1 Реферат на тему: Строение атома. Периодический закон и система Менделеева. Изменение свойств. Титульный лист оформляется самостоятельно. Служит для нумерации. Внимание! Перед сдачей преподавателю рекомендуется полностью прочитать работу. 2 План. 1. Строение атома ................................................................................................ 3 2. Периодический закон и система Менделеева .............................................. 5 3. Изменение свойств химических элементов .................................................. 8 Использованная литература ............................................................................. 11 3 1. Строение атома Атом (от греч. atomos — неделимый) -это частица вещества микроскопических размеров и очень малой массы (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойств. Каждому элементу соответствует определённый род атомов., обозначаемых символом элемента (например, атом водорода Н, атом железа Fe; атом ртути Hg; атом урана U). По современным представлениям атом - это сложная система, состоящая из положительно заряженного ядра и электронов, окружающих ядро. Состав атома элемента можно представить в виде схемы (рис.1): Рис.1 Состав атома элемента. Ядро атома, главным образом, состоит из протонов и нейтронов (общее название нуклоны). Протоны - это положительно заряженные микрочастицы с массой, равной 1 а.е.м. и зарядом +1,6 ∙ 10-19 К, условно принятым за единицу положительного заряда (+1). Нейтроны - нейтральные частицы с массой 1 а.е.м. Количество протонов в ядре определяет заряд ядра атома в порядковых номер элемента в периодической системе элементов Менделеева. Например, у атома калия (порядковый номер в таблице Менделеева 19, атомная масса 39 а.е.м.) в ядре находится 19 протонов и 20 нейтронов, у бария (порядковый номер 56, атомная масса 137) в ядре 56 протонов и 71 нейтрон. 4 Электроны, окружающие ядро атома - это отрицательно заряженные микрочастицы, имеющие массу ~ 5∙10-4 а.е.м. и заряд -1,6 ∙ 10-19 К (-1). Так как масса электрона ничтожно мала по сравнению с массой протона или нейтрона, масса атома практически равна массе его ядра, т.е. сумме масс протонов и нейтронов. Число электронов в атоме равно числу положительно заряженных протонов, входящих в состав ядра. Размеры атома в целом определяются размерами его электронной оболочки и велики по сравнению с размерами ядра атома. Электронные оболочки атома не имеют строго определённой границы; значения размеров атома в большей или меньшей степени зависят от способов их определения и весьма разнообразны В 1911 году, английский учёный Эрнест Резерфорд придумал "планетарную" модель атома, согласно которой в центре атома Резерфорд расположил крохотное, но очень плотное ядро, в котором сосредоточена почти вся масса атома, а электроны вращались вокруг него по определённым орбитам, как планеты вокруг Солнца. Потом оказалось, что каждый электрон движется вокруг ядра так быстро, что его не только нельзя рассмотреть с помощью самого мощного микроскопа, но невозможно даже представить в виде точки, движущейся по определённой траектории. Электрон как бы "размазан" в пространстве и образует электронное облако, причём форма электронного облака может быть различной. На данный момент известны четыре формы электронных облаков: sэлектроны (сферическая форма электронного облака); p-электроны (форма электронного облака - гантель или объёмная восьмёрка); d-электроны; fэлектроны. 5 2. Периодический закон и система Менделеева Периодический закон Менделеева -это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д. И. Менделеевым в 1869 при сопоставлении свойств всех известных в то время элементов и величин их атомных весов. Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодическому закону.: «... свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением Периодического закона явиляется разработанная Менделеевым периодическая система элементов, о которой речь пойдет в следующей главе. Физический смысл Периодического закона был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома. Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе Периодического закона лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Периодические закон имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Заслугами Д.И.Менделеева, таким образом являются: 6 1. Он рассматривал периодичность не одного какого-либо свойства, а всех свойств - химических и физических (в отличие от предшественников). 2. Он ввел длинные ряды и периоды - таблица не представляет собой аккуратного прямоугольника, что предусматривает возможности дальнейшего развития. 1895 - открыты инертные газы. 3. Он оставил пустые клетки в таблице, которые позднее были заполнены вновь открытыми элементами, причем их свойства с большой точностью совпадают с предсказанными Д.И.Менделеевым. Экабор - скандий , 1879, Нильсен Экаалюминий - 1875, галлий, Лекок де Буабодран Экасилиций - 1885, германий, Винклер 4. Исправил атомные веса некоторых элементов, что потом было подтверждено экспериментально (Cr, In, Pt, Au, U) 5. Переставил некоторые элементы местами вопреки некоторой немонотонности в изменении атомных масс (никто еще не подозревал тогда о существовании изотопов). Te (127.60) он поставил перед иодом (126.90). А открытый гораздо позднее аргон (39.94) поставил в группу инертных газов перед калием (39.1). Современная Периодическая система элементов охватывает 106 химических элементов; из них все трансурановые (Z = 93—106), а также элементы с Z = 43 (Tc), 61 (Pm), 85 (At) и 87 (Fr) получены искусственно. За всю историю периодической системы было предложено большое количество (нескольких сотен) вариантов её графического изображения, преимущественно в виде таблиц; известны изображения и в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (например, спирали) и т.д. Фундаментальным принципом построения периодической системы элементов является разделение всех химических элементов на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) 7 подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом (особый случай — первый период); каждый период содержит строго определённое число элементов. Периодическая система элементов состоит из 8 групп и 7 периодов (седьмой пока не завершен). 8 3. Изменение свойств химических элементов Периодические обусловлены изменения правильным свойств повторением химических электронной элементов конфигурации внешнего энергетического уровня (валентных электронов) их атомов с увеличением заряда ядра. Графическим изображением периодического закона, как уже отмечалось, является периодическая таблица. Она содержит 7 периодов и 8 групп. Период горизонтальные - максимальным значением ряды главного элементов квантового с числа одинаковым валентных электронов. Номер периода обозначает число энергетических уровней в атоме элемента. Периоды могут состоять из 2 (первый), 8 (второй и третий), 18 (четвертый и пятый) или 32 (шестой) элементов, в зависимости от количества электронов на внешнем энергетическом уровне. Последний, седьмой период незавершен. Все периоды (кроме первого) начинаются щелочным металлом (sэлементом), а заканчиваются благородным газом (ns2 np6). Металлические свойства рассматриваются, как способность атомов элементов легко отдавать электроны, а неметаллические - присоединять электроны из-за стремления атомов приобрести устойчивую конфигурацию с заполненными подуровнями. Заполнение внешнего sподуровня указывает на металлические свойства атома, а формирование внешнего p- подуровня - на неметаллические свойства. Увеличение числа электронов на p- подуровне (от 1 до 5) усиливает неметаллические свойства атома. Атомы с полностью сформированной, энергетически устойчивой конфигурацией внешнего электронного слоя (ns 2 np6) химически инертны. 9 В больших периодах переход свойств от активного металла к благородному газу происходит более плавно, чем в малых периодах, т.к. происходит формирование внутреннего (n - 1) d- подуровня при сохранении внешнего ns2 - слоя. Большие периоды состоят из четных и нечетных рядов. У элементов четных рядов на внешнем слое ns2 - электроны, поэтому преобладают металлические свойства и их ослабление с ростом заряда ядра невелико; в нечетных рядах формируется np- подуровень, что объясняет значительное ослабление металлических свойств. Группы - вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns- и np- подуровнях. Побочные подгруппы состоят из элементов только больших периодов. Их валентные электроны находятся на внешнем ns- подуровне и внутреннем (n - 1) d- подуровне (или (n - 2) f- подуровне). В зависимости от того, какой подуровень (s-, p-, d- или f-) заполняется валентными электронами, элементы периодической системы подразделяются на: s- элементы (элементы главной подгруппы I и II групп), p- элементы (элементы главных подгрупп III - VII групп), dэлементы (элементы побочных подгрупп), f- элементы (лантаноиды, актиноиды). В главных подгруппах сверху вниз металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп сильно отличаются по свойствам. Номер группы показывает высшую валентность элемента (кроме O, F, элементов подгруппы меди и восьмой группы). 10 Общими для элементов главных и побочных подгрупп являются формулы высших оксидов (и их гидратов). У высших оксидов и их гидратов элементов I - III групп (кроме бора) преобладают основные свойства, с IV по VIII - кислотные. Для элементов главных подгрупп общими являются формулы водородных соединений. Элементы главных подгрупп I - III групп образуют твердые вещества - гидриды (водород в степени окисления - 1), а IV - VII групп - газообразные. Водородные соединения элементов главных подгрупп IV группы (ЭН4) - нейтральны, V группы (ЭН3) - основания, VI и VII групп (Н2Э и НЭ) - кислоты (таблица 1). Таблица 1. Группа I II III IV V VI VII Высший оксид Гидрат высшего оксида Э2О ЭО Э2О3 ЭО2 Э2О5 ЭО3 Э2О7 VIII (кроме инертных газов) ЭО4 ЭОН Э(ОН)2 Э(ОН)3 Н2ЭО3 Н3ЭО4 Н2ЭО4 НЭО4 Н4ЭО4 От положения элементов в периодической системе зависят свойства атома, связанные с его электронной конфигурацией: атомный радиус - по периоду слева направо уменьшается, а в подгруппе сверху вниз возрастает; энергия ионизации - по периоду возрастает, а в подгруппе уменьшается; электроотрицательность - по периоду увеличивается, а в подгруппе уменьшается. По положению элемента в периодической системе можно прогнозировать его основные свойства как средние всех его соседей: 11 Использованная литература 1. Рыбальченко В. С. Химия (начальный курс). Часть 1: Учебное пособие. - 4-е изд. - М.: РГУ нефти и газа им И.М. Губкина, 2003 2. Большая Советская Энциклопедия 3. Иванова Р. Г., Каверина А. А., Корощенко А. С. Уроки химии. 10-11 классы. -М.: Просвещение, 2000 4. Чежина Н. В. Общая и неорганическая химия. Конспект курса лекций. СПб.: Питер, 2001 5.