Теория автоматического управления Тема 3. СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ Выполнил студент гр.ЗЭСП-3 Шеремет С.И. Содержание • СТРУКТУРА И ФУНКЦИОНАЛЬНЫЕ КОМПОНЕНТЫ САУ :Основные компоненты САУ. Укрупненная схема системы управления. Управление сложными системами. Локальные задачи управления. Многоканальное управление. Регуляторы и задающие блоки. Специальные блоки систем управления. • МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОБЪЕКТА УПРАВЛЕНИЯ: Система линейных уравнений объекта. Передаточная функция системы. Типовые звенья САУ. Типовые входные воздействия. СТРУКТУРА И ФУНКЦИОНАЛЬНЫЕ КОМПОНЕНТЫ САУ • Основные компоненты САУ. Система автоматического управления содержит следующие компоненты, обеспечивающие ее функционирование: объект управления ОУ (управляемый процесс); исполнительные устройства ИсУ; измерительные устройства ИзУ; устройство управления УУ. Объектами управления технических систем служат кинематические механизмы, электрические системы, тепловые, химические и другие технологические процессы. Состояние объекта характеризуется переменными состояния, к которым относятся угловые и линейные координаты, скорости и другие механические переменные, описывающие движения кинематических механизмов; токи или напряжения электрических элементов схемы; температуры и плотности веществ в тепловых и химических процессах, и любые другие физические величины. Переменные состояния объединяются в вектор состояния. • Все многообразие САУ может быть сведено к 3-м элементарным схемам управления, называемыми также принципами управления: прямое управление, управление по возмущению, управление по отклонению. • САУ с прямым управлением содержит ОУ (на рис.В.2 под объектом управления понимается совокупность УМ+ИМ+РО+ОУ+ЧЭ из элементов рис.В.1) и регулятор. На ОУ и Рег действуют возмущающие сигналы g1,…,g6, изменяющие произвольным образом и которые ведут к непредсказуемым изменениям их выходных сигналов и и у. За выходным сигналом y следит человек-оператор, который вручную изменяет сигнал x так, чтобы достичь заданных значений сигнала y. Сигналы возмущения g1..g6 человеком не контролируются. Данная САУ называется также САУ разомкнутого типа, чем подчеркивается то обстоятельство, что выходной сигнал у не используется техническими средствами автоматизации УМ, ИМ, РО, ОУ, ЧЭ и Рег в формировании сигнала задания х и управления объектом. Достоинства: Предельная простота регулятора. Недостатки: 1. Обязательное присутствие человека- оператора, который является наиболее ненадежным звеном САУ. 2. Малая точность регулирования, особенно в динамике, когда сигналы х, g1, ..., g6 быстро изменяются. 3. Невысокое быстродействие, обусловленное медленной реакцией человека на изменения сигнала у. Пример: Электропривод якорно-швартового устройства. Оператор с помощью соответствующих органов управления задаёт одну из фиксированных скоростей вращения двигателя. Сигналами возмущения g1..g6 являются: натяжение якорной цепи, напряжение питания электродвигателя, температура обмоток двигателя и др. • Принцип управления по возмущению (рис.В.3) В САУ некоторые из сигналов возмущения, например g1, g4 и g6 , которые можно измерить и преобразовать в электрический сигнал (принимаем регулятор электрическим), заводятся на вход регулятора через сумматор См. Это приводит к такому изменению выходного сигнала регулятора u, при котором компенсируется действие на систему измеренных сигналов возмущения. • Достоинства: 1. Наивысшее быстродействие в сравнении быстродействием с другими типов САУ. • 2. Выше точность регулирования в сравнении с прямым управлением. • 3. Выше надежность регулирования, так как человек не участвует непосредственно в управлении объектом. • Недостатки: 1. Сложность выделения всех возмущений, действующих на элементы САУ. • 2. Сложность их классификации на основные и второстепенные. • 3. Сложность измерения и преобразования сигналов возмущения в электрический сигнал. Например, чрезвычайно сложной на практике является задача измерения механического момента в валах вращающихся механизмов. • Пример: САР напряжения генератора (система токового компаундирования). Регулируемый сигнал – напряжение на выводах генератора. Возмущающий сигнал – ток нагрузки генератора, который измеряется просто трансформатором тока. • Принцип управления по отклонению (рис.В.4) • Вводится цепь отрицательной обратной связи ООС и элемент сравнения ЭС, на котором вычитаются заданное значение x и фактическое значение y регулируемого сигнала. В ЭС формируется ошибка регулирования e. Регулятор Рег вырабатывает такой сигнал u, который уменьшает ошибку регулирования e. • Достоинства: 1. Нет необходимости в выяснении того, какие сигналы возмущения действуют на САУ, и, следовательно, не нужно их измерять. • 2. Самая высокая точность регулирования в сравнении с другими схемами САУ. • Недостатки: Меньше в сравнении с управлением по возмущению быстродействие, т.к. регулирующий сигнал u начинает изменяться не в момент появления возмущений, а только после изменения y. • Примеры:1. Авторулевой, удерживающий судно на заданном курсе с требуемой точностью в условиях волнения моря и других возмущающих сигналах. • 2 .Электропривод траловой лебедки, обеспечивающий требуемые усилия и скорость выборки трала в условиях переменной нагрузки на ваерах, волнения моря, действия течений. • 3. Холодильная автоматика, обеспечивающая поддержание заданной температуры в камерах в условиях изменяющегося притока тепла. • Вывод:Достоинства схемы управления по отклонению настолько велики, что САУ в подавляющем числе случаев выполняются работающими именно по этой схеме. • На практике применяют также комбинированные САУ, сочетающие регулирование как по возмущению (рис.В.3), так и по отклонению (рис.В.4), которые обладают достоинствами обоих типов САУ. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОБЪЕКТА УПРАВЛЕНИЯ • Математической моделью динамической системы принято называть совокупность аналитических выражений и алгоритмов, однозначно определяющих развитие процессов в системе, т. е. ее движение. В зависимости от типа сигналов различаются непрерывные и дискретные модели систем. В зависимости от используемых операторов - линейные и нелинейные, временные и частотные модели. К временным относятся модели, в которых аргументом является время (непрерывное или дискретное). Это дифференциальные и разностные уравнения, записанные в явном виде или в операторной форме. Частотные модели предусматривают использование операторов, аргументом которых является частота соответствующего сигнала • Аналитические модели вход-выход (ВВ) - это описание связи входных и выходных сигналов динамической системы, которое применяется как для отдельных блоков, так и всей системы управления в целом. Для обозначения входных и выходных сигналов воспользуемся обозначениями, характерными для объекта управления, где входным сигналом является управляющее воздействие u(t), а выходным регулируемая переменная y(t). В этом разделе рассматриваются непрерывные временные модели, описывающие связи входных и выходных переменных динамической системы с помощью обыкновенных дифференциальных уравнений соответствующего порядка. • Система линейных уравнений объекта. В общем случае модель одноканального объекта управления описывается нелинейным дифференциальным уравнением (системой уравнений), связывающим входной сигнал управления u(t) и выходной сигнал состояния объекта y(t): • F(y', y", …, y(n), u', u", …, u(m)) = 0. • Уравнение описывает динамическое состояние ОУ на некотором временном интервале t≥to, и связывает входные сигналы u(t) и их производные u(n)(t) с выходными сигналами y(t) и их производными y(n)(t). Значения у(to) = уо, у'(to) = у'о, ... , y(n)(to) = у(n)о называются начальными значениями (условиями), а число г = n-m ≥ 1- относительной степенью модели. • Классом дифференциальных уравнений, удобным для проведения исследований, являются линейные дифференциальные уравнения. Переход к линейным дифференциальным уравнениям выполняется операцией линеаризации, при которой переменные уравнения (3.2.1) заменяются новыми переменными – отклонениями от некоторого номинального режима (y=y-yн, u= u-uн), начало координат переносится в точку номинального режима, а функция F раскладывается в ряд Тейлора в окрестностях этой точки по частным производным. В результате линеаризации получаем следующую систему линейных уравнений в отклонениях: Типовые воздействия и реакции на них Методы ТАУ позволяют рассчитать реакцию на любое входное воздействие, однако систематизированные результаты, обладающие некоторыми закономерностями, можно получить для ограниченного ряда входных сигналов. В качестве типовых входных сигналов рассматривают те, которые чаще всего встречаются на практике, а также в некотором смысле являются наиболее сложными для отработки их САУ. Реакция на единичный скачок 1(t) - переходной процесс h(t) (рис.1.2) В электрических системах единичному скачку соответствует включение напряжения питания. Этот вид сигнала является для системы наиболее тяжелым для отработки. Если система отработает этот сигнал с заданными показателями качества, то наверняка будет качественно работать при других плавно изменяющихся сигналах. Реакция на дельта-импульс d(t) - функция веса k(t) (рис.1.3) Дельта-импульс d(t) имеет нулевую длительность, бесконечную амплитуду и единичную площадь (S=1). Дельта-импульсу соответствует помеха в электрических схемах и удар в механических системах. Математический аппарат и свойства функции веса широко используется в расчётах импульсных САУ Реакция на гармонический сигнал - частотные характеристики (рис.1.4) Если на вход линейной системы воздействует гармонический сигнал с амплитудой Xm и фазой jx, то на выходе будет сигнал той же частоты, однако другой амплитуды Ym и фазы jy. Изменения амплитуды Ym и фазы jy выходного сигнала y(t) зависят от частоты w входного сигнала x(t). Эти зависимости определятся следующие частотные характеристики: АЧХ (амплитудно-частотную) и ФЧХ (фазо-частотную):АЧХ: коэффициент передачи (усиления) звена на данной частоте, равный отношению амплитуд сигналов;ФЧХ: - сдвиг по фазе между выходным и входным сигналами