Содержание курса математики основной школы

реклама
Содержание
курса математики
основной школы
Содержание математического
образования
ГОС
ФГОС
Устанавливает
обязательный минимум
содержания
(обобщенное содержание)
основных образовательных
программ общего образования
Определяет
инвариантную (обязательную) часть
содержания
основной образовательной программы,
соотношение обязательной её части и
части, формируемой участниками
образовательного процесса
Содержание математического
образования
ГОС
ФГОС
Устанавливает
обязательный минимум
содержания
(обобщенное содержание)
основных образовательных
программ общего образования
Определяет
инвариантную (обязательную) часть
содержания
основной образовательной программы,
соотношение обязательной её части и
части, формируемой участниками
образовательного процесса
Геометрия
Назначение раздела
Цели:
 развитие пространственного воображения и
логического мышления;
 развитие геометрической интуиции.
Способы:
 систематическое изучение свойств геометрических
фигур на плоскости;
 применение свойств при решении задач
вычислительного и конструктивного характера.
Принципы:
 наглядности;
 строгости.
Структура содержательного раздела
«Геометрия»
ГОС
ФГОС
Отличие
Блоки:
 Начальные
понятия и теоремы
геометрии
 Треугольник
 Четырехугольник
 Многоугольник
 Окружность и
круг
 Измерение
геометрических
величин
 Векторы
 Геометрические
преобразования
Блоки:
 Наглядная
геометрия
 Геометрические
фигуры
 Измерение
геометрических
фигур
 Координаты
 Векторы
 укрупнение
дидактических единиц;
 логика развертывания
учебного материала:
- наглядная;
- строительная;
- вычислительная;
- послеевклидова;
 межпредметный
характер некоторых
блоков.
Наглядная геометрия
ГОС
ФГОС
 Геометрические фигуры и тела.
Равенство в геометрии.
 Расстояние. Отрезок, луч. Ломаная.
 Длина отрезка. Длина ломаной,
периметр многоугольника.
 Угол. Прямой угол. Острые и тупые
углы.
 Прямоугольные, остроугольные и
тупоугольные треугольники.
 Многоугольники.
 Окружность и круг.
 Наглядные представления о
пространственных фигурах: кубе,
параллелепипеде, призме, пирамиде,
шаре, сфере, конусе, цилиндре.
Примеры сечений. Примеры
разверток.
 Объем тела. Формулы объема
прямоугольного параллелепипеда,
куба, шара, цилиндра, конуса.
 Наглядные представления о фигурах на плоскости: прямая,
отрезок, луч, угол, ломаная, многоугольник, окружность, круг.
Четырехугольник, прямоугольник, квадрат. Треугольник, виды
треугольников. Правильные многоугольники. Изображение
геометрических фигур. Взаимное расположение двух прямых,
двух окружностей. Прямой и окружности.
 Длина отрезка, ломаной. Периметр многоугольника. Единицы
измерения длины. Измерение длины отрезка, построение
отрезка заданной длины.
 Виды углов. Градусная мера угла. Измерение и построение
углов с помощью транспортира.
 Понятие площади фигуры; единицы измерения площади.
Площадь прямоугольника, квадрата. Приближенное измерение
площади фигур на клетчатой бумаге. Равновеликие фигуры.
 Наглядные представления о пространственных фигурах: куб,
параллелепипед, призма, пирамида, шар, сфера, конус,
цилиндр Изображение пространственных фигур. Примеры
сечений. Многогранники. Правильные многогранники. Примеры
разверток многогранников, цилиндра и конуса.
 Понятие объема; единицы объема. Объем прямоугольного
параллелепипеда, куба.
 Понятие о равенстве фигур. Центральная, осевая и
зеркальная симметрии. Изображение симметричных фигур.
Геометрические фигуры
ГОС
 Начальные понятия и
теоремы геометрии.
 Треугольник.
 Четырехугольник.
 Многоугольники.
 Окружность и круг.
ФГОС
 Прямые и углы.
 Геометрическое место точек.
 Треугольник.
 Четырехугольник.
 Многоугольник.
 Окружность и круг.
 Геометрические преобразования.
 Построения с помощью циркуля и
линейки.
 Решение задач на вычисление,
доказательство и построение с
использованием свойств изученных
фигур.
Измерение
геометрических величин
ГОС
 Расстояние от точки до прямой.
Расстояние между параллельными
прямыми. Длина окружности, число π;
длина дуги. Величина угла. Градусная
мера угла, соответствие между
величиной угла и длиной дуги
окружности.
 Понятие о площади плоских фигур.
Равносоставленные и равновеликие
фигуры.
 Площадь прямоугольника. Площадь
параллелограмма, треугольника и
трапеции (основные формулы). Формулы,
выражающие площадь треугольника:
через две стороны и угол между ними.
 Площадь круга и площадь сектора.
 Связь между площадями подобных
фигур.
ФГОС
 Длина отрезка. Расстояние от точки до прямой.
Расстояние между параллельными прямыми.
 Периметр многоугольника.
 Длина окружности, число π; длина дуги окружности.
 Градусная мера угла, соответствие между
величиной центрального угла и длиной дуги
окружности.
 Понятие площади плоских фигур.
Равносоставленные и равновеликие фигуры.
Площадь прямоугольника. Площади
параллелограмма, треугольника и трапеции. Площадь
многоугольника. Площадь круга и площадь сектора.
Соотношение между площадями подобных фигур.
 Решение задач на вычисление и
доказательство с использованием изученных
формул.
Координаты. Векторы.
ГОС
 Вектор.
Длина (модуль) вектора.
Координаты вектора.
Равенство векторов.
Операции над векторам:
умножение на число,
сложение, скалярное
произведение.
Угол между векторами.
ФГОС
 Координаты. Уравнение прямой. Координаты
2
середины отрезка. Формула расстояния между двумя
точками плоскости. Уравнение окружности.
 Векторы. Длина (модуль) вектора. Равенство
векторов. Коллинеарные векторы. Координаты
вектора. Умножение вектора на число, сумма
векторов, разложение вектора по двум
неколлинеарным векторам. Скалярное
произведение.
Домашнее задание
 Наглядная геометрия:
- распознавать;
- приводить примеры и т.д.
СПАСИБО
ЗА ВНИМАНИЕ
Скачать