Инжениринг трафика Постановка задачи TE Две группы целей Traffic Engineering: 1. Ориентированные на улучшение характеристик трафика: Минимизации процента потерь пакетов Минимизации задержек в очередях Максимизации передаваемых всплесков трафика Рассматриваются относительно всего набора потоков трафика, например: min (max Pi), где Pi – потери i-го потока 2. Ориентированные на улучшение коэффициента использования ресурсов: • максимизация загрузки каждого устройства и канала • максимизация общей производительности сети (пакеты в сек) Обе группы целей достигаются при снижении уровня заторов (congestion) в сети Затор – появление большой очереди пакетов в определенной точке сети (порт, внутренний буфер устройства), приводит к длительному ожиданию пакетов и потерям при превышении очереди емкости буфера Влияние заторов Заторы приводят к: •Снижение качественных характеристик передаваемого трафика – большие задержки, высокий процент потерь при постоянных заторах в какой-либо части сети (если средняя интенсивность трафика постоянно превышает среднюю пропускную способность канала или устройства) •Неэффективному использованию ресурсов – остальные (кроме перегруженных) ресурсы недоиспользуются, так как к ним поступает меньше пакетов (из-за потерь) Причины появления заторов 1. Сетевых ресурсов недостаточно для обслуживания предложенной нагрузки (offered load) 2. Потоки трафика неэффективно распределены по инфраструктуре сети Устранение заторов 1. Недостаток ресурсов устраняется: Увеличением емкости ресурсов – замена каналов и устройств на более производительные Применением классической техники борьбы с заторами: ограничение интенсивности входных потоков (rate limit) управление очередями для перераспределения ресурса в пользу привилегированного трафика (приоритеты) Устранение заторов (2) 2. Неэффективность распределения потоков трафика устраняется методами Traffic Engineering – предложенная нагрузка более сбалансировано заполняет имеющиеся каналы и устройства. Пути следования трафика по сети выбираются в общем случае отличными от путей, выбираемых IGP Предложенная нагрузка 25 13 12 50 8 30 Распределение нагрузки по сети – выбор путей следования трафика R3 R2 50 8 R1 50 25 40 R7 100 R8 50 50 12 13 20 100 R11 R9 30 R10 100 25 155 75 R6 R4 10 R5 Критерий оптимального распределения нагрузки Min (max Ki), где Ki – коэффициент использования i-го ресурса Ресурс – входной и выходной интерфейсы каждого маршрутизатора Какой коэффициент использования входного интерфейса маршрутизатора R1? Какой интерфейс в сети имеет максимальный коэффициент использования? Как лучше проложить путь для нового потока R2-R6 с интенсивностью 10?