содержание Стремительный прогресс и миниатюризация электроники, повсеместно используемой в компьютерах, радио, телевидении и других средствах связи, стали возможными благодаря использованию интегральных схем. Эти схемы невозможно представить без полупроводниковых приборов. В данной работе автор рассматривает, что из себя предоставляют полупроводники, для чего они предназначены и где применяются Содержание 1. 2. 3. 4. 5. 6. 7. 8. Сначала Полупроводники в природе Физические свойства полупроводников Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его электрические свойства Применение полупроводников Тест Полупроводники в природе содержание Все вещества в природе можно условно разделить на проводники электрического заряда, диэлектрики(непроводники) и вещества занимающие промежуточное положение между ними. Эти вещества называют полупроводниками. В обычных условиях они не проводят электрический заряд, но при изменении этих условий могут превратиться в проводники. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий около 30 % земной коры. содержание Физические свойства полупроводников Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры. Электрические свойства веществ Проводники Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Полупроводники Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Диэлектрики Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … содержание Физические свойства полупроводников Проводимость полупроводников зависит от температуры. В отличие от проводников, сопротивление которых возрастает с ростом температуры, сопротивление полупроводников при нагревании уменьшается. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков. R (Ом) металл R0 полупроводник t (0C) Это происходит потому, что при увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается содержание Собственная проводимость полупроводников При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток. Рассмотрим это на примере кремния. - Si Si - - Si - Si - - Si Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами. При этом свободных электрических зарядов нет. содержание «Дырка» При нагревании кинетическая энергия электронов увеличивается и самые быстрые из них покидают свою орбиту. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. В этом месте образуется условный положительный заряд, называемый «дыркой». Si + - - свободный электрон Si - + - Si дырка Si - + Si содержание Собственная проводимость полупроводников Валентный электрон соседнего атома, притягиваясь к дырке, может перескочить в нее (рекомбинировать). При этом на его прежнем месте образуется новая «дырка», которая затем может аналогично перемещаться по кристаллу. содержание Собственная проводимость полупроводников Если напряженность электрического поля в образце равна нулю, то движение освободившихся электронов и «дырок» происходит беспорядочно и поэтому не создаёт электрического тока. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток. Проводимость при этих условиях называют собственной проводимостью полупроводников. При этом движение электронов создаёт электронную проводимость, а движение дырок – дырочную проводимость. Примесная проводимость полупроводников содержание Дозированное введение в чистый проводник примесей позволяет целенаправленно изменять его проводимость. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные примеси Акцепторные Донорные Полупроводники p-типа Полупроводники n-типа содержание Электронные полупроводники (n-типа) Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырехвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). При легировании 4 – валентного кремния Si 5 – валентным мышьяком As, один из 5 электронов мышьяка становится свободным. В данном случае перенос заряда осуществляется в основном электронами, т.к. их концентрация больше чем дырок. Такая проводимость называется электронной. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными. Проводимость N-полупроводников приблизительно равна: - Si Si - Si - As - Si - Таким образом изменяя концентрацию мышьяка, можно в широких пределах изменять проводимость кремния. содержание Дырочные полупроводники (р-типа) Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. В четырехвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Примеси, которые добавляют в этом случае, называются акцепторными. Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дополнительная дырка. В таком полупроводнике основными носителями заряда являются дырки, а проводимость называется дырочной. Проводимость P-полупроводников приблизительно равна: - Si Si - Si - In + - Si Изменяя концентрацию индия, можно в широких пределах изменять проводимость кремния, создавая полупроводник с заданными электрическими свойствами. содержание Рассмотрим электрический контакт двух полупроводников p и n типа, называемый p – n переходом 1. Прямое включение р + n + + + - + - _ - Ток через p – n переход осуществляется основными носителями заряда (дырки двигаются вправо, электроны – влево) Сопротивление перехода мало, ток велик. Такое включение называется прямым, в прямом направлении p – n переход хорошо проводит электрический ток. содержание 2. Обратное включение р _ n + + + - + - + - Запирающий слой Основные носители заряда не проходят через p – n переход. Сопротивление перехода велико, ток практически отсутствует. Такое включение называется обратным, в обратном направлении p – n переход практически не проводит электрический ток. содержание Итак, основное свойство p – n перехода заключается в его односторонней проводимости Вольт – амперная характеристика p – n перехода (ВАХ) I (A) U (В) содержание Диод Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В. Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой: где VT — термодинамическое напряжение, Nn — концентрация электронов, Np — концентрация дырок, ni — собственная концентрация. содержание Диод содержание Транзистор Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор. Биполярный транзистор используют для усиления электрического тока. содержание Применение полупроводниковых диодов Выпрямление переменного тока Детектирование электрических сигналов Стабилизация тока и напряжения Передача и прием сигналов Прочие применения содержание Тест 1. Ток в полупроводнике – это упорядоченное движение … 1) положительных и отрицательных ионов 2) электронов и положительных и отрицательных ионов 3) электронов и дырок в противоположных направлениях 4) свободных электронов содержание Тест 2. Для усиления электронной проводимости полупроводника необходимо … 1) 2) 3) 4) нагреть полупроводник добавить примесь большей валентности осветить полупроводник добавить примесь меньшей валентности содержание Тест 3. Зависимость сопротивления полупроводников от температуры лежит в основе действия прибора … 1) 2) 3) 4) транзистора Фоторезистора терморезистора диода содержание Тест 4. Чтобы получить полупроводник n-типа надо добавить к четырёхвалентному элемент … 1) 2) 3) 4) индий германий мышьяк олово содержание Тест 5. Полупроводниковый прибор, применяющийся для выпрямления переменного тока , называется … 1) 2) 3) 4) транзистор терморезистор Фоторезистор диод содержание Презентацию создал ученик 9 класса МОУ СОШ № 37 Болдырев Евгений под руководством учителя физики Кукиной Е. Л.