулевой
начальной скоростью. Массы бруска и шарика одинаковы.
Ускорение свободного падения g  10 м с2 . Сопротивление воздуха
пренебрежимо мало.
Быстрые процессы торможения бруска и деформации пластилина
заканчиваются одновременно. В этих процессах действие сил тяжести
считайте пренебрежимо малым.
Дополнительные задачи
1. Решите Задачу № 8, приняв в условии, что мешок, ударившись о
щит, сполз по нему вниз и упал с тележки.
2. Массивная плита удаляется от неподвижного мяча с постоянной
скоростью v  2 м с , направленной по вертикали вниз. В тот момент,
когда мяч находился на расстоянии h  0,3 м от горизонтальной поверхности плиты, его отпускают. Через какое время T после упругого
удара о плиту мяч удалится от неё на максимальное расстояние? Масса
мяча много меньше массы плиты.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
27
Министерство науки и высшего образования
Российской Федерации
Московский физико-технический институт
(национальный исследовательский университет)
Заочная физико-техническая школа
ФИЗИКА
Изменение и сохранение
импульса и энергии в механике
Решение задания №1 для 10-х классов
(2020 – 2021 учебный год)
г. Долгопрудный, 2020
2020-2021 уч. год, №1, 10 кл. Физика. Решение
Составитель: В.И. Плис, доцент кафедры общей физики МФТИ.
Физика: решение задания №1 для 10-х классов (2020 – 2021 учебный
год), 2020, 12 с.
Составитель:
Плис Валерий Иванович
Подписано 25.09.20. Формат 60×90 1/16.
Бумага типографская. Печать офсетная.
Усл. печ. л. 0,75 Уч.-изд. л. 0,66.
Заочная физико-техническая школа
Московского физико-технического института
(государственного университета)
Институтский пер., 9, г. Долгопрудный, Москов. обл., 141700.
ЗФТШ, тел./факс (495) 408-51-45 – заочное отделение,
тел./факс (498) 744-63-51 – очно-заочное отделение,
тел. (499) 755-55-80 – очное отделение.
e-mail: zftsh@mail.mipt.ru
Наш сайт: www.school.mipt.ru
МФТИ, ЗФТШ, 2020
Все права защищены. Воспроизведение учебно-методических материалов и
материалов сайта ЗФТШ в любом виде, полностью или частично, допускается
только с письменного разрешения правообладателей.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
2
2020-2021 уч. год, №1, 10 кл. Физика. Решение
Контрольные вопросы
1. Любая система отсчёта, в которой материальная точка, невзаимодействующая с другими материальными точками, движется равномерно и прямолинейно или покоится, называется инерциальной.
Система отсчёта, связанная с ускоряющимся самолетом, движется
ускоренно относительно лабораторной системы (ЛСО), которую считаем инерциальной. Следовательно, система отсчёта, связанная с ускоряющимся самолётом, не будет инерциальной.
2. Импульсом (или количеством движения) материальной точки
называют физическую величину, определяемую произведением её массы на вектор скорости в данной системе отсчёта p  mv.
 

Величину p  p(t  t )  p(t ) называют приращением импульса
материальной точки за время от t до t  t .

Величину F  t называют импульсом силы за время от t до t  t ,
в течение которого силу можно считать неизменной по величине и
направлению (см. стр.4. Задания №1; здесь и далее все ссылки на Задание №1 для 10-ых классов).
3. В ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы
p(0)
(второй закон Ньютона)
p  F  t.
Иначе, скорость изменения импульса материальной
точки в инерциальной системе отсчёта равна сумме
сил, действующих на эту точку.
F.
Обратимся к Упражнению. В ЛСО
)
p(

p 
Рис. 1
F,
t
так как скорость изменения импульса постоянна, отсюда следует



p( )  p(0)  F  ,
По условию p( )  p(0) . В равнобедренном треугольнике (рис. 1)
F  2mv0 sin
отсюда

2
,
F 2
mv0

sin

4
 2
2 1 2

 7,1 Н.
0, 4 2
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
3
2020-2021 уч. год, №1, 10 кл. Физика. Решение
4. Импульсом Pc системы материальных точек называют векторную
сумму импульсов материальных точек, составляющих систему,
Pc  p1  p2  ...
(см. стр. 10 Задания).
5. Импульс системы или его проекция сохраняются в следующих
случаях (см. стр. 13 Задания):
если  Fi  0, то Pc остаётся неизменным по величине и направi
лению;
если существует направление x такое, что
i Fi, x  0,
то
Pc, x  const,
наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по величине импульса системы
i Fi t  Pc (t ) , то из равенства


Pc  Pc (t  t )  Pc (t )    Fi  t


 i

следует Pc  0 , т. е. сохранение импульса на рассматриваемом интервале времени Pc (t  t )  Pc (t ).
6. В этом случае (см. стр. 11 Задания) скорость изменения импульса
Pc
системы
 f12  f 21  0 ненулевая. Импульс системы не будет соt
храняться.
7. В ИСО скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему
(см. стр. 11 Задания).
Упражнение. Скорость изменения импульса снаряда и системы
осколков (до падения первого на землю) равна сумме внешних сил, т. е.
сил тяжести, действующих на осколки или силы тяжести, действующей
на снаряд, и не изменяется в результате разрыва снаряда
Pc
 mg ,
t
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
4
2020-2021 уч. год, №1, 10 кл. Физика. Решение


здесь m – масса снаряда. Суммируя приращения PC  m g  t импульса за время от t  0 до t  T   , приходим к равенству
Pc (T   )  Pc (0)  m g  T    .
Переходя к проекциям на вертикаль, получаем
P (0)
mv sin 
v sin 
400  sin 30
  cy T  0
T  0
T 
 10  10 с.
mg
mg
g
10
В процессе полета горизонтальная составляющая импульса как снаряда, так и системы осколков (до падения первого на землю) не изменяется. Тогда в указанный момент времени
3
кг  м
Pc (T   )  Pc (0) cos   m v0 cos30  10  400 
 3,46 103
.
2
с
8. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. (см. стр. 17 Задания).
В процессе слипания импульс системы сохраняется
mv1  mv2  2mv3 ,


v3  0,5  v1  v2 ,
Отсюда находим v3  0,5  v12  v22  0,5  602  802  50 м/с,
Закон сохранения энергии при слипании
2
2
2
m
m v1 m v 2 2m v3


 Q, отсюда Q   v12  v22  ,
2
2
2
4
Сохранение энергии в тепловом процессе
m
Q   v12  v22   2m  c  t ,
4
Позволяет вычислить приращение температуры шариков
1
602  802
t   v12  v22  
 9,6 С.
8c
8 130
9. Столкновение, при котором тела после некоторого сближения
вновь расходятся без изменения своего внутреннего состояния, называется упругим (см. стр. 17 Задания).
Решение задачи, представленной в Упражнении, приведено в Примере № 10.
После абсолютно упругого соударения проекция v1x скорости
налетающей шайбы и скорость v2 первоначально покоившейся шайбы
равны соответственно
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
5
2020-2021 уч. год, №1, 10 кл. Физика. Решение
mM
1 k
2m
2
v0 
v0 , v2 
v0 
v0 ,
mM
1 k
mM
1 k
здесь m – масса налетающей шайбы, M – масса покоящейся.
По условию шайбы после соударения движутся со скоростями, отличающимися по модулю в n  3 раза.
v
M
k 1
Если k 
 1, то
n  1х 
, k  2n  1  7,
m
v2
2
M
2 1
v
2
если k 
 1, то
n 2 
, k 1  .
n 3
m
v1x 1  k
v1x 
10. Читателю следует обратиться к Примеру №11 и лично убедиться в том, что в рассматриваемом случае: m1  m2 , v2  0 , угол между
направлениями разлета шайб прямой. Тогда  2 

2
 1 

6
.
Задачи
1. Сходные задачи решены в Примерах №1 и 2. Рассмотрим первый
случай. Максимальная сила трения на горизонтальной поверхности
Fтр   N   m g  0,11,0 10,0  1,0 Н
меньше внешней силы F  2,0 Н . Следовательно, тело придёт в безостановочное движение. На любом элементарном перемещении приращение импульса
px   Fx  Fтр  t
равно импульсу силы. Суммируя элементарные приращения импульса
по времени движения, приходим к ответу на вопрос задачи.
Fx  Fтр
2,0  1,0
vx   
T
 10,0  10,0 м с .
m
1,0
Во втором случае тело тоже придёт в движение. Далее Читателю рекомендуется лично убедиться в том, что проекция  Fx  Fтр  результирующей силы на ось Ox с течением времени от t  0 до t  T  10 с будет равномерно убывать от значения
 Fx (0)  Fтр   2,0  1,0  1,0 Н до  Fx (T )  Fтр   0  10  1,0 Н .
Импульс такой силы за время от t  0 до t  T  10 с будет равен нулю.
Следовательно, во втором случае
vx T   0,0 м/с.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
6
2020-2021 уч. год, №1, 10 кл. Физика. Решение
2. В проекции на перпендикуляр к склону движение мины равнопеременное, начальная скорость v0 sin  , проекция ускорения   g cos   .
Тогда продолжительность полёта над склоном
v  sin 
T 2 0
g  cos 
достигает наибольшей величины
v0
Tmax  2
g cos 
при  

. Вдоль склона движение мины равнопеременное, проекция
2
ускорения g sin  , начальная скорость нулевая. Тогда
2
, Tmax 
S  0,5g sin   Tmax
2S
,
g sin 
Из приведенных соотношений следует
gS
3 10  800
v0  cos  


 77 м/с.
2  sin 
2
2  0,5
3. Движение мяча, брошенного под углом к горизонту, с учётом силы сопротивления пропорциональной скорости, рассмотрено в Примере №3. Следуем этому примеру: на любом перемещении за время от
t  0 до t  T выполняется соотношение
m  v y (T )  v y (0)   mg T  0   k  y(T )  y(0)  ,
которое с учётом данных условия
v y (T )  0 , y(T )  y(0)  H ,
приводит к ответу на вопрос задачи
v y (0)
k
T 
H.
g
mg
4. Решение задачи проведём, следуя Примеру №4. За мгновение до
соударения с горизонтальной поверхностью вертикальная составляющая скорости шайбы по величине равна 2 gh . За время соударения
эта составляющая изменяется по знаку, но не по величине, иначе шайба
не подскочит на прежнюю высоту. Таким образом, в кратковременном
процессе соударения вертикальная составляющая импульса шайбы по 2020, ЗФТШ МФТИ, Плис Валерий Иванович
7
2020-2021 уч. год, №1, 10 кл. Физика. Решение

лучает в результате действия силы N нормальной реакции приращение
p y равное импульсу силы нормальной реакции
p y   Ni ti  2m 2 gh
i
(действием силы тяжести пренебрегаем). За то же самое время горизонтальная составляющая импульса шайбы в результате действия силы
трения скольжения уменьшается на
px   Fтрi ti    Ni ti   2m 2 gh .
i
i
Читателю следует лично убедиться, что px  mv0 . Тогда началь-


ные (после соударения) горизонтальная v0 x  v0  2 2 gh  0 и вертикальная v0 y  2 gh составляющие скорости шайбы приводят к ответу на вопрос задачи
tg 
v0 x
v0

 2 .
v0 y
2 gh
Если же в процессе соударения проскальзывание прекратится, то
v0 x  0 и шайба отскочит по вертикали. В этом случае   0.
5. Задача о движении шайбы по покоящемуся клину рассмотрена в
Примере № 5. Из решения этого примера следует: в рассматриваемом
случае (наклонная поверхность клина гладкая) сила N Г нормальной
реакции горизонтальной поверхности и сила Fтр трения равны соответственно
Сила Fтр
1
NГ   M  m cos2   g , Fтр  mg sin 2 .
2
трения, действующая на клин со стороны горизонтальной
поверхности, не превосходит
Fтр max   NГ .
Отсюда
Fтр
NГ

m sin 2
 .
2  M  m cos 2  
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
8
2020-2021 уч. год, №1, 10 кл. Физика. Решение
π
, это неравенство справедливо при
4
M 1 1 
   1  2 .
m 2 μ 
M
Отсюда m 
 1 кг.
2
6. Путешествие одного жука по соломинке рассмотрено Примере №7.
В случае движения двух жуков закон сохранения импульса принимает вид
M v1, x  m  v1, x  u1, x   m  v1, x  u2, x   0.
Отсюда находим скорость соломинки
mu   mu2, x
m  u1  u2 
.
v1, x   1, x

M  2m
M  2m
Жуки встретятся через время
L
.
T
u1  u2
К этому моменту перемещение соломинки в лабораторной системе
отсчета составит
u u
m
S x  v1x  T  
 1 2  L.
M  2m u1  u2
Если α 
7. Абсолютно неупругое столкновение (слипание) двух тел рассмотрено в Задании (см. Пример №9) и в восьмом контрольном вопросе.
Применение законов сохранения импульса и энергии в рассматриваемом случае (движение по прямой в одном направлении) приводит к соотношению
m1  m2   v1  v2 
2
m1  m2  u 2 60 103  40 103  0,52

 3  103 Дж,
2  m1  m2 
2  m1  m2 
2   40  60  103
здесь учтено, что в процессе сближения расстояние между вагонами
сокращается со скоростью
u  v1  v2 .
K 

8. Проекции внешних сил (тяжести и нормальной реакции на
направление рельсов нулевые). Тогда в процессе неупругого взаимодействия мешка с тележкой горизонтальная составляющая импульса
системы «мешок + тележка» в проекции на ось, параллельную рельсам,
сохраняется, отсюда
m
50
v
v0 
1,5  0,3 м/с.
M m
200  50
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
9
2020-2021 уч. год, №1, 10 кл. Физика. Решение
9. В рассматриваемом неупругом соударении импульс системы сохраняется. Из равенства масс шайб, симметрии разлета и сохранения
импульса системы в проекции на перпендикуляр к v 0 следует равенство по величине скоростей v1  v2  v шайб после взаимодействия.
Сохранение импульса в проекции на направление скорости v 0 принимает вид
mv0  2mv cos

2
.
Отсюда
v0
3

v .

  3 0

2cos
2cos 

2
 23
В теплоту перейдёт убыль кинетической энергии системы
mv02
mv2 1 mv02
.
Q
2

2
2
3 2
Эта величина равна одной трети кинетической энергии налетающей
шайбы.
10. Задача об абсолютно упругом нецентральном ударе рассмотрена
в Примере №11. Воспользуемся полученными там результатами и
учтем, что по условию в ЛСО импульс системы шайб до соударения
нулевой. Покажем, что в такой системе проекции скорости упруго взаимодействующих шайб на направление действия упругих сил просто
изменяются по знаку. Действительно, в Примере №11 из законов сохранения импульса и энергии получено соотношение
(m  m2 ) v1x  2m2 v2 x
,
v1x  1
m1  m2
из которого при условии
m1v1x  m2 v2 x  0
следует
v1x  v1x .
Проекция v1y скорости на ось OY, перпендикулярную линии дейv
v0

ствия упругих внутренних сил, не изменится: этому нет причин, шайбы
по условию гладкие. Таким образом, скорость первой шайбы (также
как и второй), не изменится по величине. Не изменится и кинетическая
энергия каждой шайбы.
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
10
2020-2021 уч. год, №1, 10 кл. Физика. Решение
Обратим внимание Читателя, на то, что система отсчёта, в которой
импульс системы взаимодействующих материальных точек равен нулю, играет исключительно важную роль, как во многих задачах физики
макроскопических явлений, так и в физике микромира. Такая система
называется системой центра масс. С рассмотрением физических явлений именно в системе центра масс Вы будете неоднократно встречаться
в дальнейшем.
11. Шарик – свободно падающее с нулевой начальной скоростью
v2
42
тело, тогда h  2 
 0,8 м .
2 g 2 10
Импульс силы нормальной реакции за время прилипания
N t  m  v2  cos ,
импульс силы трения за время прилипания
Fтр t  m   v1  v2  sin  .
В процессе прилипания Fтр t   N t , тогда
m   v1  v2  sin     m  v2  cos ,
отсюда следует
v1
.
v2
Величина (модуль) ускорения бруска перед слипанием
v
1
a  g   cos   sin    g 1  10   2,5 м с2 .
v2
4
 cos   sin  
Дополнительные задачи
1. Введем обозначение u  горизонтальная составляющая скорости
мешка в системе отсчёта, связанной с тележкой. Так же как и в задаче №7 в ЛСО сохраняется импульс системы тележка + мешок в направлении, параллельном рельсам,
m v0  M v  m  v  u sin   .
Кроме того, в ЛСО не может измениться параллельная щиту горизонтальная составляющая импульса мешка, т. к. трения нет и единственная действующая на мешок горизонтальная сила (сила нормальной реакции) перпендикулярна щиту,
m v0 sin   m  v sin   u .
Исключая u из этих соотношений, приходим к ответу на вопрос задачи
50   cos30 
m cos 2 
0,75
v0 
 1,5 
 1,5  0, 24 м с .
2
2
M  m cos 
4,0  0,75
200  50  cos30 
2
v
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
11
2020-2021 уч. год, №1, 10 кл. Физика. Решение
2. В ИСО, связанной с плитой, мячик в начальный момент движется
со скоростью v  2 м/с по вертикали от плиты. Далее из соотношения
(см. Пример №11)
(m  m2 ) v1x  2m2 v2 x
v1x  1
m1  m2
при m1  m2 и v2 x  0 следует v1x  v1x , т. е. в результате абсолютно
упругого удара скорость шарика в системе отсчёта, связанной с плитой,
не изменится по величине, и в тот момент, когда шарик снова будет
находиться от плиты на расстоянии h , его скорость будет по величине
равна v  2 м/с и направлена вертикально вверх. Тогда максимальное
расстояние, на которое шарик удалится от плиты, будет равно
H h
v2
.
2g
Искомое время
T
2H

g
2
v2 
2
22 
h


0,3




  0,32 с .
g
2g 
10 
2 10 
 2020, ЗФТШ МФТИ, Плис Валерий Иванович
12
Скачать
Учебные коллекции