ȼɟɫɬɧɢɤ ɉɇɂɉɍ. ɋɬɪɨɢɬɟɥɶɫɬɜɨ ɢ ɚɪɯɢɬɟɤɬɭɪɚ. ʋ 2. 2013 ɍȾɄ 624.04 Ɇ.ɘ. Ɉɜɫɹɧɧɢɤɨɜ, ɋ.Ƚ. Ʉɭɡɧɟɰɨɜɚ ɉɟɪɦɫɤɢɣ ɧɚɰɢɨɧɚɥɶɧɵɣ ɢɫɫɥɟɞɨɜɚɬɟɥɶɫɤɢɣ ɩɨɥɢɬɟɯɧɢɱɟɫɤɢɣ ɭɧɢɜɟɪɫɢɬɟɬ ɈɉɊȿȾȿɅȿɇɂȿ ɊȺɋɑȿɌɇɈȽɈ ɉɈɅɈɀȿɇɂə ɉɈȾȼɂɀɇɈɃ ɇȺȽɊɍɁɄɂ ɎȿɊɆɕ ɀȿɅȿɁɇɈȾɈɊɈɀɇɈȽɈ ɆɈɋɌȺ Ɋɚɫɱɟɬɧɨɟ ɩɨɥɨɠɟɧɢɟ ɩɨɞɜɢɠɧɨɣ ɧɚɝɪɭɡɤɢ – ɷɬɨ ɬɚɤɨɟ ɩɨɥɨɠɟɧɢɟ, ɩɪɢ ɤɨɬɨɪɨɦ ɢɦɟɸɬ ɦɟɫɬɨ ɧɚɢɛɨɥɶɲɢɟ ɜɧɭɬɪɟɧɧɢɟ ɭɫɢɥɢɹ, ɧɚɩɪɹɠɟɧɢɹ ɢ ɩɟɪɟɦɟɳɟɧɢɹ ɨɛɨɢɯ ɡɧɚɤɨɜ ɜ ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɦ ɷɥɟɦɟɧɬɟ ɫɨɨɪɭɠɟɧɢɹ ɢɥɢ ɫɨɨɪɭɠɟɧɢɹ ɜ ɰɟɥɨɦ. ɂɦɟɧɧɨ ɧɚ ɬɚɤɢɟ ɭɫɢɥɢɹ ɢ ɞɨɥɠɧɵ ɛɵɬɶ ɪɚɫɫɱɢɬɚɧɵ ɫɨɨɪɭɠɟɧɢɹ. ȼ ɰɟɥɹɯ ɫɨɤɪɚɳɟɧɢɹ ɭɤɚɡɚɧɧɵɯ ɜɟɥɢɱɢɧ ɜ ɮɟɪɦɚɯ ɦɨɝɭɬ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɲɩɪɟɧɝɟɥɢ. Ɉɧɢ ɪɚɛɨɬɚɸɬ ɧɚ ɦɟɫɬɧɭɸ ɧɚɝɪɭɡɤɭ, ɬɟɦ ɫɚɦɵɦ ɪɚɡɝɪɭɠɚɹ ɨɞɧɢ ɷɥɟɦɟɧɬɵ ɮɟɪɦɵ ɢ ɧɚɝɪɭɠɚɹ ɞɪɭɝɢɟ. Ɋɟɲɟɧɢɹ ɞɢɤɬɭɸɬɫɹ ɩɪɟɠɞɟ ɜɫɟɝɨ ɫ ɷɤɨɧɨɦɢɱɟɫɤɨɣ ɬɨɱɤɢ ɡɪɟɧɢɹ, ɜɟɞɶ ɫɧɢɡɢɜ ɜɧɭɬɪɟɧɧɢɟ ɭɫɢɥɢɹ ɜ ɷɥɟɦɟɧɬɟ ɫɨɨɪɭɠɟɧɢɹ, ɜɨɡɦɨɠɧɨ ɫɷɤɨɧɨɦɢɬɶ ɧɚ ɤɨɥɢɱɟɫɬɜɟ ɦɚɬɟɪɢɚɥɚ, ɧɟɨɛɯɨɞɢɦɨɝɨ ɧɚ ɟɝɨ ɢɡɝɨɬɨɜɥɟɧɢɟ. ȼ ɪɨɥɢ ɩɨɞɜɢɠɧɨɣ ɧɚɝɪɭɡɤɢ ɦɨɝɭɬ ɜɵɫɬɭɩɚɬɶ ɞɜɢɠɭɳɢɟɫɹ ɚɜɬɨɦɨɛɢɥɢ, ɬɪɚɦɜɚɢ, ɩɨɟɡɞɚ ɢ ɞɪɭɝɨɣ ɬɪɚɧɫɩɨɪɬ. Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ: ɠɟɥɟɡɧɨɞɨɪɨɠɧɵɣ ɦɨɫɬ, ɮɟɪɦɚ, ɲɩɪɟɧɝɟɥɶ, ɨɫɧɨɜɧɚɹ ɮɟɪɦɚ, ɩɨɞɜɢɠɧɚɹ ɧɚɝɪɭɡɤɚ, ɦɟɫɬɧɚɹ ɧɚɝɪɭɡɤɚ, ɪɚɫɱɟɬɧɨɟ ɩɨɥɨɠɟɧɢɟ ɧɚɝɪɭɡɤɢ, ɪɚɜɧɨɜɟɫɢɟ, ɩɪɨɞɨɥɶɧɨɟ ɭɫɢɥɢɟ, ɪɚɫɬɹɠɟɧɢɟ, ɫɠɚɬɢɟ. Ɉɩɪɟɞɟɥɢɦ ɧɟɜɵɝɨɞɧɨɟ ɩɨɥɨɠɟɧɢɟ ɩɨɞɜɢɠɧɨɣ ɧɚɝɪɭɡɤɢ (ɪɢɫ. 1) ɮɟɪɦɵ ɠɟɥɟɡɧɨɞɨɪɨɠɧɨɝɨ ɦɨɫɬɚ (ɪɢɫ. 2), ɪɚɫɫɦɚɬɪɢɜɚɹ ɪɚɫɱɟɬɧɵɟ ɭɫɢɥɢɹ ɜ ɫɬɟɪɠɧɟ ɧɢɠɧɟɝɨ ɩɨɹɫɚ ɮɟɪɦɵ 7–8 ɢ ɫɬɟɪɠɧɟ ɜɟɪɯɧɟɝɨ ɩɨɹɫɚ 7'–10'. ɋɢɫɬɟɦɚ ɩɨɞɜɢɠɧɵɯ ɝɪɭɡɨɜ ɩɟɪɟɦɟɳɚɟɬɫɹ ɩɨ ɫɨɨɪɭɠɟɧɢɸ ɜ ɨɞɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ (ɫɥɟɜɚ ɧɚɩɪɚɜɨ). Ɉɫɶ ɤɨɨɪɞɢɧɚɬ (ɨɫɶ ɯ) ɩɪɢɜɹɡɚɧɚ ɤ ɥɟɜɨɣ ɲɚɪɧɢɪɧɨ-ɧɟɩɨɞɜɢɠɧɨɣ ɨɩɨɪɟ ɢ ɧɚɩɪɚɜɥɟɧɚ ɜɞɨɥɶ ɮɟɪɦɵ. Ƚɪɭɡɨɜɨɣ ɩɨɹɫ ɮɟɪɦɵ – ɧɢɠɧɢɣ. Ɋɢɫ. 1. ɋɢɫɬɟɦɚ ɩɨɞɜɢɠɧɵɯ ɝɪɭɡɨɜ 62 Ɉɩɪɟɞɟɥɟɧɢɟ ɪɚɫɱɟɬɧɨɝɨ ɩɨɥɨɠɟɧɢɹ ɧɚɝɪɭɡɤɢ ɮɟɪɦɵ ɦɨɫɬɚ Ɋɢɫ. 2. Ɏɟɪɦɚ ɠɟɥɟɡɧɨɞɨɪɨɠɧɨɝɨ ɦɨɫɬɚ ȼ ɩɪɟɞɟɥɚɯ ɤɚɠɞɨɣ ɩɚɧɟɥɢ ɢɦɟɟɦ ɨɞɧɨɹɪɭɫɧɵɣ ɲɩɪɟɧɝɟɥɶ, ɤɨɬɨɪɵɣ ɪɚɫɩɨɥɨɠɟɧ ɧɚ ɧɢɠɧɟɦ ɩɨɹɫɟ, ɪɚɛɨɬɚɟɬ ɬɨɥɶɤɨ ɧɚ ɦɟɫɬɧɭɸ ɧɚɝɪɭɡɤɭ ɢ ɩɟɪɟɞɚɟɬ ɟɟ ɧɚ ɨɫɧɨɜɧɵɟ ɭɡɥɵ ɬɨɝɨ ɠɟ ɩɨɹɫɚ, ɧɚɩɪɢɦɟɪ ɲɩɪɟɧɝɟɥɶ 7–8–10–8'. ɑɬɨɛɵ ɪɚɡɝɪɭɡɢɬɶ ɧɢɠɧɢɣ ɩɨɹɫ, ɜ ɞɚɧɧɨɣ ɮɟɪɦɟ ɩɪɟɞɭɫɦɨɬɪɟɧ ɞɜɭɯɴɹɪɭɫɧɵɣ ɲɩɪɟɧɝɟɥɶ, ɤɨɬɨɪɵɣ ɩɟɪɟɞɚɟɬ ɧɚɝɪɭɡɤɭ ɫ ɧɢɠɧɟɝɨ ɩɨɹɫɚ ɧɚ ɜɟɪɯɧɢɣ ɩɨɹɫ, ɧɚɩɪɢɦɟɪ ɲɩɪɟɧɝɟɥɶ 7'–10'–9'–9–7–10. ɉɨɫɬɪɨɢɦ ɥɢɧɢɸ ɜɥɢɹɧɢɹ ɩɪɨɞɨɥɶɧɨɝɨ ɭɫɢɥɢɹ ɜ ɫɬɟɪɠɧɟ 7–8. ɋɬɟɪɠɟɧɶ 7–8 ɩɪɢɧɚɞɥɟɠɢɬ ɤɚɤ ɮɟɪɦɟ, ɬɚɤ ɢ ɲɩɪɟɧɝɟɥɸ 7–8–10–8'. ɉɨɷɬɨɦɭ ɥɢɧɢɹ ɜɥɢɹɧɢɹ U7–8 ɛɭɞɟɬ ɫɤɥɚɞɵɜɚɬɶɫɹ ɢɡ ɥɢɧɢɣ ɜɥɢɹɧɢɹ ɞɚɧɧɨɝɨ ɭɫɢɥɢɹ ɜ ɨɫɧɨɜɧɨɣ ɮɟɪɦɟ (ɮɟɪɦɟ ɛɟɡ ɲɩɪɟɧɝɟɥɟɣ) (ɪɢɫ. 3) ɢ ɜ ɫɚɦɨɦ ɲɩɪɟɧɝɟɥɟ (ɪɢɫ. 4). ɉɪɨɜɟɞɟɦ ɫɟɱɟɧɢɟ I–I ɜ ɨɫɧɨɜɧɨɣ ɮɟɪɦɟ ɢ ɪɚɫɫɦɨɬɪɢɦ ɪɚɜɧɨɜɟɫɢɟ ɥɟɜɨɣ ɱɚɫɬɢ ɮɟɪɦɵ ɨɬɧɨɫɢɬɟɥɶɧɨ ɭɡɥɚ 10'. Ɋɢɫ. 3. Ʌɢɧɢɹ ɜɥɢɹɧɢɹ U7–8 ɜ ɨɫɧɨɜɧɨɣ ɮɟɪɦɟ 63 Ɇ.ɘ. Ɉɜɫɹɧɧɢɤɨɜ, ɋ.Ƚ. Ʉɭɡɧɟɰɨɜɚ ȿɫɥɢ ɟɞɢɧɢɱɧɵɣ ɝɪɭɡ P = 1 ɪɚɫɩɨɥɨɠɟɧ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɮɟɪɦɵ: ɥɟɜI I ¦ M 10' 0; R1 3d U 7 8 r1010' U 7 8 3d r1010' R1 0; 3 12 R1 9, 6 3, 75R1. ȿɫɥɢ ɟɞɢɧɢɱɧɵɣ ɝɪɭɡ P = 1 ɪɚɫɩɨɥɨɠɟɧ ɜ ɥɟɜɨɣ ɱɚɫɬɢ ɮɟɪɦɵ: ɥɟɜI I ¦ M 10' 0; R1 3d 1(3d x) U 7 8 r1010' U 7 8 3d r1010' R1 0; 3d x r10 10' 3 12 3 12 x 36 x 3, 75 R1 ; R1 9, 6 9, 6 9, 6 U 7 8 ( x 0) 0; U 7 8 ( x 24) 0, 625. Ɋɚɫɫɦɨɬɪɢɦ ɪɚɜɧɨɜɟɫɢɟ ɭɡɥɚ 7 ɲɩɪɟɧɝɟɥɹ, ɩɟɪɟɞɚɸɳɟɝɨ ɧɚɝɪɭɡɤɭ ɧɚ ɧɢɠɧɢɣ ɩɨɹɫ (ɪɢɫ. 4). Ɋɢɫ. 4. Ʌɢɧɢɹ ɜɥɢɹɧɢɹ U7–8 ɜ ɲɩɪɟɧɝɟɥɟ 7–8–10–8' ¦ M 8' 0; R7 4 U 7 8 r88' 64 0; Ɉɩɪɟɞɟɥɟɧɢɟ ɪɚɫɱɟɬɧɨɝɨ ɩɨɥɨɠɟɧɢɹ ɧɚɝɪɭɡɤɢ ɮɟɪɦɵ ɦɨɫɬɚ U 7 8 4 r88' R7 4 R7 3, 2 1, 25R7 . Ɉɤɨɧɱɚɬɟɥɶɧɚɹ ɥɢɧɢɹ ɜɥɢɹɧɢɹ U7–8 ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ. 5. Ɋɢɫ. 5. Ɉɤɨɧɱɚɬɟɥɶɧɚɹ ɥɢɧɢɹ ɜɥɢɹɧɢɹ U7–8 Ɉɞɢɧ ɢɡ ɝɪɭɡɨɜ ɩɨɞɜɢɠɧɨɣ ɫɢɫɬɟɦɵ ɞɨɥɠɟɧ ɪɚɫɩɨɥɚɝɚɬɶɫɹ ɧɚɞ ɧɚɢɛɨɥɶɲɟɣ ɨɪɞɢɧɚɬɨɣ ɥɢɧɢɢ ɜɥɢɹɧɢɹ – ɬɨɥɶɤɨ ɬɨɝɞɚ ɜɨɡɦɨɠɧɨ ɪɚɫɱɟɬɧɨɟ ɩɨɥɨɠɟɧɢɟ ɫɢɫɬɟɦɵ ɩɨɞɜɢɠɧɵɯ ɝɪɭɡɨɜ [1, 2]. Ⱦɥɹ ɥɢɧɢɢ ɜɥɢɹɧɢɹ U7–8 ɷɬɚ ɨɪɞɢɧɚɬɚ 1,5625, ɢ ɟɣ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɤɨɨɪɞɢɧɚɬɚ ɯ = 28 ɦ. ɉɨɫɤɨɥɶɤɭ ɜ ɫɢɫɬɟɦɟ ɩɨɞɜɢɠɧɵɯ ɝɪɭɡɨɜ ɜɫɟɝɨ 9 ɝɪɭɡɨɜ, ɜɨɡɦɨɠɧɨ ɬɨɥɶɤɨ 9 ɩɨɥɨɠɟɧɢɣ ɧɚɝɪɭɡɤɢ, ɤɨɬɨɪɵɟ ɦɨɝɭɬ ɛɵɬɶ ɪɚɫɱɟɬɧɵɦɢ. Ɋɚɫɫɦɨɬɪɢɦ ɜɫɟ 9 ɩɨɥɨɠɟɧɢɣ ɩɨɞɜɢɠɧɨɣ ɧɚɝɪɭɡɤɢ. ɋɨɫɬɚɜɢɦ ɬɚɛɥɢɰɭ ɤɨɨɪɞɢɧɚɬ ɨɬɞɟɥɶɧɵɯ ɝɪɭɡɨɜ ɩɨɞɜɢɠɧɨɣ ɫɢɫɬɟɦɵ, ɝɞɟ ɤɚɠɞɵɣ ɫɬɨɥɛɟɰ ɹɜɥɹɟɬɫɹ ɨɞɧɢɦ ɢɡ 9 ɩɨɥɨɠɟɧɢɣ ɧɚɝɪɭɡɤɢ (ɬɚɛɥ. 1). Ɍɚɛɥɢɰɚ 1 Ʉɨɨɪɞɢɧɚɬɵ ɩɨɞɜɢɠɧɵɯ ɝɪɭɡɨɜ ɇɨɦɟɪ ɝɪɭɡɚ 1 2 3 4 5 6 7 8 9 11,4 13 14,6 16,2 17,8 20,8 22,4 26,4 28 13 14,6 16,2 17,8 19,4 22,4 24 28 29,6 17 18,6 20,2 21,8 23,4 26,4 28 32 33,6 Ʉɨɨɪɞɢɧɚɬɚ x 18,6 21,6 23,2 20,2 23,2 24,8 21,8 24,8 26,4 23,4 26,4 28 25 28 29,6 28 31 32,6 29,6 32,6 34,2 33,6 36,6 38,2 35,2 38,2 39,8 24,8 26,4 28 29,6 31,2 34,2 35,8 39,8 41,4 26,4 28 29,6 31,2 32,8 35,8 37,4 41,4 43 28 29,6 31,2 32,8 34,4 37,4 39 43 44,6 Ⱦɚɥɟɟ ɨɩɪɟɞɟɥɢɦ ɨɪɞɢɧɚɬɵ ɥɢɧɢɢ ɜɥɢɹɧɢɹ ɩɨɞ ɤɚɠɞɵɦ ɝɪɭɡɨɦ ɩɨ ɫɥɟɞɭɸɳɟɣ ɮɨɪɦɭɥɟ: 65 Ɇ.ɘ. Ɉɜɫɹɧɧɢɤɨɜ, ɋ.Ƚ. Ʉɭɡɧɟɰɨɜɚ y ­ 0,9375 x > 0; 24@ >32; 36@ ° 36 x, ° °0, 625 1,5625 0, 625 ( x 24), x > 24; 28@ ° 4 ® °1,5625 1,5625 0,833 ( x 28), x > 28; 32@ ° 4 ° 3, 75 °3, 75 x, x >36; 60 @ 48 ¯ ɉɪɨɞɨɥɶɧɨɟ ɭɫɢɥɢɟ ɜ ɫɬɟɪɠɧɟ 7–8 ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɫɥɟɞɭɸɳɟɣ ɮɨɪɦɭɥɟ: 9 U 7 8 ¦ y P. i i i 1 ɋɜɟɞɟɦ ɜɫɟ ɩɨɥɭɱɟɧɧɵɟ ɞɚɧɧɵɟ ɜ ɬɚɛɥ. 2. Ɍɚɛɥɢɰɚ 2 Ɉɪɞɢɧɚɬɵ ɩɨɞɜɢɠɧɵɯ ɝɪɭɡɨɜ ɢ ɩɪɨɞɨɥɶɧɵɟ ɭɫɢɥɢɹ ɜ ɫɬɟɪɠɧɟ 7–8 ɇɨɦɟɪ Ɉɪɞɢɧɚɬɚ ɭ ɝɪɭɡɚ 1 0,30 0,34 0,44 0,48 0,56 0,60 0,81 1,19 1,56 2 0,34 0,38 0,48 0,53 0,60 0,81 1,19 1,56 1,27 3 0,38 0,42 0,53 0,57 0,81 1,19 1,56 1,27 0,98 4 0,42 0,46 0,57 0,61 1,19 1,56 1,27 0,98 0,85 5 0,46 0,51 0,61 0,86 1,56 1,27 0,98 0,85 0,90 6 0,54 0,58 1,19 1,56 1,02 0,85 0,89 0,93 0,83 7 0,58 0,63 1,56 1,27 0,85 0,89 0,93 0,83 0,70 8 1,19 1,56 0,83 0,88 0,89 0,77 0,64 0,52 0,39 9 1,56 1,27 0,88 0,92 0,77 0,64 0,52 0,39 0,27 U7–8 1077,71 1149,38 1328,54 1441,88 1579,58 1653,75 1698,75 1650,83 1506,25 Ɋ 200 200 200 200 200 180 180 180 180 – Ɉɩɪɟɞɟɥɢɜ U7–8 ɞɥɹ ɜɫɟɯ 9 ɩɨɥɨɠɟɧɢɣ ɧɚɝɪɭɡɤɢ, ɩɨɥɭɱɢɦ, ɱɬɨ ɪɚɫɱɟɬɧɨɟ (ɧɚɢɛɨɥɶɲɟɟ) ɡɧɚɱɟɧɢɟ ɩɪɨɞɨɥɶɧɨɣ ɫɢɥɵ, ɪɚɜɧɨɟ 1698,75 ɤɇ (ɪɚɫɬɹɠɟɧɢɟ), ɩɨɥɭɱɚɟɬɫɹ ɩɪɢ ɩɨɥɨɠɟɧɢɢ ɬɪɟɬɶɟɝɨ ɝɪɭɡɚ ɧɚɞ ɧɚɢɛɨɥɶɲɟɣ ɨɪɞɢɧɚɬɨɣ ɥɢɧɢɢ ɜɥɢɹɧɢɹ (28 ɦ). ɗɬɨ ɢ ɟɫɬɶ ɪɚɫɱɟɬɧɨɟ ɩɨɥɨɠɟɧɢɟ ɩɨɞɜɢɠɧɨɣ ɧɚɝɪɭɡɤɢ ɞɥɹ ɫɬɟɪɠɧɹ 7–8. Ȼɢɛɥɢɨɝɪɚɮɢɱɟɫɤɢɣ ɫɩɢɫɨɤ 1. Ʉɢɫɟɥɟɜ ȼ.Ⱥ. ɋɬɪɨɢɬɟɥɶɧɚɹ ɦɟɯɚɧɢɤɚ. Ɉɛɳɢɣ ɤɭɪɫ: ɭɱɟɛɧɢɤ ɞɥɹ ɜɭɡɨɜ. – 4-ɟ ɢɡɞ., ɩɟɪɟɪɚɛ. ɢ ɞɨɩ. – Ɇ.: ɋɬɪɨɣɢɡɞɚɬ, 1986. – 520 ɫ. 66 Ɉɩɪɟɞɟɥɟɧɢɟ ɪɚɫɱɟɬɧɨɝɨ ɩɨɥɨɠɟɧɢɹ ɧɚɝɪɭɡɤɢ ɮɟɪɦɵ ɦɨɫɬɚ 2. Ȼɚɥɚɛɚɧɨɜ ȼ.ȼ. ɋɬɪɨɢɬɟɥɶɧɚɹ ɦɟɯɚɧɢɤɚ: ɭɱɟɛɧɢɤ ɞɥɹ ɫɬɭɞ. ɭɱɪɟɠɞɟɧɢɣ ɜɵɫɲ. ɩɪɨɮ. ɨɛɪɚɡɨɜɚɧɢɹ. – Ɍ. 1. – Ɇ.: Ⱥɤɚɞɟɦɢɹ, 2012. – 304 ɫ. M.Yu. Ovsyannikov, S.G. Kuznetsova DETERMINATION OF THE ESTIMARED POSITION OF THE MOVING LOAD OF TRUSS RAILWAY BRIDGE The estimated position of the moving loadis a position where we have the greatest internal forces, tension and deformations (extension, compression) in element of construction or construction in general.Constructions should be calculated on such forces.We can usesub-diagonals in trusses to reduce these parameters. They work for thelocal load. It leads to unloading of some elements and loading of other elements.First of all, the solutions are dictated from the economic aspect.If we reduce the internal forces in the elements of the construction,then we can save material needed for its manufacture.In the roleof a moving loadcanbe cars, trams, trains and other transport. Keywords: railway bridge, truss, sub-diagonal, the main truss, moving load, local load, the estimated position of the load, the balance, the longitudinal force, extension, compression. ɋɜɟɞɟɧɢɹ ɨɛ ɚɜɬɨɪɚɯ Ɉɜɫɹɧɧɢɤɨɜ Ɇɢɯɚɢɥ ɘɪɶɟɜɢɱ (ɉɟɪɦɶ, Ɋɨɫɫɢɹ) – ɫɬɭɞɟɧɬ ɤɚɮɟɞɪɵ «ɋɬɪɨɢɬɟɥɶɧɚɹ ɦɟɯɚɧɢɤɚ ɢ ɜɵɱɢɫɥɢɬɟɥɶɧɚɹ ɬɟɯɧɢɤɚ» ɎȽȻɈɍ ȼɉɈ ɉɇɂɉɍ (e-mail: mihovs@yandex.ru). Ʉɭɡɧɟɰɨɜɚ ɋɜɟɬɥɚɧɚ Ƚɪɢɝɨɪɶɟɜɧɚ (ɉɟɪɦɶ, Ɋɨɫɫɢɹ) – ɤɚɧɞ. ɬɟɯɧ. ɧɚɭɤ, ɞɨɰɟɧɬ ɤɚɮɟɞɪɵ «ɋɬɪɨɢɬɟɥɶɧɚɹ ɦɟɯɚɧɢɤɚ ɢ ɜɵɱɢɫɥɢɬɟɥɶɧɚɹ ɬɟɯɧɢɤɚ» ɎȽȻɈɍ ȼɉɈ ɉɇɂɉɍ. About the authors Ovsyannikov Mikhail Yurievich (Perm, Russia) – student, Department of Structural mechanics and computer engineering, Perm National Research Polytechnic University (e-mail: mihovs@yandex.ru). Kuznetsova Svetlana Grigorievna (Perm, Russia) – Candidate of Technics, Associate Professor, Department of Structural mechanics and computer engineering, Perm National Research Polytechnic University. ɉɨɥɭɱɟɧɨ 11.03.2013 67