2015 ȼȿɋɌɇɂɄ ɉɇɂɉɍ ɋɬɪɨɢɬɟɥɶɫɬɜɨ ɢ ɚɪɯɢɬɟɤɬɭɪɚ ʋ1 DOI: 10.15593/2224-9826/2015.1.02 ɍȾɄ 624.154.1 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ ɉɟɪɦɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫɤɢɣ ɩɨɥɢɬɟɯɧɢɱɟɫɤɢɣ ɭɧɢɜɟɪɫɢɬɟɬ, ɉɟɪɦɶ, Ɋɨɫɫɢɹ ɉɊɂɆȿɇȿɇɂȿ ɊȿɁɍɅɖɌȺɌɈȼ ɂɋɋɅȿȾɈȼȺɇɂə ȺɇɂɁɈɌɊɈɉɇɈɃ ȾȿɎɈɊɆɂɊɍȿɆɈɋɌɂ ɉȿɋɑȺɇɂɄɈȼ ȾɅə ɑɂɋɅȿɇɇɈȽɈ ɆɈȾȿɅɂɊɈȼȺɇɂə ȼ PLAXIS Ⱦɚɧɧɚɹ ɪɚɛɨɬɚ ɹɜɥɹɟɬɫɹ ɩɪɨɞɨɥɠɟɧɢɟɦ ɢɫɫɥɟɞɨɜɚɧɢɣ ɫɬɪɨɢɬɟɥɶɧɵɯ ɫɜɨɣɫɬɜ ɝɪɭɧɬɨɜ ɩɟɪɦɫɤɨɝɨ ɜɨɡɪɚɫɬɚ. ɂɫɫɥɟɞɨɜɚɧɢɟ ɩɨɤɚɡɚɥɨ, ɱɬɨ ɩɟɪɦɫɤɢɟ ɩɟɫɱɚɧɢɤɢ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ ɨɛɥɚɞɚɸɬ ɫɯɨɠɢɦɢ ɮɢɡɢɱɟɫɤɢɦɢ ɫɜɨɣɫɬɜɚɦɢ ɢ ɫɨɫɬɨɹɬ ɢɡ ɩɟɥɢɬɨɜɵɯ ɢ ɩɫɚɦɦɢɬɨɜɵɯ ɱɚɫɬɢɰ, ɫɰɟɦɟɧɬɢɪɨɜɚɧɧɵɯ ɝɥɢɧɢɫɬɵɦ ɢ ɤɚɪɛɨɧɚɬɧɵɦ ɰɟɦɟɧɬɨɦ. ɐɟɥɶ ɪɚɛɨɬɵ – ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɢɫɫɥɟɞɨɜɚɬɶ ɚɧɢɡɨɬɪɨɩɧɭɸ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ ɩɟɫɱɚɧɢɤɚ ɢ ɜɵɩɨɥɧɢɬɶ ɱɢɫɥɟɧɧɨɟ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɩɟɫɱɚɧɢɤɨɜ ɫ ɩɪɢɦɟɧɟɧɢɟɦ Plaxis. Ⱦɟɮɨɪɦɚɰɢɨɧɧɚɹ ɚɧɢɡɨɬɪɨɩɢɹ ɜ ɝɟɨɬɟɯɧɢɤɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɢɧɬɟɪɟɫ ɩɪɢ ɪɚɫɱɟɬɟ ɨɫɚɞɨɤ ɢ ɧɟɫɭɳɟɣ ɫɩɨɫɨɛɧɨɫɬɢ ɝɪɭɧɬɨɜɵɯ ɨɫɧɨɜɚɧɢɣ ɮɭɧɞɚɦɟɧɬɨɜ ɡɞɚɧɢɣ ɢ ɫɨɨɪɭɠɟɧɢɣ. Ⱥɜɬɨɪɵ ɜɵɩɨɥɧɢɥɢ ɚɧɚɥɢɡ ɪɟɡɭɥɶɬɚɬɨɜ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɢ ɫɬɚɬɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɲɬɚɦɩɨɦ ɩɥɨɳɚ2 ɞɶɸ 600 ɫɦ . ɋɟɪɢɹ ɩɨɥɟɜɵɯ ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɩɨɡɜɨɥɢɥɚ ɢɡɭɱɢɬɶ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ ɩɟɫɱɚɧɢɤɨɜ ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɦ ɢ ɜɟɪɬɢɤɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ. Ȼɵɥɨ ɜɵɹɜɥɟɧɨ, ɱɬɨ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ ɩɟɫɱɚɧɢɤɚ ɜ ɜɟɪɬɢɤɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ ɛɨɥɟɟ ɱɟɦ ɜ 2 ɪɚɡɚ ɩɪɟɜɵɲɚɟɬ ɝɨɪɢɡɨɧɬɚɥɶɧɭɸ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɩɨɞ ɧɚɝɪɭɡɤɨɣ ɨɬ ɡɞɚɧɢɣ ɢ ɫɨɨɪɭɠɟɧɢɣ ɜ ɩɟɫɱɚɧɢɤɟ ɛɭɞɟɬ ɧɚɛɥɸɞɚɬɶɫɹ ɚɧɢɡɨɬɪɨɩɧɨɟ ɧɚɩɪɹɠɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ. Ⱥɜɬɨɪɚɦɢ ɛɵɥɢ ɩɨɥɭɱɟɧɵ ɡɧɚɱɟɧɢɹ ɩɚɪɚɦɟɬɪɨɜ ɞɥɹ ɦɨɞɟɥɢ ɬɪɟɳɢɧɨɜɚɬɨɣ ɚɧɢɡɨɬɪɨɩɧɨɣ ɫɤɚɥɵ (Jointed Rock model), ɪɟɚɥɢɡɨɜɚɧɧɨɣ ɜ Plaxis. Ȼɨɥɶɲɨɟ ɜɧɢɦɚɧɢɟ ɭɞɟɥɟɧɨ ɱɢɫɥɟɧɧɨɦɭ ɦɨɞɟɥɢɪɨɜɚɧɢɸ ɭɤɚɡɚɧɧɵɯ ɬɟɫɬɨɜ. Ɋɟɡɭɥɶɬɚɬɵ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɬɟɫɬɚɦɢ, ɩɨɞɬɜɟɪɠɞɚɹ ɱɢɫɥɟɧɧɵɟ ɦɟɬɨɞɵ, ɪɟɚɥɢɡɨɜɚɧɧɵɟ ɜ ɦɨɞɟɥɢ Jointed Rock model. Ⱦɚɧɧɚɹ ɦɨɞɟɥɶ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɚ ɜ ɤɚɱɟɫɬɜɟ ɩɪɚɤɬɢɱɟɫɤɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ ɚɧɚɥɢɡɚ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɩɨɜɟɞɟɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɩɟɪɦɫɤɨɝɨ ɩɟɫɱɚɧɢɤɚ. Ⱦɚɧɧɭɸ ɪɚɛɨɬɭ ɦɨɠɧɨ ɨɰɟɧɢɜɚɬɶ ɤɚɤ ɩɪɟɞɜɚɪɢɬɟɥɶɧɭɸ ɜɟɪɢɮɢɤɚɰɢɸ ɩɨɥɭɱɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɩɚɪɚɦɟɬɪɨɜ ɞɥɹ ɦɨɞɟɥɢ Jointed Rock model, ɪɟɚɥɢɡɨɜɚɧɧɨɣ ɜ Plaxis. ȼ ɯɨɞɟ ɞɚɥɶɧɟɣɲɢɯ ɢɫɫɥɟɞɨɜɚɧɢɣ ɚɜɬɨɪɚɦɢ ɩɥɚɧɢɪɭɟɬɫɹ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɪɚɛɨɬɵ ɮɭɧɞɚɦɟɧɬɨɜ, ɨɫɧɨɜɚɧɢɟɦ ɤɨɬɨɪɵɯ ɹɜɥɹɸɬɫɹ ɩɟɪɦɫɤɢɟ ɩɟɫɱɚɧɤɢ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ, ɞɥɹ ɪɟɲɟɧɢɹ ɪɚɡɥɢɱɧɵɯ ɝɟɨɬɟɯɧɢɱɟɫɤɢɯ ɡɚɞɚɱ. Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ: ɩɟɫɱɚɧɢɤ, ɮɭɧɞɚɦɟɧɬ, ɚɧɢɡɨɬɪɨɩɢɹ, ɦɟɬɨɞ ɤɨɧɟɱɧɵɯ ɷɥɟɦɟɧɬɨɜ, Plaxis, Jointed Rock model, ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɟ ɢɫɩɵɬɚɧɢɟ, ɲɬɚɦɩɨɜɨɟ ɢɫɩɵɬɚɧɢɟ, ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ, ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɟ ɫɨɫɬɨɹɧɢɟ. 21 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ A.B. Ponomarev, E.N. Sychkina Perm National Research Polytechnic University, Perm, Russian Federation THE APPLICATION OF RESEARCH RESULTS ANISOTROPIC DEFORMABILITY SANDSTONES FOR NUMERICAL MODELING IN PLAXIS This paper is a continuation of the research construction properties of soils Permian age. The study showed that the Permian sandstones and claystones have similar physical properties and are composed of pelitic and psammitic particles cemented with clay and carbonate cement. Purpose – to experimentally investigate the anisotropic deformability sandstone and to perform numerical modeling stress-strain state of sandstones using Plaxis. Strain anisotropy in geotechnics is of interest when calculating settlements and the ground base bearing capacity of a building foundation. The authors carried 2 out an analysis of the results pressuremeter testis and static stamp tests area of 600 cm . The number of field experiments allowed to study the deformability of sandstone in horizontal and vertical direction. It was found that the deformability of the sandstone in the vertical plane more in 2 times than the horizontal deformability. This means that under the load of buildings and constructions in the sandstone will be observed anisotropic stress state. Authors have obtained values of the parameters for the anisotropic model of fractured rock (Jointed Rock model), realized in Plaxis. Much attention is given to numerical modeling of these tests. The results of numerical modeling are in good agreement with the tests, confirming the numerical methods implemented in Jointed Rock model. This model can be used as a practical tool for the analysis of the stress-strain behavior of anisotropic Permian sandstone. This work can be viewed as a preliminary verification of the parameters for the Jointed Rock model, realized in Plaxis. In further studies, the authors plan to modeling of foundations, basis of which is Permian sandstone and claystone for solve various geotechnical problems. Keywords: sandstone, foundation, anisotropy, finite element method, Plaxis, Jointed Rock model, pressuremeter tests static stamp test, modulus of deformation, stress-strain state. Ⱦɟɮɨɪɦɚɰɢɨɧɧɚɹ ɚɧɢɡɨɬɪɨɩɢɹ ɩɪɢɪɨɞɧɵɯ ɝɪɭɧɬɨɜ ɚɤɬɢɜɧɨ ɢɫɫɥɟɞɭɟɬɫɹ ɜɨ ɦɧɨɝɢɯ ɫɬɪɚɧɚɯ ɫ ɧɚɱɚɥɚ ɩɪɨɲɥɨɝɨ ɜɟɤɚ. ȼ ɪɚɛɨɬɚɯ Ⱥ.Ʉ. Ȼɭɝɪɨɜɚ [1], Ʌ.ȼ. ɇɭɠɞɢɧɚ [2], ȼ.ɂ. Ɉɫɢɩɨɜɚ [3], L. Barden [4], W. Lam [5], S. Salager [6], F. Zhang [7], G. Zhiwei [8] ɛɵɥɨ ɞɨɤɚɡɚɧɨ, ɱɬɨ ɛɨɥɶɲɢɧɫɬɜɨ ɝɪɭɧɬɨɜ ɨɛɥɚɞɚɸɬ ɩɨɩɟɪɟɱɧɨɣ ɚɧɢɡɨɬɪɨɩɢɟɣ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɪɨɰɟɫɫɚ ɨɫɚɞɤɨɧɚɤɨɩɥɟɧɢɹ. ɗɤɫɩɟɪɢɦɟɧɬɵ ɩɨɤɚɡɚɥɢ, ɱɬɨ ɫɜɨɣɫɬɜɚ ɝɪɭɧɬɨɜ ɨɛɵɱɧɨ ɡɚɜɢɫɹɬ ɨɬ ɧɚɩɪɚɜɥɟɧɢɹ, ɜ ɤɨɬɨɪɨɦ ɨɧɢ ɢɡɦɟɪɟɧɵ. ɗɬɚ ɨɫɨɛɟɧɧɨɫɬɶ ɦɟɯɚɧɢɱɟɫɤɨɝɨ ɩɨɜɟɞɟɧɢɹ (ɚ ɬɚɤɠɟ ɞɪɭɝɢɯ ɚɫɩɟɤɬɨɜ, ɬɚɤɢɯ ɤɚɤ ɮɢɥɶɬɪɚɰɢɹ ɜɨɞɵ, ɬɟɩɥɨɩɪɨɜɨɞɨɧɨɫɬɶ ɢ ɞɪɭɝɢɟ) ɩɪɨɢɫɯɨɞɢɬ ɜ ɪɟɡɭɥɶɬɚɬɟ ɦɢɤɪɨ- ɢ ɦɚɤɪɨɫɬɪɭɤɬɭɪɧɵɯ ɮɚɤɬɨɪɨɜ. Ɉɫɨɛɵɟ ɧɚɩɪɚɜɥɟɧɢɹ ɨɩɪɟɞɟɥɟɧɵ ɧɚ ɦɢɤɪɨɭɪɨɜɧɟ ɜ ɩɪɨɰɟɫɫɟ ɮɨɪɦɢɪɨɜɚɧɢɹ ɝɥɢɧɵ ɱɟɪɟɡ ɫɬɪɭɤɬɭɪɭ, ɬɟɤɫɬɭɪɭ, ɤɪɢɫɬɚɥɥɨɝɪɚɮɢɸ ɢɥɢ ɪɚɡɦɟɪɵ ɡɟɪɧɚ; ɚ ɧɚ ɦɚɤɪɨɭɪɨɜɧɟ – ɱɟɪɟɡ ɫɥɨɢɫɬɨɫɬɶ ɢ ɬɪɟɳɢɧɵ. Ɋɚɧɟɟ ɜ ɪɚɛɨɬɚɯ Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜɚ ɢ ȿ.ɇ. ɋɵɱɤɢɧɨɣ [9–12] ɭɠɟ ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ ɨɫɨɛɟɧɧɨɫɬɢ ɞɟɮɨɪɦɢɪɨɜɚɧɢɹ ɩɟɪɦɫɤɢɯ ɚɪɝɢɥɥɢɬɨ22 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … ɩɨɞɨɛɧɵɯ ɝɥɢɧ, ɚ ɬɚɤɠɟ ɨɩɪɟɞɟɥɹɥɢɫɶ ɩɚɪɚɦɟɬɪɵ, ɧɟɨɛɯɨɞɢɦɵɟ ɞɥɹ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɯ ɝɥɢɧ ɜ Plaxis. ɉɨ ɩɪɨɫɬɢɪɚɧɢɸ ɢ ɝɥɭɛɢɧɟ ɩɟɪɦɫɤɢɟ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ ɢ ɩɟɫɱɚɧɢɤɢ ɩɟɪɟɫɥɚɢɜɚɸɬɫɹ ɦɟɠɞɭ ɫɨɛɨɣ ɫɥɨɹɦɢ ɪɚɡɥɢɱɧɨɣ ɦɨɳɧɨɫɬɢ. ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɜɫɹ ɬɨɥɳɚ ɝɪɭɧɬɨɜ ɩɟɪɦɫɤɨɝɨ ɜɨɡɪɚɫɬɚ ɪɚɫɫɦɚɬɪɢɜɚɟɬɫɹ ɩɪɢ ɢɧɠɟɧɟɪɧɨ-ɝɟɨɥɨɝɢɱɟɫɤɢɯ ɢ ɝɟɨɬɟɯɧɢɱɟɫɤɢɯ ɢɫɫɥɟɞɨɜɚɧɢɹɯ ɤɚɤ ɟɞɢɧɵɣ ɢɧɠɟɧɟɪɧɨ-ɝɟɨɥɨɝɢɱɟɫɤɢɣ ɷɥɟɦɟɧɬ, ɜɧɭɬɪɢ ɤɨɬɨɪɨɝɨ ɜɵɞɟɥɹɸɬɫɹ ɥɢɬɨɥɨɝɢɱɟɫɤɢɟ ɫɥɨɢ ɫɨ ɫɜɨɢɦɢ ɦɟɯɚɧɢɱɟɫɤɢɦɢ ɫɜɨɣɫɬɜɚɦɢ. ɍɤɚɡɚɧɧɚɹ ɨɫɨɛɟɧɧɨɫɬɶ ɝɟɨɥɨɝɢɱɟɫɤɨɝɨ ɫɬɪɨɟɧɢɹ ɦɚɫɫɢɜɚ ɩɟɪɦɫɤɢɯ ɨɬɥɨɠɟɧɢɣ ɩɪɢɜɨɞɢɬ ɤ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɢɫɫɥɟɞɨɜɚɧɢɹ ɦɟɯɚɧɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɩɟɫɱɚɧɢɤɨɜ, ɜ ɨɬɥɢɱɢɟ ɨɬ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɯ ɝɥɢɧ, ɩɨɤɚ ɧɟɞɨɫɬɚɬɨɱɧɨ ɢɡɭɱɟɧɧɵɯ ɭ ɧɚɫ ɜ ɫɬɪɚɧɟ. ɋɪɟɞɢ ɡɚɪɭɛɟɠɧɵɯ ɝɟɨɬɟɯɧɢɤɨɜ, ɡɚɧɢɦɚɸɳɢɯɫɹ ɩɪɨɛɥɟɦɨɣ ɚɧɢɡɨɬɪɨɩɧɵɯ ɫɜɨɣɫɬɜ ɩɟɫɱɚɧɢɤɨɜ ɧɟɱɟɬɜɟɪɬɢɱɧɨɝɨ ɜɨɡɪɚɫɬɚ, ɦɨɠɧɨ ɨɬɦɟɬɢɬɶ N. Farrell [13], L. Louis [14] ɢ ɞɪ. Ȼɨɥɶɲɨɟ ɜɧɢɦɚɧɢɟ ɩɪɢ ɢɫɫɥɟɞɨɜɚɧɢɢ ɚɧɢɡɨɬɪɨɩɧɵɯ ɫɜɨɣɫɬɜ ɩɟɫɱɚɧɢɤɨɜ ɭɞɟɥɹɟɬɫɹ ɫɥɨɢɫɬɨɫɬɢ ɢ ɨɫɧɨɜɧɨɦɭ ɧɚɩɪɚɜɥɟɧɢɸ ɬɪɟɳɢɧɨɜɚɬɨɫɬɢ. ɐɟɥɶ ɪɚɛɨɬɵ – ɜɵɩɨɥɧɢɬɶ ɱɢɫɥɟɧɧɨɟ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɧɚɩɪɹɠɟɧɧɨɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɩɟɫɱɚɧɢɤɨɜ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɩɨɥɭɱɟɧɧɵɯ ɜ ɢɫɫɥɟɞɨɜɚɧɢɢ ɞɟɮɨɪɦɚɰɢɨɧɧɵɯ ɩɚɪɚɦɟɬɪɨɜ. Ⱦɥɹ ɞɨɫɬɢɠɟɧɢɹ ɭɤɚɡɚɧɧɨɣ ɰɟɥɢ ɚɜɬɨɪɚɦɢ ɛɵɥɢ ɩɨɫɬɚɜɥɟɧɵ ɫɥɟɞɭɸɳɢɟ ɡɚɞɚɱɢ: 1) ɢɡɭɱɢɬɶ ɨɫɨɛɟɧɧɨɫɬɢ ɮɢɡɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɢ ɫɬɪɨɟɧɢɹ ɩɟɫɱɚɧɢɤɚ, ɫɪɚɜɧɢɬɶ ɫ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɨɣ; 2) ɩɪɢɜɟɫɬɢ ɦɟɬɨɞɢɤɭ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɢɢ ɦɟɯɚɧɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɩɟɫɱɚɧɢɤɨɜ, ɩɨɥɭɱɟɧɧɵɟ ɪɟɡɭɥɶɬɚɬɵ ɫɪɚɜɧɢɬɶ ɫ ɪɟɡɭɥɶɬɚɬɚɦɢ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɢɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɯ ɝɥɢɧ; 3) ɜɵɩɨɥɧɢɬɶ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɜ ɩɪɨɝɪɚɦɦɧɨɦ ɤɨɦɩɥɟɤɫɟ Plaxis ɫ ɩɨɦɨɳɶɸ ɦɨɞɟɥɢ Jointed Rock model ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɩɨɥɭɱɟɧɧɵɯ ɜ ɢɫɫɥɟɞɨɜɚɧɢɢ ɡɧɚɱɟɧɢɣ ɦɟɯɚɧɢɱɟɫɤɢɯ ɢ ɮɢɡɢɱɟɫɤɢɯ ɩɚɪɚɦɟɬɪɨɜ ɩɟɫɱɚɧɢɤɚ, ɜɵɩɨɥɧɢɬɶ ɜɟɪɢɮɢɤɚɰɢɸ ɪɚɫɱɟɬɨɜ. 1. Ɏɢɡɢɱɟɫɤɢɟ ɫɜɨɣɫɬɜɚ ɢ ɨɫɨɛɟɧɧɨɫɬɢ ɫɬɪɨɟɧɢɹ ɩɟɫɱɚɧɢɤɚ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɉɟɫɱɚɧɢɤɢ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ ɩɟɪɦɫɤɨɝɨ ɜɨɡɪɚɫɬɚ ɨɬɥɢɱɚɸɬɫɹ ɨɬ ɫɨɜɪɟɦɟɧɧɵɯ ɩɟɫɤɨɜ ɢ ɝɥɢɧ. ɋɬɪɨɟɧɢɟ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɯ ɝɥɢɧ ɯɚɪɚɤɬɟɪɢɡɭɟɬɫɹ ɧɚɥɢɱɢɟɦ ɩɟɥɢɬɨɜɵɯ ɢ ɦɟɥɤɨɚɥɟɜɪɢɬɨɜɵɯ 23 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ ɤɥɚɫɬɢɱɟɫɤɢɯ ɱɚɫɬɢɰ, ɩɨɤɪɵɬɵɯ ɩɥɟɧɤɚɦɢ ɢ ɫɰɟɦɟɧɬɢɪɨɜɚɧɧɵɯ ɜ ɨɞɧɨɪɨɞɧɭɸ ɦɚɫɫɭ. Ɇɚɤɪɨɫɤɨɩɢɱɟɫɤɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɚɹ ɝɥɢɧɚ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɩɥɨɬɧɭɸ, ɦɚɫɫɢɜɧɭɸ ɩɨɪɨɞɭ ɤɨɪɢɱɧɟɜɨɝɨ ɰɜɟɬɚ ɢ ɫɨɫɬɨɢɬ ɢɡ ɝɥɢɧɢɫɬɨɝɨ ɦɚɬɟɪɢɚɥɚ ɫ ɩɪɢɦɟɫɹɦɢ ɤɚɪɛɨɧɚɬɨɜ, ɩɪɨɩɢɬɚɧɧɨɝɨ ɨɤɫɢɞɚɦɢ ɠɟɥɟɡɚ (ɪɢɫ. 1). Ɍɟɪɦɨɝɪɚɮɢɱɟɫɤɚɹ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɫɜɢɞɟɬɟɥɶɫɬɜɭɟɬ ɨ ɩɪɢɫɭɬɫɬɜɢɢ ɜ ɧɢɯ ɦɨɧɬɦɨɪɢɥɥɨɧɢɬɚ, ɯɥɨɪɢɬɚ, ɝɢɩɫɚ, ɞɨɥɨɦɢɬɚ, ɤɚɥɶɰɢɬɚ. ɉɥɟɧɨɱɧɵɟ ɢ ɰɟɦɟɧɬɢɪɭɸɳɢɟ ɜɟɳɟɫɬɜɚ (ɦɨɧɬɦɨɪɢɥɥɨɧɢɬ, ɯɥɨɪɢɬ, ɝɢɞɪɨɤɫɢɞɵ ɠɟɥɟɡɚ) ɜ ɫɭɦɦɟ ɫɨɫɬɚɜɥɹɸɬ ɞɨ 70 % ɨɬ ɦɚɫɫɵ ɩɨɪɨɞɵ [9]. Ɉɫɨɛɟɧɧɨɫɬɢ ɮɢɡɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɨɩɪɟɞɟɥɹɸɬɫɹ ɡɧɚɱɢɬɟɥɶɧɵɦ ɫɨɞɟɪɠɚɧɢɟɦ ɦɨɧɬɦɨɪɢɥɥɨɧɢɬɚ ɜ ɫɨɫɬɨɹɧɢɢ ɡɚɫɬɚɪɟɜɲɟɝɨ ɤɨɥɥɨɢɞɚ. ɋ ɩɨɬɟɪɟɣ ɟɫɬɟɫɬɜɟɧɧɨɣ ɜɥɚɠɧɨɫɬɢ ɦɨɧɬɦɨɪɢɥɥɨɧɢɬ ɫɠɢɦɚɟɬɫɹ, ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɩɨɹɜɥɟɧɢɸ ɜ ɩɨɪɨɞɟ ɦɢɤɪɨɬɪɟɳɢɧ. ɉɨɝɪɭɠɟɧɢɟ ɜ ɜɨɞɭ ɜ ɬɚɤɨɦ ɫɨɫɬɨɹɧɢɢ ɜɵɡɵɜɚɟɬ ɪɚɫɤɥɢɧɢɜɚɧɢɟ ɜɨɞɨɣ ɩɨɪɨɞɵ ɧɚ ɦɟɥɤɢɟ ɤɭɫɨɱɤɢ ɩɨ ɧɟɩɪɚɜɢɥɶɧɵɦ ɤɪɢɜɨɥɢɧɟɣɧɵɦ ɩɨɜɟɪɯɧɨɫɬɹɦ. ɉɟɪɦɫɤɢɟ ɩɟɫɱɚɧɢɤɢ ɛɵɜɚɸɬ ɦɟɥɤɨ-, ɤɪɭɩɧɨ- ɢ ɫɪɟɞɧɟɡɟɪɧɢɫɬɵɦɢ. ɋɬɪɭɤɬɭɪɚ ɩɟɫɱɚɧɢɤɚ ɩɫɚɦɦɢɬɨɜɚɹ, ɬɟɤɫɬɭɪɚ – ɦɚɫɫɢɜɧɚɹ, ɨɛɥɨɦɤɢ ɭɝɥɨɜɚɬɵɟ ɢ ɭɝɥɨɜɚɬɨ-ɨɤɚɬɚɧɧɵɟ ɪɚɡɦɟɪɨɦ ɨɬ 0,1 ɞɨ 0,6 ɦɦ ɫ ɩɪɟɨɛɥɚɞɚɧɢɟɦ 0,1–0,3 ɦɦ. ɋɨɞɟɪɠɚɧɢɟ ɨɛɥɨɦɨɱɧɨɝɨ ɦɚɬɟɪɢɚɥɚ ɜ ɫɪɟɞɧɟɦ 50–85 %. Ɇɢɧɟɪɚɥɨɝɢɱɟɫɤɢɣ ɫɨɫɬɚɜ ɨɛɥɨɦɨɱɧɨɝɨ ɦɚɬɟɪɢɚɥɚ: ɤɜɚɪɰ – 10–15 %, ɚɥɶɛɢɬ – 3–5 %, ɩɨɥɟɜɵɟ ɲɩɚɬɵ 5–8 %, ɛɢɨɬɢɬ ɢ ɷɩɢɞɨɬ – ɦɟɧɟɟ 1 %, ɨɛɥɨɦɤɢ ɷɮɮɭɡɢɜɧɵɯ ɩɨɪɨɞ – 15–28 %, ɝɥɢɧɢɫɬɵɟ ɨɛɥɨɦɤɢ – 5–8 %, ɢɡɜɟɫɬɧɹɤ – 2 %. ɐɟɦɟɧɬ ɤɚɪɛɨɧɚɬɧɵɣ ɦɟɥɤɨɡɟɪɧɢɫɬɵɣ, ɝɥɢɧɢɫɬɨ-ɤɚɪɛɨɧɚɬɧɵɣ – ɩɟɥɢɬɨɦɨɪɮɧɵɣ, ɤɚɥɶɰɢɬɨɜɵɣ – ɫɪɟɞɧɟ- ɢ ɦɟɥɤɨɡɟɪɧɢɫɬɵɣ. Ɍɢɩ ɰɟɦɟɧɬɚ – ɩɨɤɪɨɜɧɵɣ, ɛɚɡɚɥɶɧɵɣ. Ɇɚɫɫɚ ɰɟɦɟɧɬɚ ɛɭɪɨɜɚɬɨ-ɫɟɪɚɹ ɢɡ-ɡɚ ɩɪɢɫɭɬɫɬɜɢɹ ɝɢɞɪɨɤɫɢɞɨɜ ɠɟɥɟɡɚ (ɪɢɫ. 2). ɋɨɞɟɪɠɚɧɢɟ ɦɟɞɢ ɜ ɩɟɫɱɚɧɢɤɚɯ 0,003–0,007 %. Ⱦɨ ɝɥɭɛɢɧɵ 20,0–25,0 ɦ ɩɟɫɱɚɧɢɤɢ ɫɢɥɶɧɨɜɵɜɟɬɪɟɥɵɟ, ɱɚɫɬɨ ɞɨ ɫɨɫɬɨɹɧɢɹ ɪɭɯɥɹɤɨɜ. ɋɥɨɢɫɬɨɫɬɶ ɝɨɪɢɡɨɧɬɚɥɶɧɚɹ. ȼ ɡɚɦɨɱɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ ɩɟɫɱɚɧɢɤ ɪɚɫɩɚɞɚɟɬɫɹ ɧɚ ɤɭɫɤɢ ɩɪɢ ɧɟɡɧɚɱɢɬɟɥɶɧɨɦ ɭɫɢɥɢɢ. ɇɚ ɨɫɧɨɜɚɧɢɢ ɪɟɡɭɥɶɬɚɬɨɜ ɥɚɛɨɪɚɬɨɪɧɵɯ ɢ ɩɨɥɟɜɵɯ ɪɚɛɨɬ, ɩɪɟɞɫɬɚɜɥɟɧɧɵɯ ɜ ɚɪɯɢɜɧɵɯ ɨɬɱɟɬɚɯ ɈȺɈ «ȼɟɪɯɧɟɤɚɦɌɂɋɂɡ», ɚ ɬɚɤɠɟ ɢɫɫɥɟɞɨɜɚɧɢɣ ɚɜɬɨɪɚ [9], ɛɵɥɢ ɨɩɪɟɞɟɥɟɧɵ ɮɢɡɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɩɟɫɱɚɧɢɤɚ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ (ɬɚɛɥ. 1). ȼ ɬɚɛɥ. 1 ɩɨɤɚɡɚɧɨ, ɱɬɨ ɩɥɨɬɧɨɫɬɶ ɩɟɫɱɚɧɢɤɚ ɩɪɟɜɵɲɚɟɬ ɩɥɨɬɧɨɫɬɶ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ, ɚ ɤɨɷɮɮɢɰɢɟɧɬ ɩɨɪɢɫɬɨɫɬɢ ɦɟɧɶɲɟ. ɋɨɝɥɚɫɧɨ ȽɈɋɌ 25100–2011 ɩɟɪɦɫɤɢɟ ɩɟɫɱɚɧɢɤɢ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ 24 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … Ɋɢɫ. 1. Ⱥɪɝɢɥɥɢɬɨɩɨɞɨɛɧɚɹ ɝɥɢɧɚ Ɋɢɫ. 2. ɉɟɫɱɚɧɢɤ Ɍɚɛɥɢɰɚ 1 Ɏɢɡɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɢ ɩɟɫɱɚɧɢɤɚ Ƚɪɭɧɬ Ⱥɪɝɢɥɥɢɬɨɩɨɞɨɛɧɚɹ ɝɥɢɧɚ ɉɟɫɱɚɧɢɤ ɉɥɨɬɧɨɫɬɶ, ɝ/ɫɦ3 ȼɥɚɠɧɨɫɬɶ, Ʉɨɷɮɮɢɰɢɟɧɬ ɋɬɟɩɟɧɶ ɜɨɞɨɧɚɞ.ɟ. ɩɨɪɢɫɬɨɫɬɢ, ɞ.ɟ. ɫɵɳɟɧɢɹ, ɞ.ɟ. 2,01 0,20 0,65 0,83 2,20 0,12 0,45 0,96 ɝɥɢɧɵ ɩɨ ɩɪɟɞɟɥɭ ɩɪɨɱɧɨɫɬɢ ɧɚ ɨɞɧɨɨɫɧɨɟ ɫɠɚɬɢɟ ɦɨɠɧɨ ɨɬɧɟɫɬɢ ɤ ɩɨɥɭɫɤɚɥɶɧɵɦ ɝɪɭɧɬɚɦ ɨɱɟɧɶ ɧɢɡɤɨɣ ɩɪɨɱɧɨɫɬɢ (Rc < 0,5 Ɇɉɚ). ɉɨɞɡɟɦɧɵɟ ɜɨɞɵ ɜ ɩɟɫɱɚɧɢɤɚɯ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɯ ɝɥɢɧɚɯ ɰɢɪɤɭɥɢɪɭɸɬ ɩɨ ɬɪɟɳɢɧɚɦ. ɋɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɤɨɷɮɮɢɰɢɟɧɬɚ ɮɢɥɶɬɪɚɰɢɢ ɫɨɫɬɚɜɥɹɟɬ 2–3 ɦ/ɫɭɬ. ɍɤɚɡɚɧɧɵɟ ɜ ɞɚɧɧɨɦ ɪɚɡɞɟɥɟ ɮɢɡɢɱɟɫɤɢɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɢ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɮɢɥɶɬɪɚɰɢɢ ɛɵɥɢ ɢɫɩɨɥɶɡɨɜɚɧɵ ɩɪɢ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɩɟɫɱɚɧɢɤɚ ɜ ɩɪɨɝɪɚɦɦɧɨɦ ɤɨɦɩɥɟɤɫɟ Plaxis. ɉɨɦɢɦɨ ɮɢɡɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɜ ɪɚɛɨɬɟ ɪɚɫɫɦɨɬɪɟɧɵ ɦɟɯɚɧɢɱɟɫɤɢɟ ɩɚɪɚɦɟɬɪɵ ɩɟɫɱɚɧɢɤɚ ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɦ ɢ ɜɟɪɬɢɤɚɥɶɧɨɦ ɧɚɩɪɚɜɥɟɧɢɹɯ. 25 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ 2. Ɇɟɬɨɞɢɤɚ ɢɫɫɥɟɞɨɜɚɧɢɣ ɞɟɮɨɪɦɚɰɢɨɧɧɨɣ ɚɧɢɡɨɬɪɨɩɢɢ ɐɟɥɶɸ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨɝɨ ɢɫɫɥɟɞɨɜɚɧɢɹ ɛɵɥɨ ɢɡɭɱɟɧɢɟ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ ɩɟɫɱɚɧɢɤɚ ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ ɢ ɧɨɪɦɚɥɶɧɨɣ ɤ ɧɟɣ (ɜ ɜɟɪɬɢɤɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ) ɜ ɫɪɚɜɧɟɧɢɢ ɫ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶɸ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ. ȼ ɩɪɨɰɟɫɫɟ ɢɡɭɱɟɧɢɹ ɛɵɥɢ ɨɩɪɟɞɟɥɟɧɵ ɫɥɟɞɭɸɳɢɟ ɞɟɮɨɪɦɚɰɢɨɧɧɵɟ ɫɜɨɣɫɬɜɚ ɩɟɫɱɚɧɢɤɨɜ: ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɣ ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ Ex, ɲɬɚɦɩɨɜɵɣ ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ Ez, ɦɨɞɭɥɶ ɫɞɜɢɝɚ Gz. Ɋɚɫɱɟɬ ɭɤɚɡɚɧɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɛɵɥ ɜɵɩɨɥɧɟɧ ɫɨɝɥɚɫɧɨ ȽɈɋɌ 20276–2012 ɢ ȽɈɋɌ 12248–2010. ɉɨɥɟɜɵɟ ɢɫɩɵɬɚɧɢɹ ɢɫɩɨɥɶɡɨɜɚɥɢɫɶ ɞɥɹ ɪɚɫɱɟɬɚ ɤɨɷɮɮɢɰɢɟɧɬɚ ɚɧɢɡɨɬɪɨɩɢɢ: a= Sx , Sz ɝɞɟ Sx – ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɚɛɫɨɥɸɬɧɵɯ ɝɨɪɢɡɨɧɬɚɥɶɧɵɯ ɞɟɮɨɪɦɚɰɢɣ ɩɟɫɱɚɧɢɤɚ, ɦɦ; Sz – ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɚɛɫɨɥɸɬɧɨɣ ɜɟɪɬɢɤɚɥɶɧɨɣ ɞɟɮɨɪɦɚɰɢɢ ɩɟɫɱɚɧɢɤɚ, ɦɦ. ɉɨɥɟɜɵɟ ɢɫɫɥɟɞɨɜɚɧɢɹ ɞɟɮɨɪɦɚɰɢɨɧɧɨɣ ɚɧɢɡɨɬɪɨɩɢɢ ɩɟɫɱɚɧɢɤɚ ɫɨɫɬɨɹɥɢ ɢɡ ɢɫɩɵɬɚɧɢɣ ɫɬɚɬɢɱɟɫɤɨɣ ɧɚɝɪɭɡɤɨɣ ɩɥɨɫɤɢɦ ɲɬɚɦɩɨɦ ɩɥɨɳɚɞɶɸ 600 ɫɦ2 ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɜ ɫɤɜɚɠɢɧɚɯ, ɫɯɟɦɵ ɤɨɬɨɪɵɯ ɩɪɟɞɫɬɚɜɥɟɧɵ ɧɚ ɪɢɫ. 3 ɢ 4 ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ɉɨɥɟɜɵɟ ɷɤɫɩɟɪɢɦɟɧɬɵ ɩɨɡɜɨɥɢɥɢ ɢɡɭɱɢɬɶ ɞɟɮɨɪɦɚɰɢɨɧɧɭɸ ɚɧɢɡɨɬɪɨɩɢɸ ɩɟɫɱɚɧɢɤɨɜ: ɫɬɚɬɢɱɟɫɤɢɟ ɢɫɩɵɬɚɧɢɹ ɲɬɚɦɩɨɦ ɜ ɫɤɜɚɠɢɧɚɯ ɩɨɡɜɨɥɢɥɢ ɨɰɟɧɢɬɶ ɞɟɮɨɪɦɚɰɢɸ ɝɪɭɧɬɚ ɜ ɜɟɪɬɢɤɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ, ɚ ɢɫɩɵɬɚɧɢɹ ɪɚɞɢɚɥɶɧɵɦ ɩɪɟɫɫɢɨɦɟɬɪɨɦ ɜ ɫɤɜɚɠɢɧɚɯ ɩɨɡɜɨɥɢɥɢ ɨɩɪɟɞɟɥɢɬɶ ɞɟɮɨɪɦɚɰɢɨɧɧɵɟ ɫɜɨɣɫɬɜɚ ɩɟɫɱɚɧɢɤɚ ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ. ɂɫɩɵɬɚɧɢɹ ɫɬɚɬɢɱɟɫɤɢɦɢ ɧɚɝɪɭɡɤɚɦɢ ɠɟɫɬɤɢɦ ɤɪɭɝɥɵɦ ɲɬɚɦɩɨɦ ɫ ɩɥɨɫɤɨɣ ɩɨɞɨɲɜɨɣ ɩɥɨɳɚɞɶɸ 600 ɫɦ2 ɩɪɨɢɡɜɨɞɢɥɢɫɶ ɜ ɫɤɜɚɠɢɧɚɯ ɞɢɚɦɟɬɪɨɦ 325 ɦɦ (ɫɦ. ɪɢɫ. 3). ȼ ɪɚɛɨɬɟ ɩɪɨɚɧɚɥɢɡɢɪɨɜɚɧɵ ɪɟɡɭɥɶɬɚɬɵ ɞɜɭɯ ɲɬɚɦɩɨɜɵɯ ɢɫɩɵɬɚɧɢɣ, ɜɵɩɨɥɧɟɧɧɵɯ ɧɚ ɨɞɧɨɣ ɢɡ ɫɬɪɨɢɬɟɥɶɧɵɯ ɩɥɨɳɚɞɨɤ ɝ. ɉɟɪɦɢ. Ƚɥɭɛɢɧɚ ɢɫɩɵɬɚɧɢɣ ɫɨɫɬɚɜɥɹɥɚ 8,4 ɢ 8,8 ɦ. ɇɚɝɪɭɠɟɧɢɟ ɲɬɚɦɩɨɜ ɨɫɭɳɟɫɬɜɥɹɥɨɫɶ ɝɢɞɪɚɜɥɢɱɟɫɤɢɦ ɞɨɦɤɪɚɬɨɦ, ɡɚɦɟɪɵ ɨɫɚɞɨɤ ɜɵɩɨɥɧɹɥɢɫɶ ɩɪɨɝɢɛɨɦɟɪɚɦɢ ɫ ɰɟɧɨɣ ɞɟɥɟɧɢɹ 0,01 ɦɦ. ɇɚɝɪɭɡɤɚ ɧɚ ɝɪɭɧɬ ɩɟɪɟɞɚɜɚɥɚɫɶ ɫɬɭɩɟɧɹɦɢ ɩɨ 0,05 Ɇɉɚ. Ɇɚɤɫɢɦɚɥɶɧɚɹ ɧɚɝɪɭɡɤɚ ɧɚ ɲɬɚɦɩ ɫɨɫɬɚɜɢɥɚ 0,5 Ɇɉɚ. 26 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … Ɋɢɫ. 3. ɋɯɟɦɚ ɢɫɩɵɬɚɧɢɹ ɩɥɨɫɤɢɦ ɲɬɚɦɩɨɦ ɜ ɫɤɜɚɠɢɧɟ Ɋɢɫ. 4. ɋɯɟɦɚ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɝɨ ɨɩɵɬɚ ɉɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɟ ɢɫɩɵɬɚɧɢɹ ɝɪɭɧɬɚ ɹɜɥɹɸɬɫɹ ɚɧɚɥɨɝɨɦ ɲɬɚɦɩɨɜɵɯ ɢɫɩɵɬɚɧɢɣ, ɩɪɢ ɤɨɬɨɪɵɯ ɧɚɝɪɭɡɤɚ ɩɟɪɟɞɚɟɬɫɹ ɱɟɪɟɡ ɝɢɛɤɭɸ ɩɨɜɟɪɯɧɨɫɬɶ ɡɨɧɞɚ ɩɪɟɫɫɢɨɦɟɬɪɚ ɧɚ ɫɬɟɧɤɢ ɫɤɜɚɠɢɧɵ (ɫɦ. ɪɢɫ. 4). ȼ ɪɚɛɨɬɟ ɢɫɩɨɥɶɡɨɜɚɧɵ ɞɚɧɧɵɟ ɜɨɫɶɦɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɩɟɫɱɚɧɢɤɨɜ. Ƚɥɭɛɢɧɚ ɢɫɩɵɬɚɧɢɣ ɫɨɫɬɚɜɥɹɥɚ 14,0–22,0 ɦ. ɂɫɩɵɬɚɧɢɹ ɛɵɥɢ ɜɵɩɨɥɧɟɧɵ ɩɪɟɫɫɢɨɦɟɬɪɨɦ Ⱦ-76. ȼɫɟ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɟ ɩɥɨɳɚɞɤɢ ɢɦɟɥɢ ɝɟɨɥɨɝɢɱɟɫɤɨɟ ɫɬɪɨɟɧɢɟ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɟ ɬɢɩɢɱɧɨɣ ɝɟɨɥɨɝɢɱɟɫɤɨɣ ɫɬɪɭɤɬɭɪɟ ɝ. ɉɟɪɦɢ. ɇɚ ɩɥɨɳɚɞɤɚɯ ɩɟɫɱɚɧɢɤɢ ɛɵɥɢ ɩɟɪɟɤɪɵɬɵ ɫɥɨɹɦɢ ɚɥɥɸɜɢɚɥɶɧɵɯ ɫɨɜɪɟɦɟɧɧɵɯ ɝɥɢɧ ɢ ɩɟɫɤɨɜ. ɒɬɚɦɩɨɜɵɟ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɟ ɢɫɩɵɬɚɧɢɹ ɩɪɨɢɡɜɨɞɢɥɢɫɶ ɩɪɢ ɩɪɢɪɨɞɧɨɣ ɜɥɚɠɧɨɫɬɢ ɩɟɫɱɚɧɢɤɨɜ. 3. Ɋɟɡɭɥɶɬɚɬɵ ɢɫɫɥɟɞɨɜɚɧɢɣ ɞɟɮɨɪɦɚɰɢɨɧɧɨɣ ɚɧɢɡɨɬɪɨɩɢɢ ȼ ɪɟɡɭɥɶɬɚɬɟ ɜɵɩɨɥɧɟɧɧɵɯ ɷɤɫɩɟɪɢɦɟɧɬɨɜ ɛɵɥɢ ɩɨɥɭɱɟɧɵ ɞɟɮɨɪɦɚɰɢɢ ɩɟɫɱɚɧɢɤɚ ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɦ (Sx) ɢ ɜɟɪɬɢɤɚɥɶɧɨɦ (Sz) ɧɚɩɪɚɜɥɟɧɢɢ ɞɥɹ ɤɚɠɞɨɣ ɫɬɭɩɟɧɢ ɧɚɝɪɭɠɟɧɢɹ, ɪɚɫɫɱɢɬɚɧɵ ɤɨɷɮɮɢɰɢɟɧɬɵ ɚɧɢɡɨɬɪɨɩɢɢ (ɬɚɛɥ. 2). Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɪɟɞɧɢɟ ɡɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɚɧɢɡɨɬɪɨɩɢɢ ɩɟɫɱɚɧɢɤɚ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɞɨɫɬɚɬɨɱɧɨ ɛɥɢɡɤɢ ɢ ɫɨɫɬɚɜɥɹ27 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ ɸɬ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ 0,41 ɢ 0,39. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɩɟɪɦɫɤɢɟ ɩɟɫɱɚɧɢɤɢ ɨɛɥɚɞɚɸɬ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶɸ: ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ ɩɟɫɱɚɧɢɤɚ ɜ ɜɟɪɬɢɤɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ ɛɨɥɟɟ ɱɟɦ ɜ 2 ɪɚɡɚ ɩɪɟɜɵɲɚɟɬ ɝɨɪɢɡɨɧɬɚɥɶɧɭɸ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ. Ɍɚɛɥɢɰɚ 2 Ɂɧɚɱɟɧɢɹ ɞɟɮɨɪɦɚɰɢɣ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɢ ɩɟɫɱɚɧɢɤɚ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɲɬɚɦɩɨɜɵɯ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɇɚɝɪɭɡɤɚ, Ɇɉɚ 0,1 0,2 0,3 0,4 0,5 Ⱥɪɝɢɥɥɢɬɨɩɨɞɨɛɧɚɹ ɝɥɢɧɚ Sx, ɦɦ Sx/Sz Sz, ɦɦ 1,23 0,60 0,49 1,90 0,70 0,37 2,38 0,88 0,37 2,74 1,00 0,36 2,96 1,09 0,37 Sz, ɦɦ 0,10 0,31 0,70 1,14 1,63 ɉɟɫɱɚɧɢɤ Sx, ɦɦ 0,07 0,15 0,24 0,31 0,41 Sx/Sz 0,68 0,50 0,35 0,27 0,25 Ɋɚɫɱɟɬɵ ɦɨɞɭɥɹ ɲɬɚɦɩɨɜɨɝɨ ɦɨɞɭɥɹ ɞɟɮɨɪɦɚɰɢɢ (ȿz), ɦɨɞɭɥɹ ɫɞɜɢɝɚ (Gz) ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɝɨ ɦɨɞɭɥɹ ɞɟɮɨɪɦɚɰɢɢ (ȿx) ɛɵɥɢ ɜɵɩɨɥɧɟɧɵ ɞɥɹ ɧɚɝɪɭɡɨɤ ɜ ɞɢɚɩɚɡɨɧɟ ɨɬ 0 ɞɨ 0,5 Ɇɉɚ ɢ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɬɚɛɥ. 3. Ɍɚɛɥɢɰɚ 3 ɇɨɪɦɚɬɢɜɧɵɟ ɡɧɚɱɟɧɢɹ ɞɟɮɨɪɦɚɰɢɨɧɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɩɟɫɱɚɧɢɤɚ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɲɬɚɦɩɨɜɵɯ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɂɧɬɟɪɜɚɥ ɧɚɝɪɭɠɟɧɢɹ ɨɬ pi ɞɨ pi+1, Ɇɉɚ 0,0–0,1 0,1–0,2 0,2–0,3 0,3–0,4 0,4–0,5 ȿ z, Ɇɉɚ 202,9 96,6 52,7 45,6 41,8 ȿx, Ɇɉɚ 80,3 62,8 62,6 84,8 54,7 Gz, Ɇɉɚ 79,87 38,03 20,75 17,95 16,47 ȼ ɬɚɛɥ. 3 ɩɨɤɚɡɚɧɨ, ɱɬɨ ɡɧɚɱɟɧɢɹ ɦɨɞɭɥɟɣ ɞɟɮɨɪɦɚɰɢɢ ɜ ɪɚɡɥɢɱɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɞɥɹ ɩɟɫɱɚɧɢɤɚ ɨɬɥɢɱɚɸɬɫɹ. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɩɨɞ ɧɚɝɪɭɡɤɨɣ ɨɬ ɡɞɚɧɢɣ ɢ ɫɨɨɪɭɠɟɧɢɣ ɜ ɩɟɫɱɚɧɢɤɟ ɛɭɞɟɬ ɧɚɛɥɸɞɚɬɶɫɹ ɚɧɢɡɨɬɪɨɩɧɨɟ ɧɚɩɪɹɠɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ. Ⱦɥɹ ɧɚɝɥɹɞɧɨɝɨ ɨɬɨɛɪɚɠɟɧɢɹ ɩɨɥɭɱɚɟɦɵɯ ɷɩɸɪ ɞɥɹ ɩɟɫɱɚɧɢɤɨɜ ɩɪɢ ɢɫɩɵɬɚɧɢɹɯ ɩɪɟɫɫɢɨɦɟɬɪɨɦ ɢ ɩɥɨɫɤɢɦ ɲɬɚɦɩɨɦ ɜ ɫɤɜɚɠɢɧɚɯ ɛɵɥ ɢɫɩɨɥɶɡɨɜɚɧ ɩɪɨɝɪɚɦɦɧɵɣ ɤɨɦɩɥɟɤɫ Plaxis. 28 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … 4. ɉɚɪɚɦɟɬɪɵ, ɩɪɢɧɹɬɵɟ ɩɪɢ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɜ Plaxis ȼ ɬɚɛɥ. 4 ɢ 5 ɩɪɢɜɨɞɹɬɫɹ ɭɫɪɟɞɧɟɧɧɵɟ ɝɟɨɥɨɝɢɱɟɫɤɢɟ ɭɫɥɨɜɢɹ ɩɥɨɳɚɞɨɤ ɲɬɚɦɩɨɜɵɯ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ, ɩɪɢɧɹɬɵɟ ɩɪɢ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɢɫɩɵɬɚɧɢɣ ɜ ɩɪɨɝɪɚɦɦɧɨɦ ɤɨɦɩɥɟɤɫɟ Plaxis, ɝɞɟ Ȗdry – ɭɞɟɥɶɧɵɣ ɜɟɫ ɝɪɭɧɬɚ ɩɪɢɪɨɞɧɨɣ ɜɥɚɠɧɨɫɬɢ; Ȗwet – ɭɞɟɥɶɧɵɣ ɜɟɫ ɝɪɭɧɬɚ ɜ ɩɨɥɧɨɫɬɶɸ ɜɨɞɨɧɚɫɵɳɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ; E – ɦɨɞɭɥɶ ɨɛɳɟɣ ɞɟɮɨɪɦɚɰɢɢ; Ȟ – ɤɨɷɮɮɢɰɢɟɧɬ ɉɭɚɫɫɨɧɚ; ɫ – ɭɞɟɥɶɧɨɟ ɫɰɟɩɥɟɧɢɟ ɝɪɭɧɬɚ; ij – ɭɝɨɥ ɜɧɭɬɪɟɧɧɟɝɨ ɬɪɟɧɢɹ; Ȍ – ɭɝɨɥ ɞɢɥɚɬɚɧɫɢɢ. ɋɪɟɞɧɹɹ ɝɥɭɛɢɧɚ ɲɬɚɦɩɨɜɵɯ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɣ ɫɨɫɬɚɜɢɥɚ 8,6 ɦ ɢ 18,0 ɦ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ȼ ɬɚɛɥ. 4 ɞɚɧɵ ɩɚɪɚɦɟɬɪɵ ɞɥɹ ɂȽɗ, ɩɟɪɟɤɪɵɜɚɸɳɢɯ ɩɟɫɱɚɧɢɤ, ɩɪɢ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɲɬɚɦɩɨɜɨɝɨ ɢɫɩɵɬɚɧɢɹ. ɉɚɪɚɦɟɬɪɵ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɩɪɢɜɨɞɹɬɫɹ ɫɨɝɥɚɫɧɨ ɞɚɧɧɵɦ, ɩɪɟɞɫɬɚɜɥɟɧɧɵɦ ɪɚɧɟɟ ɜ ɪɚɛɨɬɚɯ ɚɜɬɨɪɨɜ [9, 10]. ɍɪɨɜɟɧɶ ɝɪɭɧɬɨɜɵɯ ɜɨɞ ɩɪɢ ɲɬɚɦɩɨɜɨɦ ɨɩɵɬɟ ɫɨɫɬɚɜɥɹɥ 2,9 ɦ. ɉɪɢɪɨɞɧɨɟ ɞɚɜɥɟɧɢɟ ɧɚ ɝɥɭɛɢɧɟ ɦɨɞɟɥɢɪɭɟɦɨɝɨ ɲɬɚɦɩɨɜɨɝɨ ɢɫɩɵɬɚɧɢɹ ɫɨɫɬɚɜɢɥɨ 180 ɤɉɚ. Ɍɚɛɥɢɰɚ 4 Ƚɟɨɥɨɝɢɱɟɫɤɢɟ ɭɫɥɨɜɢɹ ɢ ɩɚɪɚɦɟɬɪɵ ɝɪɭɧɬɨɜ, ɩɪɢɧɹɬɵɟ ɞɥɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɲɬɚɦɩɨɜɨɝɨ ɨɩɵɬɚ Ƚɥɭɛɢɧɚ Ɇɨɞɟɥɶ Ȗdry, ɡɚɥɟɝɚɧɢɹ ɝɪɭɧɬɚ ɤɇ/ɦ3 ɩɨɞɨɲɜɵ ɫɥɨɹ, ɦ Mohrɇɚɫɵɩɧɨɣ 19,0 2,6 Coulomb ɝɪɭɧɬ Mohr19,0 ɉɟɫɨɤ 3,5 Coulomb ȺɪɝɢɥɥɢJointed 6,8 21,0 ɬɨɩɨɞɨɛɧɚɹ Rock ɝɥɢɧɚ model Ɉɩɢɫɚɧɢɟ ɫ, ij, Ȍ, ɤɉɚ ɝɪɚɞ ɝɪɚɞ Ȗwet, ɤɇ/ɦ3 E, ɤɇ/ɦ2 Ȟ 20,0 5000 0,3 6,0 20 0 21,0 10 000 0,3 7,0 33 0 48 240 (E1) 0,28 25,0 24 000 (E2) 26 0 22,0 ȼ ɬɚɛɥ. 5 ɩɪɢɜɨɞɹɬɫɹ ɩɚɪɚɦɟɬɪɵ ɞɥɹ ɂȽɗ, ɩɟɪɟɤɪɵɜɚɸɳɢɯ ɩɟɫɱɚɧɢɤ, ɩɪɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɦ ɢɫɩɵɬɚɧɢɢ. ɉɪɢɪɨɞɧɨɟ ɞɚɜɥɟɧɢɟ ɧɚ ɝɥɭɛɢɧɟ ɦɨɞɟɥɢɪɭɟɦɨɝɨ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɝɨ ɢɫɩɵɬɚɧɢɹ ɫɨɫɬɚɜɢɥɨ 300 ɤɉɚ. ɍɪɨɜɟɧɶ ɝɪɭɧɬɨɜɵɯ ɜɨɞ ɡɚɮɢɤɫɢɪɨɜɚɧ ɧɚ ɝɥɭɛɢɧɟ 1,0 ɦ. ɒɬɚɦɩɨɜɵɟ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɟ ɢɫɩɵɬɚɧɢɹ ɦɨɞɟɥɢɪɨɜɚɥɢɫɶ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɜ ɩɟɫɱɚɧɢɤɟ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɦɨɞɟɥɢ Jointed Rock model. ɉɚɪɚɦɟɬɪɵ ɞɥɹ Jointed Rock model: ɭɞɟɥɶɧɵɣ ɜɟɫ ɜ ɧɟɧɚɫɵɳɟɧ29 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ ɧɨɦ ɜɨɞɨɣ ɫɨɫɬɨɹɧɢɢ Ȗdry = 22,0 ɤɇ/ɦ3; ɜ ɧɚɫɵɳɟɧɧɨɦ ɜɨɞɨɣ ɫɨɫɬɨɹɧɢɢ Ȗwet = 23,0 ɤɇ/ɦ3; ɭɞɟɥɶɧɨɟ ɫɰɟɩɥɟɧɢɟ ɫ = 12,2 ɤɉɚ; ɭɝɨɥ ɜɧɭɬɪɟɧɧɟɝɨ ɬɪɟɧɢɹ ij = 32°; ɭɝɨɥ ɞɢɥɚɬɚɧɫɢɢ Ȍ = 0°. Ⱦɟɮɨɪɦɚɰɢɨɧɧɵɟ ɩɚɪɚɦɟɬɪɵ ɞɥɹ ɲɬɚɦɩɨɜɨɝɨ ɢɫɩɵɬɚɧɢɹ ɩɪɢɧɢɦɚɥɢɫɶ ɩɨ ɬɚɛɥ. 3 ɜ ɢɧɬɟɪɜɚɥɟ 0,3–0,4 Ɇɉɚ: ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ ȿ1 = 84 800 ɤɉɚ; ɤɨɷɮɮɢɰɢɟɧɬ ɉɭɚɫɫɨɧɚ Ȟ1 = 0,27; ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ ȿ2 = 45 600 ɤɉɚ; ɤɨɷɮɮɢɰɢɟɧɬ ɉɭɚɫɫɨɧɚ Ȟ2 = 0,27; ɦɨɞɭɥɶ ɫɞɜɢɝɚ G2 = 17 950 ɤɉɚ. Ⱦɟɮɨɪɦɚɰɢɨɧɧɵɟ ɩɚɪɚɦɟɬɪɵ ɞɥɹ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɝɨ ɢɫɩɵɬɚɧɢɹ ɩɪɢɧɢɦɚɥɢɫɶ ɩɨ ɬɚɛɥ. 3 ɜ ɢɧɬɟɪɜɚɥɟ 0,4–0,5 Ɇɉɚ: ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ ȿ1 = 54 700 ɤɉɚ; ɤɨɷɮɮɢɰɢɟɧɬ ɉɭɚɫɫɨɧɚ Ȟ1 = 0,27; ɦɨɞɭɥɶ ɞɟɮɨɪɦɚɰɢɢ ȿ2 = 41 800 ɤɉɚ; ɤɨɷɮɮɢɰɢɟɧɬ ɉɭɚɫɫɨɧɚ Ȟ2 = 0,27; ɦɨɞɭɥɶ ɫɞɜɢɝɚ G2 = 16 470 ɤɉɚ. Ɍɚɛɥɢɰɚ 5 Ƚɟɨɥɨɝɢɱɟɫɤɢɟ ɭɫɥɨɜɢɹ ɢ ɩɚɪɚɦɟɬɪɵ ɝɪɭɧɬɨɜ, ɩɪɢɧɹɬɵɟ ɞɥɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɝɨ ɨɩɵɬɚ Ɉɩɢɫɚɧɢɟ Ƚɥɭɛɢɧɚ ɡɚɥɟɝɚɧɢɹ ɩɨɞɨɲɜɵ ɫɥɨɹ, ɦ ɇɚɫɵɩɧɨɣ ɝɪɭɧɬ 0,5 ɉɟɫɨɤ 1,5 ɋɭɩɟɫɶ 4,5 ɉɟɫɨɤ ɫɪɟɞɧɟɣ ɤɪɭɩɧɨɫɬɢ 11,0 ɉɟɫɨɤ ɝɪɚɜɟɥɢɫɬɵɣ 13,5 Ƚɪɚɜɢɣɧɵɣ ɝɪɭɧɬ 15,5 Ɇɨɞɟɥɶ Ȗdry, Ȗwet, E, ɝɪɭɧɬɚ ɤɇ/ɦ3 ɤɇ/ɦ3 ɤɇ/ɦ2 MohrCoulomb MohrCoulomb MohrCoulomb MohrCoulomb MohrCoulomb MohrCoulomb Ȟ ɫ, ij, Ȍ, ɤɉɚ ɝɪɚɞ ɝɪɚɞ 18 19 7500 0,3 6,0 32 0 19 20 9000 0,3 7,0 33 0 21 22 15 200 0,3 10,0 29 0 21 22 13 000 0,3 6,0 30 0 20 21 10 500 0,3 4,0 33 0 21 22 20 000 0,3 6,0 35 0 5. Ɋɟɡɭɥɶɬɚɬɵ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɜ Plaxis ɢ ɢɯ ɜɟɪɢɮɢɤɚɰɢɹ Ɋɟɡɭɥɶɬɚɬɵ ɪɚɫɱɟɬɚ ɦɚɤɫɢɦɚɥɶɧɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɩɟɪɟɦɟɳɟɧɢɣ ɩɟɫɱɚɧɢɤɚ ɩɪɢ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɲɬɚɦɩɨɜɨɝɨ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɝɨ ɨɩɵɬɨɜ ɩɪɟɞɫɬɚɜɥɟɧɵ ɧɚ ɪɢɫ. 5 ɢ 6 ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ɉɪɢɜɟɞɟɧɧɵɟ ɢɡɨɥɢɧɢɢ ɩɟɪɟɦɟɳɟɧɢɣ ɩɨɡɜɨɥɹɸɬ ɧɚɝɥɹɞɧɨ ɩɨɤɚɡɚɬɶ ɪɚɡɜɢɬɢɟ ɞɟɮɨɪɦɚɰɢɣ ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɭɫɥɨɜɢɹɯ ɧɚɝɪɭɠɟɧɢɹ. ɂɡ ɪɢɫ. 5 ɜɢɞɧɨ, ɱɬɨ ɦɚɤɫɢɦɚɥɶɧɵɟ ɩɟɪɟɦɟɳɟɧɢɹ ɧɚɛɥɸɞɚɸɬɫɹ ɩɨɞ ɰɟɧɬɪɨɦ ɲɬɚɦɩɚ. ȼ ɪɟɡɭɥɶɬɚɬɟ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɩɨɥɟɜɵɯ 30 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … Ɋɢɫ. 5. ɂɡɨɥɢɧɢɢ ɜɟɪɬɢɤɚɥɶɧɵɯ ɩɟɪɟɦɟɳɟɧɢɣ ɩɟɫɱɚɧɢɤɚ ɩɪɢ ɲɬɚɦɩɨɜɨɦ ɨɩɵɬɟ Ɋɢɫ. 6. ɂɡɨɥɢɧɢɢ ɝɨɪɢɡɨɧɬɚɥɶɧɵɯ ɩɟɪɟɦɟɳɟɧɢɣ ɩɟɫɱɚɧɢɤɚ ɩɪɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɨɦ ɨɩɵɬɟ 31 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ ɢɫɩɵɬɚɧɢɣ ɲɬɚɦɩɨɦ ɩɟɫɱɚɧɢɤɚ ɛɵɥɨ ɩɨɥɭɱɟɧɨ ɦɚɤɫɢɦɚɥɶɧɨɟ ɩɟɪɟɦɟɳɟɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɝɪɭɧɬɚ, ɪɚɜɧɨɟ 1,28 ɦɦ. ɉɨ ɞɚɧɧɵɦ ɩɨɥɟɜɵɯ ɨɩɵɬɨɜ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɜɟɪɬɢɤɚɥɶɧɨɝɨ ɩɟɪɟɦɟɳɟɧɢɹ ɩɪɢ ɷɬɨɣ ɠɟ ɧɚɝɪɭɡɤɟ ɫɨɫɬɚɜɢɥɨ 1,14 ɦɦ. Ɇɚɤɫɢɦɚɥɶɧɵɟ ɩɟɪɟɦɟɳɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɢ ɩɟɫɱɚɧɢɤɚ ɛɵɥɢ ɡɚɮɢɤɫɢɪɨɜɚɧɵ ɜɛɥɢɡɢ ɤɚɦɟɪɵ ɩɪɟɫɫɢɨɦɟɬɪɚ. Ɇɚɤɫɢɦɚɥɶɧɨɟ ɩɟɪɟɦɟɳɟɧɢɟ ɩɨɜɟɪɯɧɨɫɬɢ ɩɟɫɱɚɧɢɤɚ ɫɨɫɬɚɜɢɥɨ 0,42 ɦɦ. ɉɨ ɞɚɧɧɵɦ ɩɨɥɟɜɵɯ ɨɩɵɬɨɜ, ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɝɨɪɢɡɨɧɬɚɥɶɧɨɝɨ ɩɟɪɟɦɟɳɟɧɢɹ ɩɪɢ ɷɬɨɣ ɠɟ ɧɚɝɪɭɡɤɟ ɫɨɫɬɚɜɢɥɨ 0,41 ɦɦ. ȼ ɰɟɥɨɦ ɪɚɫɱɟɬ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɱɢɫɥɟɧɧɵɯ ɦɟɬɨɞɨɜ ɩɨɡɜɨɥɢɥ ɩɨɥɭɱɢɬɶ ɦɚɤɫɢɦɚɥɶɧɵɟ ɩɟɪɟɦɟɳɟɧɢɹ ɩɨɜɟɪɯɧɨɫɬɢ ɩɟɫɱɚɧɢɤɚ, ɞɨɫɬɚɬɨɱɧɨ ɛɥɢɡɤɢɟ ɤ ɪɟɡɭɥɶɬɚɬɚɦ ɩɨɥɟɜɵɯ ɢɫɩɵɬɚɧɢɣ. Ɇɨɠɧɨ ɝɨɜɨɪɢɬɶ ɨ ɜɨɡɦɨɠɧɨɫɬɢ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɪɚɫɱɟɬɨɜ ɱɢɫɥɟɧɧɵɦɢ ɦɟɬɨɞɚɦɢ, ɪɟɚɥɢɡɨɜɚɧɧɵɦɢ ɜ Plaxis, ɞɥɹ ɨɰɟɧɤɢ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɩɟɫɱɚɧɢɤɚ ɜ ɩɨɥɟɜɵɯ ɭɫɥɨɜɢɹɯ ɫ ɩɪɢɦɟɧɟɧɢɟɦ ɦɨɞɟɥɢ Jointed Rock model ɢ ɩɚɪɚɦɟɬɪɨɜ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ, ɩɨɥɭɱɟɧɧɵɯ ɜ ɞɚɧɧɨɦ ɢɫɫɥɟɞɨɜɚɧɢɢ. ȼɵɜɨɞɵ 1. ɂɫɫɥɟɞɨɜɚɧɢɟ ɩɨɤɚɡɚɥɨ, ɱɬɨ ɩɟɪɦɫɤɢɟ ɩɟɫɱɚɧɢɤɢ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ ɨɛɥɚɞɚɸɬ ɫɯɨɠɢɦɢ ɮɢɡɢɱɟɫɤɢɦɢ ɫɜɨɣɫɬɜɚɦɢ ɢ ɫɨɫɬɨɹɬ ɢɡ ɩɟɥɢɬɨɜɵɯ ɢ ɩɫɚɦɦɢɬɨɜɵɯ ɱɚɫɬɢɰ, ɫɰɟɦɟɧɬɢɪɨɜɚɧɧɵɯ ɝɥɢɧɢɫɬɵɦ ɢ ɤɚɪɛɨɧɚɬɧɵɦ ɰɟɦɟɧɬɨɦ. ɉɟɫɱɚɧɢɤɢ ɪɚɡɪɭɲɟɧɵ ɜɵɜɟɬɪɢɜɚɧɢɟɦ ɞɨ ɫɨɫɬɨɹɧɢɹ ɪɭɯɥɹɤɨɜ ɢ ɜ ɡɚɦɨɱɟɧɧɨɦ ɫɨɫɬɨɹɧɢɢ ɪɚɫɩɚɞɚɸɬɫɹ ɧɚ ɤɭɫɤɢ ɩɪɢ ɧɟɡɧɚɱɢɬɟɥɶɧɨɦ ɭɫɢɥɢɢ. ɍɤɚɡɚɧɧɵɟ ɨɫɨɛɟɧɧɨɫɬɢ ɨɬɥɢɱɚɸɬ ɩɟɫɱɚɧɢɤɢ ɩɟɪɦɫɤɨɝɨ ɜɨɡɪɚɫɬɚ ɨɬ ɫɨɜɪɟɦɟɧɧɵɯ ɩɟɫɤɨɜ. 2. ɗɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɜ ɥɚɛɨɪɚɬɨɪɧɵɯ ɢ ɩɨɥɟɜɵɯ ɭɫɥɨɜɢɹɯ ɭɫɬɚɧɨɜɥɟɧɨ, ɱɬɨ ɞɥɹ ɩɟɪɦɫɤɢɯ ɩɟɫɱɚɧɢɤɨɜ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɯ ɝɥɢɧ ɯɚɪɚɤɬɟɪɧɵ ɚɧɢɡɨɬɪɨɩɧɵɟ ɞɟɮɨɪɦɚɰɢɨɧɧɵɟ ɫɜɨɣɫɬɜɚ. ɋɪɟɞɧɢɟ ɡɧɚɱɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɚɧɢɡɨɬɪɨɩɢɢ ɩɟɫɱɚɧɢɤɚ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ ɫɨɫɬɚɜɢɥɢ 0,41 ɢ 0,39 ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ ɩɟɫɱɚɧɢɤɚ ɜ ɜɟɪɬɢɤɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ ɛɨɥɟɟ ɱɟɦ ɜ 2 ɪɚɡɚ ɩɪɟɜɵɲɚɟɬ ɝɨɪɢɡɨɧɬɚɥɶɧɭɸ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɶ, ɢ ɩɨɞ ɧɚɝɪɭɡɤɨɣ ɨɬ ɡɞɚɧɢɣ ɢ ɫɨɨɪɭɠɟɧɢɣ ɜ ɩɟɫɱɚɧɢɤɟ ɛɭɞɟɬ ɧɚɛɥɸɞɚɬɶɫɹ ɚɧɢɡɨɬɪɨɩɧɨɟ ɧɚɩɪɹɠɟɧɧɨɟ ɫɨɫɬɨɹɧɢɟ. 3. ȼɵɩɨɥɧɟɧɧɨɟ ɱɢɫɥɟɧɧɨɟ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɧɚɝɥɹɞɧɨ ɩɨɤɚɡɚɥɨ ɪɚɡɜɢɬɢɟ ɞɟɮɨɪɦɚɰɢɣ ɜ ɩɟɫɱɚɧɢɤɟ ɜ ɝɨɪɢɡɨɧɬɚɥɶɧɨɣ ɢ ɜɟɪɬɢɤɚɥɶɧɨɣ ɩɥɨɫɤɨɫɬɢ. Ɋɟɡɭɥɶɬɚɬɵ ɪɚɫɱɟɬɚ ɞɟɮɨɪɦɚɰɢɣ ɩɟɫɱɚɧɢɤɚ ɜ Plaxis ɫ ɩɪɢ32 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … ɦɟɧɟɧɢɟɦ ɦɨɞɟɥɢ Jointed Rock model ɯɨɪɨɲɨ ɫɨɝɥɚɫɭɸɬɫɹ ɫ ɪɟɡɭɥɶɬɚɬɚɦɢ ɩɨɥɟɜɵɯ ɢɫɩɵɬɚɧɢɣ. Ɇɨɠɧɨ ɝɨɜɨɪɢɬɶ ɨ ɜɨɡɦɨɠɧɨɫɬɢ ɩɪɢɦɟɧɟɧɢɹ ɧɚ ɩɪɚɤɬɢɤɟ ɪɚɫɱɟɬɨɜ ɱɢɫɥɟɧɧɵɦɢ ɦɟɬɨɞɚɦɢ, ɪɟɚɥɢɡɨɜɚɧɧɵɦɢ ɜ Plaxis, ɞɥɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɩɟɫɱɚɧɢɤɨɜ ɩɪɢ ɲɬɚɦɩɨɜɵɯ ɢ ɩɪɟɫɫɢɨɦɟɬɪɢɱɟɫɤɢɯ ɢɫɩɵɬɚɧɢɹɯ. Ⱦɚɧɧɭɸ ɪɚɛɨɬɭ ɦɨɠɧɨ ɨɰɟɧɢɜɚɬɶ ɤɚɤ ɩɪɟɞɜɚɪɢɬɟɥɶɧɭɸ ɜɟɪɢɮɢɤɚɰɢɸ ɩɨɥɭɱɟɧɧɵɯ ɡɧɚɱɟɧɢɣ ɩɚɪɚɦɟɬɪɨɜ ɞɥɹ ɦɨɞɟɥɢ Jointed Rock model, ɪɟɚɥɢɡɨɜɚɧɧɨɣ ɜ Plaxis. ȼ ɯɨɞɟ ɞɚɥɶɧɟɣɲɢɯ ɢɫɫɥɟɞɨɜɚɧɢɣ ɚɜɬɨɪɵ ɩɥɚɧɢɪɭɸɬ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɪɚɛɨɬɵ ɮɭɧɞɚɦɟɧɬɨɜ, ɨɫɧɨɜɚɧɢɟɦ ɤɨɬɨɪɵɯ ɹɜɥɹɸɬɫɹ ɩɟɪɦɫɤɢɟ ɩɟɫɱɚɧɤɢ ɢ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ, ɞɥɹ ɪɟɲɟɧɢɹ ɪɚɡɥɢɱɧɵɯ ɝɟɨɬɟɯɧɢɱɟɫɤɢɯ ɡɚɞɚɱ. Ȼɢɛɥɢɨɝɪɚɮɢɱɟɫɤɢɣ ɫɩɢɫɨɤ 1. Ȼɭɝɪɨɜ Ⱥ.Ʉ., Ƚɨɥɭɛɟɜ Ⱥ.ɂ. Ⱥɧɢɡɨɬɪɨɩɧɵɟ ɝɪɭɧɬɵ ɢ ɨɫɧɨɜɚɧɢɹ ɫɨɨɪɭɠɟɧɢɣ. – ɋɉɛ.: ɇɟɞɪɚ, 1993. – 245 ɫ. 2. ɇɭɠɞɢɧ Ʌ.ȼ., Ʉɨɪɨɛɨɜɚ Ɉ.Ⱥ., ɇɭɠɞɢɧ Ɇ.Ʌ. ɉɪɚɤɬɢɱɟɫɤɢɣ ɦɟɬɨɞ ɪɚɫɱɟɬɚ ɨɫɚɞɨɤ ɮɭɧɞɚɦɟɧɬɨɜ ɫ ɭɱɟɬɨɦ ɞɟɮɨɪɦɚɰɢɨɧɧɨɣ ɚɧɢɡɨɬɪɨɩɢɢ ɝɪɭɧɬɨɜ ɨɫɧɨɜɚɧɢɹ // ȼɟɫɬɧɢɤ ɉɟɪɦɫɤɨɝɨ ɧɚɰɢɨɧɚɥɶɧɨɝɨ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫɤɨɝɨ ɩɨɥɢɬɟɯɧɢɱɟɫɤɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ. ɋɬɪɨɢɬɟɥɶɫɬɜɨ ɢ ɚɪɯɢɬɟɤɬɭɪɚ. – 2014. – ʋ 4. – ɋ. 246–264. DOI: http: //dx.doi.org/10.15593/22249826/2014.4.20 3. Ɉɫɢɩɨɜ ȼ.ɂ., ɋɨɤɨɥɨɜ ȼ.ɇ. Ƚɥɢɧɵ ɢ ɢɯ ɫɜɨɣɫɬɜɚ. ɋɨɫɬɚɜ, ɫɬɪɨɟɧɢɟ ɢ ɮɨɪɦɢɪɨɜɚɧɢɟ ɫɜɨɣɫɬɜ. – Ɇ.: ȽȿɈɋ, 2013. – 576 ɫ. 4. Barden L. Stresses and displacements in a cross-anisotropic soil // Geotechnique. – 1963. – Vol. 13, ʋ 3. – P. 798–210. 5. Lam W., Tatsuoka F. Effects of initial anisotropic fabric and ı2 on strength and deformation characteristics of sand // Soils and Foundations. – 1988. – Vol. 28 (1). – P. 89–106. 6. Constitutive analysis of the mechanical anisotropy of Opalinus Clay / S. Salager [et al.] // Acta Geotechnica. – 2013. – Vol. 8, iss. 2. – P. 137–154. 7. Effect of water content and structural anisotropy on mechanical property of claystone / F. Zhang [et al.] // Applied Clay Science. – 2012. – No. 69. – P. 79–86. 8. Zhiwei G., Jidong Z. Efficient approach to characterize strength anisotropy in soils // Journal of Engineering Mechanics. – 2012. – Vol. 138, no. 12. – P. 1447–1456. 33 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ 9. ɉɨɧɨɦɚɪɟɜ Ⱥ.Ȼ., ɋɵɱɤɢɧɚ ȿ.ɇ. ɇɟɤɨɬɨɪɵɟ ɪɟɡɭɥɶɬɚɬɵ ɩɪɢɦɟɧɟɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɦɨɞɟɥɢ ɝɪɭɧɬɚ ɞɥɹ ɱɢɫɥɟɧɧɨɝɨ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɧɚɩɪɹɠɟɧɧɨ-ɞɟɮɨɪɦɢɪɨɜɚɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɨɣ ɝɥɢɧɵ // ȼɟɫɬɧɢɤ ȼɨɥɝɨɝɪɚɞɫɤɨɝɨ ɝɨɫɭɞɚɪɫɬɜɟɧɧɨɝɨ ɚɪɯɢɬɟɤɬɭɪɧɨ-ɫɬɪɨɢɬɟɥɶɧɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ. ɋɟɪ.: ɋɬɪɨɢɬɟɥɶɫɬɜɨ ɢ ɚɪɯɢɬɟɤɬɭɪɚ. – 2014. – ʋ 38 (57). – ɋ. 49–64. 10. ɉɨɧɨɦɚɪɟɜ Ⱥ.Ȼ., ɋɵɱɤɢɧɚ ȿ.ɇ. Ʉ ɜɨɩɪɨɫɭ ɩɪɨɝɧɨɡɚ ɨɫɚɞɤɢ ɫɜɚɣɧɵɯ ɮɭɧɞɚɦɟɧɬɨɜ, ɨɩɢɪɚɸɳɢɯɫɹ ɧɚ ɚɪɝɢɥɥɢɬɨɩɨɞɨɛɧɵɟ ɝɥɢɧɵ (ɧɚ ɩɪɢɦɟɪɟ ɝ. ɉɟɪɦɢ) // ȼɟɫɬɧɢɤ ɉɟɪɦɫɤɨɝɨ ɧɚɰɢɨɧɚɥɶɧɨɝɨ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫɤɨɝɨ ɩɨɥɢɬɟɯɧɢɱɟɫɤɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ. ɋɬɪɨɢɬɟɥɶɫɬɜɨ ɢ ɚɪɯɢɬɟɤɬɭɪɚ. – 2014. – ʋ 2. – ɋ. 91–105. DOI: http: //dx.doi.org/10.15593/22249826/2014.2.05 11. Ponomarev A., Sychkina E. Settlement Prediction of Foundations on Argillite-Like Soils (as Exemplified by the Perm Region) // Soil Mechanics and Foundation Engineering. – 2014. – Vol. 51 (3). – P. 111–116. DOI: http: //dx.doi.org/10.1007/s11204-014-9263-y 12. ɉɨɧɨɦɚɪɟɜ Ⱥ.Ȼ., ɋɵɱɤɢɧɚ ȿ.ɇ. ɋɨɩɨɫɬɚɜɥɟɧɢɟ ɦɟɯɚɧɢɱɟɫɤɢɯ ɫɜɨɣɫɬɜ ɚɪɝɢɥɥɢɬɨɜ ɪɚɧɧɟɩɟɪɦɫɤɨɝɨ ɜɨɡɪɚɫɬɚ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɩɨɥɟɜɵɯ ɢ ɥɚɛɨɪɚɬɨɪɧɵɯ ɢɫɩɵɬɚɧɢɣ // ȼɟɫɬɧɢɤ ɆȽɋɍ. – 2013. – ʋ 2. – ɋ. 55–63. 13. Farrell N., Healy D., Taylor C. Anisotropy of permeability in faulted porous sandstones // Journal of Structural Geology. – 2014. – No. 63. – P. 50–67. DOI: http: //dx.doi.org/10.1016/j.jsg.2014.02.008 14. Louis L., Baud P., Wong T. Microstructural Inhomogeneity and Mechanical Anisotropy Associated with Bedding in Rothbach Sandstone // Pure appl. geophys. – 2009. – No. 166. – P. 1063–1087. DOI: http: //dx.doi.org/10.1007/s00024-009-0486-1 References 1. Bugrov A.K. Golubev A.I. Anizotropnye grunty i osnovaniia sooruzhenii [Anisotropic soils and foundation structures]. Saint-Petersburg: Nedra, 1993. 245 p. 2. Nuzhdin L.V., Korobova O.A., Nuzhdin M.L. Prakticheskii metod rascheta osadok fundamentov s uchetom deformatsionnoi anizotropii gruntov osnovaniia [The practical calculation method of foundation settlements with regard strain anisotropy of the soil basement]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Stroitel’stvo i arhitektura, 2014, no. 4. pp. 246-264. DOI: http: //dx.doi.org. 10.15593/2224-9826/2014.4.20 34 ɉɪɢɦɟɧɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ ɢɫɫɥɟɞɨɜɚɧɢɹ ɚɧɢɡɨɬɪɨɩɧɨɣ ɞɟɮɨɪɦɢɪɭɟɦɨɫɬɢ … 3. Osipov V.I., Sokolov V.N. Gliny i ikh svoistva. Sostav, stroenie i formirovanie svoistv [Clays and their properties. The composition, structure and formation properties]. Moscow: GEOS, 2013. 576 p. 4. Barden L. Stresses and displacements in a cross-anisotropic soil. Geotechnique, 1963, vol. 13, no. 3, pp. 798-210. 5. Lam W., Tatsuoka F. Effects of initial anisotropic fabric and ı2 on strength and deformation characteristics of sand. Soils and Foundations. 1988, no. 28 (1), pp. 89-106. 6. Salager S. [et al.]. Constitutive analysis of the mechanical anisotropy of Opalinus Clay. Acta Geotechnica, 2013, vol. 8, iss. 2, pp. 137-154. 7. Zhang F. [et al.] Effect of water content and structural anisotropy on mechanical property of claystone. Applied Clay Science, 2012, no. 69, pp. 79-86. 8. Zhiwei G., Jidong Z. Efficient approach to characterize strength anisotropy in soils. Journal of Engineering Mechanics, 2012, vol. 138, no. 12, pp. 1447-1456. 9. Ponomarev A.B., Sychkina E.N. Nekotorye rezul'taty primeneniia anizotropnoi modeli grunta dlia chislennogo modelirovaniia napriazhennodeformirovannogo sostoianiia argillitopodobnoi gliny [Some results of using anisotropic soil model for the numerical modeling of the stress-strain state of claystone]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta. Seriia “Stroitelstvo i arkhitektura”, 2014, no. 38, (57). pp. 49-64. 10. Ponomarev A.B., Sychkina E.N. K voprosu prognoza osadki svainykh fundamentov, opiraiushchikhsia na argillitopodobnye gliny (na primere goroda Permi) [To question of forecast settlement of piles foundations, based on claystone (for example, city Perm)]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Stroitel’stvo i arkhitektura, 2014, no. 2, pp. 91-105. DOI: http: //dx.doi.org/10.15593/2224-9826/2014.2.05 11. Ponomarev A., Sychkina E. Settlement Prediction of Foundations on Argillite-Like Soils (as Exemplified by the Perm Region). Soil Mechanics and Foundation Engineering, 2014, no. 51 (3), pp. 111-116. DOI: http: //dx.doi.org/10.1007/s11204-014-9263-y 12. Ponomarev A.B., Sychkina E.N. Sopostavlenie mekhanicheskikh svoistv argillitov rannepermskogo vozrasta po rezul'tatam polevykh i laboratornykh ispytanii [Comparison of mechanical properties of mudstones early Permian age on the results of field and laboratory tests]. Vestnik 35 Ⱥ.Ȼ. ɉɨɧɨɦɚɪɟɜ, ȿ.ɇ. ɋɵɱɤɢɧɚ Moskovskogo gosudarstvennogo stroitel'nogo universiteta, 2013, no. 2, pp. 55-63. 13. Farrell N., Healy D., Taylor C. Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 2014, no. 63, pp. 50-67. DOI: http: //dx.doi.org/10.1016/j.jsg.2014.02.008 14. Louis L., Baud P., Wong T. Microstructural Inhomogeneity and Mechanical Anisotropy Associated with Bedding in Rothbach Sandstone. Pure appl. Geophys, 2009, no. 166, pp. 1063-1087. DOI: http: //dx.doi.org/10.1007/s00024-009-0486-1 ɉɨɥɭɱɟɧɨ 16.01.2015 ɋɜɟɞɟɧɢɹ ɨɛ ɚɜɬɨɪɚɯ ɉɨɧɨɦɚɪɟɜ Ⱥɧɞɪɟɣ Ȼɭɞɢɦɢɪɨɜɢɱ (ɉɟɪɦɶ, Ɋɨɫɫɢɹ) – ɞɨɤɬɨɪ ɬɟɯɧɢɱɟɫɤɢɯ ɧɚɭɤ, ɩɪɨɮɟɫɫɨɪ, ɡɚɜɟɞɭɸɳɢɣ ɤɚɮɟɞɪɨɣ «ɋɬɪɨɢɬɟɥɶɧɨɟ ɩɪɨɢɡɜɨɞɫɬɜɨ ɢ ɝɟɨɬɟɯɧɢɤɚ» ɉɟɪɦɫɤɨɝɨ ɧɚɰɢɨɧɚɥɶɧɨɝɨ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫɤɨɝɨ ɩɨɥɢɬɟɯɧɢɱɟɫɤɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ (614990, ɝ. ɉɟɪɦɶ, Ʉɨɦɫɨɦɨɥɶɫɤɢɣ ɩɪ., 29, e-mail: spstf@pstu.ru). ɋɵɱɤɢɧɚ ȿɜɝɟɧɢɹ ɇɢɤɨɥɚɟɜɧɚ (ɉɟɪɦɶ, Ɋɨɫɫɢɹ) – ɤɚɧɞɢɞɚɬ ɬɟɯɧɢɱɟɫɤɢɯ ɧɚɭɤ, ɞɨɰɟɧɬ ɤɚɮɟɞɪɵ «ɋɬɪɨɢɬɟɥɶɧɨɟ ɩɪɨɢɡɜɨɞɫɬɜɨ ɢ ɝɟɨɬɟɯɧɢɤɚ» ɉɟɪɦɫɤɨɝɨ ɧɚɰɢɨɧɚɥɶɧɨɝɨ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫɤɨɝɨ ɩɨɥɢɬɟɯɧɢɱɟɫɤɨɝɨ ɭɧɢɜɟɪɫɢɬɟɬɚ (614990, ɝ. ɉɟɪɦɶ, Ʉɨɦɫɨɦɨɥɶɫɤɢɣ ɩɪ., 29, e-mail: aspirant123@mail.ru). About the authors Andrei B. Ponomarev (Perm, Russian Federation) – Doctor of Technical Sciences, Professor, Head of Department of Construction Technology and Geotechnics, Perm National Research Polytechnic University (29, Komsomolsky av., Perm, 614990, Russian Federation, e-mail: spstf@pstu.ru). Evgeniia N. Sychkina (Perm, Russian Federation) – Ph.D. in Technical Sciences, Associate Professor, Department of Construction Technology and Geotechnics, Perm National Research Polytechnic University (29, Komsomolsky av., Perm, 614990, Russian Federation, e-mail: aspirant123@mail.ru). 36