Учебные материалы по разделам курса физики 1 Механика

реклама
Учебные материалы по разделам курса физики
1 Механика
Основные формулы и определения
● Согласно второму закону Ньютона, произведение массы тела на его ускорение равно результирующей силе, действующей на тело:
= m· .
В другой форме второй закон Ньютона имеет вид: Fx =dpx /dt ,
где Fx -проекция силы на ось x, dpx /dt – производная от компоненты импульса по времени.
● Полное ускорение равно векторной сумме нормального и тангенциального
ускорения: = n + τ .
Нормальное ускорение a n характеризует изменение скорости по направлению, направлено перпендикулярно скорости и равно:
a n = v 2/R, где v – скорость точки, R – радиус кривизны траектории .
Тангенциальное ускорение а τ характеризует изменение скорости по величине (или по модулю), направлено параллельно скорости и равно производной от
скорости по времени: а τ=dv/dt .
● Импульсом тела называется произведение массы тела на его скорость:
= m . Импульсом системы тел называется сумма импульсов всех тел,
входящих в систему. Импульс замкнутой системы тел сохраняется.
● Кинетическая энергия поступательного движения тела равна Wk= mv 2/2.
Потенциальная энергия тела, поднятого на высоту h, равна Wp = m g h ,
где g = 9,8 м/с2 – ускорение свободного падения, причём, высота h много
меньше радиуса Земли RЗемли .
Потенциальная энергия упруго деформированной пружины равна:
W p= k x2/2, где k – коэффициент упругости, x – деформация (изменение длины
пружины).
● Полная механическая энергия тела равна сумме кинетической и потенциальной энергий: W ПОЛН. =Wk + Wp .
11
Закон сохранения энергии формулируется так: полная механическая энергия
замкнутой системы, между телами которой действуют только консервативные силы (например, сила тяжести, сила упругости), сохраняется.
● Если потенциальная энергия зависит только от одной координаты, то
проекция силы на ось х равна производной от потенциальной энергии по этой
координате, взятой с обратным знаком: Fx = -
.
● Угловой скоростью называется производная от угла поворота по времени:
ω = dφ /dt.
Угловым ускорением называется производная от угловой скорости по времени: ε = dω /dt.
● Моментом инерции материальной точки называется произведение массы
материальной точки на квадрат её расстояния до оси вращения: I = m r 2.
● Моментом инерции твёрдого тела называется сумма произведений масс
материальных точек на квадраты их расстояний до оси вращения:
2
I=
i . Момент инерции тела относительно оси симметрии, проходящей через центр масс тела, равен:
1) для обруча (полого цилиндра) I0 = m R 2,
2) сплошного цилиндра (диска) I0 = m R 2 / 2,
3) шара I0 =(2/5)·m R 2 ,
4) стержня, I0 = (1/12) ml2, где l – длина стержня.
Согласно теореме Штейнера, момент инерции тела относительно произвольной оси равен моменту инерции этого тела относительно оси, параллельной данной и проходящей через центр масс, плюс произведение массы тела на
квадрат расстояния между осями: I = I0 + m·d2.
● Момент силы равен векторному произведению радиуса – вектора на силу:
= [ · ], где – радиус – вектор, проведенный от оси вращения в точку
приложения силы. Модуль момента силы равен:
M = F·r·sin(α), где α – угол между силой
12
и радиусом – вектором .
● Момент импульса материальной точки равен векторному произведению радиуса – вектора на импульс: = [ · ], где – радиус – вектор, проведенный
от оси вращения в точку приложения импульса. Модуль момента импульса
материальной точки равен L = mvr·sin α, где α – угол между вектором импульса m и радиусом – вектором .
Модуль момента импульса твердого тела численно равен произведению момента инерции тела на его угловую скорость: L= I·ω.
● Согласно основному закону динамики вращательного движения, результирующий момент сил, действующих на тело, равен производной от момента
импульса по времени: M = dL / dt.
В другой форме: M = I·ε (при I=const).
Тест 1 - 1
Если а  и аn-тангенциальное и нормальное ускорение, то соотношения а  >0
и а n= 0 справедливы для:
Варианты ответов:
1)
равномерного и прямолинейного движения;
2)
ускоренного и прямолинейного движения;
3)
равномерного и криволинейного движения;
4)
ускоренного и криволинейного движения;
5)
замедленного и криволинейного;
6)
равномерного движения по окружности.
Решение.
Нормальное ускорение ап характеризует изменение скорости по направлению. Следовательно, если аn = 0, то скорость по направлению не изменяется, и движение будет прямолинейным. Тангенциальное ускорение а  характеризует изменение скорости по модулю (или величине). Поэтому, если
а  >0, то скорость по модулю возрастает, и движение будет ускоренным.
Ответ: вариант 2.
13
Задание С1-1 для самостоятельного решения.
Если а τ и а n - тангенциальная и нормальная составляющие ускорения, то
соотношения: а τ = 0 , а n = 0 справедливы для...
Варианты ответов:
1) равномерного прямолинейного движения;
2) равномерного ускоренного движения;
3) равномерного движения по окружности.
Задание С1-2 для самостоятельного решения.
Выясните, каким будет характер движения, если:
1) а  < 0, аn >0?
2) а  =0, аn =const?
3) а  >0, аn > 0.
Смотрите варианты ответов для теста 1 – 1.
Тест 1 - 2
Точка М движется по спирали с постоянной по величине скоростью в направлении, указанном стрелкой. При этом величина полного ускорения...
Варианты ответов:
1) увеличивается ;
2) не изменяется;
3) уменьшается.
Решение.
Полное ускорение равно векторной сумме нормального и тангенциального
ускорения: = п + τ . Нормальное ускорение характеризует изменение скорости по направлению и равно a n = v 2/R, где v – скорость точки, R – радиус
14
кривизны траектории. Так как по условию задачи v = const, а R при движении,
показанном на рисунке (т. е. по часовой стрелке) уменьшается, то a n увеличивается. Другая составляющая ускорения - тангенциальное ускорение аτ
характеризует изменение скорости по величине (или по модулю) и равно
производной от скорости по времени: а τ = dv/dt. Так как скорость v = const,
то её производная равна нулю и а τ =0. Тогда а =a n , т.е. полное ускорение по
модулю равно нормальному ускорению. Следовательно, полное ускорение увеличивается.
Ответ: вариант 1.
Задание С1-3 для самостоятельного решения.
Объясните, что будет происходить с величиной полного ускорения при
движении точки по спирали в обратном направлении (см. рисунок теста
1 - 2), если v = const? Варианты ответов те же, что в тесте 1 – 2.
Задание С1-4 для самостоятельного решения.
Точка М движется по спирали в направлении, указанном стрелкой (см. рисунок теста 1 – 2). Нормальное ускорение по величине не изменяется. При этом
величина скорости …
Варианты ответов: 1) увеличивается; 2) не изменяется; 3) уменьшается.
Задание С1-5 для самостоятельного решения.
Точка М движется по спирали с постоянной по величине скоростью в направлении, указанном стрелкой (см. рисунок теста 1 – 2) . При этом величина
нормального ускорения ...
Варианты ответов: 1) увеличивается; 2) не изменяется; 3) уменьшается.
Задание С1-6 для самостоятельного решения.
Точка М движется по спирали в направлении, противоположном тому, которое указано стрелкой на рисунке теста 1 – 2.
Нормальное ускорение по величине не изменяется. При этом величина скорости…
Варианты ответов: 1) увеличивается; 2) не изменяется; 3) уменьшается.
15
Тест 1 – 3
Точка движется по окружности с постоянным тангенциальным ускорением.
Если проекция тангенциального ускорения на направление скорости положительна, то величина нормального ускорения…
Варианты ответов:1) уменьшается; 2) не изменяется; 3) увеличивается.
Решение.
Нормальное ускорение характеризует изменение скорости по направлению и
равно a n = v 2/R, где v – скорость точки, R – радиус кривизны траектории.
Так как по условию задачи точка движется по окружности, то R = const.
Тангенциальное ускорение характеризует изменение скорости по величине
(или по модулю) и равно а τ = dv/dt . По условию а τ= const и проекция тангенциального ускорения на направление скорости положительна. Следовательно, движение по окружности будет равноускоренным. Поскольку при
равноускоренном движении скорость по модулю увеличивается, то величина
нормального ускорения a n по модулю также увеличивается.
Ответ: вариант 3.
Задание С1-7 для самостоятельного решения.
Тело движется по окружности с постоянной по модулю скоростью. Как
должна измениться скорость тела, чтобы при увеличении радиуса в 4 раза
нормальное ускорение не изменилось?
Варианты ответа:1) уменьшиться в 2 раза; 2) увеличиться в 2 раза;
3) уменьшиться в 4 раза; 4) увеличиться в 4 раза.
Тест 1 – 4
Материальная точка М движется по окружности со скоростью
.
На рис. 1
показан график зависимости vτ от времени ( -единичный вектор положительного направления, vτ - проекция
на это направление). На рис.2 укажи-
те направление вектора полного ускорения.
16
Варианты ответов:
1) Направление 1; 2) Направление 2; 3) Направление 3; 4) Направление 4.
Решение.
Полное ускорение тела складывается из векторной суммы тангенциального
ускорения τ , характеризующего изменение скорости по модулю (или величине), и нормального ускорения
n,
характеризующего изменение скорости по
направлению. Рассмотрим, как направлены вектора τ и n . При равнопеременном движении вектор тангенциального ускорения совпадает по направлению с вектором скорости, если движение равноускоренное, и противоположен ей, если движение равнозамедленное. Вектор нормального ускорения
перпендикулярен вектору скорости.
Из рис. 1 следует, что модуль вектора скорости линейно убывает со временем. Следовательно, движение будет равнозамедленным, и вектор тангенциального ускорения будет противоположен по направлению вектору скорости vτ. Так как скорость направлена по касательной к траектории (направление 1 на рис. 2), то направление тангенциального ускорения τ при
равнозамедленном движении будет противоположно направлению 1.
При движении тела по окружности скорость изменяется по направлению, и
нормальное ускорение n будет направлено к центру окружности (направление 3 на рис.2). Результирующее ускорение, равное векторной сумме =
+
n
, будет иметь направление 4.
Ответ: вариант 4.
17
τ
Тест 1 – 5
Материальная точка М движется по окружности со скоростью . На рис. 1 показан
график зависимости vτ от времени ( - единичный вектор положительного направления, vτ
- проекция
на это направление). На рис.2 укажите направление силы, действующей на точ-
ку М в момент времени t1.
Варианты ответов:
1) Направление 1; 2) Направление 2; 3) Направление 3; 4) Направление 4.
Решение
Согласно второму закону Ньютона, ускорение пропорционально результирующей силе, действующей на тело. Полное ускорение тела складывается из
векторной суммы тангенциального ускорения τ, которое характеризует изменение скорости по модулю, и нормального ускорения
n , характеризующего изменение скорости по направлению. Из рис.1 следует, что для момента времени t 1 скорость по модулю линейно возрастает. Следовательно,
движение будет равноускоренным, и вектор тангенциального ускорения τ
будет совпадать по направлению с вектором скорости
рис. 2) .
τ
(направление 1 на
При движении тела по окружности скорость изменяется по направлению,
и нормальное ускорение n будет направлено к центру окружности (направление 3 на рис.2). Результирующее ускорение равно векторной сумме = τ+
и будет иметь направление 2. Следовательно, результирующая сила также
будет иметь направление 2.
Ответ: вариант 2.
18
n
Задание С1-8 для самостоятельного решения.
На рис. 2 теста 1 – 5 укажите направление силы, действующей точку M, в
момент времени t 2. Смотрите варианты ответов для теста 1 – 5.
Тест 1 – 6
Материальная точка М движется по окружности со скоростью
. На
рис. 1 показан график зависимости проекции
скорости vτ от времени, где - единичный вектор положительного направления vτ - проекция
.на это направление. При этом для нормального аn и тангенциального аτ ускорения выполняются условия...
Варианты ответов:
1) аn>0; аτ= 0;
2) an = 0; aτ= 0;
3) аn>0; аτ<0.
4) ап>0; аτ>0.
Решение
Нормальное ускорение аn характеризует изменение скорости по направлению. Если точка движется по окружности, то её скорость изменяется по
направлению, следовательно, аn> 0. Тангенциальное ускорение аτ характеризует изменение скорости по модулю (или величине). Из рис. 1 следует, что
скорость по модулю не изменяется, т.е. тангенциальное ускорение аτ=0. Следовательно, аn>0, аτ = 0.
Ответ: вариант 1.
Задание С1-9 для самостоятельного решения.
Укажите вариант ответа для нормального и тангенциального ускорения, если материальная точка движется по окружности и зависимость проекции скорости от времени имеет вид, представленный на рисунке.
Варианты ответов:
1) an>0; аτ= 0;
2) an = 0; aτ= 0;
19
3) аn>0; аτ<0;
4) ап>0; аτ>0.
Тест 1 - 7
Тело массой 2 кг поднято над Землёй. Его потенциальная энергия равна
400 Дж. Если на поверхности Земли его потенциальная энергия равна нулю и
силами сопротивления воздуха можно пренебречь, скорость, с которой оно
упадёт на Землю составит…
Варианты ответов:
1) 14 м/с;
2) 20 м/с;
3) 10 м/с;
4) 40 м/с.
Решение
Поскольку силами сопротивления воздуха можно пренебречь, то нужно
применить закон сохранения энергии, согласно которому, потенциальная
энергия тела, поднятого над Землёй, равна его кинетической энергии в конце
падения:
W p= Wk. Кинетическая энергия тела равна Wk = mv 2/2. Отсюда
v=
. После численной подстановки получим: v = 20 м/с.
Ответ: вариант 2.
Задание С1-10 для самостоятельного решения.
Определите, на какую высоту было поднято тело массой 2 кг, если его потенциальная энергия равна 400 Дж.
Варианты ответов: 1) 200 м;
2) 20 м;
3) 2 м.
Задание С1-11 для самостоятельного решения.
Тело начинает двигаться равноускоренно. Определите, во сколько раз путь,
пройденный телом за шестую секунду, больше пути, пройденного телом за
третью секунду.
Варианты ответов:
1) 1,5;
2) 11 / 5;
3) 11 / 3;
4) 3.
Подсказка.
При равноускоренном движении зависимость пути от времени дается
уравнением:S=v0·t+at2 /2, где v0 – начальная скорость тела, a – ускорение.
20
Тест 1 – 8
Небольшая шайба начинает движение без начальной скорости по
гладкой ледяной горке из точки А.
Сопротивление воздуха пренебрежимо мало. Зависимость потенциальной энергии шайбы от координаты х изображена на графике
U=U(x).
Скорость шайбы в точке С …
Варианты ответов:
1) в
раз больше, чем в точке В;
2) в 4 раза больше, чем в точке В;
3) в
раза больше, чем в точке В;
4) в 2 раза больше, чем в точке В.
Решение.
Поскольку силами сопротивления воздуха и силами трения шайбы о лед
можно пренебречь, то нужно применить закон сохранения энергии, и полную
механическую энергию замкнутой системы считать постоянной. Так как
полная механическая энергия системы равна сумме кинетической и потенциальной, то W = Wк + WP = const. Потенциальную энергию можно найти из графика, приведённого на рисунке, а кинетическую найти как разность между полной энергией и потенциальной: Wк = W - WP . Следовательно, в точке А энергия равна:
W= WP =100 Дж, Wк = 0. В точке В WP =70 Дж, WкВ= 100 -70 = 30 Дж.
В точке С WP =40 Дж, Wкс= 100 -40 = 60 Дж.
Чтобы сравнить скорости в точках С и В, нужно найти отношение их кинетических
энергий. Учитывая, что кинетическая энергия равна W k= m v 2/2, получим:
=
=
=
. Таким образом, скорость шайбы в точке С в
раз больше, чем в точке В.
Ответ: вариант 1.
21
Тест 1 – 9
В потенциальном поле сила пропорциональна
градиенту потенциальной энергии WP. Если график
зависимости потенциальной энергии WP от координаты х имеет вид, представленный на рисунке, то
зависимость проекции силы Fх на ось Оx будет…
Варианты ответов:
1)
2)
3)
4)
Решение.
Если потенциальная энергия зависит только от одной координаты, то
Fx = -
. График зависимости потенциальной энергии WP от координаты
x, как видно из рисунка, представляет собой параболу, уравнение которой
имеет вид: WP = kx 2, где k = const. Тогда производная от этой функции,
взятая с обратным знаком, равна: F x = - 2 kx. График зависимости проекции силы на ось Fx от координаты x представляет собой прямую, изображенную на рис. 1.
Ответ: вариант 1.
22
Задание С1-12 для самостоятельного решения.
В потенциальном поле сила пропорциональна
градиенту потенциальной энергии WP. Если график зависимости потенциальной энергии WP от
координаты х имеет вид то, зависимость проекции силы Fx на ось x будет....
Варианты ответов:
1)
2)
3)
4)
Тест 1 - 10
Частица движется вдоль окружности радиусом 1 м в соответствии с уравнением φ (t) = 2π (t2 - 6t + 12), где угол φ – в радианах, время t – в секундах.
Частица остановится в момент времени…
Варианты ответов: 1) 1 с;
2) 2 с;
3) 3 с;
4) 4 с.
Решение.
Угловой скоростью ω называется производная от угла поворота по времени: ω = dφ /dt. Если частица остановится, то её угловая скорость станет
равной нулю. Возьмём производную и приравняем её нулю. Тогда получим:
(2t – 6) = 0. Отсюда t = 3 с.
Ответ: вариант 3.
23
Тест 1 – 11
Обруч массой m = 0,3 кг и радиусом R = 0,5 м привели во вращение, сообщив ему энергию вращательного движения 1200 Дж, и опустили на пол
так, что его ось вращения оказалась параллельной
плоскости пола. Если обруч начал двигаться без проскальзывания, имея кинетическую энергию поступательного движения 200 Дж, то сила трения совершила работу…
Варианты ответов:
1) 1000 Дж;
2) 1400 Дж;
3) 800 Дж;
4) 600 Дж.
Решение.
Работа равна изменению кинетической энергии тела: А = W2 –W1. По
условию задачи начальная кинетическая энергия обруча равна W = 1200 Дж.
Конечная кинетическая энергия обруча при движении параллельно плоскости
пола складывается из суммы кинетических энергий поступательного и
вращательного движения: W2 = m v 2/2 + I ω 2/2 , где v – линейная скорость,
ω – угловая скорость, ω = v/R , I – момент инерции. Для обруча I = m R 2.
После подстановки этих формул получим:
W 2 = m v 2 /2 + m R 2 ·(v / R)2 /2 =2(m v 2 /2). По условию задачи кинетическая
энергия поступательного движения mv 2 / 2 = 200 Дж. Тогда конечная
кинетическая энергия обруча равна W2 = 2·200 = 400 Дж. Следовательно,
работа силы трения по модулю равна: А =│400 -1200│= 800 Дж.
Ответ: вариант 3.
Тест 1 – 12
Система состоит из трех шаров с массами
m1=l кг, m2 =2кг, m3=3 кг, которые двигаются так,
как показано на рисунке. Если скорости шаров
равны v1=3 м/c, v2=2 м/c, v3=1м/c, то величина скорости центра масс этой системы в м/с равна...
Варианты ответов: 1) 4; 2) 2/3; 3) 10; 4) 5/3.
24
Решение.
Импульс системы равен векторной сумме импульсов тел, составляющих
систему: = 1 + 2 + 3. Найдём проекции импульса на оси координат:
px = m2 v2 = 2×2 = 4 кг· м/с.
py = p1 - p2 = m1 v1- m 3v3 = 1× 3 - 3×1 = 0. Тогда модуль импульса системы
равен p = px= 4 кг· м/ с. Масса системы равна:
m = m1 + m 2 + m3 =1+2 + 3=6 кг. Найдём скорость центра масс:
v = p /m = 4/6 =2/3 м/с.
Ответ: вариант 2.
Задание С1-13 для самостоятельного решения.
Система состоит из трех шаров с массами m1=l кг, m2=2 кг, m3=3 кг, которые
двигаются так, как показано на рисунке.
Если скорости шаров равны
v1= 3 м/c, v2= 2 м/c, v3=1 м/c, то вектор импульса центра масс этой системы направлен…
Варианты ответов:
1) вдоль оси - OY;
2) вдоль оси - ОХ;
3) вдоль оси + ОХ.
Тест 1 – 13
Теннисный мяч летел с импульсом 1 в горизонтальном направлении,
когда теннисист произвел по мячу резкий удар длительностью Δt = 0,1 с. Изменившийся импульс мяча
стал равным 2 (масштаб указан на рисунке). Средняя сила удара равна … Варианты ответов:
1) 50 Н;
2) 0,5 Н;
3) 30 Н;
Решение.
25
4) 5 Н.
Среднюю силу удара можно определить из второго закона Ньютона, записанного в общей форме
=
, где ∆ = 2 -
1
- измене-
ние импульса тела, Δt – промежуток времени, за который это изменение произошло. Изменение импульса ∆ –
это вектор, соединяющий конец вектора 1 с концом
вектора 2 (см. рис. в решении).
Согласно этому рисунку, горизонтальная компонента
изменения импульса равна: ∆рx=3 кг·м/с, а вертикальная компонента изменения импульса равна: ∆рy=4 кг·м/с. Модуль изменения импульса вычисляется
по теореме Пифагора: ∆р =
=5 кг·м/с .Тогда средняя сила удара по
модулю равна: F =
= 50 Н.
Ответ: вариант 1.
Задание С1-14 для самостоятельного решения.
Теннисный мяч с импульсом 5 кг·м/с летел в горизонтальном направлении и после абсолютно упругого удара отскочил в обратном направлении от
ракетки теннисиста. Длительность удара была равна ∆t = 0,2 с. Определите
среднюю силу удара.
Варианты ответов те же, что в тесте 1 – 13.
Тест 1 – 14
Планета массой m движется по эллиптической орбите, в одном из фокусов
которой находится звезда массой М.
Если - радиус-вектор планеты, то
справедливым
является утверждение...
Варианты ответов:
1) Момент силы тяготения, действующей на планету, относительно центра
звезды, не равен нулю.
2)Момент импульса планеты относительно центра звезды при движении по
орбите не изменяется.
3)Для момента импульса планеты относительно центра звезды справедливо
выражение: L = mvr.
Решение
26
Проанализируем правильность утверждений.
1. Модуль момента силы равен :M = F ·r·sin(α), где α – угол между силой
радиусом – вектором . Сила тяготения
и
направлена в сторону, противо-
положную радиусу – вектору , т.е. α = 180˚ , sin (180˚) = 0 и M = 0. Поэтому
первое утверждение является неверным.
2. Второе утверждение является правильным, т.к. оно соответствует
закону сохранения момента импульса: момент импульса замкнутой системы
сохраняется. Поэтому момент импульса планеты относительно центра
звезды при движении по орбите не изменяется.
3. Третье утверждение является неправильным, т.к. модуль момента импульса равен L = mv r· sin α, где α – угол между вектором импульса m и радиусом – вектором планеты . Очевидно, что этот угол, а также v в процессе движения изменяются, но mv r· sin α = const.
Ответ: вариант 2.
.
Задание С1-15 для самостоятельного решения.
Планета движется вокруг звезды по круговой орбите. Рассмотрите, какие
утверждения из вариантов ответов к тесту 1 – 14 будут верными.
Задание С1-16 для самостоятельного решения.
Определите направление вектора момента импульса , если изображенный
на рисунке теста 1 – 14 эллипс лежит в плоскости чертежа.
Варианты ответов:
1) Перпендикулярно чертежу к нам;
2) Перпендикулярно чертежу за чертёж;
3) Вдоль импульса m .
27
Тест 1 – 15
Диск радиуса R вращается вокруг вертикальной оси равноускоренно по часовой стрелке. Укажите направление вектора
углового ускорения.
Варианты ответов:
1) Направление 1;
2) Направление 2;
3) Направление 3;
4) Направление 4.
Решение.
При вращении тела поворот
можно изобразить в виде вектора, направленного вдоль оси вращения в соответствии с правилом правого винта.
Это значит, что если головка винта движется по окружности в направлении
вращения, то поступательное движение винта укажет направление вектора
поворота. В нашем случае при вращении тела по часовой стрелке винт (буравчик) будет закручиваться, и вектор угла поворота будет иметь направление 4. При ускоренном вращении направление вектора углового ускорения
совпадает с направлением вектора поворота. Следовательно, вектор углового ускорения надо изобразить в направлении 4.
Ответ: вариант 4.
Тест 1 – 16
Тело вращается вокруг неподвижной оси. Зависимость угловой скорости
от времени (t) приведена на рисунке. Тангенциальное ускорение точки, находящейся на расстоянии 1 м от оси вращения равно...
Варианты ответов:
1) 0,5 м/с; 2) -0,5 м/с2; 3) 5 м/с2; 4) -5 м/с2.
28
Решение.
Тангенциальное ускорение по модулю равно произведению углового ускорения на радиус: a τ = ε·R. По условию задачи радиус R = 1 м. Угловое ускорение
при равномерном вращении равно отношению изменения угловой скорости к
промежутку времени, за которое это изменение произошло: ε = Δω/ Δt, где
Δω = ω2 – ω1, Δt = t2 – t1. Взяв две точки на графике, найдём Δω и Δt. Пусть
t1 = 0, ω1 = - 10 рад/с и t2 = 2 с, ω2 = - 20рад/с. Тогда Δω -20–(-10) = - 10
рад/с, Δt =2 – 0 =2с, ε = ( - 10 ) / 2 = -5рад/с2. Следовательно, тангенциальное ускорение точки равно: a τ = (- 5)·1 = -5 м/с2. Ответ: вариант 4.
Тест 1 - 17
Диск и цилиндр имеют одинаковые массы и радиусы (рис.). Для их моментов инерции справедливо соотношение...
Варианты ответов:
1) IЦ > IД ; 2) IЦ = IД ; 3) IЦ < IД .
Решение.
Моменты инерции сплошного цилиндра и
диска вычисляются по одинаковой фор2
муле: I = mR /2 . Эта формула показывает, что момент инерции не зависит
от длины цилиндра. Следовательно, IЦ = IД .
Ответ: вариант 2.
Задание С1-17 для самостоятельного решения.
Тонкостенная трубка и кольцо имеют одинаковые массы и радиусы (рис.).
Для их моментов инерции справедливо соотношение...
Варианты ответов:
1)
IТ >IК;
29
2)
IТ = IК;
3)
IТ <IК.
Тест 1 – 18
Если момент инерции тела увеличить в 2 раза, а скорость его вращения
уменьшить в 2 раза, то момент импульса тела...
Варианты ответов:
1) увеличится в 4 раза;
2)
уменьшится в 4 раза;
3) уменьшится в 2 раза;
4)
не изменится.
Решение.
Момент импульса тела численно равен произведению момента инерции
тела на его угловую скорость: L= I·ω. Поэтому, если один сомножитель увеличить в 2 раза, а другой уменьшить в 2 раза, то результат не изменится.
Ответ: вариант 4.
Тест 1 –19
При расчете моментов инерции тела относительно осей, не проходящих через центр масс, используют теорему Штейнера. Если
ось вращения тонкостенной трубки перенести из центра масс на образующую (рис.), то момент инерции
относительно новой оси увеличится в....
Варианты ответов: 1) 4 раза;
3) 3 раза;
2) 2 раза;
4) 1.5 раза.
Решение.
По теореме Штейнера момент инерции тела относительно произвольной
оси I равен моменту инерции этого тела относительно оси, параллельной
данной и проходящей через центр масс I0, плюс произведение массы тела на
квадрат расстояния d между осями: I = I0 + m·d2. Момент инерции тонкостенной трубки относительно оси симметрии вычисляется так же, как момент инерции обруча: I0 = mR2, расстояние между осями, как следует из рисунка, равно d = R. Тогда по теореме Штейнера:
I = mR2 + mR2 = 2mR2 = 2I0. Отсюда следует, что момент инерции увеличится в 2 раза: I/I0=2.
Ответ: вариант 2.
30
Тест 1 –20
Из жести вырезали три одинаковые детали в виде эллипса. Две детали разрезали пополам вдоль оси симметрии. Затем все
части отодвинули друг от друга на одинаковое
расстояние и расставили симметрично относительно оси OO'.
Для моментов инерции относительно оси OO'
справедливо соотношение …
Варианты ответов:
1) I 1 = I 2 > I 3; 2) I 1 < I 2 = I 3;
3) I 1 = I 2 <I 3; 4) не хватает данных.
Решение.
Моментом инерции твёрдого тела называется сумма призведений масс
материальных точек на квадраты их расстояний до оси вращения. Исходя из
этого определения, сравним моменты инерции неразрезанной и разрезанных
деталей.
Если тело разрезать поперек оси вращения и отодвинуть части друг относительно друга на некоторое расстояние, то при таком расположении
частей тела расстояния материальных до оси вращения не изменяются.
Поэтому момент инерции тела останется прежним, т. е. I1 = I2.
Если расположить разделенные части тела симметрично относительно
оси ОО′ на такое же расстояние, как при поперечном разрезе, показанном на
рисунке, то расстояния материальных точек относительно оси вращения
для третьей детали уменьшится по сравнению со второй. Поэтому момент
инерции I 3< I 2 . Следовательно, справедливо соотношение I 1 = I 2 > I 3 .
Ответ: вариант 1.
Задание С1-18 для самостоятельного решения.
Из жести вырезали три одинаковые детали в виде эллипса. Две детали разрезали пополам вдоль разных осей симметрии. Затем все части отодвинули
друг от друга и расставили так, как
показано на рисунке, то для моментов
инерции относительно оси OO' справедливо соотношение …
Варианты ответов: 1) I 1 = I 2 > I 3;
2) I 1 < I 2 = I 3;
3) I 1 = I 2 <I 3.
31
Тест 1 –21
Вокруг неподвижной оси с угловой скоростью ω1 свободно вращается система из невесомого стержня и массивной шайбы, которая удерживается нитью
на расстоянии R 1 от оси вращения. Отпустив нить, шайбу перевели в положение 2, и она стала
двигаться по окружности радиусом
R2= 2R1 с угловой
скоростью ...
Варианты ответов:
1) ω 2 = ω 1 /2;
2) ω 2 = ω 1 /4;
3) ω 2 = 4ω 1 ;
4) ω 2 = 2ω 1 .
Решение.
Задача решается по закону сохранения момента импульса: момент импульса замкнутой системы сохраняется. Данную систему можно рассматривать как замкнутую, так как момент силы, перемещающей шайбу вдоль
стержня, относительно оси вращения равен нулю. Поэтому момент импульса шайбы до перемещения равен моменту импульса шайбы после перемещения: L1 = L2. Момент импульса твердого тела равен произведению момента
инерции тела на угловую скорость: L = I ω, поэтому по закону сохранения
момента импульса получим: I1 ω1= I2 ω2 . Шайбу можно рассматривать как
материальную точку, момент инерции которой равен произведению массы
на квадрат её расстояния до оси вращения: I = m·R2. Тогда получим:
mR12ω1 = mR22ω2. Отсюда: ω2=R12ω1/R22= ω1·(R1/ R2)2 . Так как по условию
задачи R2 = 2R1 , то
ω2 = ω1 /4.
Ответ: вариант 2.
Задание С1-19 для самостоятельного решения.
Вокруг неподвижной оси с угловой скоростью ω1 свободно вращается система из невесомого стержня и массивной шайбы, которая удерживается нитью
на расстоянии R1 от оси вращения (рисунок тот же, что в тесте 1 – 21). Шайбу
перевели в положение 2, и она стала двигаться по окружности радиусом
R2= 2R1/3 с угловой скоростью ...
32
Варианты ответов:
1) ω 2 = 3ω 1 /2;
2) ω 2 =9ω 1 /4;
3)
ω 2 = 4ω 1 /9;
4) ω 2 = 2ω 1 /3.
Задание С1-20 для самостоятельного решения.
Вокруг неподвижной оси с угловой скоростью ω1 свободно вращается система из невесомого стержня и массивной шайбы, которая удерживается нитью на расстоянии R1 от
оси вращения. Потянув нить, шайбу перевели в положение 2, и она стала двигаться по окружности радиусом R2= R1 /2 с угловой скоростью ...
Варианты ответов:
1) ω 2 = 4ω 1 ;
2) ω 2 =2ω 1 ;
3) ω 2 = ω 1 /4;
4) ω 2 = ω 1 /2.
Тест 1 - 22
В потенциальном поле сила пропорциональна
градиенту потенциальной энергии WP. Если график
зависимости потенциальной энергии WP от координаты х имеет вид, представленный на рисунке, то зависимость проекции силы Fx на ось x будет...
Варианты ответов:
1)
2)
3)
33
4)
Решение.
График зависимости потенциальной энергии Wp от координаты x, как
видно из рисунка, представляет собой прямую, проходящую через начало координат, уравнение которой имеет вид: Wp = - Κ x, где Κ – константа.
Если потенциальная энергия зависит только от одной координаты, то
проекция силы на ось Ох равна производной от потенциальной энергии по
координате, взятой с обратным знаком: Fx = -
. После вычисления про-
изводной от Wp , взятой с обратным знаком, получим: Fx = Κ. Так как коэффициент Κ > 0, то график функции Fx (x) будет представлять собой прямую, изображенную на рисунке варианта 1.
Ответ: вариант 1.
Тест 1 – 23
В потенциальном поле сила пропорциональна
градиенту потенциальной энергии WP. Если график зависимости потенциальной энергии WP от
координаты х имеет вид, то зависимость проекции
силы Fx на ось Оx будет....
Варианты ответов:
1)
2)
3)
34
4)
Решение.
График зависимости потенциальной энергии Wp от координаты x, как
видно из рисунка, представляет собой параболу, проходящую через начало координат, уравнение которой имеет вид: Wp = - Κ x2, где Κ – константа.
Если потенциальная энергия зависит только от одной координаты, то
проекция силы на ось х равна производной от потенциальной энергии по координате, взятой с обратным знаком: Fx = -
.
После вычисления производ-
ной от Wp , взятой с обратным знаком, получим: Fx = 2 Κx. Так как 2 Κ > 0,
то график функции Fx (x) будет представлять собой прямую, изображенную
на рисунке варианта 3.
Ответ: вариант 3.
Тест 1 – 24
Сплошной и полый цилиндры, имеющие одинаковые массы и радиусы,
вкатываются без проскальзывания на горку. Если начальные скорости тел
одинаковы, то …
Варианты ответов:
1) Оба тела поднимутся на одну и ту же высоту.
2) Выше поднимется полый цилиндр.
3) Выше поднимется сплошной цилиндр.
Решение.
Согласно закону сохранения энергии, при вкатывании на горку полная кинетическая энергия тела переходит потенциальную энергию:
mv 2/2 + Iω 2/2 = mgh,
где m – масса тела, I – момент инерции тела, v и ω – линейная и угловая
скорости, причем, ω = v / R, R - радиус, h – высота, g – ускорение силы тяжести. Согласно условию задачи, все величины в формуле для энергии являются постоянными, кроме I. Следовательно, высота, на которую поднимется тело, зависит от значения момента инерции: чем больше момент инерции,
тем выше поднимется тело.
Для сплошного цилиндра (диска) I = m R 2 /2, для полого (обруча) I = m R 2 .
35
Так как момент инерции полого цилиндра больше, чем сплошного, то выше
поднимется полый цилиндр.
Ответ: вариант 2.
Задание С1-21 для самостоятельного решения.
Сплошной и полый цилиндры, имеющие одинаковые массы и радиусы,
скатываются без проскальзывания с горки высотой h. Какое из тел быстрее
придёт к основанию наклонной плоскости? Укажите вариант ответа.
Варианты ответов:
1) Быстрее скатится полый цилиндр.
2) Оба тела скатятся одновременно.
3)
Быстрее скатится сплошной цилиндр.
Тест 1 – 25
Физический маятник совершает колебания вокруг оси, проходящей через
точку О перпендикулярно плоскости рисунка. Для данного положения маятника момент силы тяжести направлен...
Варианты ответов:
1) вниз в плоскости рисунка;
2) вверх в плоскости рисунка;
3) от нас перпендикулярно плоскости рисунка;
4) к нам перпендикулярно плоскости рисунка.
Решение.
Момент силы равен векторному произведению радиуса – вектора на силу:
= [ · ], где
– радиус – вектор, проведенный от оси вращения в точку
приложения силы,
=m –сила тяжести,
- ускорение силы тяжести. На-
правления вектора момента силы определяется по правилу векторного произведения двух векторов, т.е. это вектор, перпендикулярный плоскости, в которой лежат перемножаемые вектора и направленный так, что если посмотреть с его конца, то поворот от первого перемножаемого вектора ко
второму будет виден против часовой стрелки. Иначе, при повороте вектора
к вектору
=m
буравчик будет выкручиваться и его поступательное
36
движение покажет направление момента силы. Следовательно, вектор
направлен к нам перпендикулярно плоскости рисунка. Ответ: вариант 4.
Задание С1-22 для самостоятельного решения.
Укажите направление момента силы для физического маятника, представленного на рисунке.
Варианты ответов те же, что в тесте 1 – 25.
Тест 1 – 26
Материальная точка двигалась вдоль оси x равномерно с некоторой скоростью vx. Начиная с момента времени t=0, на
нее стала действовать сила Fx, график временной зависимости которой представлен на
рисунке. График, правильно отражающий зависимость величины проекции импульса материальной точки рх от времени, будет …
Варианты ответов:
37
Решение.
Согласно второму закону Ньютона, производная от импульса тела по
времени равна результирующей силе, действующей на тело. Для движения
тела вдоль оси x этот закон имеет вид: Fx = dpx /dt. По условию задачи на
первом этапе движения (т.е. при 0< t<t1) Fx = const . Обозначим эту константу через F0. Тогда dpx/dt = F0 и зависимость проекции импульса материальной точки px от времени t будет линейной функцией: p = p0 + F0·t. График этой функции представляет собой возрастающую прямую, что соответствует рисункам 1 и 3.
Чтобы выбрать один рисунок из двух, проанализируем движение на втором этапе, т.е. при t1< t < t2. Из графика для проекции силы Fx(t) следует,
что на этом этапе Fx = 0, следовательно, dpx/dt=0 и p x = const. Тогда график
зависимости проекции импульса от времени px (t) будет представлять собой прямую, параллельную оси абсцисс, что соответствует рисунку 3.
Ответ: вариант 3.
Тест 1 – 27
На частицу, находящуюся в начале координат, действует сила, вектор которой определяется выражением = 2 +3 где и единичные векторы декартовой системы координат.
Работа, совершенная этой силой при перемещении частицы в точку с координатами (0; 5),
равна ...
Варианты ответов:
1) 10 Дж;
2) 25 Дж;
3) 3 Дж;
4) 15 Дж.
Решение.
Работа равна скалярному произведению вектора силы на вектор перемещения: А =
·
, где
= F x · + F y · - вектор силы , ∆ =∆x· +∆y
вектор перемещения. Если раскрыть скалярное произведение, то получим
формулу для работы в другом виде:
А = F x·∆x + F y·∆y,
где
∆x = x2 – x1 и ∆y = y2– y1 .
38
-
Так как частица перемещается из начала координат в точку с координатами (0; 5), то x1 =0, y1 =0, x2 =0, y2 =5 и ∆x = 0, ∆y=5. По условию задачи,
проекции силы на оси координат равны: F x = 2 Н, F y = 3 Н. Следовательно,
работа равна: А = 2·0 + 3·5 = 15 Дж.
Ответ: вариант 4.
Тест 1 – 28
На рисунке показан вектор силы, действующей на частицу. Работа, совершенная этой силой при перемещении частицы в
точку с координатами (0; 5), равна ...
Варианты ответов:
1) 15 Дж;
2) 2 Дж;
3) 3 Дж;
4) 10 Дж.
Решение.
Формула для работы имеет вид: А = Fx·∆x + Fy·∆y.
Из рисунка следует, что проекции силы на оси координат равны:
F x=3, F y=2 Н. Из условия задачи следует, что проекции вектора перемещения на оси координат равны: ∆x =0, ∆y = 5. Поэтому работа равна:
А = 3·0 + 2·5 =10 Дж.
Ответ: вариант 4.
Тест 1 – 29
К точке, лежащей на внешней поверхности диска, приложены 4 силы.
Если ось вращения проходит через центр О
диска перпендикулярно плоскости рисунка, то
плечо силы
1
равно...
Варианты ответов:
1) b;
39
2) 0;
3) c;
4) a.
Решение.
Плечом силы называется кратчайшее расстояние от оси вращения до линии действия силы. Более наглядно это можно показать на примере силы
Для силы
3
3.
линией действия будет прямая b, а перпендикуляр а, проведённый
к ней от оси вращения, т.е. из точки О, будет являться плечом силы
Аналогично, линией действия силы
1
3.
будет прямая, являющаяся продол-
жением силы 1 , которая на рисунке не показана, но она параллельна прямой
а. Перпендикуляр b, опущенный из точки приложения силы на прямую a,
параллельную линии действия силы, будет являться плечом силы
1
.
Ответ: вариант 1.
Задание С1-23 для самостоятельного решения.
Из рисунка теста 1 – 29 определите, чему равно плечо силы
4?
Варианты ответов те же, что в тесте 1 –30.
Задание С1-24 для самостоятельного решения.
Из рисунка теста 1 – 29 определите, чему равно плечо силы
2?
Варианты ответов те же, что в тесте 1 –29.
Тест 1 – 30
Два тела массами m1 и m2 соединены нерастяжимой нитью, перекинутой через невесомый блок. Если m1 > m2, а
— сила натяжения нити, то уравнение второго закона Ньютона для тела массой m1 в проекции на направление движения имеет вид...
Варианты ответов:
1) m1a =T- m 1 g;
2) m1a = m 1 g -T;
40
3) m1a= m 1 g +T.
Решение.
Согласно второму закону Ньютона, произведение массы тела на его ускорение равно результирующей силе, действующей на тело. На каждое тело действует две силы: сила тяжести,
направленная вниз, и сила натяжения нити, направленная в противоположную сторону. Так как выполняется
условие m1 > m2 , то груз m1 , поскольку он тяжелее,
движется вниз и его ускорение направлено вниз, сила
тяжести направлена вниз и сила натяжения нити, направлена в противоположную сторону. Тогда уравнение
второго закона Ньютона для груза массой m1 в скалярной форме (т.е. с учетом знаков) будет иметь вид: m1a = m1g – T.
Ответ: вариант 2.
Задание С1-25 для самостоятельного решения.
Два тела массами m1 и m2 соединены нерастяжимой нитью, перекинутой
через невесомый блок. Если m1 > m2 и — сила натяжения нити, то уравнение второго закона Ньютона для тела массой m2 в проекции на направление
движения имеет вид...
Варианты ответов:
1) m2 a =T- m 2 g;
2) m2a = m 2 g -T;
3) m2a= m 2 g +T.
Тест – 1 – 31
Диск начинает вращаться под действием
момента сил, график временной зависимости которого представлен на рисунке. Укажите график,
правильно отражающий зависимость угловой скорости диска от времени.
41
Варианты ответов:
Решение.
Зависимость угловой скорости от времени даётся уравнением:
ω = ω0 +ε · t, где ω0 – начальная угловая скорость, ε – угловое ускорение. На
первом этапе
ω0 = 0, т.к. по условию задачи диск начинает вращаться.
Угловое ускорение можно найти из основного закона динамики вращательного движения: ε = М / I , где М – момент силы, I – момент инерции. Так как
момент силы М = const на промежутке времени 0 < t < t1 и момент инерции диска (I = mR2/2) тоже постоянен, то ε1 = const,. Тогда зависимость
угловой скорости от времени будет иметь вид: ω = ε1 · t. График этой функции представляет собой прямую, проходящую через начало координат. Для
момента времени t = t1 ω1 = ε1 · t1 .
Для промежутка времени t1< t < t2 момент силы М = 0 и угловое ускорение
ε2 = 0 , следовательно, ω = ω1= const. График зависимости угловой скорости от времени на этом промежутке времени будет представлять собой
прямую, параллельную оси абсцисс. Поэтому график, правильно отражающий
зависимость угловой скорости диска от времени на всём временном интервале, представлен на рисунке 2.
Ответ: вариант 2.
.
42
Тест 1 – 32
Момент импульса тела относительно неподвижной оси изменяется по закону
L = a t 2. Укажите график, правильно отражающий зависимость от
времени величины момента сил, действующих на тело.
Варианты ответов:
Решение.
Согласно основному закону динамики вращательного движения, результирующий момент сил, действующих на тело, равен производной от момента
импульса по времени: M = dL/dt. По условию задачи: L= at 2, производная
dL/dt =2 at, поэтому момент силы равен: M=2at. Следовательно, график зависимости момента сил от времени представляет собой прямую, проходящую через начало координат, что соответствует рисунку 3.
Ответ: вариант 3.
Задание С1-26 для самостоятельного решения.
Укажите график, правильно отражающий зависимость от времени величины момента сил, действующих на тело, если момент импульса тела относительно неподвижной оси изменяется по закону L = a t.
Варианты ответов те же, что в тесте 1 – 32.
43
Тест 1 – 33
Космический корабль пролетает мимо Вас со скоростью 0,8 с (с-скорость
света в вакууме). По Вашим измерениям его длина равна 90 м. В состоянии
покоя его длина наиболее близка к …
Варианты ответов:
1) 55 м;
2) 90 м;
3) 150 м;
4)
110 м.
Решение
Если длина космического корабля, движущегося со скоростью v = 0.8 с,
где с – скорость света в вакууме, равна L0 , то с точки зрения неподвижного наблюдателя, находящегося на Земле, его длина будет равна L. Согласно
выводу, сделанному из специальной теории относительности Эйнштейна,
L = L0 ·
, т.е. размеры тел сокращаются в направлении движе-
ния. Тогда длина космического корабля в состоянии покоя будет равна:
L0 = L /
.
Проведём вычисления: L0 = 90
= 90/0.6 = 150 м.
Ответ: вариант 3.
Тест 1 – 34
Космический корабль с двумя космонавтами на борту летит со скоростью v=0,8 с (с- скорость света в вакууме). Один из космонавтов медленно
поворачивает метровый стержень из положения 1, параллельного направлению движения, в положение 2, перпендикулярное этому направлению. Тогда
длина стержня с точки зрения другого космонавта …
Варианты ответов:
1)
2)
3)
4)
Изменится от 0,6 м в положении 1 до 1,0 м в положении 2;
Равна 1,0 м при любой его ориентации;
Изменится от 1,0 м в положении 1 до 0,6 м в положении 2;
Изменится от 1,0 м в положении 1 до 1,67 м в положении 2.
44
Решение.
Согласно выводу теории относительности Эйнштейна, размеры тел сокращаются в направлении движения. Но так как космонавты не движутся
относительно друг друга, а находятся в одной кабине, то длина стержня будет равна L0 = 1м при любой его ориентации.
Ответ: вариант 2.
Задание С1-27 для самостоятельного решения.
Космический корабль летит со скоростью v=0,8·с (с - скорость света в вакууме). Один из космонавтов медленно поворачивает метровый стержень из
положения 1, перпендикулярного направлению движения корабля, в положение 2, параллельное этому направлению. Тогда длина этого стержня с точки
зрения наблюдателя, находящегося на Земле ...
Варианты ответов:
1)
2)
3)
4)
Изменится от 1,0 м в положении 1 до 0,6 м в положении 2;
Равна 1,0 м при любой его ориентации;
Изменится от 0,6 м в положении 1 до 1,0 м в положении 2;
Изменится от 1,0 м в положении 1 до 1,67 м в положении 2.
Тест 1 – 35
Пи-ноль-мезон, двигающийся со скоростью 0,8 ·с (с-скорость света в вакууме) в лабораторной системе отсчета, распадается на два фотона γ1 и γ2. В
собственной системе отсчета мезона фотон γ1 был испущен вперед, а фотон γ2
- назад относительно направления полета мезона. Скорость фотона γ1 в лабораторной системе отсчета равна …
Варианты ответов: 1)
0,8· с; 2) 1,67· с; 3)
1,8· с;
4) 1· с.
Решение
Согласно второму постулату теории относительности Эйнштейна, скорость света в вакууме одинакова во всех инерциальных системах отсчёта и
не зависит от скорости движения источников и приёмников света. Поэтому,
45
если в собственной системе отсчёта, движущейся со скоростью v = 0.8·с,
был испущен фотон в направлении движения системы, то его скорость в
этой системе отсчёта равна u'х = с. Скорость фотона в лабораторной системе отсчёта также равна uх = с. Это можно показать с помощью релятивистского закона сложения скоростей:
uх = (u'х + v)/(1 + v·u'х /с2).
Подставим в эту формулу численные значения:
uх = (с + 0.8 с)/(1 + 0.8с·с/с2) = с.
Ответ: вариант 4.
Тест 1 – 36
Пи-ноль-мезон, двигавшийся со скоростью 0,8 с (с-скорость света в вакууме) в лабораторной системе отсчета, распадается на два фотона
γ1 и γ2.
В собственной системе отсчета мезона фотон γ1 был испущен вперед, а фотон
γ2 - назад относительно направления полета мезона. Скорость фотона γ1 в лабораторной системе отсчета равна …
Варианты ответов:
1) - 0,2· с; 2) +0,8 с; 3) - 1,0 ·с;
4) + 1,0 · с.
Решение
Если в собственной системе отсчёта, движущейся со скоростью
v = 0.8·с, был испущен фотон в направлении, противоположном направлению
движения системы, то его скорость в этой системе отсчёта равна u'х = - с.
Скорость фотона в лабораторной системе отсчёта также равна uх = - с.
Это можно доказать с помощью релятивистского закона сложения скоростей:
uх = (u'х + v)/(1 + v·u'х /с2).
Подставим в эту формулу численные значения:
uх = (- с + 0.8 с)/(1 - 0.8с·с /с2)= - 0.2 с/0.2 = - с.
Ответ: вариант3.
46
Тест 1 – 37
Твердое тело из состояния покоя начинает вращаться вокруг оси Z с угловым
ускорением, проекция которого изменяется во времени, как показано на графике.
Угловая скорость вращения тела достигнет
максимальной величины в момент времени,
равный …
Варианты ответов:
1) 2 с;
2) 10 с;
3) 5 с;
4)
3 с.
Решение.
По определению, угловое ускорение равно производной от угловой скорости по времени: ε =
. Отсюда: dω =ε·dt. Тогда интеграл равен
ω=
. Графически интеграл численно равен площади фигуры, огра-
ниченной графиком функции εz (t), двумя ординатами t=t1 и t=t2 и осью абсцисс
t. Площадь фигуры можно рассчитать как число клеток, ограниченное графиком функции, умноженное на цену деления одной клеточки. В нашем случае
цена деления равна 1 рад/с. Причём, площадь фигуры выше оси абсцисс t
нужно брать со знаком «+», а ниже – со знаком « - ». Таким образом, в момент времени t = 2 с площадь фигуры равна двум клеточкам. Следовательно,
угловая скорость в этот момент будет равна ω (2) = 2 рад/с.. В момент
времени t = 3 с угловая скорость достигнет величины ω (3)=2+1=3 рад/с.
В момент времени t = 5 с угловая скорость может быть найдена как разность двух площадей: ω(5)=3-4= -1рад/с.
В момент времени t = 10 с угловая скорость равна:
ω(10)= - 1-10= - 11 рад/с.
Таким образом, угловая скорость достигнет максимальной по модулю величины в момент времени t =10 с.
Ответ: вариант 2.
47
Задание С1-28 для самостоятельного решения.
Твердое тело, момент инерции которого равен I = 10 кг·м2, из состояния
покоя начинает вращаться вокруг оси Z с угловым ускорением, проекция
которого изменяется во времени, как показано на графике теста 1 – 37.
Момент силы, действующий на тело в момент времени t = 2 с, равен…
Варианты ответов: 1) 20 Н·м;
2)
0;
3)
40 Н·м;
4) 2 Н·м.
Тест 1 – 38
Шарик, прикрепленный к пружине и насаженный на горизонтальную направляющую, совершает гармонические колебания.
На графике представлена зависимость проекции силы упругости пружины Fx
на положительное направление оси х от координаты шарика.
Работа силы упругости при смещении шарика из положения 0 в положение В
составляет …
Варианты ответов:
1) - 4·10 – 2 Дж;
2) 4·10 – 2 Дж;
3) 8·10 – 2 Дж;
4) 0 Дж
Решение.
Работа силы при смещении тела из положения x1 в положение x2 равна
интегралу: А =
dx . Графически интеграл численно равен площади фи-
гуры, ограниченной графиком функции Fx (x), двумя ординатами x=x1 и x=x2 и
осью абсцисс x. Площадь фигуры можно рассчитать как число клеток, ограниченное графиком функции, умноженное на цену деления одной клеточки.
Причём, площадь фигуры выше оси абсцисс x нужно брать со знаком «+», а
ниже – со знаком « - ».
48
В нашем случае сила упругости по закону Гука равна: Fx = - kx, k – коэффициент упругости, x1 = 0, x2 = 40 мм, цена деления одной клеточки равна 10
Н٠мм = 10 – 2Дж. Таким образом, работа силы упругости при смещении
шарика из положения 0 в положение В равна: А= - 4٠10 – 2 Дж.
Ответ: вариант 1.
Задание С1-29 для самостоятельного решения.
На графике теста 1 – 38 представлена зависимость проекции силы упругости
пружины Fx на положительное направление оси х от координаты шарика.
Работа силы упругости при смещении шарика из положения А в положение
В составляет …
Варианты ответов:
1) - 4·10 – 2 Дж;
2) 4·10 – 2 Дж;
49
3) 8·10 – 2 Дж;
4) 0 Дж.
Скачать