Результаты освоения дисциплины

реклама
УТВЕРЖДАЮ
И.о. декана ГФ
________________ В.И.Турнаев
«___»_____________2010 г.
РАБОЧАЯ ПРОГРАММА УНИФИЦИРОВАННОЙ ДИСЦИПЛИНЫ
МАТЕМАТИЧЕСКИЙ АНАЛИЗ 1
НАПРАВЛЕНИЕ ООП
032000 - Зарубежное регионоведение
031600
-Реклама
и
связи
с
общественностью
034700 - Документоведение и архивоведение
036401 – Таможенное дело,
100400-Туризм
040100 – Социальная работа.
ПРОФИЛИ ПОДГОТОВКИ Все профили обеспечиваемых направлений ООП
КВАЛИФИКАЦИЯ (СТЕПЕНЬ)
БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА
КУРС 1 СЕМЕСТРЫ 1
КОЛИЧЕСТВО КРЕДИТОВ
ПРЕРЕКВИЗИТЫ
КОРЕКВИЗИТЫ
бакалавр
2011 г.
4 кредита ECTS
математика 1.3.1
ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:
Лекции
36 часа
Практические занятия
36 часа
АУДИТОРНЫЕ ЗАНЯТИЯ
72 часа
САМОСТОЯТЕЛЬНАЯ РАБОТА
72 часа
ИТОГО
144 часов
ФОРМА ОБУЧЕНИЯ
ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ
очная
экзамен
ОБЕСПЕЧИВАЮЩЕЕ ПОДРАЗДЕЛЕНИЕ
кафедра ВМ
ЗАВЕДУЮЩИЙ КАФЕДРОЙ ВМ
_________________ Арефьев К.П
РУКОВОДИТЕЛЬ ООП 032000
РУКОВОДИТЕЛЬ ООП 031600
РУКОВОДИТЕЛЬ ООП 034700
РУКОВОДИТЕЛЬ ООП 036401
РУКОВОДИТЕЛЬ ООП 100400
РУКОВОДИТЕЛЬ ООП 040100
_________________ Гузарова Н.И.
_________________ Скворцова В.Н.
_________________ Блейхер О.В.
_________________ Сосковец Л.И.
_________________ Агранович В.Б.
_________________ Чмыхало А.Ю.
2011г.
1. Цели освоения дисциплины
Целью преподавания дисциплины «математический анализ1» является:
* развитие математической интуиции, воспитание математической культуры.
* овладение логическими основами курса, необходимыми для решения теоретических
и практических задач;
* формирование навыков самостоятельной работы, необходимых для использования
знаний при изучении специальных дисциплин и дальнейшей практической
деятельности.
2. Место дисциплины в структуре ООП
. Дисциплина «математический анализ1» входит в цикл математических и
естественнонаучных дисциплин (М и ЕН) Федерального государственного
образовательного стандарта (ФГОС) высшего профессионального образования (ВПО) 3его поколения. Дисциплина «математический анализ1» является базовой для изучения
всех последующих дисциплин образовательной программы.
Пререквизитов данная дисциплина не имеет, поскольку является первой обязательной
дисциплиной образовательной программы. Знания и умения, полученные при изучении
дисциплины «математический анализ1», могут быть востребованы дисциплинамикореквизитами: концепция современного естествознания, экономика,
информатика
3. Результаты освоения дисциплины
В результате изучения курса «математический анализ1» бакалавр должен:
 владеть культурой мышления, быть способным к обобщению, анализу,
восприятию информации, постановке цели и выбору путей ее достижения;
 уметь логически верно, аргументировано и ясно строить устную и письменную
речь;
 обладать стремлением к саморазвитию, повышению своей квалификации и
мастерства;
 способностью оформлять, представлять и докладывать результаты
выполненной работы
После изучения данной дисциплины бакалавры приобретают знания, умения
и опыт, соответствующие результатам основной образовательной
программы: Р1, Р2, Р3*. Соответствие результатов освоения дисциплины
«математический анализ1» формируемым компетенциям ООП представлено
в таблице.
Формируемые
компетенции и Результаты освоения дисциплины
соответствии с
ООП∗
В результате освоения дисциплины бакалавр должен знать:
* основные понятия линейной и векторной алгебры (матрицы,
определители, векторы, скалярное, векторное и смешанное
произведения векторов и т.д.);(З.1.1.)
* основные понятия и задачи аналитической геометрии (
прямая на плоскости, пространство, кривые второго
порядка);(З.1.2.)
* основные понятия и методы дифференциального и
интегрального
исчисления
(предела,
производной,
дифференциала функции одной и нескольких переменных,
экстремумы функций и т.п.);
(З.1.3.)
* основные
типы
обыкновенных
дифференциальных
уравнений первого порядка и методы их решений. (З.1.4.)
В результате освоения дисциплины бакалавр должен уметь:
*
применять
математические
методы
при
решении
профессиональ ных задач; (У.1.1.)
* дифференцировать и интегрировать; (У.1.2.)
* использовать математические пакеты программ для решения
алгебраических уравнений, численно интегрировать и
дифференцировать;(У.1.3.)
* устанавливать границы применимости методов; уметь
проверять решения.(У.1.4.)
В результате освоения дисциплины бакалавр должен владеть:
* методами решения задач дифференциального, интегрального
исчисления;(В.1.1.)
* численными методами решения;(В.1.2.)
* методами
построения
математической
модели
профессиональных задач и содержательной интерпретации
полученных результатов.(В.1.3.)
∗ Расшифровка кодов результатов обучения и формируемых компетенций представлена в
Основной образовательной программе подготовки бакалавров по гуманитарному
направлению.
4. Структура и содержание дисциплины
4.1.
Cтруктура дисциплины по разделам, формам организации и
контроля обучения
№
Название раздела/темы
1.Элементы
линейной
алгебры и аналитической
геометрии
2.Дифференциальное
исчисление функций одной
нескольких переменных.
3.Интегральное исчисление
функции одного аргумента
4.Обыкновенные
дифференциальные
уравнения первого порядка
Итого
4.2.
Аудиторная работа (час)
Лекци Практ./сем.
Лаб. зан.
и
Занятия
СРС
(час)
Итог
о
16
16
0
32
64
8
8
0
16
32
6
6
0
12
24
6
6
0
12
24
36
36
-
72
144
Содержание разделов дисциплины
Раздел 1. Элементы линейной алгебры и аналитической геометрии
 Матрицы и действия над ними. Определители второго и третьего
порядков, их основные свойства. Обратная матрица.
 Системы линейных уравнений. Матричная запись и матричная форма
решения систем линейных уравнений. Метод Гаусса. Системы линейных
однородных уравнений
 Векторы. Линейные операции над векторами. Линейная зависимость
векторов. Система декартовых координат. Координаты вектора и точки.
Проекция вектора на ось. Скалярное произведение,его свойства и
вычисление. Основные задачи векторной алгебры.
 Прямая на плоскости, общее уравнение, уравнение с угловым
коэфициентом, уравнение прямой в отрезках на осях. Взаимные
расположения прямых на плоскости.
Раздел 2. Дифференциальное исчисление функций одной переменной
 Множество вещественных чисел. Функции. Область определения
функции. Способы задания. Простейшие характеристики функций.
Элементарные функции. Последовательности.
 Предел функции. Односторонние пределы. Предел последовательности.
Признаки существования предела. Основные теоремы о пределах.
Первый и второй замечательные пределы.
 Бесконечно большие и бесконечно малые функции. Свойства
бесконечно малых функций. Сравнение бесконечно малых.
Эквивалентные бесконечно малые функции и их использование при
вычислении пределов.
 Непрерывность




функции в точке и на интервале. Теоремы о
непрерывных функциях. Непрерывность функции на отрезке. Свойства
функций непрерывных на отрезке. Точки разрыва и их классификация.
Понятие производной. Физический и геометрический смысл.
Непрерывность дифференцируемой функции. Основные правила
дифференцирования. Дифференцирование основных элементарных
функций Дифференциал функции, его геометрический смысл и связь с
производной. Производные и дифференциалы высших порядков.
Понятие функции нескольких переменных. Область определения.
Частные производные. Полный дифференциал. Производные и
дифференциалы высших порядков.
Экстремум функции нескольких переменных.
Раздел 3. Интегральное исчисление функции одного аргумента
 Первообразная и неопределенный интеграл. Свойства неопределенного
интеграла. Таблица интегралов. Замена переменных. Интегрирование по
частям.
 Интегрирование рациональных дробей.
 О функциях, интегралы от которых не выражаются через элементарные
функции.
 Задачи, приводящие к понятию определенного интеграла. Интегральная
сумма. Определенный интеграл и его свойства.
 Интеграл с переменным верхним пределом. Формула НьютонаЛейбница. Замена переменных. Интегрирование по частям.
 Приложения определенного интеграла: площадь плоской области.
 Несобственные интегралы с бесконечными пределами и от
неограниченных функций, их основные свойства.
.
Раздел 4. Обыкновенные дифференциальные уравнения
 Физические задачи, приводящие к дифференциальным уравнениям.
Дифференциальные уравнения первого порядка. Задача Коши. Теорема
существования и единственности решения задачи Коши.
 Дифференциальные уравнения с разделяющимися переменными.
Однородные дифференциальные уравнения первого порядка. Линейные
дифференциальные уравнения и уравнения Бернулли. Уравнения в
полных дифференциалах.
4.3.
Распределение компетенций по разделам дисциплины
Распределение по разделам дисциплины планируемых результатов
обучения по основной образовательной программе, формируемых в рамках
данной дисциплины и указанных в пункте 3.
№
Формируемые
компетенции
1. З.1.1.
З.1.2.
2.
З.1.3.
3.
З1.4.
4.
У.1.1.
5.
У.1.2.
6.
У.1.3.
7.
У.1.4.
8.
В.1.1.
9.
В.1.2.
10.
В.1.3.
11.
1
2
3
Разделы дисциплины
4
5
6
7
8
Х
Х
5. Образовательные технологии
При освоении дисциплины используются следующие сочетания видов
учебной работы с методами и формами активизации познавательной
деятельности бакалавров для достижения запланированных результатов
обучения и формирования компетенций.
Методы и формы
активизации
деятельности
Дискуссия
IT-методы
Командная работа
Разбор кейсов
Опережающая СРС
Индивидуальное
обучение
Проблемное обучение
Обучение на основе
опыта
ЛК
х
х
х
Виды учебной деятельности
Семинар
ЛБ
СРС
х
х
х
х
х
х
х
х
х
х
х
х
Для достижения поставленных целей преподавания дисциплины
реализуются следующие средства, способы и организационные мероприятия:
 изучение теоретического материала дисциплины на лекциях с
использованием компьютерных технологий;
 самостоятельное изучение теоретического материала дисциплины с
использованием Internet-ресурсов, информационных баз, методических
разработок, специальной учебной и научной литературы;
 закрепление теоретического материала при проведении практических и
семинарских занятий, выполнения проблемно-ориентированных, поисковых,
творческих заданий.
6. Организация и учебно-методическое обеспечение самостоятельной
работы студентов (СРС)
6.1 Текущая СРС, направлена на углубление и закрепление знаний
студента, развитие практических умений и включает в себя работу с учебной
литературой, подготовку к практическим занятиям, составление конспекта
тем, выносимых на самостоятельную работу. Объем этой работы
соответствует часам учебного времени, отводимым на самостоятельную
работу в каждом семестре.
Необходимой
составляющей
самостоятельной
работы
является
систематическое выполнение индивидуальных домашних заданий - типовых
расчетов
(ТР),
направленных
на
формирование
универсальных
алгоритмических навыков дисциплины. Особенность данной формы
самостоятельной работы состоит в систематической практической
деятельности обучаемого. Типовые расчеты в достаточной форме
обеспечены методической литературой
6.2 Творческая проблемно-ориентированная самостоятельная работа
(ТСР)
ориентирована на развитие интеллектуальных умений, комплекса
универсальных (общекультурных) и профессиональных компетенций,
повышение творческого потенциала студентов и включает в себя
 написание рефератов;
 участие в олимпиадах.
6.2.
Содержание самостоятельной
(дисциплине)
работы
студентов
по
модулю
Темы типовых расчетов, их распределение по семестрам и объем в часах
следующий.
ТР. №1 «Линейная алгебра и аналитическая геометрия» (10 часов)
ТР. №2 «Введение в математический анализ» (5 часов)
ТР. №3 «Дифференциальное исчисление и его приложения» (8 часов)
ТР. №4 «Неопределенный интеграл» (8 часов)
ТР. №5 «Функции нескольких переменных» (6 часа)
ТР. №6 «Дифференциальные уравнения»(8 часов)
6.3
Контроль самостоятельной работы
Изучение любой дисциплины невозможен без систематического
контроля, который позволяет преподавателю и обучаемому следить за
уровнем усвоения изучаемого материала и при необходимости провести
соответствующую коррекцию.
Рубежный и итоговый контроль по дисциплине осуществляется на
основе рейтинг-листа дисциплины для каждого семестра, в котором в
соответствии с учебным и календарным планами указаны все формы
отчетности: индивидуальные домашние задания, контрольные работы,
самостоятельная работа.
Первостепенное значение среди контролирующих материалов имеют
ТР, рассчитанные на обязательную систематическую самостоятельную
работу по каждой теме раздела. В зависимости от степени сложности
типовые расчеты снабжаются методическими указаниями. Типовые расчеты
проверяются по частям по мере прохождения материала, при этом
обязательна работа над ошибками и защита задания.
По темам дисциплины предусмотрены контрольные работы разного
назначения: «летучки» - для оценки теоретической подготовки к занятиям по
разделам изучаемой темы; традиционные контрольные работы по итогам
темы. Для итогового контроля составлены тестовые контрольные задания,
используемые в конце курса обучения.
Учебно-методическое обеспечение самостоятельной работы
студентов
Дисциплина «математический анализ1» обеспечена учебной
литературой, имеющейся в библиотеке, учебными и методическими
пособиями, разработанными преподавателями кафедр ВМ, ВММФ и кафедр
других вузов, а также предлагаются сетевые образовательные ресурсы,
представленные в корпоративном портале ТПУ (на сайте кафедры ВМ,
персональных сайтах преподавателей)
6.4
Средства текущей и итоговой оценки качества освоения дисциплины
(фонд оценочных средств)
Оценка текущий и промежуточной аттестации по дисциплине
осуществляется на основе Рейтинг-плана по результатам выполнения
контрольных работ, взаимного рецензирования бакалаврами работ друг
друга, анализа подготовленных бакалаврами рефератов, устного опроса при
сдаче выполненных индивидуальных заданий. При изучении учебной
дисциплины проводится 5 рубежных контрольных работ по следующим
разделам курса:
1. Линейная алгебра.
2. Аналитическая геометрия прямых на плоскости, кривых второго
порядка.
3. Нахождение и применение производных.
4. Неопределенный и определенный интегралы.
5. Дифференциальные уравнения.
Итоговый контроль по дисциплине осуществляется по результатам
выполнения контрольных работ и сдачи экзамена.
7.1. Требования к содержанию экзаменационных вопросов
Экзаменационные билеты включают два типа заданий:
1. Теоретический вопрос.
2. Проблемный вопрос или расчетная задача.
7.2. Примеры экзаменационных вопросов
1. Определение функции нескольких переменных.
определения, способы задания. Привести примеры.
Область
2. Вырожденная и невырожденная матрица. Обратная матрица.
Применеие обратных матриц.
3. Исследовать на непрерывность функцию.
y( x) 
2x  1
x 2
.
4. Найти косинус угла между векторами a  i  j  3k
и b  2i  j  2k .
8. Учебно-методическое и информационное обеспечение дисциплины
Основная литература.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Ефимов Н.В. Краткий курс аналитической геометрии. – М.: Наука,1978.
Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. – М.:
Наука,1984.
Пискунов Н.С. Дифференциальное и интегральное исчисление. Т.1; Т. 2. – М.:
Наука, 1985.
Баврин И.И. Курс высшей математики. – М.: Просвещение, 1992.
Данко П.Е., Попов А.,Г., Кожевникова Т.Я. Высшая математика в упражнениях и
задачах: в 2-х частях. – М.: высшая школа, 1980.
Кузнецов Л.А. Сборник заданий по высшей математике (типовые расчеты). – М.:
Высш. школа,1994.
Щипачев В.С. Основы высшей математики. – М.: Высш. школа,1983.
Клетенник Д.В. Сборник задач по аналитической геометрии. – М.: Наука, 1985.
Кремер Н.Ш.,Б.А.Путко, И.М.Тришин, М,Н.Фридман Высшая математика для
экономистов.- М:.ЮНИТИ, 2001.
Арефьев К.П., Ивлев Е.Т, Тарбокова Т.В. Системы линейных уравнений. –Томск:
Ротопринт ТПУ, 1996.
Вспомогательная литература
1. Арефьев К.П., Ивлев Е.Т., Тарбокова Т.В. Системы линейных уравнений. Томск: Ротапринт ТПУ, 1996.
2. Арефьев К.П., Ивлев Е.Т., Тарбокова Т.В. Векторная алгебра и
аналитическая геометрия. - Томск: Ротапринт ТПУ, 1996.
3. Кан Ен Хи. Дифференциальные уравнения первого порядка. - Томск:
Ротапринт ТПУ, 1996.
4. Лучини А.А., Никольская Г.А., Рожкова В.И. Определенный интеграл.
Методические указания и индивидуальные задания. - Томск: Ротапринт
ТПУ, ч.I,II 1988.
5. Подскребко Э.Н. Пестова Н.Ф. Дифференциальное исчисление функций
нескольких переменных. - Томск: Ротапринт ТПУ, 1997.
Интернет-ресурсы:
 учебно-методические
материалы,
размещённые
на
сайтах
преподавателей кафедры ВМ в рамках
корпоративного портала ТПУ
9. Материально-техническое обеспечение дисциплины
Кафедра имеет компьютерный класс (16 рабочих мест, Pentium IV(MB
S-478 Bayfild D865GBFL i865G 800 MHz, Celeron 2.4GHz, 2 Dimm 256 Mb,
HDD 40 Gb), Операционная система Windows Vista, Windows 7 Corporative)
для проведения лабораторных работ по курсу математики, предусмотренных
рабочими
программами.
Лекционные
занятия
проводятся
в
специализированных аудиториях, оснащённых мультимедийной техникой.
Программа составлена на основе Стандарта ООП ТПУ в соответствии с
требованиями ФГОС-2010 по гуманитарному направлению.
Авторы:доцент, к.ф.-м.н. Э.М. Кондакова
Программа одобрена на заседании кафедры Высшей математики, ФТИ
(протокол № от 2011 г.).
Скачать