¨¸Ó³ ¢ —Ÿ. 2010. ’. 7, º 2(158). ‘. 193Ä199 ”ˆ‡ˆŠ ‹…Œ…’›• —‘’ˆ– ˆ ’Œƒ Ÿ„. ’…ˆŸ ‘……‹ˆ‡‚… ‚‡ˆŒ„…‰‘’‚ˆ… ‘ŠˆŒ ˆ •Š’…ˆ‘’ˆŠˆ ƒˆƒ’‘Šƒ „ˆ‹œƒ …‡‘ . . ·¸¥´Ó¥¢1 , A. . ‘¥¢¥·Ǫ̃´2 ¡Ñ¥¤¨´¥´´Ò° ¨´¸É¨ÉÊÉ Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°, „Ê¡´ ˆ¸¸²¥¤μ¢ ´ Éμδμ¸ÉÓ ¨¸±²ÕÎ¥´¨Ö ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢ · ¸¶·¥¤¥²¥´¨¨ ¸¨²Ò E1-¶¥·¥Ìμ¤μ¢ ¢ ¶·¨¡²¨¦¥´¨¨ ¸²ÊÎ °´ÒÌ Ë § ¸ ¸¥¶ · ¡¥²¨§μ¢ ´´Ò³¨ ¸¨² ³¨ ‘±¨·³ . Accuracy of the elimination of the spurious state from the E1-transition strength distribution is studied within the random phase approximation with separabelized Skyrme forces. PACS: 21.60.Jz, 24.30.Cz, 27.50.+e, 27.60.+j, 27.80.+w ‚‚…„…ˆ… ‚ ¶μ¸²¥¤´¨¥ £μ¤Ò ¶μÖ¢¨²¨¸Ó ´μ¢Ò¥ Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥ [1Ä4] μ ¶¨£³¨-·¥§μ´ ´¸ Ì ¢ ´¥°É·μ´μ¨§¡ÒÉμδÒÌ Ö¤· Ì. ´¨ ¸É¨³Ê²¨·ÊÕÉ · §¢¨É¨¥ É¥μ·¥É¨Î¥¸±¨Ì ¨¸¸²¥¤μ¢ ´¨°. ¤´¨³ ¨§ μ¸´μ¢´ÒÌ ¶μ¤Ìμ¤μ¢ ¶·¨ 춨¸ ´¨¨ ¢¨¡· Í¨μ´´ÒÌ ¢μ§¡Ê¦¤¥´¨° Ö¢²Ö¥É¸Ö ¶·¨¡²¨¦¥´¨¥ ¸²ÊÎ °´ÒÌ Ë § (‘”). “봃 ´£ ·³μ´¨Î´μ¸É¨ ¢¨¡· Í¨μ´´ÒÌ ¸μ¸ÉμÖ´¨° ¢¥¤¥É ± ¶μÖ¢²¥´¨Õ ¸¢Ö§¨ ³¥¦¤Ê μ¤´μËμ´μ´´Ò³¨ ¨ ¡μ²¥¥ ¸²μ¦´Ò³¨ ±μ´Ë¨£Ê· ֳͨ¨. ˆ¸¶μ²Ó§μ¢ ´¨¥ ¶·μ¸ÉÒÌ ¸¥¶ · ¡¥²Ó´ÒÌ ¸¨² ¢ · ³± Ì ±¢ §¨Î ¸É¨Î´μ-Ëμ´μ´´μ° ³μ¤¥²¨ (Š”Œ) [5] ¶μ§¢μ²Ö¥É ʸ¶¥Ï´μ 춨¸Ò¢ ÉÓ ³´μ£¨¥ ¸¢μ°¸É¢ ¸É ¡¨²Ó´ÒÌ Ö¤¥·. ¤´ ±μ ¢ · ³± Ì Š”Œ ¨³¥ÕÉ¸Ö É·Ê¤´μ¸É¨ ¶·¨ ¨¸¸²¥¤μ¢ ´¨¨ Ö¤¥·, ʤ ²¥´´ÒÌ μÉ ²¨´¨¨ β-¸É ¡¨²Ó´μ¸É¨, ¨§-§ ´¥μ¡Ì줨³μ¸É¨ Ô±¸É· ¶μ²Öͨ¨ ¶ · ³¥É·μ¢ £ ³¨²ÓÉμ´¨ ´ ¢ ¶²μÌμ ¨§ÊÎ¥´´ÊÕ μ¡² ¸ÉÓ. μ ÔÉμ° ¶·¨Î¨´¥ ¡μ²¥¥ ¶·¥¤¶μÎɨɥ²Ó´Ò³¨ Ö¢²ÖÕÉ¸Ö ¸ ³μ¸μ£² ¸μ¢ ´´Ò¥ ³¨±·μ¸±μ¶¨Î¥¸±¨¥ ¶μ¤Ìμ¤Ò, ¨¸¶μ²Ó§ÊÕШ¥ ¤²Ö · ¸Î¥Éμ¢ ¸·¥¤´¥£μ ¶μ²Ö ¨ μ¸É Éμδμ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö μ¤´¨ ¨ É¥ ¦¥ ÔËË¥±É¨¢´Ò¥ ´Ê±²μ´-´Ê±²μ´´Ò¥ ¸¨²Ò [6]. ‘²¥¤Ê¥É μɳ¥É¨ÉÓ, ÎÉμ ¢ÒΨ¸²¥´¨Ö ¸ É ±¨³¨ ¸¨² ³¨ £·μ³μ§¤±¨, μ¸μ¡¥´´μ ¤²Ö Ö¤¥· ¸ ´¥§ ³±´ÊÉÒ³¨ μ¡μ²μα ³¨. ‚ Éμ ¦¥ ¢·¥³Ö ¢ÒΨ¸²¥´¨Ö ¸ ¶·μ¸ÉÒ³¨ ¸¥¶ · ¡¥²¨§μ¢ ´´Ò³¨ ¸¨² ³¨ Î ¸Éμ ¤ ÕÉ ¡²¨§±¨¥ ·¥§Ê²ÓÉ ÉÒ. ‚ · ¡μÉ Ì [7Ä10] μ¡Ñ¥¤¨´¥´Ò ¤μ¸Éμ¨´¸É¢ Š”Œ ¨ ¸ ³μ¸μ£² ¸μ¢ ´´ÒÌ ³μ¤¥²¥° ¸ ¸¨² ³¨ ‘±¨·³ . ‚ · ³± Ì É ±μ£μ ¶μ¤Ìμ¤ Ê¤ ²μ¸Ó 춨¸ ÉÓ 1 E-mail: 2 E-mail: arsenev@theor.jinr.ru sever@theor.jinr.ru 194 ·¸¥´Ó¥¢ . ., ‘¥¢¥·Ǫ̃´ A. . ¨ ¸¢μ°¸É¢ ´¨§±μ²¥¦ Ð¨Ì ¸μ¸ÉμÖ´¨°, ¨ Ì · ±É¥·¨¸É¨±¨ £¨£ ´É¸±¨Ì ³Ê²Óɨ¶μ²Ó´ÒÌ ·¥§μ´ ´¸μ¢ ¢ ¸Ë¥·¨Î¥¸±¨Ì Ö¤· Ì [7Ä12]. ·¥¤¸É ¢²Ö¥É¸Ö ¶μ²¥§´Ò³ ¶·¨³¥´¨ÉÓ ÔÉμÉ ¶μ¤Ìμ¤ ± ¨¸¸²¥¤μ¢ ´¨Õ ¸¢μ°¸É¢ ¶¨£³¨·¥§μ´ ´¸μ¢. ¤´μ° ¨§ ¶·μ¡²¥³, ±μÉμ·ÊÕ ´¥μ¡Ì줨³μ ·¥Ï¨ÉÓ, Ö¢²Ö¥É¸Ö ¶·μ¡²¥³ ¨¸±²ÕÎ¥´¨Ö ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö, É ± ± ± μ´μ ³μ¦¥É ¸ÊÐ¥¸É¢¥´´μ ¨¸± §¨ÉÓ Ì · ±É¥·¨¸É¨±¨ ¶¨£³¨-·¥§μ´ ´¸ . ‚ ´ ¸ÉμÖÐ¥° · ¡μÉ¥ ³Ò ´ ²¨§¨·Ê¥³ Éμδμ¸ÉÓ ¨¸±²ÕÎ¥´¨Ö ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢ · ¸¶·¥¤¥²¥´¨¨ ¸¨²Ò E1-¶¥·¥Ìμ¤μ¢ ¢ μ¡² ¸É¨ ¶¨£³¨-·¥§μ´ ´¸μ¢ ± ± ¢ ¤¢ ¦¤Ò ³ £¨Î¥¸±¨Ì Ö¤· Ì, É ± ¨ ¢ Ö¤· Ì ¸ ´¥§ ³±´ÊÉÒ³¨ μ¡μ²μα ³¨. ¸Î¥ÉÒ ¢Ò¶μ²´¥´Ò ¢ μ¤´μËμ´μ´´μ³ ¶·¨¡²¨¦¥´¨¨. ‚ ± Î¥¸É¢¥ ¶·¨³¥· ¨¸¸²¥¤μ¢ ´Ò Ô´¥·£¨¨ ¨ ¢¥²¨Î¨´Ò B(E1) ¤¨¶μ²Ó´ÒÌ ¸μ¸ÉμÖ´¨° ¢ 100,124,130,132 Sn ¨ 208 Pb. 1. Œ…’„ „¥É ²Ó´μ¥ ¨§²μ¦¥´¨¥ ´ Ï¥£μ ¶μ¤Ìμ¤ ³μ¦´μ ´ °É¨ ¢ · ¡μÉ Ì [7, 8, 10]. ‘·¥¤´¥¥ ¶μ²¥ μ¶·¥¤¥²Ö¥É¸Ö ¶ÊÉ¥³ ·¥Ï¥´¨Ö Ê· ¢´¥´¨° • ·É·¨Ä”μ± (•”) ¸ ¸¨² ³¨ ‘±¨·³ . ‘¶ ·¨¢ ´¨¥ É· ±ÉÊ¥É¸Ö ¢ ¶·¨¡²¨¦¥´¨¨ ·¤¨´ Ċʶ¥· Ę·¨ËË¥· (Š˜). ¤´μÎ ¸É¨Î´Ò° ±μ´É¨´Êʳ ÊΨÉÒ¢ ¥É¸Ö ¶·¨ ¶μ³μШ ¤¨ £μ´ ²¨§ ͨ¨ £ ³¨²ÓÉμ´¨ ´ •” ´ ¡ §¨¸¥ ¸μ¡¸É¢¥´´ÒÌ ËÊ´±Í¨° £ ·³μ´¨Î¥¸±μ£μ μ¸Í¨²²ÖÉμ· [13]. ¸É ÉμÎ´μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥ ¢ Î ¸É¨Î´μ-¤Ò·μÎ´μ³ ± ´ ²¥ ¨ ± ´ ²¥ Î ¸É¨Í ÄÎ ¸É¨Í ³μ¦´μ ¶μ²ÊΨÉÓ ± ± ¢Éμ·Ò¥ ¶·μ¨§¢μ¤´Ò¥ ËÊ´±Í¨μ´ ² ¶²μÉ´μ¸É¨ Ô´¥·£¨¨ ¶μ ´μ·³ ²Ó´μ° ¨ ¶ ·´μ° ¶²μÉ´μ¸É¨ ´Ê±²μ´μ¢ ¸μμÉ¢¥É¸É¢¥´´μ. ŒÒ ¶·¥¤¸É ¢²Ö¥³ Î ¸É¨Î´μ-¤Ò·μÎ´μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥ ‘±¨·³ ¢ Ëμ·³¥ ¸¨² ‹ ´¤ ÊÄŒ¨£¤ ² ¨ ¸μÌ· ´Ö¥³ Éμ²Ó±μ β¥´Ò ¸ l = 0. ‚Ò· ¦¥´¨Ö ¤²Ö F0 , G0 , F0 , G0 ¶·¨¢¥¤¥´Ò ¢ · ¡μÉ¥ [14]. Œ É·¨Î´Ò¥ Ô²¥³¥´ÉÒ μ¸É Éμδμ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö ³μ£ÊÉ ¡ÒÉÓ § ¶¨¸ ´Ò ¢ ¢¨¤¥ N ¸¥¶ · ¡¥²Ó´ÒÌ Î²¥´μ¢ [7, 8, 10]. ŒÒ · ¡μÉ ¥³ ¢ ‘”, μ¸´μ¢´μ¥ ¸μ¸ÉμÖ´¨¥ Ö¢²Ö¥É¸Ö Ëμ´μ´´Ò³ ¢ ±ÊÊ³μ³ |0. ‚μ§¡Ê¦¤¥´´Ò¥ μ¤´μËμ´μ´´Ò¥ ¸μ¸ÉμÖ´¨Ö £¥´¥·¨·ÊÕÉ¸Ö ¤¥°¸É¢¨¥³ 춥· Éμ· ·μ¦¤¥´¨Ö Ëμ´μ´μ¢ ´ ¢ ±Êʳ |i = Q+ λμi |0. „¨ £μ´ ²¨§μ¢ ¢ £ ³¨²ÓÉμ´¨ ´ ¢ ¶·μ¸É· ´¸É¢¥ μ¤´μËμ´μ´´ÒÌ ¸μ¸ÉμÖ´¨° |i, ³μ¦´μ ¶μ²ÊΨÉÓ ¸¨¸É¥³Ê ²¨´¥°´ÒÌ Ê· ¢´¥´¨°, ·¥Ï¨¢ ±μÉμ·ÊÕ ´ °¤¥³ §´ Î¥´¨Ö Ô´¥·£¨¨ ¨ Ëμ´μ´´Ò¥ ³¶²¨ÉÊ¤Ò ¢μ§¡Ê¦¤¥´´ÒÌ ¸μ¸ÉμÖ´¨°. ‘¥¶ · ¡¥²Ó´Ò° ¢¨¤ μ¸É Éμδμ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö ¶μ§¢μ²Ö¥É ¸¢¥¸É¨ ¸¨¸É¥³Ê ²¨´¥°´ÒÌ Ê· ¢´¥´¨° ± ¸¥±Ê²Ö·´μ³Ê Ê· ¢´¥´¨Õ. ·¨ ÔÉμ³ ´¥μ¡Ì줨³μ ¢ÒΨ¸²¨ÉÓ μ¶·¥¤¥²¨É¥²Ó ³ É·¨ÍÒ, · §³¥·´μ¸ÉÓ ±μÉμ·μ° ´¥ § ¢¨¸¨É μÉ ±μ´Ë¨£Ê· Í¨μ´´μ£μ ¶·μ¸É· ´¸É¢ [7, 8, 10]. ɳ¥É¨³, ÎÉμ ¢ Š”Œ [5, 15] ÔÉμ ¸¥±Ê²Ö·´μ¥ Ê· ¢´¥´¨¥ ¨³¥¥É É ±μ° ¦¥ ¢¨¤, ´μ ¢ ¶·¥¤¸É ¢²¥´´μ³ ¶μ¤Ì줥 μ¤´μÎ ¸É¨Î´Ò° ¸¶¥±É· ¨ ¶ · ³¥É·Ò Î ¸É¨Î´μ-¤Ò·μδμ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö · ¸¸Î¨ÉÒ¢ ÕÉ¸Ö ¸ ¸¨² ³¨ ‘±¨·³ . „²Ö Ê봃 ¸²μ¦´ÒÌ ±μ´Ë¨£Ê· ͨ° ¢μ²´μ¢Ò¥ ËÊ´±Í¨¨ ¢μ§¡Ê¦¤¥´´ÒÌ ¸μ¸ÉμÖ´¨° § ¶¨¸Ò¢ ÕÉ¸Ö ¢ ¢¨¤¥ ¸Ê¶¥·¶μ§¨Í¨¨ β¥´μ¢ ¸ · §²¨Î´Ò³ Ψ¸²μ³ Ëμ´μ´´ÒÌ μ¶¥· Éμ·μ¢, ¨ ¸μμÉ¢¥É¸É¢ÊÕШ¥ Ê· ¢´¥´¨Ö ¶·¨¢¥¤¥´Ò ¢ · ¡μÉ¥ [9]. ‚ ¸¨²Ê Éμ£μ, ÎÉμ ¸ ³μ¸μ£² ¸μ¢ ´¨¥ ¢ ´ Ï¥³ ¶μ¤Ì줥 ´ ·ÊÏ¥´μ ¨§-§ ¶·¨¡²¨¦¥´´μ£μ Ê봃 ¸±μ·μ¸É´ÒÌ Î²¥´μ¢ Î ¸É¨Î´μ-¤Ò·μδμ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö, ´¥μ¡Ì줨³μ ¨¸±²ÕΨÉÓ ¤ÊÌμ¢μ¥ ¸μ¸ÉμÖ´¨¥, μ¡Ê¸²μ¢²¥´´μ¥ ¤¢¨¦¥´¨¥³ Ö¤· ± ± Í¥²μ£μ. ·¨³¥¸Ó ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ³μ¦¥É ¶·¨¸ÊÉ¸É¢μ¢ ÉÓ ± ± ±μ³¶μ´¥´É ¢ ± ¦¤μ° ¨§ ¢μ²´μ¢ÒÌ ËÊ´±Í¨° ¢μ§¡Ê¦¤¥´´ÒÌ ¸μ¸ÉμÖ´¨°. ‚ ¶·¥¤¸É ¢²¥´´μ³ ¶μ¤Ì줥 [8, 11] ¤²Ö ¨§ÊÎ¥´¨Ö ¸¢μ°¸É¢ £¨£ ´É¸±¨Ì ¤¨¶μ²Ó´ÒÌ ·¥§μ´ ´¸μ¢ (ƒ„) ¡Ò² ¶·¨³¥´¥´ Ìμ·μÏμ ¨§¢¥¸É´Ò° ³¥Éμ¤ ¢μ¸¸É ´μ¢²¥´¨Ö É· ´¸²ÖÍ¨μ´´μ° ¨´¢ ·¨ ´É´μ¸É¨, ±μÉμ·Ò° § ±²ÕÎ ¥É¸Ö ¢ ¢¢¥¤¥´¨¨ ÔËË¥±É¨¢´ÒÌ ´¥°É·μ´´μ£μ Z N eneff = − e ¨ ¶·μÉμ´´μ£μ epeff = e § ·Ö¤μ¢ [16]. ·¨¢¥¤¥´´ Ö ¢¥·μÖÉ´μ¸ÉÓ Ô²¥±É·¨Î¥A A ‘¥¶ · ¡¥²¨§μ¢ ´´μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥ ‘±¨·³ 195 ¸±μ£μ ¤¨¶μ²Ó´μ£μ ¶¥·¥Ìμ¤ ¨³¥¥É ¢¨¤ 2 n p − n p → 1 ) = i | M̂ | 0 + e i | M̂ | 0 B(E1; 0+ e , gs eff i eff £¤¥ M̂ n = N i ri Y1μ (r̂i ), M̂ p = Z (1) ri Y1μ (r̂i ). i ·¨³¥´¨³ ²¨ ÔÉμÉ ³¥Éμ¤ ¤²Ö ¨¸¸²¥¤μ¢ ´¨Ö ´¨§±μÔ´¥·£¥É¨Î¥¸±μ° μ¡² ¸É¨ · ¸¶·¥¤¥²¥´¨Ö ¸¨²Ò E1-¶¥·¥Ìμ¤μ¢? É¢¥ÉÊ ´ ÔÉμÉ ¢μ¶·μ¸ ¨ ¶μ¸¢ÖÐ¥´ ¤ ´´ Ö · ¡μÉ . ŒÒ ¢μ¸¶μ²Ó§Ê¥³¸Ö ¶·μÍ¥¤Ê·μ° μ·Éμ£μ´ ²¨§ ͨ¨ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢¸¥³ ˨§¨Î¥¸±¨³ ¸μ¸ÉμÖ´¨Ö³ [17, 18]. ‚μ²´μ¢ÊÕ ËÊ´±Í¨Õ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö, μÉ¢¥Î ÕÐ¥£μ ¤¢¨¦¥´¨Õ Í¥´É· ³ ¸¸, ¶·¥¤¸É ¢¨³ ¢ ¢¨¤¥ | s = ŝ | 0, (2) £¤¥ ŝ = M̂ p + M̂ n . Œμ¦´μ ¶μ¸É·μ¨ÉÓ ¡ §¨¸, ±μÉμ·Ò° μ·Éμ£μ´ ²¥´ ¤ÊÌμ¢μ³Ê ¸μ¸ÉμÖ´¨Õ: | ı̃ = Ni (| i − αi | s) , (3) £¤¥ Ni Å ´μ·³¨·μ¢μδҰ ±μÔË˨ͨ¥´É, αi ´ Ì줨³ ¨§ ʸ²μ¢¨Ö ı̃ | s = 0. (4) ‹¥£±μ ¶μ± § ÉÓ, ÎÉμ ¶·¨¢¥¤¥´´ Ö ¢¥·μÖÉ´μ¸ÉÓ ¶¥·¥Ìμ¤ ³¥¦¤Ê μ¸´μ¢´Ò³ ¨ ¢μ§¡Ê¦¤¥´´Ò³ ¸μ¸ÉμÖ´¨Ö³¨ | ı̃ · ¢´ 2 − p i |M̂ | 0 , B(E1; 0+ → 1 ) = Z (5) e gs i ii i Zii = Ni δii s | i i | s − s | s . (6) 2. …‡“‹œ’’› ‘—…’‚ ‚ ± Î¥¸É¢¥ ¶·¨³¥· · ¸¸³μÉ·¨³ · ¸¶·¥¤¥²¥´¨¥ ¶·¨¢¥¤¥´´ÒÌ ¢¥·μÖÉ´μ¸É¥° E1-¶¥·¥Ìμ¤μ¢ ¢ 100,124,130,132 Sn ¨ 208 Pb. ‚ · ¸Î¥É Ì ¨¸¶μ²Ó§μ¢ ² ¸Ó ¶ · ³¥É·¨§ ꬅ ¸¨² ‘±¨·³ SLy4 [19]. ¤´¨³ ¨§ ʸ²μ¢¨° ¶·¨ ¢Ò¡μ·¥ ¶ · ³¥É·μ¢ SLy4 ¡Ò²μ 춨¸ ´¨¥ ¸¢μ°¸É¢ ´¥°É·μ´´μ° ³ É¥·¨¨, ¶μÔÉμ³Ê ÔÉ ¶ · ³¥É·¨§ Í¨Ö É ± ¶μ¶Ê²Ö·´ ¤²Ö 춨¸ ´¨Ö ¸¢μ°¸É¢ Ö¤¥· ¸ ¨§¡ÒÉ±μ³ ´¥°É·μ´μ¢. ·´Ò¥ ±μ··¥²Öͨ¨ ÊΨÉÒ¢ ²¨¸Ó ¢ ¶·¨¡²¨¦¥´¨¨ Š˜. · ³¥É·Ò ±μ´¸É ´É´μ£μ ¸¶ ·¨¢ É¥²Ó´μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö ˨±¸¨·μ¢ ²¨¸Ó É ±, ÎÉμ¡Ò ¢μ¸¶·μ¨§¢¥¸É¨ Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ §´ Î¥´¨Ö · §´μ¸É¨ ³ ¸¸ ¸μ¸¥¤´¨Ì Ö¤¥· [20]. ŒÒ ¶·¥´¥¡·¥£²¨ μ¸É Éμδҳ ¢§ ¨³μ¤¥°¸É¢¨¥³ ¢ ± ´ ²¥ Î ¸É¨Í ÄÎ ¸É¨Í , É ± ± ± ¥£μ ¢²¨Ö´¨¥ ´ · ¸¶·¥¤¥²¥´¨¥ ¸¨²Ò E1-¶¥·¥Ìμ¤μ¢ ³ ²μ. δ¥³ μ¡¸Ê¦¤¥´¨¥ ¸ 208 Pb. E1-¸¨²μ¢ Ö ËÊ´±Í¨Ö ¶μ± § ´ ´ ·¨¸. 1, − b(E1; ω) = B(E1; 0+ (7) gs → 1i )ρ(ω − E1− ). i i 196 ·¸¥´Ó¥¢ . ., ‘¥¢¥·Ǫ̃´ A. . ·¨ ʸ·¥¤´¥´¨¨ ¡· ² ¸Ó ²μ·¥´Í¥¢¸± Ö ËÊ´±Í¨Ö ¸ ¶ · ³¥É·μ³ · §³ §±¨ Δ = 1 ŒÔ‚ [5]. ¸¸Î¨É ´´Ò¥ Ô´¥·£¨¨ Í¥´É·μ¨¤μ¢ ƒ„ − E1− B(E1; 0+ gs → 1i ) i Ec = i − B(E1; 0+ gs → 1i ) (8) i ¨ Ô±¸¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥ [2, 21] ¶·¨¢¥¤¥´Ò ¢ É ¡²¨Í¥. ¥§Ê²ÓÉ ÉÒ · ¸Î¥Éμ¢ ¸ ÊÎ¥Éμ³ μ·Éμ£μ´ ²¨§ ͨ¨ (3) ¶μ± § ´Ò ¸¶²μÏ´Ò³¨ ²¨´¨Ö³¨ ´ ·¨¸Ê´± Ì (±μ²μ´± I ¢ É ¡²¨Í¥), · ¸Î¥Éμ¢ ¸ ÔËË¥±É¨¢´Ò³¨ § ·Ö¤ ³¨ (1) Å ¶Ê´±É¨·´Ò³¨ ²¨´¨Ö³¨ (±μ²μ´± II ¢ É ¡²¨Í¥). ˜É·¨Ìμ¢Ò¥ ²¨´¨¨ (±μ²μ´± III ¢ É ¡²¨Í¥) ¸μμÉ¢¥É¸É¢ÊÕÉ · ¸Î¥É ³ ¶μ Ëμ·³Ê²¥ 2 − p | M̂ B(E1; 0+ → 1 ) = | 0 ei , gs i (9) ±μ£¤ ¤ÊÌμ¢μ¥ ¸μ¸ÉμÖ´¨¥ ´¥ ¨¸±²ÕÎ¥´μ. Š ± ¢¨¤´μ ¨§ ·¨¸. 1, ¢μ¸¸É ´μ¢²¥´¨¥ É· ´¸²ÖÍ¨μ´´μ° ¨´¢ ·¨ ´É´μ¸É¨ ¶·¨¢μ¤¨É ± § ³¥É´μ³Ê ¶¥·¥· ¸¶·¥¤¥²¥´¨Õ ¤¨¶μ²Ó´μ° ¸¨²Ò. Éμ ¸± §Ò¢ ¥É¸Ö ¤ ¦¥ ´ ¨´É¥£· ²Ó´ÒÌ Ì · ±É¥·¨¸É¨± Ì (¸³. É ¡²¨ÍÊ). ˆ§ ·¨¸. 1 ³μ¦´μ § ±²ÕΨÉÓ, ÎÉμ ·¥§Ê²ÓÉ ÉÒ · ¸Î¥Éμ¢ ¸ ÔËË¥±É¨¢´Ò³¨ § ·Ö¤ ³¨ μÎ¥´Ó ¡²¨§±¨ ± ·¥§Ê²ÓÉ É ³, ¶μ²ÊÎ¥´´Ò³ ¸ ÊÎ¥Éμ³ μ·Éμ£μ´ ²¨§ ͨ¨ (3). ‚¨¤´μ, ÎÉμ ±μ··¥±É´Ò° Ê봃 ¤¢¨¦¥´¨Ö Í¥´É· ³ ¸¸ ¸ÊÐ¥¸É¢¥´ ¤²Ö ¶· ¢¨²Ó´μ£μ 춨¸ ´¨Ö ´¨§±μÔ´¥·£¥É¨Î¥¸±μ° μ¡² ¸É¨. ‚ ¨´É¥·¢ ²¥ Ô´¥·£¨° μ·Éμ£μ´ ²¨§ ͨ¨ (3) (¸ ÔËË¥±É¨¢´Ò³¨ § ·Ö¤ ³¨) ¤μ 9 ŒÔ‚ ´ Ï2· ¸Î¥É2 ¸ ÊÎ¥Éμ³ B(E1) = ¤ ¥É B(E1) =2,2 e · ˳ (1,9 e2 · ˳2 ), · ¸Î¥É ¶μ Ëμ·³Ê²¥ (9) Å 0,4 e2 · ˳2 . ɳ¥É¨³, ÎÉμ ¢ · ³± Ì Š”Œ ʤ ¥É¸Ö 춨¸ ÉÓ Ì · ±É¥·¨¸É¨±¨ ƒ„ ¨ ¸¢μ°¸É¢ ¶¨£³¨-·¥§μ´ ´¸ ¢ 208 Pb ¸ ÊÎ¥Éμ³ ¢²¨Ö´¨Ö ¤¢ÊÌ- ¨ É·¥ÌËμ´μ´´ÒÌ ±μ´Ë¨£Ê· ͨ° [22]. ¨¸. 1. E1-¸¨²μ¢ Ö ËÊ´±Í¨Ö ¤²Ö 208 Pb. ‘¶²μÏ´ Ö ²¨´¨Ö Å · ¸Î¥É, ÊΨÉÒ¢ ÕШ° μ·Éμ£μ´ ²¨§ Í¨Õ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢¸¥³ ˨§¨Î¥¸±¨³ ¸μ¸ÉμÖ´¨Ö³; ÏÉ·¨Ìμ¢ Ö Å · ¸Î¥É ¡¥§ μ·Éμ£μ´ ²¨§ ͨ¨; ¶Ê´±É¨·´ Ö Å · ¸Î¥É ¸ ÔËË¥±É¨¢´Ò³¨ § ·Ö¤ ³¨. ‚¥¸μ¢ Ö ËÊ´±Í¨Ö Å ²μ·¥´Í¥¢¸± Ö ËÊ´±Í¨Ö ¸ ¶ · ³¥É·μ³ ʸ·¥¤´¥´¨Ö Δ = 1 ŒÔ‚ ¨¸. 2. ’μ ¦¥, ÎÉμ ¨ ´ ·¨¸. 1, ¤²Ö 132 Sn ‘¥¶ · ¡¥²¨§μ¢ ´´μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥ ‘±¨·³ 197 ‡´ Î¥´¨Ö Ô´¥·£¨¨ ƒ„ (¸³. ¶μ¤·μ¡´μ¸É¨ ¢ É¥±¸É¥) Ec , ŒÔ‚ Ÿ¤·μ 100 Sn Sn 130 Sn 132 Sn 208 Pb 124 I ’¥μ·¨Ö II III 17,5 17,0 16,5 16,0 14,3 17,5 16,9 16,4 16,0 14,3 17,2 16,7 16,0 15,7 14,0 ±¸¶¥·¨³¥´É 15,2 15,9 16,1 13,4 ¡¸Ê¤¨³ · ¸¶·¥¤¥²¥´¨¥ ¸¨²Ò ¤¨¶μ²Ó´ÒÌ ¢μ§¡Ê¦¤¥´¨° ¢ ´¥°É·μ´μ¨§¡ÒÉμÎ´μ³ Ö¤·¥ Sn. ‘¢μ°¸É¢ ¤¨¶μ²Ó´ÒÌ ¢μ§¡Ê¦¤¥´¨° ¢ 132 Sn ¨´É¥´¸¨¢´μ ¨§ÊÎ ²¨¸Ó ± ± Ô±¸¶¥·¨³¥´É ²Ó´μ [2, 3], É ± ¨ É¥μ·¥É¨Î¥¸±¨ [12, 23Ä25]. ˆ§ É ¡²¨ÍÒ ¢¨¤´μ, ÎÉμ ´ Ï · ¸Î¥É Ô´¥·£¨¨ ƒ„ ¸μ£² ¸Ê¥É¸Ö ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨ [2]. ±¸¶¥·¨³¥´É ²Ó´μ ¶¨£³¨-·¥§μ´ ´¸ μ¡´ ·Ê¦¥´ ¶·¨ Ô´¥·£¨¨ 9,8 ŒÔ‚ [2], ÎÉμ ¡²¨§±μ ± ·¥§Ê²ÓÉ É ³ ´ Ï¨Ì · ¸Î¥Éμ¢ (·¨¸. 2). ¨¸. 2 ´ £²Ö¤´μ ¤¥³μ´¸É·¨·Ê¥É, ÎÉμ ¢ · ¸Î¥É Ì ‘” ¸ ´ ·ÊÏ¥´´μ° É· ´¸²ÖÍ¨μ´´μ° ¨´¢ ·¨ ´É´μ¸ÉÓÕ ¤ÊÌμ¢μ¥ ¸μ¸ÉμÖ´¨¥ ¶·¨¸ÊÉ¸É¢Ê¥É ¢ ¢μ²´μ¢ÒÌ ËÊ´±Í¨ÖÌ ¢μ§¡Ê¦¤¥´´ÒÌ ¸μ¸ÉμÖ´¨°, ¨ ¢¢¥¤¥´¨¥ ÔËË¥±É¨¢´ÒÌ § ·Ö¤μ¢ ¶μ§¢μ²Ö¥É ¨¸±²ÕΨÉÓ ¤ÊÌμ¢μ¥ ¸μ¸ÉμÖ´¨¥ ¢ μ¡² ¸É¨ ´¨§±¨Ì Ô´¥·£¨°. μ¤É¢¥·¦¤ ÕÉ ÔÉμÉ ¢Ò¢μ¤ ¨ ¨´É¥£· ²Ó´Ò¥ Ì · ±É¥·¨¸É¨±¨. ‚ ¨´É¥·¢ ²¥ Ô´¥·£¨° ¤μ 11 ŒÔ‚ ¨´É¥£· ²Ó´ Ö ¤¨¶μ²Ó´ Ö ¸¨² ( B(E1)) · ¢´ 0,3 e2 · ˳2 , ¥¸²¨ ´¥ ʤ ²¥´ ¶·¨³¥¸Ó ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö. ¸Î¥ÉÒ ¸ ÊÎ¥Éμ³ μ·Éμ£μ´ ²¨§ ͨ¨ (3), ¸ ÔËË¥±É¨¢´Ò³¨ § ·Ö¤ ³¨ ¤ ÕÉ ¨´É¥£· ²Ó´ÊÕ ¤¨¶μ²Ó´ÊÕ ¸¨²Ê 1,5 ¨ 1,2 e2 · ˳2 ¸μμÉ¢¥É¸É¢¥´´μ. 132 ¨¸. 3. ’μ ¦¥, ÎÉμ ¨ ´ ·¨¸. 1, ¤²Ö 130 Sn ¨¸. 4. ’μ ¦¥, ÎÉμ ¨ ´ ·¨¸. 1, ¤²Ö 124 Sn Š É ±μ³Ê ¦¥ ¢Ò¢μ¤Ê ³μ¦´μ ¶·¨°É¨ ¶·¨ ¨§ÊÎ¥´¨¨ Ö¤¥·, ʤ ²¥´´ÒÌ μÉ § ¶μ²´¥´´ÒÌ μ¡μ²μÎ¥±. ·¨¸. 3 ¨ 4 ¶·¨¢¥¤¥´Ò E1-¸¨²μ¢Ò¥ ËÊ´±Í¨¨ ¤²Ö 130 Sn ¨ 124 Sn ¸μμÉ¢¥É¸É¢¥´´μ. ɳ¥É¨³, ÎÉμ ¤²Ö 130 Sn ¨¸±²ÕÎ¥´¨¥ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¶·¨¢μ¤¨É ± ¶μÖ¢²¥´¨Õ ¶μ¤¸É·Ê±ÉÊ· ¢ · °μ´¥ 9,6 ŒÔ‚. ±¸¶¥·¨³¥´É ¤ ¥É §´ Î¥´¨¥ Ô´¥·£¨¨ ¶¨£³¨-·¥§μ´ ´¸ ¢ 130 Sn 10,1 ŒÔ‚ [2]. ¸¸³μÉ·¨³ E1-¸¨²μ¢ÊÕ ËÊ´±Í¨Õ ¤²Ö ¶·μÉμ´μ¨§¡ÒÉμδμ£μ Ö¤· 198 ·¸¥´Ó¥¢ . ., ‘¥¢¥·Ǫ̃´ A. . ¨¸. 5. ’μ ¦¥, ÎÉμ ¨ ´ ·¨¸. 1, ¤²Ö 100 Sn 100 Sn (·¨¸. 5). …¸²¨ ´¥ ¨¸±²ÕÎ ÉÓ ¢²¨Ö´¨¥ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö, ¸¨²μ¢ Ö ËÊ´±Í¨Ö ¡Ê¤¥É ¨³¥ÉÓ Ö·±¨° ¶¨± ¢ ´¨§±μÔ´¥·£¥É¨Î¥¸±μ³ Ì¢μ¸É¥ ƒ„ ¶·¨ Ô´¥·£¨¨ 12,5 ŒÔ‚. Šμ··¥±É´Ò° Ê봃 ¤¢¨¦¥´¨Ö Í¥´É· ³ ¸¸ § ³¥É´μ ʳ¥´ÓÏ ¥É ÔÉμÉ ¶¨±. ’ ±¨³ μ¡· §μ³, ¨¸±²ÕÎ¥´¨¥ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢ ¦´μ É ±¦¥ ¤²Ö ¶·μÉμ´μ¨§¡ÒÉμδÒÌ Ö¤¥·. ‡Š‹—…ˆ… ‚ · ³± Ì ¶·¨¡²¨¦¥´¨Ö ¸²ÊÎ °´ÒÌ Ë § ¸ ¸¥¶ · ¡¥²¨§μ¢ ´´Ò³¨ ¸¨² ³¨ ‘±¨·³ ¨¸¸²¥¤μ¢ ´Ò · ¸¶·¥¤¥²¥´¨Ö ¸¨²Ò E1-¶¥·¥Ìμ¤μ¢ ¤²Ö 100,124,130,132 Sn ¨ 208 Pb. ¸¸Î¨É ´´Ò¥ Ô´¥·£¨¨ ƒ„ Ìμ·μÏμ ¸μ£² ¸ÊÕÉ¸Ö ¸ ¨³¥ÕШ³¨¸Ö Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨. Œ¥Éμ¤ ¨¸±²ÕÎ¥´¨Ö ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¸ ¶μ³μÐÓÕ ¢¢¥¤¥´¨Ö ÔËË¥±É¨¢´ÒÌ § ·Ö¤μ¢ ¨ μ·Éμ£μ´ ²¨§ ꬅ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢¸¥³ ˨§¨Î¥¸±¨³ ¸μ¸ÉμÖ´¨Ö³ ¤ ¥É μÎ¥´Ó ¡²¨§±¨¥ ·¥§Ê²ÓÉ ÉÒ. ˆ¸±²ÕÎ¥´¨¥ ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ¢ ¦´μ ¤²Ö 춨¸ ´¨Ö ¤¨¶μ²Ó´ÒÌ ¢μ§¡Ê¦¤¥´¨° ¢ ´¨§±μÔ´¥·£¥É¨Î¥¸±μ° μ¡² ¸É¨. ‚ ´ ¸ÉμÖÐ¥¥ ¢·¥³Ö ¨¸¸²¥¤Ê¥É¸Ö ¢²¨Ö´¨¥ ±μ³¶μ´¥´É ¤ÊÌμ¢μ£μ ¸μ¸ÉμÖ´¨Ö ´ ´£ ·³μ´¨Î¥¸±¨¥ ÔËË¥±ÉÒ. ¢Éμ·Ò ¢Ò· ¦ ÕÉ £²Ê¡μ±ÊÕ ¡² £μ¤ ·´μ¸ÉÓ ¶·μË¥¸¸μ·Ê ‚. ‚. ‚μ·μ´μ¢Ê § ¶μ²¥§´Ò¥ μ¡¸Ê¦¤¥´¨Ö. ‘ˆ‘Š ‹ˆ’…’“› 1. Palit R. et al. Dipole Excitations of NeutronÄProton Asymmetric Nuclei // Nucl. Phys. A. 2004. V. 731. P. 235Ä248. 2. Adrich P. et al. Evidence for Pygmy and Giant Dipole Resonances in Rev. Lett. 2005. V. 95. P. 132501-1Ä132501-4. 130 Sn and 132 Sn // Phys. 3. Klimkiewicz A. et al. Nuclear Symmetry Energy and Neutron Skins Derived from Pygmy Dipole Resonances // Phys. Rev. C. 2007. V. 76. P. 051603(R)-1Ä051603(R)-4. é 4. Ozel B. et al. Systematics of the Pygmy Dipole Resonance in Stable Tin Isotopes from Resonant Photon Scattering // Nucl. Phys. A. 2007. V. 788. P. 385cÄ388c. 5. ‘μ²μ¢Ó¥¢ ‚. ƒ. ’¥μ·¨Ö Éμ³´μ£μ Ö¤· . Š¢ §¨Î ¸É¨ÍÒ ¨ Ëμ´μ´Ò. Œ.: ´¥·£μ É쳨§¤ É, 1989. ‘¥¶ · ¡¥²¨§μ¢ ´´μ¥ ¢§ ¨³μ¤¥°¸É¢¨¥ ‘±¨·³ 199 6. Vautherin D., Brink D. M. HartreeÄFock Calculations with Skyrme's Interaction. I. Spherical Nuclei // Phys. Rev. C. 1972. V. 5. P. 626Ä647. 7. Nguyen Van Giai, Stoyanov Ch., Voronov V. V. Finite Rank Approximation for Random Phase Approximation Calculations with Skyrme Interactions: an Application to Ar Isotopes // Phys. Rev. C. 1998. V. 57. P. 1204Ä1209. 8. Severyukhin A. P. et al. Quasiparticle Random Phase Approximation with Finite Rank Approximation for Skyrme Interactions // Phys. Rev. C. 2002. V. 66. P. 034304-1Ä034304-7. 9. Severyukhin A. P., Voronov V. V., Nguyen Van Giai. Effects of PhononÄPhonon Coupling on LowLying States in Neutron-Rich Sn Isotopes // Eur. Phys. J. A. 2004. V. 22. P. 397Ä403. 10. Severyukhin A. P., Voronov V. V., Nguyen Van Giai. Effects of the ParticleÄParticle Channel on Properties of Low-Lying Vibrational States // Phys. Rev. C. 2008. V. 77. P. 024322-1Ä024322-8. 11. Severyukhin A. P. et al. Separable Skyrme Interactions and Quasiparticle RPA // Phys. At. Nucl. 2003. V. 66, No. 8. P. 1434Ä1438. 12. Tarpanov D. et al. Low-Lying Electric Dipole Transitions in Tin Isotopic Chain within the RPA Model // Phys. At. Nucl. 2007. V. 70, No. 8. P. 1447Ä1451. 13. Blaizot J. P., Gogny D. Theory of Elementary Excitations in Closed Shell Nuclei // Nucl. Phys. A. 1977. V. 284. P. 429Ä460. 14. Nguyen Van Giai, Sagawa H. Spin-Isospin and Pairing Properties of Modiˇed Skyrme Interactions // Phys. Lett. B. 1981. V. 106. P. 379Ä382. 15. ‘μ²μ¢Ó¥¢ ‚. ƒ. “· ¢´¥´¨Ö ±¢ §¨Î ¸É¨Î´μ-Ëμ´μ´´μ° ³μ¤¥²¨ Ö¤· ¸ ÔËË¥±É¨¢´Ò³¨ ±μ´¥Î´μ£μ · ´£ ¸¥¶ · ¡¥²Ó´Ò³¨ ¢§ ¨³μ¤¥°¸É¢¨Ö³¨ // Ÿ”. 1989. ’. 50, ¢Ò¶. 1. ‘. 40Ä51. 16. μ· ., ŒμÉÉ¥²Ó¸μ´ . ‘ɷʱÉÊ· Éμ³´μ£μ Ö¤· . T. 2. Œ.: Œ¨·, 1977. 17. Col o G. et al. On Dipole Compression Modes in Nuclei // Phys. Lett. B. 2000. V. 485. P. 362Ä366. 18. Col o G. The Compression Modes in Atomic Nuclei and Their Relevance for the Nuclear Equation of State // —Ÿ. 2008. ’. 39, ¢Ò¶. 2. ‘. 557Ä595. 19. Chabanat E. et al. A Skyrme Parametrization from Subnuclear to Neutron Star Densities. Part II: Nuclei Far from Stabilities // Nucl. Phys. A. 1998. V. 635. P. 231Ä256. 20. Audi G., Wapstra A. H. The 1995 Update to the Atomic Mass Evaluation // Nucl. Phys. A. 1995. V. 595. P. 409Ä480. 21. Veyssiere A. et al. Photoneutron Cross Sections of 208 Pb and 197 Au // Nucl. Phys. A. 1970. V. 159. P. 561Ä576. 22. Ryezayeva N. et al. Nature of Low-Energy Dipole Strength in Nuclei: The Case of a Resonance at Particle Threshold in 208 Pb // Phys. Rev. Lett. 2002. V. 89. P. 272502-1Ä272502-4. 23. Sarchi D., Bortignon P. F., Col o G. Dipole States in Stable and Unstable Nuclei // Phys. Lett. B. 2004. V. 601. P. 27Ä33. 24. Tsoneva N., Lenske H., Stoyanov Ch. Probing the Nuclear Neutron Skin by Low-Energy Dipole Modes // Phys. Lett. B. 2004. V. 586. P. 213Ä218. 25. Litvinova E. et al. Relativistic Quasiparticle Time Blocking Approximation. II. Pygmy Dipole Resonance in Neutron-Rich Nuclei // Phys. Rev. C. 2009. V. 79. P. 054312-1Ä054312-12. μ²ÊÎ¥´μ 25 ³ ·É 2009 £.