Лекция № 7. Расхождение пучков заряженных частиц под действием собственного объемного заряда. Прямолинейные пучки электронных лучей (электронные пушки Пирса). VII. ФОРМИРОВАНИЕ ЭЛЕКТРОННЫХ И ИОННЫХ ПУЧКОВ. § 7.1. Расплывание пучков заряженных частиц под действием собственного объемного заряда. Ленточный пучок ионов. Основной проблемой транспортировки интенсивных пучков заряженных частиц является их расхождение под действием собственного объемного заряда. Для отыскания формы пучка необходимо решать уравнение Пуассона (для ленточного пучка двумерное): d 2U d 2U 4( x, y ) , а также уравнение движения для граничной dx 2 dy 2 заряженной частицы. В случае бесконечного ленточного пучка (рис.7.1), у которого ширина значительно больше толщины d , для определения электрического поля на границе вместо уравнения Пуассона можно использовать теорему Гаусса о равенстве потока электрического поля через поверхность и заряда, заключенного в объеме, ограниченном этой поверхностью: En dS 2 Ex yz 4xyz (теорема Гаусса); divE 4 S y x y z Линейная плотность тока пучка (ток на единицу x z J[ А ] см ширины бесконечного ленточного пучка): J jd Ve d . Тогда напряженность электрического поля на границе: d E x 2x 2d 2J Vz 2J 2qU 0 Mi M iVz2 qE x qU 0 . Уравнение движения вдоль оси x: xt ; 2 Mi 2 d 2 x d dx dz d dz dx 2 d x ; Vz dt 2 dt dt dt dz dt dz dz 2 1 2 JM i 2 d 2 x q 2 J 2 p. 3 3 1 dt M iVz3 2 2 q 2U 0 2 x Граничные условия: x0 Vz dx | z 0 tg , где - угол dz сходимости пучка на входе, т. е. угол между V x кросс z z кросс 0 направлением скорости граничного электрона и направлением распространения пучка по оси z. dx p pz tg x z x0 tg z z 2 . dz 2 При tg 0 влетает горизонтальный пучок. Местоположение самого узкого в поперечном размере участка пучка, так называемого «кроссовера» xкр, определяется из условия: dx tg p tg 2 0 , z кросс ; xкросс 2 x | z кросс 2 x0 tg z z 2 2 x0 dz p 2 p При x0 tg 2 2p x кросс 0 . Если до входа в пролетный промежуток пучок прошел через электростатическую линзу при z 0 , которую можно считать тонкой, то tg расстояние. Тогда xz x0 x0 , где f - фокусное f x0 x x2 p z z 2 , z кросс 0 , x кросс 2 x0 20 . f 2 fp f p Цилиндрический пучок. Для цилиндрического пучка, влетающего в пролетный участок параллельно оси z с начальным радиусом r0 теорема Гаусса примет вид 2rE r 4 r 2 . Пусть I j r 2 V r 2 – полный ток пучка, r r0 Vr 0 Vz V0 ускоренного потенциалом U0. Тогда напряженность электрического поля на границе пучка: rmin z кросс кроссовер z Er 2 r 2I . Сила Лоренца, действующая на Vz r заряженную частицу на границе пучка существенно меньше электрической силы: 4 4I 2I rotH j 2rH H ; c c rc FЭ z Fm 2qI q 2q V I Fm Vz H 2 z ; FЭ qE Vz r c r H F FЭ Fm 2qI Vz2 1 2 . Vz r c Уравнение движения в радиальном направлении: Mr q 2I | 2r dt Vz r 4 Iq 4 Iq ln r C . d r2 d ln r ; r 2 M iVz M iVz 1) Возьмем случай r | 0 0 (параллельный пучок) r 2 dz dr dt dz 4iq r ln ; M iV z r0 4 Iq M iV z ln r ; r0 Vz r ; r0 2qU 0 V z Mi 1 q z r r0 2M i 2 d 1 4 ln 3 U0 I 1 r 4 r0 2 1 d ln 1 1 2 I 2 M 4 dz 4 Iq dz ; 3 3 i3 M iVz r0 2 4 q 4U 4 r0 0 . 2) Случай r |0 Vz tg для сходящегося пучка, входящего в пролетный промежуток под углом к оси z r 2 r r0 d 4 Iq r 4 Iq ln V z2 tg 2 z r r0V z , где a , а b Vz2 tg 2 . M iV z r0 M V a ln b i z 1 Положение кроссовера определяется из условия: r 0 . Координата положения кроссовера: z кросс r0V z rmin r0 1 d a ln b определяется из соотношения: rmin .Радиус пучка в наиболее узком месте (в кроссовере) Vz2 tg 2 M i Vz r0 exp rmin 0 никогда. 4 Iq § 7.2. Формирование прямолинейных пучков. Пушки Пирса. При решении задачи получения интенсивных электронных и ионных пучков возникает проблема расхождения пучков под действием собственного объемного заряда. Задачу подбора такой электродной системы, чтобы можно было сформировать параллельный пучок, была впервые сформулирована и решена Пирсом. Впоследствии такие системы получили название пушек Пирса. Рассмотрим плоскую систему. Для одномерного U 0 y z случая ускорения бесконечного потока электронов К на его границе U x, y должно выполняться А y U x Ax 3 . Для двухмерного ленточного пучка 4 x 2U 2U 2 0 x 2 y U 0 y 4 U |0 0 , тогда электродная геометрия y будет преодолевать расталкивающее действие x U x Ax Пучок условию: объемного заряда. При y 0 потенциал U x, y 3 должен удовлетворять уравнению Лапласа: 2U 2U 0. x 2 y 2 Реальная часть любой аналитической функции комплексной переменной f x iy будет удовлетворять как уравнению Лапласа, так и граничному условию, т.к. Re f x iy 1 f x iy f x iy . Учитывая, что при y 0 функция должна 2 удовлетворять условию U x Ax 3 , оправдано взять U x, y Re Ax iy 4 4 3 . Полагая, что потенциал первого электрода равен нулю U x, y 0 , получим профиль первого электрода: z z cos i sin ; y z x zn z n cos n i sin n ; 4 4 4 Re z 3 z 3 cos 0 3 4 ; 3 2 3 . 8 Угол наклона плоскости катода (U = 0) к направлению распространения пучка arctg(y/x) = 3/8 = 67.5о. Полагая потенциал U x, y U a : x 2 y2 4 3 4 cos U a x 2 y 2 3 2 3 4 x cos arctg U a - уравнение для определения 3 y геометрии электродов. § 7.2. Источники ионов Особенности: 1) источником интенсивных потоков ионов может быть только плазма. 2) Положение поверхности, эмитирующей ионы, не фиксировано. 3) Вместе с ионами летят нейтралы. Три способа вытягивания ионов: плазма стенка а) плазма Прямолинейный пучок ионов (не очень +++ интенсивный); U 01 - извлекающий электрод (экстрактор) U0 0 б) + Сфокусированный ионный пучок (для + + + плазма интенсивных потоков). Поверхность плазмы работает как стенка U 02 U 01 0 в) Снижает поток нейтронов (расход газа) плазма ++ + + U 03 Интенсивность пучка характеризуется величиной P I 3 U0 - первеанс пучка. 2 Для сравнения с электронными пучками надо использовать величину эквивалентного I Mi первеанса: P 3 U 0 2 me 1 2 . Так как эффективность отбора ионов с поверхности плазмы влияет на скопление заряда, а значит и на расфокусировку пучка, необходимо обеспечить полный отвод ионов, т.е.: q q kTe 2 j i n0Vi i n0 4 4 Mi 9 3 e U0 2 - это соотношение дает нам d и U 0 для данного Mi d 2 j . Ускоряющий электрод представляет собой диаграмму (отверстие), а значит является так же линзой. Для редких пучков можно поставить на отверстие сетку для снижения расфокусирующей роли диафрагмы. Для плотных пучков приходится использовать фокусирующий электрод после вытягивания. Существует большое множество разнообразных конструкций ионных пушек (ионных источников). В них используются различные способы создания ионов, например, термоионная эмиссия, ионизация газа или паров вещества электронным ударом. Наиболее эффективными источниками ионов являются плазменные, в которых создается газоразрядная плазма, а ионы вытягиваются электрическим полем с ее границы. Примером может служить весьма распространенный источник ионов типа дуоплазматрон в котором электрический разряд формируется между катодом и промежуточным анодом. Коническая форма промежуточного анода приводит к сжатию плазмы в районе выходного отверстия. Неоднородное магнитное поле, создаваемое катушкой между промежуточным анодом и анодом, приводит к дополнительному сжатию плазменной струи. промежуточный электрод +30кВ вытягивающий замедляющая секция электрод i плазма j ~1 мА см 2 i ~ 100эВ катод натекатель газа диафрагма анод электростатическая одиночная линза катушка для создания магнитного поля для сжатия плазменной струи Диафрагма в месте наибольшего сжатия используется для повышения газовой экономичности источника за счет ограничения потока неионизованной компоненты рабочего вещества. Ионы вытягиваются из плазмы электродом, который стоит сразу после анода и на который подается отрицательный относительно анода потенциал. Диафрагма вытягивающего электрода является фокусирующей системой. Кроме того, граница плазмы, из которой вытягиваются ионы, является также электростатической линзой. Форма границы плазмы существенно влияет на расходимость формируемого в ионнооптический системе ионного пучка. Меняя концентрацию плазмы (например, меняя ток разряда) при фиксированном ускоряющем напряжении, можно управлять формой плазменной границы. При большой концентрации плазмы граница выпуклая – пучок сильно расходится. Снижая концентрацию плазмы, можно создать плоскую ее границу, тогда расходимость может быть минимальной, а вытягиваемый из источника ток подчиняется закону «3/2». При дальнейшем уменьшении концентрации плазмы граница становится вогнутой, и расходимость пучка вновь возрастает. Расчет параметров фокусировки пучка с учетом границы плазмы является достаточно сложной задачей и возможен лишь численными методами.