Алфавитный подход к измерению информации позволяет определить количество информации, заключенной в тексте. Множество символов, используемых при записи текста, называется алфавитом. Полное количество символов в алфавите называется мощностью (размером) алфавита. Если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой (равновероятно), то количество информации, которое несет каждый символ, вычисляется по формуле: I=Log2 N Где N – мощность алфавита. Следовательно, в 2-х символьном алфавите каждый символ «весит» 1 бит (log22=1); в 4-х символьном алфавите каждый символ несет 2 бита информации (log24=2); в 8-ми символьном – 3 бита информации (log28=3) и.т.д. Один символ из алфавита мощностью 256 (28) несет в тексте 8 бит информации Если весь текст состоит из К символов, то при алфавитном подходе размер содержащийся в нем информации равен: I=K*i, где i- информационный вес одного символа в используемом алфавите. Пример: книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице – 40 строк, в каждой строке – 60 символов. Каков объем информации в книге? Решение: Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации. Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге 2400*150=360000 байт или 360000/1024=351,5625 Кбайт или 351,5625/1024=0,34332275 Мбайт Задания для самостоятельной работы: 1. Алфавит племени Мульти состоит из 8 букв. Какое количество информации несет одна буква этого алфавита? 2. Сообщение, записанное буквами из 64-х символьного алфавита, содержит 20 символов. Какой объем информации оно несет? 3. Племя Мульти имеет 32-х симовольный алфавит. Племя Пульти использует 64-х символьный алфавит. Вожди племен обменялись письмами. Письмо племени Мульти содержало 80 символов, а письмо племени Пульти-70 символов. Сравните объемы информации, содержащейся в письмах. ответы 4. Сколько килобайтов составит сообщение, содержащее 12288 бит? 5. Сообщение занимает 3 страницы по 25 строк. В каждой строке записано по 60 символов. Сколько символов в использованном алфавите, если все сообщение содержит 1125 байтов? 6. Для записи сообщения использовался 64-х символьный алфавит. Каждая страница содержит 30 строк. Все сообщение содержит 8775 байтов информации и занимает 6 страниц. Сколько символов в строке? ответы 1. 2. 3. 4. 5. 6. 3 бита 120 бит 400 бит и 420 бит 1,5 Кбайт 4 символа 65 символа Повторение по теме системы счисления 1. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы 2. Перевести десятичное число 315,1875 в восьмеричную и шестнадцатеричную системы 3. Перевести двоичное число в 16-ую систему. 1101111011011101111 4. Перевести смешанное число 1011101,101112 в восьмеричную систему ответы ответы 1. 2. 3. 4. 0,187510 =0,00112 = 0,148 = 0,316 315,187510 = 473,148 = 13В,316 6F6ЕF16 135,568 Арифметика в позиционных системах счисления Пятеричная таблица сложения Пятеричная таблица умножения + 0 1 2 3 4 * 1 2 3 4 0 0 1 2 3 4 1 1 2 3 4 1 1 2 3 4 10 2 2 4 11 13 2 2 3 4 10 11 3 3 11 14 22 3 3 4 10 11 12 4 4 13 22 31 4 4 10 11 12 13 пример 342 + 23 420 Рассуждаем так: два плюс три =10 (по таблице); 0 пишем, 1в уме. Четыре плюс два =11 да еще один, - 12. 2 пишем, 1-в уме. Три да один равно 4 (по таблице). Получаем в результате 420 213 * 3 1144 Рассуждаем так: трижды три 14 (по таблице); 4 пишем, 1 в уме. Один на три дает 3, да плюс один,- пишем 4. Дважды три по таблице 11; 1 – пишем, 1 переносим влево. Окончательный результат – 1144. Задания для самостоятельной работы 1. Составьте таблицы сложения и умножения в троичной системе счисления и выполните вычисления: 1) 12+22 2) 21*2 2. Составьте таблицы сложения и умножения в двоичной системе счисления и выполните вычисления: 1) 1110+101; 2) 101*11 3. Дано а=3D16 , b=778 Какое из чисел С, записанных в двоичной системе, отвечает условию a<c<b? 1) 111101 2)111110 3)111111 4) 111010 Обработка графической информации Пример: Для хранения растрового изображения размером 128*128 пикселей отвели 4 килобайта памяти. Каково максимально возможное число цветов в палитре изображения? Решение: Подсчитаем количество пикселей в изображении: 128*128=16384 пикселей Вычислим объем памяти в битах: 4*1024*8=32768 бит Таким образом, на один пиксель изображения приходится 32768:16384=2 бита, как известно двумя двоичными разрядами можно закодировать 4 разных состояния объекта, в данном случае четыре цвета пикселя. Ответ: 4 Обработка графической информации Пример: укажите минимальный объем памяти (в килобайтах), достаточный для хранения любого растрового изображения размером 32*32 пикселя, если известно, что в изображении используется палитра из 256 цветов. Решение: Исходя из количества цветов в палитре определим минимальное количество двоичных разрядов, необходимое для хранения одного пикселя. Для представления 256 различных состояний требуется log2256=8 двоичных разрядов, т.е. 1 байт. Поэтому для представления изображения размером 32*32 пикселя потребуется 32*32=25*25=210 байт информации, т.е. 1 Кб Ответ: 1Кб 1. Для хранения растрового изображения размером 64*32 пикселя отвели 1Кбайт памяти. Каково максимально возможное число цветов в палитре изображения? 1) 16 2) 32 3) 64 4) 1024 2. Для хранения растрового изображения размером 32*64 пикселя отвели 512 байт памяти. Каково максимально возможное число цветов в палитре изображения? 1) 2048 2) 1024 3) 16 4) 4 3. укажите минимальный объем памяти (в килобайтах), достаточный для хранения любого растрового изображения размером 64*64 пикселя, если известно, что в изображении используется палитра из 256 цветов. 1) 128 2) 2 3) 256 4) 4