Математика и законы красоты Епихина Елена Вячеславовна , преподаватель ГБПОУ Московский издательско-полиграфический колледж им. И. Федорова, Аннотация Математика не только одна из древнейших и необходимых для прогресса естественных дисциплин, но и красивая наука. Числа, формулы математики, внешне холодные и сухие, полны внутренней красоты. Увидеть эту красоту и передать ее другим, задача нелегкая. Постараемся на примерах показать красоту математики в искусстве и художественной литературе. Математика и искусство "С давних пор человек стремится окружать себя красивыми вещами. Уже предметы обихода жителей древности, которые, казалось бы, преследовали чисто утилитарную цель - служить хранилищем воды, оружием на охоте и т.д., демонстрируют стремление человека к красоте. На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции изучение сущности красоты, прекрасного, сформировалось в самостоятельную ветвь науки - эстетику, которая у античных философов была неотделима от космологии. Тогда же родилось представление о том, что основой прекрасного является гармония. Красота и гармония стали важнейшими категориями познания, в определенной степени даже его целью, ибо в конечном итоге художник ищет истину в красоте, а ученый - красоту в истине. Красота скульптуры, красота храма, красота картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?.....". Золотое сечение или «божественное деление» - это такое деление целого на две неравные части, при котором большая часть AC так относится к целому AB, как меньшая BC к большей AC. AC x AB a 5 1 0.618 2 Отношения частей человеческого тела связывались с формулой золотого сечения. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д. Пропорции “золотого сечения” создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях. Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении “золотого сечения”. Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям. "Золотая пропорция" - это понятие математическое и ее изучение - это прежде всего задача науки. Но она же является критерием гармонии и красоты, а это уже категория искусства и эстетики. Сам термин “золотое сечение” принадлежит Леонардо да Винчи. С тех пор многие шедевры искусства, архитектуры и музыки выполняются при неукоснительном соблюдении золотой пропорции. В геометрии существуют различные способы построения золотой пропорции, причем характерно, что для построения достаточно взять самые простые геометрические фигуры – квадрат или прямоугольный треугольник с соотношением катетов 1:2. Золотое сечение можно увидеть и в пентаграмме - так называли греки звездчатый многоугольник. Он служит символом Пифагорейского союза. Пентаграмма также содержит золотые треугольники – остроугольные с углами 36 , 72 , 72 . Интересен еще один замечательный треугольник, в котором проявляется золотая пропорция. В этом треугольнике углы равны 90° , 54° и 36° , а их отношение составляет 5:3:2. . Математика и литература «Математика и литература…» Это тема возникла не случайно. То, что математики являются не только тонкими ценителями изящной словесности, но и сами зачастую выступают маститыми литераторами, общеизвестно. Достаточно вспомнить математики Оксфордского университета Чарлза профессора Латуиджа Джонсона, который под псевдонимом Льюиса Кэрролла написал знаменитую сказку «Алиса в стране чудес». Говорят, английская королева, любившая «Алису» и попросившая доставить ей все произведения сказочника, была удивлена и расстроена, увидев его многочисленные сочинения по математической логике. Можно вспомнить и профессора математики Кембриджского университета Бертрана Рассела (1872-1970), начинавшего свою научную карьеру с фундаментального трехмерного труда по математической логике и закончившего Нобелевской премией вспомнить скромного русского по литературе (1950). Можно учителя математики Александра Солженицына, ставшего не только гордостью современной русской литературы, но и совестью современной России. Но то, что строгие математические законы часто определяют структуру всего литературного произведения, подчас вызывает удивление даже у профессиональных филологов. Что понимает литература под каждодневными монологами и диалогами? Разумеется, законы формы. Но форма - это порядок, а порядок - это математика. Значит, чем строже литература следует законам формы, тем ярче в ней должны проявляться и законы математики. Александр Сергеевич Пушкин – высочайшая вершина русской литературы. Но величайшие вершины национальных литератур определяют и главный вектор развития мировой литературы. Нас интересует вопрос: определяют ли и если определяют, то в какой степени законы симметрии гармонию пушкинского стиха? Ибо с кого же начинать анализ симметрийных законов поэзии, как не с русского гения Пушкина?! Мы остановимся только на малых поэтических формах в творческом наследии Пушкина. Если такие грандиозные памятники, как «Евгений Онегин», создаются годами, то стихотворение, как правило, пишется под влиянием минут. Стихотворение отражает состояние души поэта «здесь и сейчас», стихотворение «приходит» к поэту, и он едва успевает записать его на бумаге. Поэтому симметрийные законы формы в стихотворении возникают скорее на подсознательном уровне. Золотое сечение в композиции стихотворения проявляется как наличие главного момента стихотворения (кульминации, смыслового перелома, главной мысли или их сочетаний) в строке, приходящейся на точку деления общего числа строк стихотворения в золотой пропорции. Часто национальная кульминация стихотворения является и его главной мыслью, а главная мысль совпадает со смысловым переломом стихотворений, т.е. часто различные функции золотого сечения в стихотворении слиты воедино. При выяснении роли структур зеркальной симметрии и золотого сечения в поэзии Пушкина были изучены стихотворения русского гения за период его творческой биографии с 1813 по 1837 год включительно. Почти все они созданы одновременно, под влиянием какого-либо яркого впечатления, и потому является хорошим материалом для обнаружения корреляции гармонических структур с состоянием души поэта. Но может быть, все эти удивительные примеру из области математики справедливы только для малых художественных форм? Тогда остановимся на величайшем романе в прозе. «Война и мир» Льва Толстого - грандиозный памятник русской и мировой литературы. В произведение изображены широчайшие эпические картины войны русских и французов 1812 года и тончайшие нити переживаний, связующие внутренний мир героев романа. Статьи монографии о «Войне и мире» в сотни раз переросли по объему четыре тома самого произведения. И тем не менее… Никто не замечал, что в самом заглавии романа – «Война и мир» - закодирован закон золотого сечения. В самом деле, название романа построена на первых четырех членах ряда Фибоначчи 1, 2, 3, 5. Один союз, два существительных, три слова. Пять букв в первом ключевом. Отношение ключевых слов 5:3=1,666… есть первое рациональное приближение коэффициента золотого сечения. Золотые пропорции «Войны и мира» родились на подсознательном уровне, значит, Толстой был в состояние охватить внутренним взором весь роман целиком, держать в голове одномоментно всю колоссальную художественную форму! Библиографический список 1. А. Азевич “Двадцать уроков гармонии” –М., “Школа-Пресс”, 1998 2. Н. Васютинский “Золотая пропорция” –М.,”Молодая гвардия”, 1990 3. Д. Пидоу “Геометрия и искусство” – М., “Мир”, 1989 4. Энциклопедический словарь юного математика –М.,1989 5. Журнал “Математика в школе”, 1994, № 2, № 3 6 . 2000г. А. В. Волошинов «Математика и искусство», Просвещение,