МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА по дисциплине МАТЕМАТИКА Специальность: Антикризисное управление 0. Таблица соответствия разделов учебной программы и электронных учебников Название ЭУМК Раздел №. Название Раздел 1. Линейная алгебра с элементами аналитической геометрии Линейная алгебра и геометрии Раздел 2. Математический анализ Математический анализ Раздел 3. Теория вероятностей и математическая статистика Теория вероятностей и математическая статистика Раздел 4. Экономико-математические методы Экономико-математические методы Раздел 5. Дискретная математика Дискретная математика I. Целевая установка и организационно-методические указания Основной целью дисциплины является изучение основ высшей математики и развитие у студентов навыков математического мышления, необходимых для анализа и моделирования систем, процессов и структур в экономике. Фундаментальность математической подготовки определяет квалификацию специалистов, владеющих математическими методами анализа экономических систем и поиска оптимальных решений практических задач. Изучение математики способствует формированию личности обучаемого как специалиста в экономике и управлении, развивает его интеллект и способность к логическому и конструктивному мышлению. В результате изучения дисциплины выпускник должен быть подготовлен к: пониманию тех разделов общепрофессиональных и специальных дисциплин, фундаментальное изложение которых требует использования математического языка, аппарата и методов; применению математических методов при анализе заданных экономических, финансовых и управленческих моделей; выбору математических моделей экономических и организационных систем, анализу их адекватности, проведению элементов адаптации моделей к конкретным содержательным задачам; использованию комплекса средств математической поддержки принятия оптимальных управленческих, экономических и других решений. В результате изучения учебной дисциплины выпускники должны: ЗНАТЬ: основы основы основы основы основы алгебры и геометрии; математического анализа; теории вероятностей и математической статистики; теории экономико-математических методов; теории дискретной математики. УМЕТЬ и ИМЕТЬ НАВЫК: 1 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE решения типовых задач в пределах изучаемого программного материала; употребления математического языка и символики для выражения количественных и качественных отношений объектов; использования основных приемов обработки экспериментальных данных; решения практических задач математическими методами; самостоятельной работы с учебно-методической литературой и электронными учебнометодическими комплексами. БЫТЬ ОЗНАКОМЛЕНЫ: с местом и ролью математики в современном мире; с основными математическими структурами и методами; с принципами математических рассуждений и математических доказательств; с примерами математического моделирования. Необходимый предшествующий уровень образования студента, приступающего к изучению дисциплины «Математика» – среднее (полное) общее образование. Перспективные учебные дисциплины, при изучении которых может быть востребована часть знаний и навыков, приобретенных студентами в процессе изучения дисциплины «Математика»: экономическая теория, маркетинг, статистика, бухгалтерский учет, аудит, мировая экономика, финансы организаций (предприятий), финансовый менеджмент, налоги и налогообложение, инвестирование. Учебная дисциплина «Математика» состоит из 5 разделов и 48 тем. Дисциплина читается с первого по четвертый семестр. В первом и втором семестрах два раздела дисциплины – «Математический анализ» и «Элементы линейной алгебры и аналитической геометрии» изучаются параллельно. Это позволяет, в частности, своевременно подготовить студентов к изучению основ экономической теории. Согласованность содержания соответствующих разделов учебной программы, а также календарно-тематических планов, обеспечивает комплексную и системную математическую подготовку студентов. В третьем и четвертом семестрах параллельно изучаются разделы «Теория вероятностей и математическая статистика», «Экономико-математические методы». В четвертом семестре изучается раздел «Дискретная математика». Методические рекомендации для преподавателей: Фундаментальность обучения реализуется путем тщательного отбора учебного материала в соответствии с классическими и современными результатами в области прикладной математики. Специфика подготовки студентов по специальности учитывается подбором примеров и приложений экономического и финансового содержания. Основными видами занятий при изучении дисциплины «Математика» являются: лекции, практические занятия, семинары, лабораторные работы и самостоятельные занятия. Лекции обеспечивают теоретическое изучение дисциплины и являются важнейшим видом учебных занятий. На лекциях излагается основное содержание курса, проводится анализ основных математических понятий и методов, доказываются теоремы, следствия, решаются примеры и обсуждаются возможные приложения математических методов в экономическом анализе. На практических занятиях (семинарах) обучаемые овладевают основными методами и приемами самостоятельного решения математических задач, методами декомпозиции сложных задач и проведения исследований в группе, а также получают разъяснения теоретических положений курса. Так как в дисциплине большое внимание уделяется самостоятельной работе (прил. 1), то следует рекомендовать студентам методические материалы, имеющиеся в электронной библиотеке МБИ и в Библиотечно-информационном центре института. Необходимо подчеркнуть, что для студентов проводятся индивидуальные консультации по расписанию, каждому студенту при необходимости могут быть выданы индивидуальные задания на самостоятельную работу, позволяющие углубленно изучить отдельные темы дисциплины. Преподаватель на практических занятиях контролирует знания обучаемых по теоретическому материалу, изложенному на лекциях, и результаты самостоятельного решения задач, как в часы аудиторных занятий, так и во время самостоятельной работы. 2 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Лабораторные работы по дисциплине «Математика» развивают у обучаемых навыки проведения исследований с применением математических моделей, правильной организации вычислений и умение пользоваться современными программными средствами при решении математических задач. Система контрольных мероприятий должна обеспечивать объективную оценку знаний и навыков студентов, способствовать повышению эффективности всех видов учебных занятий, включая и самостоятельную работу. Формы текущего промежуточного и итогового контроля: Система контрольных мероприятий включает в себя: опрос обучаемых на практических занятиях; коллоквиум; проверку выполнения текущих заданий; проверку и оценку результатов самостоятельной работы обучаемых под руководством преподавателя; контрольные и лабораторные работы; тесты; зачеты и экзамены. Промежуточная аттестация проводится в середине каждого учебного семестра в соответствии с графиком учебного процесса. По учебному материалу каждого семестра студенты сдают экзамен или зачет в соответствии с действующим учебным планом. При проведении компьютерного тестирования и коллоквиумов может быть использована интерактивная образовательная среда МБИ «Виртуальный университетский комплекс СанктПетербурга (ВУОКСа)». Методические указания студентам: Методические указания студентам различных форм обучения представлены в комплекте методических материалов, разработанных на кафедре для изучения дисциплины, в том числе в таких элементах электронного учебно-методического комплекса (ЭУМК) как методические рекомендации по изучению дисциплины (составляются отдельно по различным формам обучения), практикум, методические рекомендации по выполнению курсовых работ, методические рекомендации по выполнению контрольных работ. Эти методические рекомендации раскрывают рекомендуемый режим и характер различных видов учебной работы (в том числе самостоятельной работы) с учетом специфики выбранной студентом формы обучения (очная, очно-заочная, заочная с применением дистанционных технологий, и т. д.). Студентам рекомендуется получить в Библиотечно-информационном центре института учебную литературу по дисциплине, необходимую для эффективной работы на всех видах аудиторных занятий, а также для самостоятельной работы по изучению дисциплины. В часы самостоятельной работы студентам рекомендуется активно использовать ЭУМК по дисциплине (особенно такие его элементы как практикумы, тесты и тьюторы). Необходимо подчеркнуть, что студентам всех форм обучения предоставляется в достаточном объеме возможность для самостоятельной работы в компьютерных классах современного Центра информационных технологий МБИ. Наиболее общие методические рекомендации по контролируемой самостоятельной работе студентов приведены в Приложении 1 к настоящей программе. II. Содержание дисциплины, структурированное по видам учебных занятий с указанием их объемов. Распределение учебного времени по семестрам, темам и видам учебных занятий (при очной форме обучения), с указанием контрольных работ. 3 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Раздел 1. Линейная алгебра с элементами аналитической геометрии 1 семестр Тема 1.1. Векторные (линейные) пространства. (лекции –6 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Свободные геометрические векторы. Линейные операции над векторами. Понятие линейного пространства и подпространства. Линейная зависимость и независимость систем векторов. Свойства. Теорема о линейной зависимости линейных комбинаций. Базис и ранг системы векторов. Свойства базиса. Тема 1.2 Матрицы и определители. (лекции – 6 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Матрицы и линейные операции над ними. Умножение матриц, свойства. Определители квадратных матриц: свойства, методы вычисления. Обратная матрица. Ранг матрицы. Квадратичная форма и ее матрица. Знакоопределенные квадратичные формы. Критерии знакоопределенности квадратичных форм. КР по алгебре № 1 Тема 1.3. Решение систем линейных алгебраических уравнений. (лекции – 6 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Системы линейных алгебраических уравнений. Условия совместности и определенности. Метод Гаусса решения систем линейных уравнений. Структура общего решения однородной системы линейных уравнений. Структура общего решения неоднородной системы линейных уравнений. Квадратные системы линейных уравнений. Теорема Крамера. Тема 1.4. Аффинные системы координат. (лекции – 4 ч., практические занятия – 2 ч., самостоятельная работа – 2 ч.) Связь между векторным и точечным пространством. Декартова прямоугольная система координат. Связь между координатами точки в различных системах координат. Скалярное произведение геометрических векторов. Скалярное произведение, норма и расстояние в вещественном n-мерном пространстве. Представление о векторном и смешанном произведении векторов. Задание линий с помощью уравнений. КР по алгебре № 2 Тема 1. 5. Прямые и плоскости. 4 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE (лекции – 6 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Прямые на плоскости. Различные формы уравнений. Взаимное расположение прямых на плоскости. Расстояние от точки до прямой. Геометрический смысл неравенств первой степени. Плоскости в пространстве. Различные формы уравнений. Взаимное расположение плоскостей. Расстояние от точки до плоскости. Прямые в пространстве. Параметрические, канонические и общие уравнения прямой. Взаимное расположение прямых в пространстве. Отрезок в пространстве. КР по алгебре № 3 2 семестр Тема 1.6. Комплексные числа. Многочлены. (лекции – 8 ч., практические занятия – 6 ч., самостоятельная работа – 4 ч.) Бином Ньютона. Определение комплексных чисел и их свойства. Тригонометрическая форма записи комплексного числа. Теорема о произведении и частном. Формула Муавра. Извлечение корня из комплексного числа. Операции с многочленами. Теоремы о корне и об остатке. Исследование алгебраического уравнения n-й степени с одним неизвестным. Основная теорема алгебры и некоторые следствия из нее. Число вещественных корней многочлена. Разложение многочлена на множители. Тема 1.7. Рациональные дроби. (лекции – 3 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Дробно-рациональные функции. Выделение целой части рациональной дроби. Разложение правильной дроби на простейшие. Метод неопределенных коэффициентов. Метод вычеркивания. КР по алгебре № 4 Тема 1.8. Кривые второго порядка. (лекции – 5 ч., практические занятия – 4 ч., самостоятельная работа – 3 ч.) Геометрическая интерпретация множества решений алгебраического уравнения второго порядка относительно двух неизвестных. Окружность. Эллипс. Гипербола. Парабола. Определение типа линии по заданному алгебраическому уравнению второго порядка. Представление о поверхностях второго порядка. Тема 1.9. Элементы многомерной геометрии. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 3 ч.) Линейная оболочка векторов. 5 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Понятие многомерной плоскости. Параметрическое и неявное уравнение многомерной плоскости. Гиперплоскость. Взаимное расположение гиперплоскостей. Прямая в R n. Взаимное расположение прямых. Отрезок в R n. Выпуклые множества. Понятие выпуклого многогранника. КР по алгебре № 5 Тема 1.10. Линейные операторы. (лекции – 4 ч., практические занятия – 2 ч., самостоятельная работа – 2 ч.) Линейный оператор и линейное преобразование. Примеры линейных операторов. Ядро и образ линейного оператора, их свойства. Матрица линейного преобразования. Собственные значения и собственные векторы. Тема 1.11. Векторные функции скалярного аргумента. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Понятие векторной функции скалярного аргумента. Годограф. Пример построения кривой "доход – потребление" (функция полезности Кобба-Дугласа). Непрерывность и производная вектор-функции. Параметрическое задание кривой в R n. Гладкая кривая. Уравнение касательной к гладкой кривой. Длина дуги гладкой кривой. КР по алгебре № 6 Раздел 2. Математический анализ. 1 семестр Тема 2.1. Множества и функции (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 3 ч.) Множества и операции над ними. Числовые множества. Понятие окрестности точки. Ограниченные множества. Точные грани множества. Числовые функции одной переменной. Способы задания функций. Свойства функций (монотонность, четность, периодичность). Сложная функция. Обратная функция. Функция, заданная параметрически. Основные элементарные функции и их графики. Класс элементарных функций Тема 2.2. Предел и непрерывность функции одной переменной (лекции – 10 ч., практические занятия – 10 ч., самостоятельная работа – 6 ч.) Числовая последовательность и ее предел. Бесконечно малые последовательности. последовательности и их свойства. Основные теоремы о свойствах сходящихся последовательностей. Предел функции. Свойства функций, имеющих конечный предел. Основные теоремы о пределах. 6 Бесконечно большие МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Бесконечно малые и бесконечно большие функции. Замечательные пределы, число “е”. Сравнение функций. Таблица эквивалентных бесконечно малых функций. Непрерывные функции и их свойства. Классификация точек разрыва. Непрерывность элементарных функций. Свойства функций, непрерывных на множестве. Ограниченность функции на множестве. Точные грани. Теоремы Вейерштрасса. Простейшие методы приближенного решения уравнений. Задача интерполирования функции. КР по математическому анализу № 1 Тема 2.3. Дифференциальное исчисление функции одной переменной (лекции – 8 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Производная функции, ее геометрический смысл. Простейшие правила дифференцирования. Дифференцирование сложной и обратной функций . Дифференциал функции, приращением функции. инвариантность формы дифференциала, его связь с Дифференцирование функции, заданной параметрически. Эластичность функции в точке, ее связь с производной. Примеры анализа прямой эластичности спроса по цене. Производные высших порядков. Теоремы Ферма, Ролля, Лагранжа. Правило Лопиталя. Сравнение скорости роста показательной, степенной и логарифмической функций. Формула Тейлора. Остаточный член в форме Лагранжа и Пеано. Формула Маклорена. Примеры разложения функций по формуле Маклорена. КР по математическому анализу № 2 Тема 2.4. Использование производных для исследования функции и построения ее графика (лекции – 4 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Монотонность функции. Точки экстремума. Наибольшее и наименьшее значения функции на множестве. Выпуклые множества и функции. Точки перегиба. Вертикальные и наклонные асимптоты графика функции. Схема исследования функции одной переменной и построения графика КР по математическому анализу № 3 2 семестр Тема 2.5. Дифференциальное исчисление функций нескольких переменных (лекции – 8 ч., практические занятия – 10 ч., самостоятельная работа – 7 ч.) Множества в пространстве R n: замкнутые, ограниченные, связные, выпуклые. Понятие функции нескольких переменных. Экономические примеры. Предел и непрерывность функции нескольких переменных. 7 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Частные производные и эластичность функции нескольких переменных. Экономический смысл понятия эластичности. Дифференцируемые функции нескольких переменных. Полный дифференциал и его связь с приращением функции. Частные производные сложной функции. Производные неявной функции. Элементы векторного анализа и теории поля: множества и линии уровня функции нескольких переменных, производная по направлению, градиент. Выпуклость функции нескольких переменных. Экстремумы функции многих переменных. Условный экстремум. Метод Лагранжа. Наибольшее и наименьшее значение функции. Однородные функции. Представление о методе наименьших квадратов. КР по математическому анализу № 4 Тема 2. 6. Неопределенный интеграл (лекции – 6 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Понятие первообразной и неопределенного интеграла и их свойства. Основные методы интегрирования: замена переменной и интегрирование по частям. Интегрирование рациональных функций. Интегрирование некоторых классов функций, содержащих иррациональность. Тема 2.7. Определенный интеграл. (лекции – 8 ч., практические занятия – 6 ч., самостоятельная работа - 4 ч.) Определение определенного интеграла, его геометрический смысл. Основные свойства определенного интеграла. Интеграл с переменным верхним пределом. Теорема Ньютона – Лейбница. Основные методы вычисления интегрирование по частям. определенных интегралов: замена переменной и Использование определенного интеграла для вычисления площадей плоских фигур. Несобственные интегралы и признаки их сходимости. Примеры использования определенного интеграла в экономических задачах. Приближенное трапеций. вычисление определенного интеграла. Методы прямоугольников и КР по математическому анализу № 5 Тема 2.8. Обыкновенные дифференциальные уравнения (лекции – 8 ч., практические занятия – 8 ч., самостоятельная работа – 4 ч.) Основные определения. Дифференциальные уравнения первого порядка. Существование и единственность решения задачи Коши. Дифференциальные уравнения с разделенными и разделяющимися переменными. Однородные дифференциальные уравнения первого порядка. Линейные дифференциальные уравнения первого порядка. 8 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Дифференциальные уравнения второго порядка, допускающие понижение порядка. Линейные дифференциальные коэффициентами. уравнения высших порядков с постоянными Использование дифференциальных уравнений в экономических задачах. Приближенное решение задачи Коши для дифференциального уравнения первого порядка методом Эйлера. Тема 2.9. Числовые и функциональные ряды (лекции – 8 ч., практические занятия – 8 ч., самостоятельная работа - 4 ч.) Определение числового ряда. Сходящиеся и расходящиеся ряды. Гармонический и геометрический ряд. Необходимый признак сходимости ряда. Анализ сходимости рядов с положительными членами. Абсолютная и условная сходимость знакопеременных рядов. Признак Лейбница. Степенные ряды. Теорема Абеля. Радиус, интервал и область сходимости степенного ряда. Ряды Тейлора, Маклорена. Разложение функций в степенные ряды. Примеры использования рядов в экономических исследованиях. Применение рядов в приближенных вычислениях. КР по математическому анализу № 6 Раздел 3. Теория вероятностей и математическая статистика. 3 семестр Тема 3.1.Случайные события. Вероятностное пространство. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа – 1 ч.) Введение. Случайные события и операции над ними. Классическое определение вероятности. Основные формулы комбинаторики. Статистическое определение вероятности, частота и вероятность. Тема 3.2. Основные формулы теории вероятностей. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Теоремы сложения. Условные вероятности. Теорема умножения. Полная вероятность. Формула Байеса. Тема 3.3. Повторные независимые испытания. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа – 2 ч.) Схема Бернулли. Теоремы Муавра-Лапласа. Теорема Пуассона. КР по теории вероятностей и математической статистике № 1 9 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Тема 3. 4. Дискретные случайные величины. (лекции – 4 ч., практические занятия – 6 ч., самостоятельная работа – 2 ч.) Дискретные случайные величины и их распределения. Числовые характеристики дискретных случайных величин. Стандартные дискретные распределения. Тема 3. 5. Непрерывные случайные величины. (лекции – 6 ч., практические занятия – 6 ч., самостоятельная работа – 2 ч.) Непрерывные случайные величины и их распределения. Функция распределения, плотность распределения. Числовые характеристики непрерывных случайных величин. Стандартные распределения. Нормальное распределение, экспоненциальное распределение, Парето распределение. Функции от случайных величин. КР по теории вероятностей и математической статистике № 2 Тема 3.6. Предельные теоремы. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа – 2 ч.) Неравенство Чебышева. Закон больших чисел. Центральная предельная теорема. Тема 3.7. Цепи Маркова и их использование в моделировании социально-экономических процессов. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа – 1 ч.) Случайные процессы. Цепь Маркова. Состояния. Матрица вероятностей переходов. Обзор использования марковских цепей для моделирования социально-экономических процессов. Тема 3.8. Условные распределения случайных величин. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Системы случайных величин. Корреляция. Условное распределение. Регрессия. КР по теории вероятностей и математической статистике № 3 Тема 3.9. Выборочный метод. (лекции – 4 ч., практические занятия – 6 ч., самостоятельная работа – 2 ч.) Генеральная совокупность и выборка. Выборочный метод. Статистическое распределение выборки. Элементы теории корреляции. 10 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE 4 семестр Тема 3.10. Статистическое оценивание. (лекции – 8 ч., практические занятия – 8 ч., самостоятельная работа - 3 ч.) Статистическое оценивание. Точечные и интервальные оценки параметров. Метод максимального правдоподобия. Метод моментов. Контрольная лабораторная работа по теории вероятностей и математической статистике № 4 Тема 3.11. Проверка гипотез. (лекции – 8 ч., практические занятия – 6 ч., самостоятельная работа - 3 ч.) Критерии согласия (Пирсона, Колмогорова). Основные распределения математической статистики. Проверка гипотез о параметрах нормального распределения. Использование статистических таблиц (стандартное нормальное распределение, критические точки распределения Стьюдента, критические точки распределения хи-квадрат, критические точки распределения Фишера-Снедекора). Контрольная лабораторная работа по теории вероятностей и математической статистике № 5 Раздел 4. Экономико-математические методы. 3 семестр Тема 4.1. Общее представление об экономико-математических методах. (лекции – 2 ч., практические занятия – 0 ч., самостоятельная работа – 1 ч.) Понятие предмета исследований. Системный подход. Моделирование и его этапы. Классификация задач и экономико-математических методов. Тема 4.2. Введение в линейное программирование. (лекции – 4 ч., практические занятия – 8 ч., самостоятельная работа – 2 ч.) Основные области применения и проблемные ситуации. Задача линейного программирования. Правила построения модели. Геометрический метод решения. Анализ оптимального решения на чувствительность. Тема 4.3. Симплекс-метод решения задачи линейного программирования. (лекции – 6 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Стандартная и каноническая формы записи задачи линейного программирования. Эквивалентные преобразования. Базисные решения систем линейных уравнений. 11 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Алгоритм симплекс-метода решения задачи линейного программирования. Геометрическая интерпретация. Прямая и двойственная задачи линейного программирования. Свойства. Теоремы двойственности и равновесия в линейном программировании. Контрольная лабораторная работа по экономико-математическим методам № 1 Тема 4.4. Сетевые модели. Целочисленное программирование. (лекции – 6 ч., практические занятия – 6 ч., самостоятельная работа – 2 ч.) Понятие плоского графа. Ориентированные и неориентированные графы. Понятия пути и цикла в графе. Дерево. Понятие сети. Сетевые графики. Сети Петри. Транспортная задача. Методы решения транспортных моделей. Распределительная задача. Задача о назначениях. Построение максимального потока в сети с заданными пропускными способностями. Задача о кратчайшем пути. 4 семестр Тема 4.5. Дискретное программирование. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Постановка задачи дискретного программирования. Метод ветвей и границ. Эйлеровы и гамильтоновы графы. Задача о коммивояжере и ее решение методом ветвей и границ. Тема 4.6. Нелинейное программирование. (лекции – 6 ч., практические занятия – 8 ч., самостоятельная работа – 2 ч.) Постановка задачи нелинейного программирования. Примеры нелинейных задач. Безусловный и условный экстремум. Теорема Лагранжа. Выпуклые множества. Выпуклые и вогнутые функции. Теорема Куна–Таккера. Различные виды условий Куна–Таккера. Задача с линейными ограничениями. Оптимальный портфель ценных бумаг. Модель Марковица. Простейшая модель управления запасами. Величина экономичного размера заказа. Модель с ограничением на площадь складирования. 12 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE КР по экономико-математическим методам № 2 Тема 4.7. Динамическое программирование. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Понятие многошагового процесса. Рекуррентные соотношения. Задача дискретного оптимального управления. Принцип оптимальности Беллмана. Рекуррентные уравнения Беллмана. Обоснование. Решение уравнения Беллмана. Алгоритмы прямой и обратной прогонки. Решение задачи о кратчайшем пути и модели распределения ресурсов. Марковский процесс. Марковский процесс принятия решений. Тема 4.8. Многокритериальная оптимизация. (лекции – 4 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Постановка задачи многокритериальной оптимизации. Проблема оптимальности. Оптимальность по Парето. Арбитражные схемы. Целевое программирование. Многокритериальное линейное программирование. КР по экономико-математическим методам № 3 Тема 4.9. Элементы теории принятия решений. (лекции – 2 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Основные элементы задачи принятия решений. Классификация задач принятия решений. Принятие решений в условиях риска. Метод дерева решений. Принятие решений в условиях неопределенности (игры с природой). Критерии принятия решений. Тема 4.10. Некооперативные игры. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа – 2 ч.) Понятие игры в нормальной форме. Классификация игр. Равновесие по Нэшу. Оптимальность по Парето. Примеры теоретико-игрового анализа. Недостатки концепции равновесия по Нэшу. Тема 4.11. Матричные игры. (лекции – 6 ч., практические занятия – 4 ч., самостоятельная работа – 2 ч.) Понятие матричной игры. Игры с природой. 13 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Максиминные и минимаксные стратегии. Теорема об оптимальных стратегиях. Смешанные стратегии. Смешанное расширение матричной игры. Существование решения матричной игры в смешанных стратегиях. Применение методов линейного программирования к решению матричных игр. Свойства оптимальных смешанных стратегий. Графический метод решения матричных игр с двумя стратегиями у одного из игроков. КР по экономико-математическим методам № 4 Тема 4.12. Кооперативные игры. (лекции – 4 ч., практические занятия – 0 ч., самостоятельная работа - 1ч.) Игра в форме характеристической функции. Дележ кооперативной игры. Доминирование дележей. C-ядро кооперативной игры. Вектор Шепли. 4 семестр Раздел 5. Дискретная математика. Тема 5.1. Множества и отношения. (лекции – 4 ч., практические занятия – 2 ч., самостоятельная работа - 2 ч.) Операции над множествами. Алгебра подмножеств. Сравнение множеств. Представление множества в ЭВМ. Генерация всех подмножеств универсума. Прямое произведение множеств. Отношения и их свойства. Представление отношений в ЭВМ. Тема 5.2. Логические исчисления. (лекции – 4 ч., практические занятия – 6 ч., самостоятельная работа - 3 ч.) Логические операции над высказываниями и их свойства. Логическое следование и логическая эквивалентность. Понятие формальной теории. Исчисление высказываний. Исчисление предикатов. Тема 5.3. Элементы теории графов. (лекции – 2 ч., практические занятия – 4 ч., самостоятельная работа - 2 ч.) Определение графов. Представление графов в ЭВМ. Матрицы смежности и инциденций графов. Изоморфизм графов. Связность графа. 14 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE Использование степеней матрицы смежности для исследования связности графа. Деревья и их свойства. Опорное дерево. Тема 5.4. Элементы комбинаторики. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа - 2 ч.) Две основные задачи комбинаторики. Комбинаторные конфигурации. Алгоритмы генерации перестановок. Принцип включения и исключения. Тема 5.5. Элементы теории нечетких множеств. (лекции – 2 ч., практические занятия – 2 ч., самостоятельная работа - 1 ч.) Нечеткие множества и операции над ними. Понятие о нечетких алгоритмах и теории неопределенностей. Нечеткий логический вывод. КР по дискретной математике № 1 Бюджет времени, отводимый на изучение дисциплины, составляет 600 часов. В том числе (при очной форме обучения): лекции 230; практические занятия 240; самостоятельная работа 130. III. Учебно-методическое обеспечение дисциплины. Основная литература: 1. Электронный учебно-методический комплекс по дисциплине. 2. Высшая математика для экономистов / под ред. Н.Ш.Кремера. – М.: Юнити, 2005, 2003, 2000. 3. Теория вероятностей и математическая статистика / под ред. Н.Ш.Кремера. - М.: ЮНИТИ, 2004. 4. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2005 5. Общий курс высшей математики для экономистов / под ред. В.И.Ермакова. – М.: ИНФРАМ, 2005. 6. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 2005, 2003, 2002, 1997. 7. Кузютин В.Ф., Зенкевич Н.А., Еремеев В.В. Геометрия. – СПб.: Лань, 2003. 8. Буре В.М., Кирпичников Б.К., Евсеев Е.А. Лекции по теории вероятностей и математической статистике. – СПб.: Изд-во МБИ, 2004, 2000. 9. Зенкевич Н.А., Евсеев Е.А., Лукьянова А.Е., Смирнова Е.Л. Конспект лекций по математическому анализу для экономистов и менеджеров. – СПб.: Изд-во МБИ, 2002. 10. Кузютин Д.В., Культина М.В., Вишнякова Е.В. Алгебра векторов и матриц. Элементы аналитической геометрии. – СПб.: Изд-во МБИ, 2001. 11. Смирнова Е.Л. Задачи и упражнения по курсу математического анализа. Ч.1 Дифференциальное исчисление функции одной переменной. – СПб.: Изд-во МБИ, 2003. 12. Смирнова Е.Л. Задачи и упражнения по курсу математического анализа. Ч.2. Функции многих переменных. Ряды. – СПб.: Изд-во МБИ, 2004. 13. Смирнова Е.Л., Кузютин Д.В., Фаттахова М.В. Задачи и упражнения по курсу математического анализа. Ч.3. Интегральное исчисление. Дифференциальные уравнения. – СПб.: Изд-во МБИ, 2005. 14. Тарасевич Л.С., Гребенников П.И., Леусский А.И. Микроэкономика. – М.: ЮРАЙТ, 2003. 15. Тарасевич Л.С., Гребенников П.И., Леусский А.И. Макроэкономика. – М.: ЮРАЙТ, 2003. 15 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE 16. 17. 18. 19. 20. Таха Х. Введение в исследование операций. – М.: Изд. дом “Вильямс”, 2001. Баврин И.И. Высшая математика. – М.: Владос, 2002. Шипачев В.С. Высшая математика. – М.: Высшая школа, 2003, 2001, 1998, 1996. Колемаев В.А. Математическая экономика. - М.: ЮНИТИ, 2005. Москинова Г.Н. Дискретная математика. Математика для менеджера в примерах и упражнениях. – М.: Логос, 2003. 21. Новиков Д.М. Дискретная математика для программистов. – СПб.: Питер, 2006. Дополнительная литература: 1. Сборник задач по высшей математики для экономистов / под ред. В.И.Ермакова. – М., ИНФРА-М, 2005. 2. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 2003. 3. Бочаров П.П., Печенкин А.В. Теория вероятностей и математическая статистика. – М.: Гардарика, 1998. 4. Вентцель Е.С. Теория вероятностей (9-е издание). – М.: Академия, 2003. 5. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике. – М.: ДИС, 1997. 6. Ковалев В.А., Калинина В.Н. Теория вероятностей и математическая статистика. – М.: ИНФРА-М, 1999. 7. Колемаев В.А. Математические методы принятия решения в экономике. - М.: Финстатинформ, 1999. 8. Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании. – М.: Дело, 2003. 9. Красс М.С. Математика для экономических специальностей. – М.: Инфра-М, 1998. 10. Солодовников А.С., Бабайцев В.А., Бранков А.В. Математика в экономике. - М.: Финансы и статистика, 1998. 11. Кузютин Д.В., Будагов А.С., Культина М.В., Сурвилло Т.Г. Основы математического анализа. Ч.1. Множества, последовательности, функции одной переменной. Теория пределов и непрерывность. – СПб.: Изд-во МБИ, 1999. 12. Математический анализ для экономистов / под ред. А.А.Гриба и А.Ф.Тарасюка. – М.: Филинъ, 2000. 13. Канатиков А.Н., Крищенко А.П. Линейная алгебра. М.: Изд-во МГТУ им. Н.Э.Баумана, 2001. 14. Матвеев Н.М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям. – СПб.: Лань, 2002. 15. Петросян Л.А., Зенкевич Н.А., Семина Е.А. Теория игр. – М.: Высшая школа, 1998. 16. Фаддеев Д.К., Соминский И.С. Алгебра. – М.: Наука, 1966. 17. Шипачев В.С. Основы Высшей математики. – М. Высшая школа, 1998. Заведующий кафедрой математических методов исследования экономики Международного банковского института, кандидат физ.-мат.наук, доцент Д.В.Кузютин Приложение 1. Методические рекомендации по контролируемой самостоятельной работе студентов № п.п. Наименование разделов и тем Рекомендуемые для самостоятельной работы элементы ЭУМК Учебная литература, рекомендуемая в дополнение к ЭУМК Раздел 1. Линейная алгебра с элементами аналитической геометрии. 1 Тема 1.1. пространства. Векторные (линейные) Контент, хрестоматия практикум по теме и [10] [7] 2 Тема 1.2. Матрицы и определители. Контент, хрестоматия практикум по теме и [10] 3 Тема 1.3. Решение СЛАУ. Контент, хрестоматия практикум по теме и [10] 16 [7] [7] МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE 4 5 6 7 Тема 1.4. Аффинные системы координат. Тема 1.5.Прямые и плоскости. Тема 1.6. Комплексные числа. Многочлены. Тема 1.7. Рациональные дроби. Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и [10] [7] [10] [7] [10] [7] [10] [7] [13] 8 9 10 11 Тема 1.8. Кривые второго порядка. Тема 1.9. Элементы многомерной геометрии. Тема 1.10. Линейные операторы. Тема 1.11. Векторные функции скалярного аргумента. Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и [10] [7] [10] [7] [10] [7] [10] [7] Раздел 2. Математический анализ. 13 13 14 15 16 17 18 19 20 Тема 2.1. Множества и функции. Контент, хрестоматия практикум по теме и Тема 2.2. Предел и непрерывность функции одной переменной. Контент, хрестоматия практикум по теме и Тема 2.3. Дифференциальное функции одной переменной. Контент, хрестоматия практикум по теме и Тема 2.4. Использование производных для исследования функции и построения ее графика. Контент, хрестоматия практикум по теме и Тема 2.5. Дифференциальное исчисление функций нескольких переменных. Контент, хрестоматия практикум по теме и Тема 2.6. Неопределенный интеграл. Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и Тема 2.8. Обыкновенные дифференциальные уравнения. Контент, хрестоматия практикум по теме и Тема 2.9. ряды. Контент, хрестоматия практикум по теме и исчисление Тема 2.7. Определенный интеграл. Числовые и функциональные [9] [11] [9] [11] [9] [11] [9] [11] [9] [12] [9] [13] [9] [13] [9] [13] [9] [12] Раздел 3. Теория вероятностей и математическая статистика. 21 22 Тема 3.1. Случайные Вероятностное пространство. Тема 3.2. Основные вероятностей события. формулы теории Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и [3] [6][8] [3] [6] [8] 23 Тема 3.3. испытания. Повторные независимые Контент, хрестоматия практикум по теме и [3] [6] [8] 24 Тема 3.4. Дискретные случайные величины. Контент, хрестоматия практикум по теме и [3] [6] [8] 17 МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE 25 Тема 3.5. величины. Непрерывные случайные Контент, хрестоматия практикум по теме и [3] [6] [8] 26 Тема 3.6. Предельные теоремы. Контент, хрестоматия практикум по теме и [3] [6] [8] 27 28 Тема 3.7. Цепи Маркова и их использование в моделировании социально-экономических процессов Контент, хрестоматия практикум по теме Тема 3.8. Условные случайных величин. Контент, хрестоматия практикум по теме распределения и [3] [6] [8] и [3] [6] [8] 29 Тема 3.9. Выборочный метод. Контент, хрестоматия практикум по теме и [3] [6] [8] 30 Тема 3.10. Статистическое оценивание. Контент, хрестоматия практикум по теме и [3] [6] [8] 31 Тема 3.11. Проверка гипотез. Контент, хрестоматия практикум по теме и [3] [6] [8] Раздел 4. Экономико-математические методы. 32 Тема 4.1. Общее представление экономико-математических методах. об Контент и хрестоматия по теме [5] [ 16 ] [2] 33 Тема 4.2. Введение программирование. в линейное Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] 34 Тема 4.3. Симплекс-метод решения задачи линейного программирования. Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] 35 Тема 4.4. Сетевые модели. Целочисленное программирование. Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] 36 Тема 4.5. Дискретное программирование. Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] 37 Тема 4.6. Нелинейное программирование. Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] 38 Тема 4.7. Динамическое программирование. [5] [ 16 ] [2] 39 40 Тема 4.8. Многокритериальная оптимизация. Тема 4.9. решений. Элементы теории принятия Контент, хрестоматия практикум по теме и Контент, хрестоматия практикум по теме и [5] [ 16 ] [ 2 ] [5] [ 16 ] [2] 41 Тема 4.10. Некооперативные игры. Контент, хрестоматия практикум по теме 18 и [5] [ 16 ] МЕЖДУНАРОДНЫЙ БАНКОВСКИЙ ИНСТИТУТ INTERNATIONAL BANKING INSTITUTE [2] 42 Тема 4.11. Матричные игры. Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] 43 Тема 4.12. Кооперативные игры. Контент, хрестоматия практикум по теме и [5] [ 16 ] [2] Раздел 5. Дискретная математика. 44 Тема 5.1. Множества и отношения Контент и практикум по теме [ 20 ] [ 21 ] 45 Тема 5.2. Логические исчисления. Контент и практикум по теме [ 20 ] [ 21 ] 46 Тема 5.3. Элементы теории графов. Контент и практикум по теме [ 20 ] [ 21 ] 47 Тема 5.4. Элементы комбинаторики. Контент и практикум по теме [ 20 ] [ 21 ] 48 Тема 5.5. множеств. Контент и практикум по теме [ 20 ] [ 21 ] Элементы теории нечетких 19