Получены новые результаты старого эксперимента Стэнли Миллера Последователи Стэнли Миллера, поставившего в 50-х годах знаменитые опыты по имитации синтеза органики в первичной атмосфере Земли, вновь обратились к результатам старых экспериментов. Оставшиеся от тех лет материалы они исследовали новейшими методами. Выяснилось, что в экспериментах, имитировавших вулканические выбросы парогазовой смеси, синтезировался широкий спектр аминокислот и других органических соединений. Их разнообразие оказалось больше, чем это представлялось в 50-е годы. Этот результат акцентирует внимание современных исследователей на условиях синтеза и накопления первичной высокомолекулярной органики: синтез мог активизироваться в районах извержений, а вулканические пеплы и туфы могли стать резервуаром биологических молекул. Вулканические выбросы и разряды молний — условия самопроизвольного синтеза разнообразных биологических молекул. Фото извержения вулкана в Исландии с сайта www.thunderbolts.info В мае 1953 года в журнале Science были опубликованы результаты знаменитого эксперимента по синтезу высокомолекулярных соединений из метана, аммиака и водорода под действием электрических разрядов (см. Stanley L. Miller. A Production of Amino Acids Under Possible Primitive Earth Conditions (PDF, 690 Кб) // Science. 1953. V. 117. P. 528). Установка для опытов представляла собой систему колб, в которых циркулировал водяной пар. В большой колбе на вольфрамовых электродах генерировался электрический разряд. Опыт длился неделю, по истечении которой вода в колбе приобрела желто-коричневый оттенок и стала маслянистой. Слева: аппарат Стэнли Миллера для опытов с электрическими разрядами в горячем паре. Справа: схема аппарата. Выбросы пара через форсунку должны имитировать парогазовые смеси при вулканических извержениях. Изображения из обсуждаемых статей в Science Миллер анализировал состав органики с помощью бумажной хроматографии — метода, тогда только вошедшего в обиход биологов и химиков. Миллер обнаружил в растворе глицин, аланин и другие аминокислоты. В то же самое время подобные опыты проводились Кеннетом Алфредом Уайлдом (см. Kenneth A. Wilde, Bruno J. Zwolinski, Ransom B. Parlin. The Reaction Occurring in CO2–H2O Mixtures in a High-Frequency Electric Arc (PDF, 380 Кб) // Science. 10 July 1953. V. 118. P. 43–44) с той разницей, что вместо смеси газов с восстановительными свойствами в колбе был углекислый газ — окислитель. В отличие от Миллера, Уайлд не получил никаких значимых результатов. Миллер и вслед за ним многие ученые исходили из восстановительной, а не окислительной атмосферы в начале существования Земли. Логическая цепочка их рассуждений была такой: мы стоим на позициях, что жизнь зародилась на Земле; для этого нужны были органические вещества; они должны были быть продуктом земного синтеза; если в восстановительной атмосфере синтез идет, а в окислительной — не идет, значит первичная атмосфера была восстановительной. Помимо гипотезы восстановительной атмосферы на ранней Земле, миллеровские опыты доказывают еще и принципиальную возможность самопроизвольного синтеза необходимых биологических молекул из простых составляющих. Эта гипотеза получила серьезное подкрепление после опыта Хуана Оро (Joan Oró; см. J. Oró. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions // Nature. 16 September 1961. V. 191. P. 1193–1194), который в 1961 году в установку Миллера ввел синильную кислоту и на выходе получил нуклеотид аденин — одно из четырех оснований молекул ДНК и РНК. Возможность самопроизвольного синтеза высокомолекулярной органики, включая нуклеотиды и аминокислоты, стала мощной опорой теории Опарина о самозарождении жизни в первичном бульоне. После этих экспериментов прошла целая биологическая эпоха. Отношение к теории первичного бульона стало более настороженным. В течение прошедшего полстолетия ученые не могли придумать механизма избирательного синтеза хиральных молекул в неживой природе и наследования этого механизма в живых организмах. Идея восстановительной атмосферы на ранней Земле тоже была подвергнута решительной критике. Не появилось решения главного вопроса: как из неживых молекул сложилось самовоспроизводящееся живое существо? Появились аргументы для теории внеземного происхождения жизни. Однако в последние годы ученые достигли ощутимых успехов в развитии теории зарождения жизни из неорганической материи. Основные достижения в этом направлении — это, во-первых, открытие роли РНК в становлении биоорганического катализа; теория РНК-мира приближает нас к ответу на вопрос, как из неживой органики сложились живые системы. Во-вторых, открытие каталитических функций неорганических природных минералов в реакциях высокомолекулярного органического синтеза, доказательство важнейшей роли катионов металлов в метаболизме живого. Втретьих, доказательство избирательного синтеза хиральных изомеров в естественных земных условиях (см. например, Открыт новый способ получения органических молекул», «Элементы», 06.10.2008). Иными словами, теория абиогенеза получила новые обоснования. С этих позиций интересны результаты переизучения материалов, оставшихся от старых экспериментов Миллера, до сих пор хранившихся, как это ни странно, в запечатанных колбах в его лаборатории. В 50-е годы Стэнли Миллер поставил три эксперимента, имитировавших различные варианты условий зарождения жизни. Самый известный из них, вошедший во все школьные учебники, — это образование биомолекул при пропускании через пар электрических разрядов. Колба моделировала условия испарения вод над океаном во время гроз. Второй — образование биомолекул при слабой ионизации газов — при так называем тихом разряде. Это была модель ионизированной, насыщенной паром атмосферы ранней Земли. В третьем эксперименте пар подавался под большим давлением, поступая в колбу в виде мощных струй, через которые пропускали, как и в первом случае, электрические разряды. Этот случай имитировал вулканические выбросы и образование горячих вулканических аэрозолей. Биологи опирались на результаты только первого, наиболее удачного опыта, потому что в остальных двух опытах синтезировалось мало органики и разнообразие аминокислот и других соединений было невелико. Новые результаты анализа опыта Миллера с выбросами пара. Подчеркнуты аминокислоты, не обнаруженные Миллером. Обозначения аминокислот стандартные. Рис. из обсуждаемой статьи в Science The Miller Volcanic Spark Discharge Experiment Переизучение этих материалов после смерти Миллера в 2007 году взяли на себя специалисты из Америки и Мексики — из Индианского университета (Блумингтон), Института Карнеги (Вашингтон), Отдела исследования Солнечной системы Центра космических полетов имени Годдарда (Гринбелт), Океанографического института Скриппса (Ла-Холья, Калифорния) и Независимого мексиканского университета (Мехико). В их распоряжении оказались 11 колб, соответствующим образом промаркированных Миллером. Все они содержали высушенные материалы третьего эксперимента, того, который имитировал вулканические выбросы. Ученые развели осадок дистиллированной водой и проанализировали смесь, теперь уже с помощью высокоэффективной жидкостной хроматографии и масс-спектрометрии. Современные методы выявили высокое разнообразие «биологических» молекул. Оно оказалось даже выше, чем в первом эксперименте. Очевидно, что методы бумажной хроматографии менее чувствительны, чем жидкостной, поэтому теперь выявились и те соединения, которые присутствовали в малых концентрациях. Новые результаты старого опыта будут, по-видимому, приняты к сведению биохимиками, микробиологами и вулканологами. Вулканические выбросы представляют собой аэрозоли, состоящие на 96-98% из воды и содержащие аммиак, азот, угарный газ, метан. В вулканических выбросах всегда в большой концентрации присутствуют соединения металлов — железа, марганца, меди, цинка, никеля и др., которые участвуют в ферментативных реакциях в живых системах. Вулканические пеплы и туфы, как показали многочисленные эксперименты, стимулируют рост и анаэробной, и аэробной микрофлоры. При этом в среду для культивирования даже не обязательно добавлять различные жизненно необходимые элементы — бактерии их сами добудут из нее. В древнейшие времена дополнительный синтез органики мог косвенно способствовать росту жизни на изверженных субстратах. Кроме того, химия аэрозолей — это малоизученная область, поэтому тем более интересен результат аэрозольного синтеза высокомолекулярных биологических молекул. В этом смысле химики и вулканологи могут привнести весомый вклад в обсуждение проблемы зарождения земной жизни. Авторы сообщения замечают, что версия о восстановительной атмосфере ранней Земли сейчас находится под сомнением. Однако вулканические выбросы и грозы — это постоянное явление на Земле, в древнейшие эпохи интенсивность и того и другого была предположительно выше, чем в современном мире. Поэтому, какой бы ни была атмосфера на архейской и протерозойской Земле, извержения вулканов всегда создают условия для синтеза биологических молекул. Источники: 1) Adam P. Johnson, H. James Cleaves, Jason P. Dworkin, Daniel P. Glavin, Antonio Lazcano, Jeffrey L. Bada. The Miller Volcanic Spark Discharge Experiment // Science. 17 October 2008. V. 322. P. 404. DOI: 10.1126/science.1161527. 2) Jeffrey L. Bada, Antonio Lazcano. Prebiotic Soup—Revisiting the Miller Experiment // Science. 2 May 2003. V. 300. P. 745–746. DOI: 10.1126/science.1085145. См. также: В. Н. Пармон. Новое в теории появления жизни, «Химия и жизнь» №5, 2005.