Это моя нелюбимая схема. Если предыдущие включения были предусмотрены производителем, то эта – нет. Конечно, так можно «довесить» любую микросхему, и TDA7294 / TDA7293 в том числе, но по моему все эти довески – от лукавого. Как и "параллельная" схема, эта предназначена для низкоомной нагрузки, но в ней бОльшая часть выходного тока снимается не с микросхемы, а поставляется в нагрузку дополнительными биполярными транзисторами. А микросхема ими только управляет. Эта схема предназначена для работы с низкоомной нагрузкой и известна как «схема Чивильча» (Радио №11, 2005 год, взята прямо оттуда, а другие схемы очень похожи и имеют тот же принцип).Эта конкретная схема имеет много косяков и слабых мест, которые надо исправлять (список исправлений из 15 (!) пунктов прилагается). Усилитель на TDA 7294 дополняется двумя мощными выходными транзисторами, работающими в режиме В. Они усиливают выходной ток микросхемы, поэтому на микросхеме рассеивается меньшая мощность, а значит, можно поднять напряжение питания, чтобы получить побольше мощность в нагрузке (также, как и в "параллельной" схеме). В состоянии покоя выходные (я так теперь буду называть навесные биполярные транзисторы – теперь они выходные) транзисторы закрыты и тока от источника питания не потребляют. При небольшом уровне сигнала (до ~0,5 вольт на нагрузке) транзисторы не открываются, а выходной сигнал протекает с выхода микросхемы в нагрузку через резистор R7 (т.е. микросхема пыхтит одна, да еще и не просто так, а через резистор). При этом на нем появляется напряжение. С ростом уровня сигнала напряжение на R7 растет, и когда оно достигает ~0,6 вольт (это соответствует мощности 30…50 мВт на нагрузке 4 Ома), выходные транзисторы начинают открываться. При маленьких выходных напряжениях выходные транзисторы открываются только на пиках громкости на непродолжительное время. По мере роста выходного сигнала (если прибавить громкость), выходники «все чаще» включаются в работу, беря на себя питание нагрузки. При этом от микросхемы в нее (нагрузку) поступает только 5…15% мощности (и еще ~10% от выходной мощности микросхема тратит на питание выходных транзисторов). Таким образом, можно работать на низкоомной нагрузке и получить на ней максимум напряжения и тока без перегрева микросхемы. В отличие от "параллельного" включения, здесь микросхема выполняет роль предварительного каскада, а основной мощностью управляют дополнительные транзисторы. Недостатки. Поскольку напряжение на микросхеме ограничено уровнем 40 Вольт, то сильно повысить питание (а значит и выходную мощность) не удастся. Для нагрузки сопротивлением 4 Ома это увеличение будет примерно с 50 Вт до 80…100 Вт. Если использовать TDA7293, которая допускает бОльшие напряжения питания, то можно дотянуть до 110 Вт. Дополнительные транзисторы вносят свою нелинейность, поэтому общие искажения по сравнению с просто микросхемой возрастут. При открывании/закрывании выходных транзисторов, дополнительно (по сравнению с просто микросхемой) образуются так называемые коммутационные искажения – неуправляемые импульсы тока коллектора, а также искажения «ступенька». Поскольку быстродействие микросхемы невелико, она плохо справляется с подавлением таких искажений (при помощи ООС). Для работы в те моменты, когда выходные транзисторы закрыты, и микросхема без них трудится в одиночку, от микросхемы требуется более высокое быстродействие (по частоте и скорости нарастания выходного напряжения), чем в обычном состоянии. Этот последний пункт поясню особо. Вот осциллограммы напряжения на нагрузке (синяя линия) и на выходе микросхемы (красная линия). Хорошо видно, что начальные участки (близкие к нулю) красной линии более вертикальны, чем синей. Здесь выходные транзисторы еще не работают, и микросхеме приходится «работать шустрее», чтобы питать нагрузку не напрямую, а через резистор R7 (я не хочу подробно описывать причины – лень вдаваться в теорию, это еще на пару страниц, если подробно). При напряжении ~0,8 вольт выходники открываются, и выходной сигнал микросхемы начинает повторять выходной сигнал всего усилителя, только 0,8 вольтами выше. На самом деле, этот начальный участок не такой крутой – это я его слегка преувеличил для наглядности. Но ведь и микросхема довольно медленная а ей приходится компенсировать при помощи ООС все эти высокочастотные «бяки». Из-за сравнительно низкой частоты первого полюса микросхемы (см. Амплитудные характеристики усилителя на TDA7294), на высоких частотах глубина ООС сильно снижается, и ей трудно справляться с возросшими искажениями. Поэтому общие искажения всего усилителя получаются значительно больше, чем у просто микросхемы. Я собирал подобные системы на быстродействующих ОУ, дополненных высокочастотными выходными транзисторами (т.е. чтобы и на высоких все получше работало). Как системы начального уровня они звучали неплохо. Качество звучания (и уровень искажений) здесь сильно зависят от сопротивления резистора R7. Чем оно меньше – тем лучше. Но с другой стороны, чем меньше это сопротивление, тем позже (при росте сигнала) открываются навесные выходники, а значит, тем больше нагрузка на микросхему. Т.е. чем больше разгружаем микросхему – тем больше теряем качество. Повышая качество – нагружаем микросхему. Максимум качества придется на максимум нагрузки, если выходники вообще не будут включаться (т.е. если их не будет вообще!). Результаты получались гораздо лучше, когда выходники выводились из режима В (на них подавалось напряжение смещения и появлялся ток покоя). При этом выходной сигнал самой микросхемы становился «красивее», и звучание лучше, чем даже при маленьком сопротивлении R7 в режиме В. Если пойти по такому пути: задать выходным транзисторам начальное смещение, которое улучшит звук, поменять схему управления этими транзисторами, чтобы повысить выходное напряжение, поменять микросхему на быстродействующий качественный ОУ, то мы придем совсем к другому усилителю. Он будет иметь гораздо лучшее качество и более высокую выходную мощность, но не будет содержать микросхему TDA7294. Несмотря на то, что мне лично такое включение не нравится, ему находится применение, и тут я согласен с теми, кто так делает - в их случае это действительно самое оптимальное решение. Один вариант - сабвуфер, работающий на 4-омную нагрузку, причем его мощность 50...60 Вт. Т.е. для просто микросхемы это уже на пределе. Умощненная микросхема как раз легко такую мощность дает. Второй вариант - НЧ/СЧ канал двухполосного усилителя (ВЧ канал сделан на TDA7294 без умощнения) для озвучки помещения. Опять же, мощность 50 Вт получается без проблем, и работа 18 часов в сутки ежедневно в любую погоду (даже летом в жару) проходит легко - микросхема не нагружена. И работа на сравнительно низких частотах усилителю дается легко. Третий вариант - озвучка культурно-развлекательных мероприятий на открытом воздухе. Там усилитель может стоять под открытым небом на солнцепеке, и нормально работать. А снижение качества звучания никто не заметит - ведь все культурно развлекаются (пивом, например). Так что, если кто все же хочет сделать эту схему, несколько советов. В качестве выходных можно использовать только биполярные транзисторы! У полевых для открывания нужно приложить большое напряжение - порядка 4 вольт, а то и больше (независимо от того, "вертикальные" это полевики, или "горизонтальные"). А это напряжение образуется на резисторе R7. Его мощность при этом должна быть минимум 5 Вт, греться он будет соответственно. А, главное, на малой мощности (до этих самых примерно 5 Вт) будет работать только одна микросхема без выходников. Да еще и не напрямую, а через резистор! И ей будет намного тяжелее... 1. Снижение качества наименее заметно на низких частотах (ООС там работает на полную да и быстродействия микросхемы и транзисторов хватает), поэтому для сабвуферов схема годится. 2. Не превышайте напряжение питания. 40 вольт – максимум (для TDA7293 максимум 44 вольта.). Низкое (ниже 28) использовать нет смысла – пропадают все преимущества: выходная мощность ведь ограничена питанием и при таком напряжении выходит маленькой. 3. С2 увеличиваем до 1000 пФ (=1нФ), а для саба С2=3,3 нФ и R1=3,3 кОм. 4. С5 = 47...100 мкФ 50 В. Для саба 100 мкФ. И его "минус" подключаем к выходу микросхемы (к 14-й ноге) для TDA7294, или к 12-й ноге для TDA7293. Так будет работать заметно лучше, чем если подключить конденсатор к выходу всего усилителя, как на схеме. 5. С9 и С10 не менее 1 мкФ 63 В, например типа К73-17. Еще лучше по 2 таких конденсатора впараллель. Причем хорошо бы поближе к транзисторам. 6. Предохранители на 5А (и то могут сгорать при пиках громкости, особенно на сабвуфере, тогда ставим 7,5...10-ти амперные). 7. Катушку L 1 намотать прямо на резисторе R8. Для этого берется резистор типа МЛТ-2 Вт и на него наматывается 2 слоя провода диаметром 0,7…1 мм. Верхний слой должен быть короче, чтобы витки не сползали. И не нужно пытаться притулить туда как можно больше витков, лучше аккуратно все сделать. Катушку слегка пропитать клеем, чтобы не разлезалась. Выводы катушки наматываем на выводы резистора и получается "два в одном". 8. Хоть микросхема и разгружена, охлаждать ее надо. Пусть небольшой радиатор, но должен быть. Можно и ее и транзисторы поставить на общий радиатор через прокладки. 9. После сборки усилителя хорошо бы убедиться в отсутствии самовозбуждения и звона (см. Hi-Fi усилитель на микросхеме TDA7294), посмотрев на сигнал при помощи осциллографа. Если эти "бяки" присутствуют, то можно попробовать параллельно резистору R3 подключить цепочку, состоящую из последовательно соединенных конденсатора 100 пикофарад и резистора 6,8 кОм. 10. Важно! Проводники, идущие от эмиттеров транзисторов, а также проводники, идущие к резисторам R3 (цепь ООС), R7, R8+L1, R9 должны соединяться в одной точке. Т.е. одна общая точка для 6-ти проводников. 11. R5 и R6 несколько великоваты. Их оптимальное значение: 33...68 кОм. 12. Важно! Конденсатор С3 вообще удаляем (чтобы 9-я нога микросхемы была подключена к источнику без конденсатора - ведь она задает режим StdBy, поэтому, когда режим включен, выходные транзисторы микросхемы отключены, и, значит, базы навесных транзисторов тоже отключены!!! это плохо). Если не хотите, то базы транзисторов надо соединить с землей через резистор 10...15 кОм 0,125 Вт. Но что-либо одно из этого сделать обязательно - надежность системы возрастет. 13. Конденсатор С4 берем чуть большей емкости: 22...47 мкФ. 14. Важно! Конденсаторы С3 (если он есть) и С4 заряжаются до напряжения источника (40 вольт по схеме), поэтому они должны иметь рабочее напряжение 50В. 15. Резистор R7 лучше взять более мощный - 0,5 Вт. 16. Последовательно с резистором R4 хорошо бы включить конденсатор 100...220 мкФ х 25 вольт. А то на выходе может присутствовать заметная постоянка. Если уж делать такую штуку для повыш самый максимум мощности все же извл нагрузке 4 Ома). Для этого нужно искл просадок питающего напряжения. Т.е. микросхемы - она тут потребляет небол пролете). Для этого: Общее напряжение питания поднимаем жуткой просадке питания осталось вол ток самый большой) нестабилизирован для микросхемы используем стабилиза Стабилизатор включается в разрывы це Б. Теперь просадки напряжения питания н питание микросхемы всегда максималь максимум выходного напряжения. А зн нагрузке всегда будут максимально воз Для эксремалов - стабилитроны D1 и D вольт. Но микросхема уже будет рабо рекомендую. А вот если использовать м Предел здесь - все стабилитроны по 15 прокладки на радиаторе) охлаждение м Только теперь для выходников радиато стабилизатора нужно на радиаторы ста делать усилитель, который все потянет