razmery

реклама
Понятие о номинальном,
действительном и предельном
размерах, предельных отклонениях,
допуске размера
МДК 03.02
Раздел «Основы
взаимозаменяемости,
допуски и посадки»
План занятия
Понятие о номинальном, действительном
и
предельных
размерах,
предельных
отклонениях, допуске размера
Графическое
изображение
допусков
и отклонений
Обозначение
номинальных
размеров
и предельных отклонений на чертежах
Условие
годности
размера.
Брак
исправимый и неисправимый
Понятие о номинальном,
действительном и предельных
размерах, предельных
отклонениях, допуске размера
Номинальный,
действительный и
предельные размеры
Размеры
• на чертеже всегда обозначены линейные
и угловые размеры изделия
• задают и указывают в миллиметрах
• выражают числовые значения линейных
величин (диаметров, длин и т.д.)
• делятся на:
– номинальные
– действительные
– предельные
Номинальный и действительный
размеры
• Обозначение
– для отверстия: D
– для вала: d
• Номинальный размер (D, d) — размер,
относительно которого определяют
предельные размеры и отсчитывают
отклонения
• Действительный размер (Dд, dд) —
размер, установленный измерением с
допустимой погрешностью
Предельные размеры
– два предельно допустимых размера:
• наибольший предельный размер
• наименьший предельный размер
– действительный размер годной детали:
• должен находиться между предельными
• может быть равен предельному
Предельные размеры
•больший:
•наибольший предельный размер
•Dmax
dmax
• меньший:
•наименьший предельный размер
•Dmin
dmin
Предельные отклонения
Отклонения
– предельные отклонения
• верхнее отклонение
• нижнее отклонение
– алгебраическая разность между
размерами
• действительным, предельным
• номинальным
– обозначение отклонений
• отверстий: E
• валов: е
Действительное отклонение (Eд, eд)
– алгебраическая разность между
размерами
• действительным
• номинальным
• Eд=Dд-D
eд=dд-d
Предельные отклонения
– верхнее предельное отклонение (ES, es)
– алгебраическая разность между
размерами:
• наибольшим предельным
• номинальным
– различают:
• верхнее
• нижнее
• среднее
Верхнее предельное отклонение
– алгебраическая разность между
размерами
• наибольшим предельным
• номинальным
• ES=Dmax-D
es=dmax-d
Нижнее предельное отклонение
– алгебраическая разность между
размерами
• наименьшим предельным
• номинальным
• EI=Dmin-D
ei=dmin-d
Среднее отклонение
– полусумма отклонений
• верхнего
• нижнего
• Em=0,5(ES+EI)
em=0,5(es+ei)
Номинальный размер
– служит началом отсчета всех
отклонений
• предельных (верхнего, нижнего)
• действительных
• относительно него определяются
предельные размеры
Допуски размера
Допуск размера
– характеризует точность выполнения
размера при изготовлении детали
– знака не имеет
– общее обозначение: T
– для отверстия: TD
– для вала: Td
Допуск размера
– разность между
• наибольшим предельным размером
• наименьшим предельным размером
• TD=Dmax-Dmin
Td=dmax-dmin
или
– абсолютная величина алгебраической
разности между
• верхним предельным отклонением
• нижним предельным отклонением
• ТD= ES- EI
Тd= es- ei
Предельные размеры
• ES=Dmax-D
es=dmax-d
• Dmax=D + ES
dmax= d + es
• EI=Dmin-D
ei=dmin-d
• Dmin= D + EI
dmin= d + ei
Графическое изображение
допусков
и отклонений
Графические изображения
поля допуска
– через предельные размеры
– через предельные отклонения
Графическое изображение
поля допуска через предельные
размеры
ei
es
Td
верхняя
граница
Поле
допуска
D
dmin
dmax
dд
d
нижняя
граница
Нулевая
линия
+
0
-
Графическое изображение
поля допуска через предельные
размеры
ei
es
Td
верхняя
граница
Поле
допуска
нижняя
граница
dmin
dmax
dд
d
D
Нулевая
линия
+
0
-
Графическое изображение
поля допуска через предельные
отклонения (упрощенная схема)
– за основное отклонение принято
меньшее по абсолютному значению:
• нижнее отклонение EI для поля допуска
отверстия
• верхнее отклонение es для поля допуска
вала
– не
указывают
номинальные
предельные размеры
– можно вычерчивать в масштабе
– наглядные, простые, компактные
и
Графическое изображение
поля допуска через предельные
отклонения (упрощенная схема)
ei
es
Td
верхняя
граница
Поле
допуска
нижняя
граница
d
D
Нулевая
линия
+
0
-
Положение поля допуска по
отношению к нулевой линии
а)
б)
в)
г)
д)
е)
а) асимметричное двустороннее
расположение
г) симметричное двустороннее
б) асимметричное одностороннее с
нижним отклонением, равным нулю
д) асимметричное одностороннее с
плюсовыми
в) асимметричное одностороннее с
верхним отклонением, равным нулю
е) асимметричное одностороннее с
минусовыми отклонениями
Обозначение номинальных
размеров и предельных
отклонений на чертежах
Обозначение номинальных размеров и
предельных отклонений на чертежах
– в соответствии с ГОСТ 2.307-2011
– способы указания отклонений:
• числовыми
значениями
предельных
отклонений
45+0,025
𝟑𝟎−𝟎,𝟑
−𝟎,𝟒𝟑
• условными обозначениями полей допусков
45Н7
30а11
• условными обозначениями полей допусков с
указанием в скобках числовых значений
предельных отклонений
45Н7 (+0,025) 30а11(−0,3
−0,43 )
Обозначение предельных отклонений
на размеры с неуказанными
допусками:
Неуказанные предельные отклонения
размеров Н14; h14; ±t2/2
или
Неуказанные предельные отклонения
𝐼𝑇14
размеровН14; h14;
2
Условие годности размера.
Брак исправимый
и неисправимый
Условие годности размера
• действительный размер:
– оказывается между
наибольшим и
наименьшим предельными размерами
– равен любому из них
Размер годен
Отверстие
Вал
Dmin ≤Dд ≤Dmax
dmin≤dд ≤dmax
Брак
Отверстие
Вал
Исправимый
Dд Dmin
dд dmax
Неисправимый
Dд Dmax
dд dmin
Решение задач
Дано:
Dnom=40 мм
Dmin=40 мм
TD=25 мкм
Определить:
1. Недостающие размеры
2. Записать чертежный размер с указанием
отверстие / вал (с применением таблицы формул
размеров)
3. Построить схему поля допуска с указанием всех
размеров
4. Определить годность действительных размеров
(с использованием таблицы определения годности)
Решение
•
•
•
•
•
•
•
•
•
•
•
•
EI = Dmin – Dnom,
EI = 40 – 40 = 0 мм
TD = Dmax – Dmin
Dmax = Dmin + TD = 40 + 0,025 = 40,025 мм
ES = Dmax – Dnom,
ES = 40,025 – 40 = 0,025 мм
Отверстие Ø 40 + 0,025
если D1д = 40,04 мм, то по условию годности Dд Dmax,
40,04 > 40,025, поэтому отверстие – брак неисправимый
если D2д = 40 мм, то Dmin ≤ Dд ≤ Dmax,
40 ≤ 40 ≤ 40,025, поэтому отверстие – годно
если D3д = 39,97 мм, то Dд Dmin,
39,97  40, поэтому отверстие – брак исправимый
Схема поля допуска
Подведение итогов занятия
Скачать