уравнения фаддеева и метод гиперсферических гармоник в

реклама
”ˆ‡ˆŠ ‹…Œ…’›• —‘’ˆ– ˆ ’Œƒ Ÿ„
2012. ’. 43. ‚›. 3
“‚…ˆŸ ”„„……‚ ˆ Œ…’„
ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ ‚ ‡„—…
’…•“Š‹ƒ Š’ˆ““Œ
‚. ˆ. Šμ¢ ²ÓÎʱ1 , ˆ. ‚. Šμ§²μ¢¸±¨°2
1 Š¨¥¢¸±¨°
´ Í¨μ´ ²Ó´Ò° Ê´¨¢¥·¸¨É¥É ¨³. ’ · ¸ ˜¥¢Î¥´±μ, Š¨¥¢
2 ˆ´¸É¨ÉÊÉ
É¥μ·¥É¨Î¥¸±μ° ˨§¨±¨ ¨³. . . μ£μ²Õ¡μ¢ , Š¨¥¢
‚‚…„…ˆ…
573
…„“Š–ˆŸ “‚…ˆ‰ ”„„……‚ Š ‘ˆ‘’…Œ…
“‚…ˆ‰ „‹Ÿ ”“Š–ˆ‰ „‰ ……Œ…‰
”μ·³ ²¨§³
¥¶·¥·Ò¢´Ò° ¸¶¥±É·: N d-· ¸¸¥Ö´¨¥
‘¨¸É¥³ É·¥Ì ´¥¸¢Ö§ ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í
Œ„ˆ”ˆŠ–ˆŸ “‚…ˆ‰ ”„„……‚ ˆ ‹ˆ—ˆˆ
Š“‹‚‘Šƒ ‚‡ˆŒ„…‰‘’‚ˆŸ
¥·¥Ëμ·³Ê²¨·μ¢± Ê· ¢´¥´¨° ¤¢¨¦¥´¨Ö
§²μ¦¥´¨¥ ¢ ¡Ò¸É·μ¸Ìμ¤ÖШ¥¸Ö ·Ö¤Ò
“· ¢´¥´¨Ö ¤²Ö · ¤¨ ²Ó´ÒÌ ËÊ´±Í¨° ¢ ¸²ÊÎ ¥ 1 = 2 = 0
‚Ò¢μ¤Ò
‡Š‹—…ˆ…
591
593
595
596
599
599
ˆ‹†…ˆ… 600
ˆ‹†…ˆ… 601
‘ˆ‘Š ‹ˆ’…’“›
603
579
579
582
589
”ˆ‡ˆŠ ‹…Œ…’›• —‘’ˆ– ˆ ’Œƒ Ÿ„
2012. ’. 43. ‚›. 3
“‚…ˆŸ ”„„……‚ ˆ Œ…’„
ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ ‚ ‡„—…
’…•“Š‹ƒ Š’ˆ““Œ
‚. ˆ. Šμ¢ ²ÓÎʱ1 , ˆ. ‚. Šμ§²μ¢¸±¨°2
1 Š¨¥¢¸±¨°
´ Í¨μ´ ²Ó´Ò° Ê´¨¢¥·¸¨É¥É ¨³. ’ · ¸ ˜¥¢Î¥´±μ, Š¨¥¢
2 ˆ´¸É¨ÉÊÉ
É¥μ·¥É¨Î¥¸±μ° ˨§¨±¨ ¨³. . . μ£μ²Õ¡μ¢ , Š¨¥¢
§¢¨É ³¥Éμ¤ ·¥Ï¥´¨Ö Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¢ ±μ´Ë¨£Ê· Í¨μ´´μ³ ¶·μ¸É· ´¸É¢¥ ¤²Ö ¸¨¸É¥³Ò
É·¥Ì ´Ê±²μ´μ¢ ¢ ±μ´É¨´Êʳ¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ · §²μ¦¥´¨° ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±μ³Ê ¡ §¨¸Ê. ¸¸Î¨É ´Ò ¢μ²´μ¢Ò¥ ËÊ´±Í¨¨ N d-¸¨¸É¥³Ò, Ë §Ò ¨ ¸¥Î¥´¨Ö N d-· ¸¸¥Ö´¨Ö ¶·¨ ¤μ¶μ·μ£μ¢ÒÌ Ô´¥·£¨ÖÌ. ‚ · ³± Ì ¤ ´´μ£μ ³¥Éμ¤ ¸Ëμ·³Ê²¨·μ¢ ´Ò É ±¦¥ μ¤´μ³¥·´Ò¥ ¨´É¥£· ²Ó´Ò¥ Ê· ¢´¥´¨Ö
¤²Ö § ¤ Ψ ¨´Ë¨´¨É´μ£μ ¤¢¨¦¥´¨Ö ¢¸¥Ì É·¥Ì ¸¨²Ó´μ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í ¨ μ¸ÊÐ¥¸É¢²¥´ ³μ¤¨Ë¨± Í¨Ö Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¤²Ö ¸¨¸É¥³Ò É·¥Ì ¤·μ´μ¢ ¸ ±Ê²μ´μ¢¸±¨³ ¢§ ¨³μ¤¥°¸É¢¨¥³ ¢
±μ´É¨´Êʳ¥. ·¥¤¸É ¢²¥´ μ¡§μ· ´ ²μ£¨Î´ÒÌ ³¥Éμ¤μ¢ ¨¸¸²¥¤μ¢ ´¨Ö É·¥ÌÎ ¸É¨Î´ÒÌ ¸¨¸É¥³.
The method of solving Faddeev's equations in conˇguration space for three-nucleon system in
continuum using expansions in hyperspherical basis is developed. The wave functions of N d-system,
phases, and cross sections of N d-scattering at subthreshold energies are calculated. Within the
framework of this method, one-dimensional integral equations for the problem of inˇnite motion of
all three strongly interacting particles are also formulated and the modiˇcation of Faddeev's equations
for the system of three hadrons with Coulomb interaction in continuum is made. The review of
similar methods of investigation of three-particle systems is presented.
PACS: 03.65.Nk; 21.45.-v; 31.15.xj
‚‚…„…ˆ…
ˆ¸¸²¥¤μ¢ ´¨¥ É·¥ÌÎ ¸É¨Î´ÒÌ ¸¨¸É¥³ ¢¸¥£¤ ¶·¨¢²¥± ²μ ¶μ¢ÒÏ¥´´μ¥ ¢´¨³ ´¨¥ É¥μ·¥É¨±μ¢ ¢ ɥΥ´¨¥ ¤μ¸É ÉμÎ´μ ¤²¨É¥²Ó´μ£μ ¢·¥³¥´¨ ¨ ¶·μ¤μ²¦ ¥É
μ¸É ¢ ÉÓ¸Ö ±ÉÊ ²Ó´Ò³ ¨ ¢ ´ Ϩ ¤´¨, ¶μ¸±μ²Ó±Ê, ¸ μ¤´μ° ¸Éμ·μ´Ò, É·¥ÌÎ ¸É¨Î´Ò¥ ¸¨¸É¥³Ò ¶·¥¤¸É ¢²ÖÕÉ ¸μ¡μ° ¤μ¸É ÉμÎ´μ ¸²μ¦´Ò° μ¡Ñ¥±É (¶μ ¸· ¢´¥´¨Õ ¸ ¡¨´ ·´Ò³¨) ¨ ¢³¥¸É¥ ¸ É¥³ ¤μ¶Ê¸± ÕÉ ÉμÎ´μ¥ ·¥Ï¥´¨¥ § ¤ Ψ ¤²Ö
±μ´±·¥É´ÒÌ Ë¨§¨Î¥¸±¨Ì ¸¨¸É¥³. ¸μ¡Ò° ¢¸¶²¥¸± ¨´É¥·¥¸ ± ¶·μ¡²¥³¥ É·¥Ì
É¥² ¨³¥² ³¥¸Éμ ¢ 60-¥ ££. ¶·μϲμ£μ ¸Éμ²¥É¨Ö ¢ ¸¢Ö§¨ ¸ ¶μÖ¢²¥´¨¥³ ´μ¢ÒÌ
³¥Éμ¤μ¢ ¨¸¸²¥¤μ¢ ´¨Ö Å Ê· ¢´¥´¨° ” ¤¤¥¥¢ (“”) [1] ¨ ³¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì £ ·³μ´¨± (Œƒƒ) [2, 3]. ‘ É¥Ì ¶μ· “” ¨ Œƒƒ ÊÉ¢¥·¤¨²¨ ¸¥¡Ö ± ±
μ¤´¨ ¨§ ´ ¨¡μ²¥¥ ÔËË¥±É¨¢´ÒÌ ¨ ΠХ ¢¸¥£μ ¨¸¶μ²Ó§Ê¥³ÒÌ ³¥Éμ¤μ¢ ¨¸¸²¥¤μ¢ ´¨Ö É·¥ÌÎ ¸É¨Î´ÒÌ (É·¥Ì±² ¸É¥·´ÒÌ) ¸¨¸É¥³ [4Ä7]. ¥·¢Ò° ¨§ ´¨Ì Å
574 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¶·¥¦¤¥ ¢¸¥£μ ¡² £μ¤ ·Ö ¨§Ò¸± ´´μ° ³ É¥³ ɨΥ¸±μ° ±μ··¥±É´μ¸É¨, ¢Éμ·μ° Å
¢¸²¥¤¸É¢¨¥ μÉ´μ¸¨É¥²Ó´μ° ¶·μ¸ÉμÉÒ ¨ ¶·μ§· δμ¸É¨. Œƒƒ μ± § ²¸Ö μ¸μ¡¥´´μ
ÔËË¥±É¨¢´Ò³ ¤²Ö ·¥Ï¥´¨Ö § ¤ Î μ ¸¢Ö§ ´´ÒÌ ¸μ¸ÉμÖ´¨ÖÌ ¸¨¸É¥³ ´¥¸±μ²Ó±¨Ì Î ¸É¨Í (±¸É ɨ, ´¥ Éμ²Ó±μ Ö¤¥·´ÒÌ). ¤´ ±μ, ¥¸²¨ ¢ ¸¨¸É¥³¥ ¶·¨¸ÊÉ¸É¢Ê¥É ´¥¶·¥·Ò¢´Ò° ¸¶¥±É·, Éμ μ¡ ¶μ¤Ìμ¤ ¶·¨¢μ¤ÖÉ ± ´¥³ ²Ò³ § ɷʤ´¥´¨Ö³. ¥Ï¥´¨¥ Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¢ ÔÉμ³ ¸²ÊÎ ¥ μ± §Ò¢ ¥É¸Ö ¸μ¶·Ö¦¥´´Ò³
¸ ¡μ²¥¥ Î¥³ ¸ÊÐ¥¸É¢¥´´Ò³¨ ¢ÒΨ¸²¨É¥²Ó´Ò³¨ ¸²μ¦´μ¸ÉÖ³¨ [8], ¢ Œƒƒ ¢
¢μ²´μ¢μ° ËÊ´±Í¨¨ ¢μ§´¨± ÕÉ Ì · ±É¥·´Ò¥ ¸¨´£Ê²Ö·´μ¸É¨, ¢¸²¥¤¸É¢¨¥ Î¥£μ
¸Ì줨³μ¸ÉÓ · §²μ¦¥´¨Ö ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±¨³ £ ·³μ´¨± ³ ± É ¸É·μ˨Υ¸±¨
ÊÌÊ¤Ï ¥É¸Ö [9]. ‚ ¤ ´´μ° · ¡μÉ¥ μ¸ÊÐ¥¸É¢²¥´ ¶μ¶Òɱ ¸μ¢³¥¸É¨ÉÓ μ¡ ¶μ¤Ìμ¤ , ¨³¥´´μ: ¨¸¶μ²Ó§μ¢ ÉÓ ¤²Ö ´ Ì즤¥´¨Ö ·¥Ï¥´¨° “” ¤²Ö ´¥¶·¥·Ò¢´μ£μ
¸¶¥±É· ³¥Éμ¤ · §²μ¦¥´¨Ö ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±¨³ £ ·³μ´¨± ³.
‚ [10Ä15], £¤¥ ¨§ÊÎ ²¨¸Ó, ¢ Î ¸É´μ¸É¨, ¸¢μ°¸É¢ Ö¤¥· 6 He ¨ 11 Li ± ± É·¥ÌÎ ¸É¨Î´ÒÌ ¸¨¸É¥³ ¸ ¤¢ÊÌ´¥°É·μ´´Ò³ £ ²μ, ¤²Ö ´ Ì즤¥´¨Ö ¢μ²´μ¢ÒÌ ËÊ´±Í¨°
¸¨¸É¥³Ò ± ± ¢ ¸¢Ö§ ´´μ³ ¸μ¸ÉμÖ´¨¨, É ± ¨ ¢ ±μ´É¨´Êʳ¥ ¨¸¶μ²Ó§ÊÕÉ¸Ö “” ¢
¤¨ËË¥·¥´Í¨ ²Ó´μ° Ëμ·³¥ ¸ ¶·¨¢²¥Î¥´¨¥³ Œƒƒ. Š ¦¤ Ö ¨§ É·¥Ì ±μ³¶μ´¥´É
Ψi (i = 1, 2, 3) ¶μ²´μ° É·¥ÌÎ ¸É¨Î´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ψ, Ê¤μ¢²¥É¢μ·ÖÕÐ¥° Ê· ¢´¥´¨Ö³ ” ¤¤¥¥¢ , · ¸±² ¤Ò¢ ¥É¸Ö ¢ ·Ö¤ ¶μ ¶μ²´μ³Ê ´ ¡μ·Ê ËÊ´±Í¨°
Φiλ (ρ, Ω), § ¢¨¸ÖÐ¨Ì μÉ ±μ²²¥±É¨¢´μ° ¶¥·¥³¥´´μ° ρ, ¨³¥ÕÐ¥° · §³¥·´μ¸ÉÓ
¤²¨´Ò ¢ Ï¥¸É¨³¥·´μ³ ¶·μ¸É· ´¸É¢¥, ¨ ¶Öɨ Ê£²μ¢ÒÌ ¶¥·¥³¥´´ÒÌ Ω:
fλ (ρ)Φiλ (ρ, Ω).
(1)
Ψi (ρ, Ω) =
λ
É ¨¤¥Ö (£¨¶¥·¸Ë¥·¨Î¥¸±μ¥ ¤¨ ¡ ɨΥ¸±μ¥ ¶·¨¡²¨¦¥´¨¥) ¡Ò² ¨¸¶μ²Ó§μ¢ ´ É ±¦¥ ¢ [16] ¤²Ö 춨¸ ´¨Ö ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö 3 H. ’ ± ´ §Ò¢ ¥³Ò¥
μ¡μ¡Ð¥´´Ò¥ Ê£²μ¢Ò¥ ËÊ´±Í¨¨ Φiλ [12] Ö¢²ÖÕÉ¸Ö ¸μ¡¸É¢¥´´Ò³¨ ËÊ´±Í¨Ö³¨
춥· Éμ· λ̂ = −ΔΩ + (2mρ2 /2 ) Vij , Ö¢²ÖÕÐ¥£μ¸Ö ¸Ê³³μ° Ê£²μ¢μ° Î ¸É¨ Ï¥¸É¨³¥·´μ£μ 춥· Éμ· ‹ ¶² ¸ ΔΩ ¨ ¸² £ ¥³ÒÌ, ¸μ¤¥·¦ Ð¨Ì ¶ ·´Ò¥
¶μÉ¥´Í¨ ²Ò ¢§ ¨³μ¤¥°¸É¢¨Ö (m Å ´μ·³¨·μ¢μδ Ö ³ ¸¸ , ¢μ§´¨± ÕÐ Ö ¨§
μ¶·¥¤¥²¥´¨Ö ρ [14]). ˆ´μ£¤ ¢ λ̂ ¤μ¡ ¢²ÖÕÉ ¥Ð¥ ¨ ¶μÉ¥´Í¨ ² É·¥ÌÎ ¸É¨Î´μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö. …¸²¨ ¢ μ¶·¥¤¥²¥´¨¨ λ̂ ¶μ²μ¦¨ÉÓ Vij = 0, Éμ ¶·μÍ¥¤Ê· · §²μ¦¥´¨Ö (1) ¡Ê¤¥É É즤¥¸É¢¥´´ ±² ¸¸¨Î¥¸±μ³Ê ³¥Éμ¤Ê · §²μ¦¥´¨Ö
¶μ K-£ ·³μ´¨± ³, É. ¥. ËÊ´±Í¨¨ Φiλ ¡Ê¤ÊÉ ¨§¢¥¸É´Ò³¨ £¨¶¥·¸Ë¥·¨Î¥¸±¨³¨
ËÊ´±Í¨Ö³¨ uKn (Ω) [5Ä7]. ‚ ¸²ÊÎ ¥ ±μ·μÉ±μ¤¥°¸É¢ÊÕÐ¨Ì Ö¤¥·´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° ¤μ¡ ¢²¥´¨¥ ´Ê±²μ´-´Ê±²μ´´ÒÌ (N N ) ¶μÉ¥´Í¨ ²μ¢ ± ΔΩ μ¡¥¸¶¥Î¨¢ ¥É, ¶μ ³´¥´¨Õ ¢Éμ·μ¢ [12], ¡μ²¥¥ ¡Ò¸É·ÊÕ ¸Ì줨³μ¸ÉÓ ·Ö¤ (1), Î¥³
· §²μ¦¥´¨¥ Ψi (ρ, Ω) ¶μ K-£ ·³μ´¨± ³. …¸²¨ ¸¨¸É¥³ É·¥Ì ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í ¸¢Ö§ ´ , Éμ · §²μ¦¥´¨¥ ËÊ´±Í¨° Ψi (ρ, Ω) ¤μ¸É ÉμÎ´μ ¶·μ¢μ¤¨ÉÓ ²¨ÏÓ ¶μ £ ·³μ´¨± ³ uKn (Ω). ·¨ ÔÉμ³ ¸μμÉ¢¥É¸É¢ÊÕШ° ·Ö¤ ¡Ê¤¥É
¤μ¸É ÉμÎ´μ ¡Ò¸É·μ ¸Ì줨ÉÓ¸Ö, ¨ ¢ ´¥³ ³μ¦´μ μ£· ´¨Î¨ÉÓ¸Ö ³ ²Ò³ Ψ¸²μ³
¸² £ ¥³ÒÌ [17]. ¤´ ±μ ¥¸²¨ Ô´¥·£¨Ö ¸¢Ö§¨ É·¥ÌÎ ¸É¨Î´μ° ¸¨¸É¥³Ò ³ ² ,
Éμ Ψ¸²μ É ±¨Ì ¸² £ ¥³ÒÌ ³μ¦¥É ¡ÒÉÓ ¤μ¸É ÉμÎ´μ ¡μ²ÓϨ³ ¨ ¢ ¶·¥¤¥²¥ ¶μ-
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 575
Îɨ ´Ê²¥¢μ° Ô´¥·£¨¨ ¸¢Ö§¨ ·Ö¤ ¶μ K-£ ·³μ´¨± ³ ³μ¦¥É ¤ ¦¥ · ¸Ì줨ÉÓ¸Ö.
…¸²¨ ¦¥ ¸¨¸É¥³ É·¥Ì ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í ´ Ìμ¤¨É¸Ö ¢ ¸μ¸ÉμÖ´¨¨ ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· , Éμ ·Ö¤ ¶μ £ ·³μ´¨± ³ uKn ¤²Ö ËÊ´±Í¨° Ψi (ρ, Ω), ± ±
¶· ¢¨²μ, ´¥ Ö¢²Ö¥É¸Ö ¡Ò¸É·μ¸Ìμ¤ÖШ³¸Ö ¨ ¢ μ¡Ð¥³ ¸²ÊÎ ¥ ¢ ´¥³ ´¥μ¡Ì줨³μ ÊΨÉÒ¢ ÉÓ μÎ¥´Ó ¡μ²ÓÏμ¥ ¨²¨ ¤ ¦¥ ¡¥¸±μ´¥Î´μ¥ Ψ¸²μ ¸² £ ¥³ÒÌ. ‚
É ±μ³ ¸²ÊÎ ¥ ¶μ²Ó§ÊÕÉ¸Ö · §²μ¦¥´¨Ö³¨ ¶μ Φiλ , § ¢¨¸ÖШ³¨ É ±¦¥ ¨ μÉ ρ.
·¨ ÔÉμ³ · ¤¨ ²Ó´Ò¥ ËÊ´±Í¨¨ fλ (ρ) ¢ (1) ¶ÊÉ¥³ ¸μμÉ¢¥É¸É¢ÊÕÐ¥£μ ¢Ò¡μ· 춥· Éμ· λ̂ ¨ ¥£μ ¸μ¡¸É¢¥´´ÒÌ ËÊ´±Í¨° ³μ¦´μ μ¶·¥¤¥²¨ÉÓ É ±¨³ μ¡· §μ³,
ÎÉμ ËÊ´±Í¨¨ fλ (ρ) ¶·¨ ρ → ∞ ¡Ê¤ÊÉ ¶·μ¶μ·Í¨μ´ ²Ó´Ò ËÊ´±Í¨Ö³ • ´±¥²Ö ¨
¡Ê¤ÊÉ ¢Ò· ¦ ÉÓ¸Ö Î¥·¥§ ¸Ìμ¤ÖШ¥¸Ö ¨ · ¸Ìμ¤ÖШ¥¸Ö ¢μ²´Ò. ŠμÔË˨ͨ¥´ÉÒ
¶·¨ · ¸Ìμ¤ÖÐ¨Ì¸Ö ¢μ²´ Ì ¶μ ¸³Ò¸²Ê ¶·¥¤¸É ¢²ÖÕÉ ¸μ¡μ° S-³ É·¨ÍÊ, ±μÉμ·ÊÕ § É¥³ ³μ¦´μ ¤¨ £μ´ ²¨§¨·μ¢ ÉÓ ¨ ´ °É¨ ¸μμÉ¢¥É¸É¢ÊÕШ¥ Ë §Ò. ¤´ ±μ
±μ·μɱμ 춨¸ ´´ Ö ³´μ£μ¸Éʶ¥´Î É Ö ¶·μÍ¥¤Ê· ´ Ì즤¥´¨Ö ¶μ²´μ° É·¥ÌÎ ¸É¨Î´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ψ ¤²Ö ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· ¤μ¢μ²Ó´μ ¸²μ¦´ ¨
£·μ³μ§¤± . Š·μ³¥ Éμ£μ, ± ± ʦ¥ £μ¢μ·¨²μ¸Ó, ¢ · §²μ¦¥´¨¨ (1) ´¥μ¡Ì줨³μ
ÊΨÉÒ¢ ÉÓ ¡μ²ÓÏμ¥ ±μ²¨Î¥¸É¢μ β¥´μ¢ ·Ö¤ .
—Éμ ± ¸ ¥É¸Ö £ ²μ-Ö¤¥·, Éμ § ¶μ¸²¥¤´¨¥ Υɢ¥·ÉÓ ¢¥± ®£ ²μ-˨§¨± ¯
¸É ² μÎ¥´Ó ±ÉÊ ²Ó´μ° ± ± ¸ É¥μ·¥É¨Î¥¸±μ°, É ± ¨ ¸ Ô±¸¶¥·¨³¥´É ²Ó´μ° ÉμÎ¥±
§·¥´¨Ö, ¨ §¤¥¸Ó É·¥Ì±² ¸É¥·´ Ö ³μ¤¥²Ó μ± § ² ¸Ó ¢¥¸Ó³ ÔËË¥±É¨¢´μ°. ’ ±,
¢ [18Ä20] · §¢¨É ¶μ¸²¥¤μ¢ É¥²Ó´Ò° ³¨±·μ¸±μ¶¨Î¥¸±¨° ¶μ¤Ìμ¤ ± ·¥ ±Í¨Ö³ ¸
Borromean-Ö¤· ³¨ ¸ ¤¢ÊÌ´¥°É·μ´´Ò³ £ ²μ. ‚ · ³± Ì É·¥ÌÎ ¸É¨Î´μ° ±² ¸É¥·´μ° ³μ¤¥²¨ ¤²Ö · ¸Î¥Éμ¢ ¢μ²´μ¢μ° ËÊ´±Í¨¨ μ¸´μ¢´μ£μ ¸μ¸ÉμÖ´¨Ö Ö¤· 6 He ¨
¤²Ö 춨¸ ´¨Ö É·¥ÌÎ ¸É¨Î´μ° ¤¨´ ³¨±¨ Å ´¨§±μ²¥¦ Ð¨Ì ¸μ¸ÉμÖ´¨° ±μ´É¨´Êʳ 6 He, ¢±²ÕÎ Ö ³μ´μ¶μ²Ó´Ò¥, ¤¨¶μ²Ó´Ò¥ ¨ ±¢ ¤·Ê¶μ²Ó´Ò¥ ¢μ§¡Ê¦¤¥´¨Ö,
¨¸¶μ²Ó§μ¢ ´ ³¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì £ ·³μ´¨±. ‡ ³¥É¨³, ÎÉμ ¢ ¡μ²¥¥ · ´´¨Ì
· ¡μÉ Ì ¢Éμ·μ¢ [11], £¤¥ ¨¸¸²¥¤μ¢ ²¨¸Ó ¸¢μ°¸É¢ μ¸´μ¢´μ£μ ¸μ¸ÉμÖ´¨Ö 6 He,
¨¸¶μ²Ó§μ¢ ²¨¸Ó ¨ “”, ¨ Œƒƒ, ¨ μ± § ²μ¸Ó, ÎÉμ ¢ ¤ ´´μ³ ¸²ÊÎ ¥ μ¡ ³¥Éμ¤ ¤ ÕÉ μÎ¥´Ó ¡²¨§±¨¥ ·¥§Ê²ÓÉ ÉÒ, ¶μÔÉμ³Ê ¡Ò² ¢Ò¡· ´ ¡μ²¥¥ ¶·μ¸É Ö ¶·μÍ¥¤Ê· . Œ¥Ì ´¨§³Ò ·¥ ±Í¨¨ 춨¸ ´Ò ¢ · ³± Ì ³¨±·μ¸±μ¶¨Î¥¸±μ° Î¥ÉÒ·¥Ì±² ¸É¥·´μ° ³μ¤¥²¨ ¨¸± ¦¥´´ÒÌ ¢μ²´ (DWIA), ±μÉμ· Ö Ê¸¶¥Ï´μ ¨¸¶μ²Ó§Ê¥É¸Ö
¶·¨ 춨¸ ´¨¨ · §²¨Î´ÒÌ ·¥ ±Í¨° ¸ ÊÎ ¸É¨¥³ Ö¤¥· ¸ ¤¢ÊÌ´¥°É·μ´´Ò³ £ ²μ.
μ¤Î¥·±¨¢ ¥É¸Ö ¨¸±²ÕΨɥ²Ó´ Ö ¢ ¦´μ¸ÉÓ Ê봃 ¢§ ¨³μ¤¥°¸É¢¨Ö ¢ ±μ´¥Î´μ³
¸μ¸ÉμÖ´¨¨ ³¥¦¤Ê ¢¸¥³¨ Ë· £³¥´É ³¨. μ¤Ìμ¤ ¡Ò² ÔËË¥±É¨¢´μ ¨¸¶μ²Ó§μ¢ ´
¶·¨ ´ ²¨§¥ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ ¶μ Ë· £³¥´É ͨ¨ 6 He ´ Ö¤· Ì 12 C ¨
208
Pb ¸ ¤¥É ²Ó´Ò³ ¨§ÊÎ¥´¨¥³ ´¥Ê¶·Ê£¨Ì £ ²μ-¢μ§¡Ê¦¤¥´¨°, · §²¨Î´ÒÌ Ô´¥·£¥É¨Î¥¸±¨Ì ¨ Ê£²μ¢ÒÌ ±μ··¥²Öͨ°, ¶·μ¤μ²Ó´ÒÌ ¨ ¶μ¶¥·¥Î´ÒÌ ¨³¶Ê²Ó¸´ÒÌ
· ¸¶·¥¤¥²¥´¨°.
μ ¢μ¶·μ¸Ê μ¡ ¤¨ ¡ ɨΥ¸±μ³ ¶·¨¡²¨¦¥´¨¨ ´¥μ¡Ì줨³μ μɳ¥É¨ÉÓ · ¡μÉÒ ¸μɷʤ´¨±μ¢ ‹’” ˆŸˆ [21Ä24], £¤¥ ¡Ò² ¶·¥¤²μ¦¥´ ´μ¢ Ö Ëμ·³Ê²¨·μ¢± É·¥ÌÎ ¸É¨Î´μ° § ¤ Ψ · ¸¸¥Ö´¨Ö ´ μ¸´μ¢¥ ¤¨ ¡ ɨΥ¸±μ£μ ¶·¥¤¸É ¢²¥´¨Ö É·¥ÌÎ ¸É¨Î´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨, ¶μ²ÊÎ¥´´μ£μ Î¥·¥§ ²μ± ²Ó´Ò¥
576 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
· §²μ¦¥´¨Ö ¤²Ö Ë ¤¤¥¥¢¸±¨Ì ±μ³¶μ´¥´É ¢ · ³± Ì ¤¨ËË¥·¥´Í¨ ²Ó´μ° Ëμ·³Ê²¨·μ¢±¨ ³μ¤¨Ë¨Í¨·μ¢ ´´ÒÌ Ê· ¢´¥´¨° ” ¤¤¥¥¢ [4] ¨ ¶· ¢¨²Ó´ÒÌ £· ´¨Î´ÒÌ Ê¸²μ¢¨° ¸ ÊÎ¥Éμ³ ¶·μÍ¥¸¸μ¢ ¶μ²´μ£μ · §¢ ² ¨ ¶¥·¥· ¸¶·¥¤¥²¥´¨Ö
Ë· £³¥´Éμ¢, É ±¦¥ μ¶·¥¤¥²¥´ ¤¨ ¡ ɨΥ¸±¨° £¨¶¥·¸Ë¥·¨Î¥¸±¨° ¡ §¨¸ ¤²Ö
±Ê²μ´μ¢¸±μ° § ¤ Ψ É·¥Ì É¥² ´¨¦¥ ¶μ·μ£ · §¢ ² .
‚ ËÊ´¤ ³¥´É ²Ó´ÒÌ · ¡μÉ Ì [25, 26] ¶·¥¤² £ ¥É¸Ö ´μ¢μ¥ ¶·¥¤¸É ¢²¥´¨¥
“”, ¨¸¶μ²Ó§ÊÕÐ¥¥ · §²μ¦¥´¨¥ ¶μ ¡ §¨¸Ê ËÊ´±Í¨° ‚¨£´¥· , ±μÉμ·Ò¥ μ¡· §ÊÕÉ ¨´¢ ·¨ ´É´Ò¥ ¶μ¤¶·μ¸É· ´¸É¢ £ ³¨²ÓÉμ´¨ ´ ¸¨¸É¥³Ò, μÉ¢¥Î ÕШ¥ ¸μ¸ÉμÖ´¨Ö³ ¸ ˨±¸¨·μ¢ ´´Ò³ ¶μ²´Ò³ μ·¡¨É ²Ó´Ò³ ³μ³¥´Éμ³. ‚ ·¥§Ê²ÓÉ É¥
“” ¸¢μ¤ÖÉ¸Ö ± ±μ´¥Î´μ³Ê ´ ¡μ·Ê É·¥Ì³¥·´ÒÌ ¤¨ËË¥·¥´Í¨ ²Ó´ÒÌ Ê· ¢´¥´¨°.
Š·μ³¥ Éμ£μ, ´ μ¸´μ¢¥ ³¥Éμ¤ ”μ± · ¸¸³μÉ·¥´ ¶·μ¡²¥³ ¸¨³¶Éμɨ± Ë ¤¤¥¥¢¸±¨Ì ±μ³¶μ´¥´É, ±μÉμ·Ò¥ μ¡¥¸¶¥Î¨¢ ÕÉ ¢ ¦´ÊÕ ¨´Ëμ·³ Í¨Õ μ ¸É·Ê±ÉÊ·¥
¢μ²´μ¢μ° ËÊ´±Í¨¨ ¢¡²¨§¨ É ± ´ §Ò¢ ¥³ÒÌ ÉμÎ¥± É·μ°´μ£μ ¨ ¶ ·´μ£μ ʤ ·μ¢.
μ¤Ìμ¤ · ¸¶·μ¸É· ´¥´ ´ ¸²ÊÎ ° É·¥Ì § ·Ö¦¥´´ÒÌ Î ¸É¨Í ¨ ³μ¦¥É ¸²Ê¦¨ÉÓ
³ É¥³ ɨΥ¸±μ° ¡ §μ° ´μ¢ÒÌ ¢ÒΨ¸²¨É¥²Ó´ÒÌ ³¥Éμ¤μ¢, μ¸´μ¢ ´´ÒÌ ´ ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì “”. ‡¤¥¸Ó ´¥μ¡Ì줨³μ μɳ¥É¨ÉÓ μ¡¸ÉμÖÉ¥²Ó´Ò° μ¡§μ· [27], £¤¥
¶·¥¤²μ¦¥´Ò ³¥Éμ¤Ò ¶μ¸É·μ¥´¨Ö ¨ ´ ²¨§ · §²μ¦¥´¨° ·¥£Ê²Ö·´ÒÌ ·¥Ï¥´¨°
Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¨ ˜·¥¤¨´£¥· ¢¡²¨§¨ ÉμÎ¥± É·μ°´μ£μ ¨ ¶ ·´μ£μ ʤ ·μ¢,
¶·¨³¥´¨³Ò¥ ¤²Ö ¸¨¸É¥³Ò É·¥Ì Î ¸É¨Í ¸ Í¥´É· ²Ó´Ò³¨ ¶ ·´Ò³¨ ¢§ ¨³μ¤¥°¸É¢¨Ö³¨ ¶·¨ ²Õ¡ÒÌ §´ Î¥´¨ÖÌ ¶μ²´μ£μ Ê£²μ¢μ£μ ³μ³¥´É ¨ ¶·μ¸É· ´¸É¢¥´´μ°
Υɴμ¸É¨.
‚μμ¡Ð¥, ¸²¥¤Ê¥É μɳ¥É¨ÉÓ, ÎÉμ μ¡Ñ¥¤¨´¥´¨¥ ¢μ§³μ¦´μ¸É¥° Œƒƒ ¨ “”
μ± § ²μ¸Ó μÎ¥´Ó ¶²μ¤μÉ¢μ·´Ò³ ¸ ÊÎ¥Éμ³ ¨ ˨§¨Î¥¸±μ£μ, ¨ ³ É¥³ ɨΥ¸±μ£μ
¸¶¥±Éμ¢ ¶·μ¡²¥³Ò. ‚ [28] ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì £ ·³μ´¨±
¶μ²ÊÎ¥´Ò ¸¨³¶Éμɨ±¨ É·¥ÌÎ ¸É¨Î´ÒÌ ¢μ²´μ¢ÒÌ ËÊ´±Í¨° ¢ ¶·¥¤¥²¥ ³ ²ÒÌ
§´ Î¥´¨° £¨¶¥·· ¤¨Ê¸ , ´¥μ¡Ì줨³Ò¥ ¤²Ö ´ ²¨É¨Î¥¸±¨Ì ¨ Ψ¸²¥´´ÒÌ ¨¸¸²¥¤μ¢ ´¨° ¸¨¸É¥³Ò É·¥Ì É즤¥¸É¢¥´´ÒÌ Î ¸É¨Í ¸ S-¢μ²´μ¢Ò³¨ ¶μÉ¥´Í¨ ² ³¨.
“± § ´ ¶ÊÉÓ μ¡μ¡Ð¥´¨Ö ³¥Éμ¤ ´ ¸²ÊÎ ° ´¥É즤¥¸É¢¥´´ÒÌ Î ¸É¨Í ¸ ÊÎ¥Éμ³ ¸¶¨´-¨§μ¸¶¨´μ¢μ° § ¢¨¸¨³μ¸É¨. ‚ [29] ¶·¥¤²μ¦¥´Ò ³¥Éμ¤ ¶μ¸É·μ¥´¨Ö ¨
¤μ± § É¥²Ó¸É¢μ ¸ÊÐ¥¸É¢μ¢ ´¨Ö ÉμδÒÌ ·¥Ï¥´¨° § ¤ Ψ É·¥Ì É즤¥¸É¢¥´´ÒÌ
Î ¸É¨Í, ¢ [30, 31] μ¡¸Ê¦¤ ÕÉ¸Ö ¨ ¤μ± §Ò¢ ÕÉ¸Ö Ê¸²μ¢¨Ö, ±μ£¤ § ¤ Î É·¥Ì
Î ¸É¨Í, · ¸¸³ É·¨¢ ¥³ Ö ¢ · ³± Ì ¤¨ËË¥·¥´Í¨ ²Ó´ÒÌ Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¨ ˜·¥¤¨´£¥· ¸ S-¢μ²´μ¢Ò³¨ ¢§ ¨³μ¤¥°¸É¢¨Ö³¨ Í¥´É·μ¡¥¦´μ£μ ɨ¶ , ¨³¥¥É
ÉμÎ´μ¥ ·¥Ï¥´¨¥, ¶·¥¤¸É ¢¨³μ¥ ¢ ¢¨¤¥ μ¡Ð¥£μ ·¥Ï¥´¨Ö Ê· ¢´¥´¨Ö ¥¸¸¥²Ö ¨
±μ´¥Î´μ° ²¨´¥°´μ° ±μ³¡¨´ ͨ¨ £¨¶¥·£ ·³μ´¨±. μ¸´μ¢¥ ³¥Éμ¤ £¨¶¥·£ ·³μ´¨± ¤μ± § ´ [32] ±·¨É¥·¨° ¸ÊÐ¥¸É¢μ¢ ´¨Ö μ¸μ¡ÒÌ ²μ¦´ÒÌ ·¥Ï¥´¨° ¤¨ËË¥·¥´Í¨ ²Ó´ÒÌ Ê· ¢´¥´¨° ” ¤¤¥¥¢ , ±μÉμ·Ò¥, ´ °¤¥´´Ò¥ ´ ²¨É¨Î¥¸±¨, ³μ¦´μ
¨¸¶μ²Ó§μ¢ ÉÓ ± ± ÔÉ ²μ´´Ò¥ ¤²Ö É¥¸É¨·μ¢ ´¨Ö ²£μ·¨É³μ¢ Ψ¸²¥´´μ£μ ·¥Ï¥´¨Ö ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì Ê· ¢´¥´¨°, ¢ [33] ¢Ò¢¥¤¥´Ò Ê· ¢´¥´¨Ö ” ¤¤¥¥¢ ¢
¶·¥¤¸É ¢²¥´¨¨ ¶μ²´μ£μ Ê£²μ¢μ£μ ³μ³¥´É ¨ ¶μ²´μ° ¶·μ¸É· ´¸É¢¥´´μ° Υɴμ¸É¨, ¶μ± § ´μ, ÎÉμ ¢ ¸²ÊÎ ¥ Í¥´É· ²Ó´μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö É ±¨¥ Ê· ¢´¥´¨Ö ¢¸¥£¤ ¨³¥ÕÉ ²μ¦´Ò¥ ·¥Ï¥´¨Ö, ¨ ¶·¥¤²μ¦¥´ ¸¶μ¸μ¡ ¶μ¸É·μ¥´¨Ö É ±¨Ì ·¥Ï¥´¨°.
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 577
Š·μ³¥ “” ¨ Œƒƒ, ¨´É¥´¸¨¢´μ ¨¸¶μ²Ó§ÊÕÐ¨Ì¸Ö ¢ § ¤ Î Ì ´¥¸±μ²Ó±¨Ì
É¥², ¸²¥¤Ê¥É É ±¦¥ μɳ¥É¨ÉÓ · §¢¨ÉÒ° ³μдҰ ¢ ·¨ Í¨μ´´Ò° ³¥Éμ¤ Šμ´ Ä
•Õ²ÓÉ¥´ (ŒŠ•) ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ · §²μ¦¥´¨° ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±μ³Ê ¸±μ··¥²¨·μ¢ ´´μ³Ê ¡ §¨¸Ê [34Ä36]. ·¨³¥·μ³ ʸ¶¥Ï´μ£μ ¶·¨³¥´¥´¨Ö ¶μ¤Ìμ¤ ¸
¨¸¶μ²Ó§μ¢ ´¨¥³ · §²μ¦¥´¨° ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±μ³Ê ¸±μ··¥²¨·μ¢ ´´μ³Ê ¡ §¨¸Ê ³μ£ÊÉ ¸²Ê¦¨ÉÓ É ±¦¥ [37Ä39]. „²Ö § ¤ Î ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· Œƒƒ ¨
ŒŠ• ¨¸¶μ²Ó§ÊÕÉ μ¤¨´ ±μ¢Ò° ¶·¨¥³: ¢μ²´μ¢ Ö ËÊ´±Í¨Ö ¸¨¸É¥³Ò ´Ê±²μ´μ¢
¶·¥¤¸É ¢²Ö¥É¸Ö ¢ ¢¨¤¥ ¸Ê³³Ò ±μ·μÉ±μ¤¥°¸É¢ÊÕÐ¥° ¨ ¸¨³¶ÉμɨΥ¸±μ° Î ¸É¥°
Ψ = Ψint + Ψext .
(2)
‚¶¥·¢Ò¥ ¶·¥¤¸É ¢²¥´¨¥ (2) ¡Ò²μ ¢¢¥¤¥´μ ¨ μ¡μ¸´μ¢ ´μ ¢ [40], £¤¥ Œƒƒ ¨¸¶μ²Ó§μ¢ ²¸Ö ¢ § ¤ Î Ì ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· . ’¥³ ¸ ³Ò³ ¸´¨³ ² ¸Ó ɥ̴¨Î¥¸±¨ ¸²μ¦´ Ö ¶·μ¡²¥³ , ¸¢Ö§ ´´ Ö ¸ ´¥μ¡Ì줨³μ¸ÉÓÕ ¸Ê³³¨·μ¢ ´¨Ö ¡μ²ÓÏμ£μ
Ψ¸² β¥´μ¢ ·Ö¤ ¶μ K-£ ·³μ´¨± ³ ¢ ¤¢ÊÌË· £³¥´É´μ³ ± ´ ²¥ N + d. Šμ·μÉ±μ¤¥°¸É¢ÊÕÐ Ö Î ¸ÉÓ Ψint ¶·¨ ÔÉμ³ ¢Ò· ¦ ² ¸Ó Î¥·¥§ ´¥¡μ²ÓÏμ¥ Î¨¸²μ
´¨§Ï¨Ì K-£ ·³μ´¨±, ¸¨³¶ÉμɨΥ¸± Ö Å μ¡Òδҳ μ¡· §μ³ Î¥·¥§ ¶ ¤ ÕÐÊÕ ¨ · ¸¸¥Ö´´ÊÕ ¢μ²´Ò ¨ ³ É·¨ÍÊ ¸Éμ²±´μ¢¥´¨°. ‚ ŒŠ• ±μÔË˨ͨ¥´ÉÒ
· §²μ¦¥´¨Ö ±μ³¶μ´¥´ÉÒ Ψint ¶μ ¸±μ··¥²¨·μ¢ ´´μ³Ê £¨¶¥·¸Ë¥·¨Î¥¸±μ³Ê ¡ §¨¸Ê ¨ Ë §Ò · ¸¸¥Ö´¨Ö ³μ£ÊÉ ¡ÒÉÓ ´ °¤¥´Ò ¶μ¸²¥ ¶·¨³¥´¥´¨Ö ¢ ·¨ Í¨μ´´μ°
¶·μÍ¥¤Ê·Ò. ¡ ³¥Éμ¤ , ŒŠ• ¨ “”, ¤ ÕÉ μÎ¥´Ó ¡²¨§±¨¥ ·¥§Ê²ÓÉ ÉÒ ¶·¨
춨¸ ´¨¨ Ô±¸¶¥·¨³¥´Éμ¢ ¶μ N d-· ¸¸¥Ö´¨Õ [41Ä43].
‡ ³¥É¨³, ÎÉμ ¨¤¥Ö · §²μ¦¥´¨Ö ¶μ K-£ ·³μ´¨± ³ ²¨ÏÓ Î ¸É¨ ¶μ²´μ°
¢μ²´μ¢μ° ËÊ´±Í¨¨ É·¥ÌÎ ¸É¨Î´μ° ¸¨¸É¥³Ò, ±μÉμ· Ö ¸μμÉ¢¥É¸É¢Ê¥É ³ ²Ò³
· ¸¸ÉμÖ´¨Ö³ ³¥¦¤Ê ¢¸¥³¨ ¥¥ ±μ³¶μ´¥´É ³¨, ¡Ò² ¨¸¶μ²Ó§μ¢ ´ ¥Ð¥ ¨ ¶·¨
¶μ¸É·μ¥´¨¨ É ± ´ §Ò¢ ¥³μ° ¨´É¥·¶μ²ÖÍ¨μ´´μ° ³μ¤¥²¨ Ö¤· (³μ¤¥²Ó §ÖÄ
†Ê±μ¢ ) [9]. É ³μ¤¥²Ó, ¶μ¤É¢¥·¤¨¢Ï Ö ¸¢μÕ ÔËË¥±É¨¢´μ¸ÉÓ ¢ ±μ´±·¥É´ÒÌ
· ¸Î¥É Ì [44,45], É ±¦¥ ¡¥·¥É ´ Î ²μ μÉ ¨¤¥¨ · §¤¥²¥´¨Ö ±μ´Ë¨£Ê· Í¨μ´´μ£μ
¶·μ¸É· ´¸É¢ ´ ®¢´ÊÉ·¥´´ÕÕ¯ ¨ ®¢´¥Ï´ÕÕ¯ μ¡² ¸É¨.
•μÉÖ ·¥Ï¥´¨¥ ¸¨¸É¥³Ò ¸¢Ö§ ´´ÒÌ ¤¢Ê³¥·´ÒÌ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨°
” ¤¤¥¥¢ , ´¥¸³μÉ·Ö ´ ¸ÊÐ¥¸É¢¥´´Ò¥ ¸²μ¦´μ¸É¨, ¨ ´¥ ¶·¥¤¸É ¢²Ö¥É ¸μ¡μ°
μ¸μ¡μ° ¶·μ¡²¥³Ò ¤²Ö ¸μ¢·¥³¥´´μ° ¢ÒΨ¸²¨É¥²Ó´μ° ɥ̴¨±¨ ¶·¨ 춨¸ ´¨¨
É·¥Ì´Ê±²μ´´ÒÌ ¸¨¸É¥³, § ¤ Î ³μ¦¥É μ± § ÉÓ¸Ö ¢¥¸Ó³ ·¥¸Ê·¸μ¥³±μ° μ¸μ¡¥´´μ ¶·¨ ¶¥·¥Ì줥 ± · ¸¸³μÉ·¥´¨Õ ¸¨¸É¥³ ¸ ¡μ²ÓϨ³ Ψ¸²μ³ ´Ê±²μ´μ¢.
‡ ³¥É¨³, ÎÉμ ¥Ð¥ ¢ · ¡μÉ Ì „¦¨¡Êɨ [46Ä48] ʱ §Ò¢ ²μ¸Ó ´ ¢μ§³μ¦´μ¸ÉÓ
¶μ´¨¦¥´¨Ö ±· É´μ¸É¨ ¨´É¥£·¨·μ¢ ´¨Ö ¢ ¸Ì¥³¥ ” ¤¤¥¥¢ ¶ÊÉ¥³ μ¡Ñ¥¤¨´¥´¨Ö
¥¥ ¸ ³¥Éμ¤μ³ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨°. ±¢¨¢ ²¥´É´μ¸ÉÓ “” ¨ Œƒƒ ¡Ò² ¶μ± § ´ · ´¥¥, ¢ [49]: ¨¸¶μ²Ó§μ¢ ´¨¥ £¨¶¥·¸Ë¥·¨Î¥¸±μ£μ ¡ §¨¸ ¢ · §²μ¦¥´¨¨ ¢μ²´μ¢μ° ËÊ´±Í¨¨ ¶·¨¢μ¤¨²μ ± 줨´ ±μ¢μ° Ëμ·³¥ § ¶¨¸¨ ±μ´¥Î´ÒÌ
Ê· ¢´¥´¨° ± ± ¢ “”, É ± ¨ ¶·¨ ·¥Ï¥´¨¨ É·¥ÌÎ ¸É¨Î´μ£μ Ê· ¢´¥´¨Ö ˜·¥¤¨´£¥· . ·¥¤²μ¦¥´´Ò° ¢ [46Ä48] ®£¨¡·¨¤´Ò°¯ ³¥Éμ¤ ¡Ò² μ¸´μ¢ ´ ´ ¨¸¶μ²Ó§μ¢ ´¨¨ · §²μ¦¥´¨Ö Ë ¤¤¥¥¢¸±¨Ì ±μ³¶μ´¥´É ¢ ¨³¶Ê²Ó¸´μ³ ¶·μ¸É· ´-
578 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¸É¢¥ ¶μ É·¥ÌÎ ¸É¨Î´Ò³ £¨¶¥·¸Ë¥·¨Î¥¸±¨³ ËÊ´±Í¨Ö³, ¸¢Ö§ ´´Ò³ ³¥¦¤Ê ¸μ¡μ° Ê´¨É ·´Ò³ ¶·¥μ¡· §μ¢ ´¨¥³ ¥°´ ² Ä¥¢ ¨ [50] (¢¶μ¸²¥¤¸É¢¨¨ ¢ [51, 52]
¢¶¥·¢Ò¥ ¡Ò² ¤ ´ ¤¥É ²Ó´Ò° ´ ²¨§ ÔÉμ£μ ¶·¥μ¡· §μ¢ ´¨Ö ´ 춥· Éμ·´μ³
Ö§Ò±¥ ¨ ¶·¥¤²μ¦¥´Ò Ê¤μ¡´Ò¥ ¤²Ö ¢ÒΨ¸²¥´¨Ö ¶·¥¤¸É ¢²¥´¨Ö ±μÔË˨ͨ¥´Éμ¢ ¥°´ ² Ä¥¢ ¨). ¶¨¸Ò¢ ²¨¸Ó ¸¢Ö§ ´´Ò¥ ¸μ¸ÉμÖ´¨Ö É·¨Éμ´ ¨ £¨¶¥·ÑÖ¤· 9
Σ0 Be [46], É ±¦¥ ¡Ò² · ¸¸³μÉ·¥´ § ¤ Î μ ´¥¶·¥·Ò¢´μ³ ¸¶¥±É·¥ (·¥ ±Í¨Ö
¤¢μ°´μ° ¶¥·¥§ ·Ö¤±¨ ± μ´μ¢ ´ Ö¤· Ì É·¨Éμ´ ¨ 3 He) [47]. ‚ [53] ³¥Éμ¤
K-£ ·³μ´¨Î¥¸±¨Ì · §²μ¦¥´¨° ¡Ò² ¨¸¶μ²Ó§μ¢ ´ ¤²Ö ·¥Ï¥´¨Ö ¨´É¥£· ²Ó´ÒÌ
Ê· ¢´¥´¨° ” ¤¤¥¥¢ ÄŸ±Ê¡μ¢¸±μ£μ ¢ ¨³¶Ê²Ó¸´μ³ ¶·¥¤¸É ¢²¥´¨¨, ¶·¨ 춨¸ ´¨¨ É·¥Ì- ¨ Î¥ÉÒ·¥ÌÎ ¸É¨Î´ÒÌ ¸¢Ö§ ´´ÒÌ ¸μ¸ÉμÖ´¨°.
‘²¥¤Ê¥É μɳ¥É¨ÉÓ, ÎÉμ ¶ · ²²¥²Ó´μ ¸ · §¢¨É¨¥³ ³¥Éμ¤μ¢ 춨¸ ´¨Ö É·¥ÌÎ ¸É¨Î´ÒÌ ¸¨¸É¥³ ¸μ¢¥·Ï¥´¸É¢μ¢ ²¨¸Ó ¨ ¸μ¶ÊɸɢÊÕШ¥ ¨³ Ψ¸²¥´´Ò¥ ³¥Éμ¤Ò.
’ ±, ¢ [54] ¡Ò² ¢¶¥·¢Ò¥ ¶·¥¤²μ¦¥´ ÔËË¥±É¨¢´ Ö ¸Ì¥³ ·¥Ï¥´¨Ö Ê· ¢´¥´¨° ” ¤¤¥¥¢ Äμ°¸ ¤²Ö ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö ¸¨¸É¥³Ò É·¥Ì Î ¸É¨Í: ²£μ·¨É³, μ¸´μ¢ ´´Ò° ´ ¨¸¶μ²Ó§μ¢ ´¨¨ É¥´§μ·´ÒÌ ¸¢μ°¸É¢ ³ É·¨ÍÒ, ± ±μÉμ·μ°
¡Ò²μ ¶·¥μ¡· §μ¢ ´μ ¨¸Ìμ¤´μ¥ Ê· ¢´¥´¨¥, ¶μ§¢μ²Ö² ´ ¤¢ ¶μ·Ö¤± ¸´¨§¨ÉÓ
³ Ϩ´´μ¥ ¢·¥³Ö ¶μ ¸· ¢´¥´¨Õ ¸μ ¸É ´¤ ·É´Ò³¨ ²£μ·¨É³ ³¨. ‚ ·¥§Ê²ÓÉ É¥
·¥Ï¥´¨¥ ¶μ¤μ¡´ÒÌ § ¤ Î ¸É ²μ ¤μ¸Éʶ´μ ´¥ Éμ²Ó±μ ´ ¢ÒΨ¸²¨É¥²Ó´ÒÌ ±² ¸É¥· Ì, ´μ ¨ ´ μ¡ÒδÒÌ ¶¥·¸μ´ ²Ó´ÒÌ ±μ³¶ÓÕÉ¥· Ì. ¸Î¥É´ Ö ¸Ì¥³ [54]
¡Ò² ʸ¶¥Ï´μ ¨¸¶μ²Ó§μ¢ ´ ¢ [55Ä57] ¤²Ö 춨¸ ´¨Ö ¸¢μ°¸É¢ ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö É·¨³¥· 4 He. ɳ¥É¨³ É ±¦¥ ÔËË¥±É¨¢´Ò¥ ²£μ·¨É³Ò, μ¸´μ¢ ´´Ò¥
´ ³μ¤¨Ë¨Í¨·μ¢ ´´μ° ±μ´¥Î´μ-· §´μ¸É´μ° ¶¶·μ±¸¨³ ͨ¨ ɨ¶ [58]: É ±, ¸
¨Ì ¨¸¶μ²Ó§μ¢ ´¨¥³ ʸ¶¥Ï´μ ·¥Ï¥´ § ¤ Î μ ¸¢Ö§ ´´μ³ ¸μ¸ÉμÖ´¨¨ ¨ § ¤ Î · ¸¸¥Ö´¨Ö ¢ É·¥Ì Éμ³´ÒÌ ¸¨¸É¥³ Ì ´ μ¸´μ¢¥ 4 He ¤²Ö ¶μÉ¥´Í¨ ²μ¢ ¸ É¢¥·¤Ò³
±μ·μ³ [59Ä62], ¢ [63, 64] ¤²Ö É·¨³¥· 4 He ¨¸¸²¥¤μ¢ ´ ³¥Ì ´¨§³ ¨¸Î¥§´μ¢¥´¨Ö ¨ Ëμ·³¨·μ¢ ´¨Ö Ê·μ¢´¥° …˨³μ¢ . ¡¸ÉμÖÉ¥²Ó´Ò° μ¡§μ·, ¶μ¸¢ÖÐ¥´´Ò°
¨¸¶μ²Ó§μ¢ ´¨Õ ±Ê¡¨Î¥¸±¨Ì ¸¶² °´- ²£μ·¨É³μ¢ ¶·¨ ·¥Ï¥´¨¨ Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¢ ¡¨¸Ë¥·¨Î¥¸±μ³ ¡ §¨¸¥, ¶·¥¤¸É ¢²¥´ ¢ [65].
‚ § ±²ÕÎ¥´¨¥ ¢¢¥¤¥´¨Ö ¥Ð¥ · § ¸Ëμ·³Ê²¨·Ê¥³ μ¸´μ¢´ÊÕ ´ ¶· ¢²¥´´μ¸ÉÓ
´ Ï¥° · ¡μÉÒ. ¸ÉμÖÐ Ö · ¡μÉ ¶μ¸¢ÖÐ¥´ ¨¸¸²¥¤μ¢ ´¨Õ ¢μ§³μ¦´μ¸É¥°
³¥Éμ¤ · §²μ¦¥´¨° ¢ ¡Ò¸É·μ¸Ìμ¤ÖШ¥¸Ö ·Ö¤Ò ¶·¨ ·¥Ï¥´¨¨ ¨´É¥£· ²Ó´ÒÌ
Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¢ ±μ´Ë¨£Ê· Í¨μ´´μ³ ¶·μ¸É· ´¸É¢¥. ŒÒ ´¥ ¸É ¢¨²¨ ¸¢μ¥°
Í¥²ÓÕ μÌ¢ ɨÉÓ ¢¥¸Ó μ¡Ï¨·´¥°Ï¨° ¸¶¥±É· · ¡μÉ ¶μ ¶·¨³¥´¥´¨Õ Ê· ¢´¥´¨°
” ¤¤¥¥¢ ¨ ³¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì £ ·³μ´¨± ± § ¤ Î¥ É·¥Ì É¥², ÎÉμ, ¥¸É¥¸É¢¥´´μ, ¶·μ¸Éμ ´¥¢μ§³μ¦´μ ¢ · ³± Ì μ¤´μ° ¸É ÉÓ¨. ¶¨¸ ÉÓ ¸μμÉ¢¥É¸É¢ÊÕШ¥ Ô±¸¶¥·¨³¥´ÉÒ É ±¦¥ ´¥ ¡Ò²μ ¸ ³μÍ¥²ÓÕ. ŒÒ ¶μ¶ÒÉ ²¨¸Ó μ¡Ñ¥¤¨´¨ÉÓ
³ É¥³ ɨΥ¸±ÊÕ ±μ··¥±É´μ¸ÉÓ Ê· ¢´¥´¨° ” ¤¤¥¥¢ (¶Ê¸ÉÓ ¨ ³μ¤¨Ë¨Í¨·μ¢ ´´ÒÌ) ¸ μÉ´μ¸¨É¥²Ó´μ° ¶·μ¸ÉμÉμ° ³¥Éμ¤ £¨¶¥·£ ·³μ´¨±, ¨¸¶μ²Ó§ÊÖ ¶·¨ ÔÉμ³
¨¤¥Õ μ · §¤¥²¥´¨¨ ±μ´Ë¨£Ê· Í¨μ´´μ£μ ¶·μ¸É· ´¸É¢ ´ ®¢´ÊÉ·¥´´ÕÕ¯ ¨
®¢´¥Ï´ÕÕ¯ μ¡² ¸É¨, ¨ ¨³¥´´μ ¢ § ¤ Î¥ ¸ ´¥¶·¥·Ò¢´Ò³ ¸¶¥±É·μ³ (É ± ± ±
¤²Ö ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö “” ¨ Œƒƒ ´¥¶²μÌμ · ¡μÉ ÕÉ ± ¦¤Ò° ¢ μɤ¥²Ó´μ¸É¨) μ¶·μ¡μ¢ ÉÓ ÔÉμÉ ¶μ¤Ìμ¤ ¶·¨ μ¡· ¡μɱ¥ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 579
¸ ¶μ³μÐÓÕ ¶·μ¸ÉÒÌ ¤¢Ê̴ʱ²μ´´ÒÌ ¶μÉ¥´Í¨ ²μ¢, ±μÉμ·Ò¥ ¤ ¢´μ ¶·¨³¥´ÖÕÉ¸Ö ¢ ± Î¥¸É¢¥ É¥¸Éμ¢ÒÌ ¢ ¶μ¤μ¡´ÒÌ § ¤ Î Ì.
1. …„“Š–ˆŸ “‚…ˆ‰ ”„„……‚
Š ‘ˆ‘’…Œ… “‚…ˆ‰ „‹Ÿ ”“Š–ˆ‰ „‰ ……Œ…‰
1.1. ”μ·³ ²¨§³. ˆ¸Ì줨³ ¨§ ¨§¢¥¸É´ÒÌ Ê· ¢´¥´¨° ” ¤¤¥¥¢ [1, 4], § ¶¨¸ ´´ÒÌ ¤²Ö ¸¨¸É¥³Ò É·¥Ì ¸¨²Ó´μ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì ¡¥¸¸¶¨´μ¢ÒÌ Î ¸É¨Í ¸
줨´ ±μ¢Ò³¨ ³ ¸¸ ³¨ m, ¢ ±μÉμ·μ° Î ¸É¨Í 1 · ¸¸¥¨¢ ¥É¸Ö ´ Î ¸É¨Í Ì 2 ¨
3, ´ Ìμ¤ÖÐ¨Ì¸Ö ¢ ¸¢Ö§ ´´μ³ ¸μ¸ÉμÖ´¨¨:
Ψ(1) = Φ + G0 (Z)T23 (Z)(Ψ(2) + Ψ(3) ),
Ψ(2) = G0 (Z)T31 (Z)(Ψ(3) + Ψ(1) ),
(3)
Ψ(3) = G0 (Z)T12 (Z)(Ψ(1) + Ψ(2) ),
£¤¥ Ψ = Ψ(1) + Ψ(2) + Ψ(3) ¥¸ÉÓ ¶μ²´ Ö ¢μ²´μ¢ Ö ËÊ´±Í¨Ö ¸¨¸É¥³Ò; Φ Å
¸¨³¶ÉμɨΥ¸± Ö ¢μ²´μ¢ Ö ËÊ´±Í¨Ö, 춨¸Ò¢ ÕÐ Ö ¨´Ë¨´¨É´μ¥ ¤¢¨¦¥´¨¥ 1-°
Î ¸É¨ÍÒ μÉ´μ¸¨É¥²Ó´μ ¸¢Ö§ ´´μ° ¶ ·Ò (23); G0 (Z) = (Z −H0 )−1 Å μ¶¥· Éμ·
ƒ·¨´ ; Z = E ± i0; E Å ¶μ²´ Ö Ô´¥·£¨Ö ¸¨¸É¥³Ò 1 + (23); H0 Å μ¶¥· Éμ·
±¨´¥É¨Î¥¸±μ° Ô´¥·£¨¨; Tij Å ¤¢ÊÌÎ ¸É¨Î´Ò¥ 춥· Éμ·Ò ¶¥·¥Ìμ¤ , ¸¢Ö§ ´´Ò¥
¸ ¶ ·´Ò³¨ ¶μÉ¥´Í¨ ² ³¨ Vij (ij = 12, 23, 31) ¶·¨ ¶μ³μШ Ê· ¢´¥´¨°
Tij (Z) = Vij + Vij G0 (Z)Tij (Z).
(4)
ˆ¸¶μ²Ó§ÊÖ (4) ¢ (3), ¸²μ¦¨³ ¶μ²ÊΨ¢Ï¨¥¸Ö Ê· ¢´¥´¨Ö ¨ ¶μ²ÊΨ³
Ψ = (1 − G0 (Z)V23 )Φ + G0 (Z)U Ψ,
U = V12 + V23 + V31 .
(5)
Éμ Ê· ¢´¥´¨¥ Ô±¢¨¢ ²¥´É´μ Ê· ¢´¥´¨Õ ˜·¥¤¨´£¥· ¸ £· ´¨Î´Ò³ ʸ²μ¢¨¥³, 춨¸Ò¢ ÕШ³ ¸¨³¶ÉμɨΥ¸±¨ ¸¢μ¡μ¤´μ¥ ¤¢¨¦¥´¨¥ Î ¸É¨ÍÒ 1 μÉ´μ¸¨É¥²Ó´μ Í¥´É· ³ ¸¸ ¸¢Ö§ ´´μ° ¶ ·Ò (23). „¥°¸É¢¨É¥²Ó´μ, ¥¸²¨ ¶μ¤¥°¸É¢μ¢ ÉÓ
¨ ÊÎ¥¸ÉÓ, ÎÉμ ¤²Ö ¤ ´´μ° ¸¨³¶Éμ´ Ê· ¢´¥´¨¥ (5) ¸²¥¢ 춥· Éμ·μ³ G−1
0
ɨ±¨ (H0 + V23 − E)Φ = 0, ¶·¨Ì줨³ ± Ê· ¢´¥´¨Õ ˜·¥¤¨´£¥· ¤²Ö Ψ. ’ ±¨³ μ¡· §μ³, Ψ Ê¤μ¢²¥É¢μ·Ö¥É Ê· ¢´¥´¨Õ ˜·¥¤¨´£¥· , ¨, ¸²¥¤μ¢ É¥²Ó´μ, (5)
´¥ ¨³¥¥É ´¥Ë¨§¨Î¥¸±¨Ì ·¥Ï¥´¨°. Š·μ³¥ Éμ£μ, ¥¸²¨ ¢Ò¶μ²´¨ÉÓ ¶μ¤·Ö¤ ´¥¸±μ²Ó±μ ¨É¥· ͨ° ¤²Ö Ê· ¢´¥´¨Ö (5), Éμ ³μ¦´μ Ê¡¥¤¨ÉÓ¸Ö, ÎÉμ ´ j-° ¨É¥· ͨ¨ ·Ö¤ ¤²Ö Ψ(j) ´¥ ¡Ê¤¥É ¸μ¤¥·¦ ÉÓ ¸² £ ¥³ÒÌ ¸ ´¥±μ³¶ ±É´Ò³ Ö¤·μ³,
§ ¨¸±²ÕÎ¥´¨¥³ (G0 V23 )j+1 Φ, ÔÉμ ¸² £ ¥³μ¥, ¢ ¸¢μÕ μÎ¥·¥¤Ó, ¨¸Î¥§ ¥É ´ (j + 1)-° ¨É¥· ͨ¨ ¨ É. ¤. ’ ±¨³ μ¡· §μ³, ¢¥¸Ó ¡¥¸±μ´¥Î´Ò° ·Ö¤ ¤²Ö Ψ ¡Ê¤¥É
¸μ¤¥·¦ ÉÓ Éμ²Ó±μ ¸² £ ¥³Ò¥ ¸ ±μ³¶ ±É´Ò³¨ Ö¤· ³¨. ‘²¥¤μ¢ É¥²Ó´μ, Ê· ¢´¥´¨¥ (5) ¨³¥¥É ¥¤¨´¸É¢¥´´μ¥ ·¥Ï¥´¨¥ (¤²Ö ´¥£μ ¢Ò¶μ²´Ö¥É¸Ö ²ÓÉ¥·´ ɨ¢ ”·¥¤£μ²Ó³ Ä” ¤¤¥¥¢ [4]).
580 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¥·¥¶¨Ï¥³ Ê· ¢´¥´¨¥ (5) ¸²¥¤ÊÕШ³ μ¡· §μ³:
Ψ − Φ = G0 (Z)U (Ψ − Φ) + G0 (Z)(V12 + V31 )Φ,
(6)
¨ · §²μ¦¨³ · §´μ¸ÉÓ Ψ − Φ ¢ ·Ö¤ ¶μ K-£ ·³μ´¨± ³ (¸³. ¶·¨²μ¦¥´¨¥ ):
ψKn (ρ)uKn (Ω).
(7)
Ψ−Φ=
Kn
‚ ¢Òϥʶμ³Ö´ÊÉÒÌ · ¡μÉ Ì ¶μ ¨´É¥·¶μ²ÖÍ¨μ´´μ³Ê ¶μ¤Ìμ¤Ê [9, 44, 45],
É ±¦¥ ¢ [40, 66] ¡Ò²μ ¶μ± § ´μ, ÎÉμ ¨´É¥·¶μ²ÖÍ¨μ´´μ¥ ¢Ò· ¦¥´¨¥ Ψ =
Ψint + Ψext ¤²Ö ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ö¢²Ö¥É¸Ö μÎ¥´Ó Ìμ·μϨ³ ¶·¨¡²¨¦¥´¨¥³.
·¨ ÔÉμ³ · §²μ¦¥´¨¥ Ψint (ÎÉμ ¢ ´ Ï¥³ ¶μ¤Ì줥 μÉ¢¥Î ¥É · §´μ¸É¨ Ψ − Φ)
¶μ £¨¶¥·¸Ë¥·¨Î¥¸±¨³ ËÊ´±Í¨Ö³ μ¡´ ·Ê¦¨¢ ¥É ¡Ò¸É·ÊÕ ¸Ì줨³μ¸ÉÓ ¸μμÉ¢¥É¸É¢ÊÕÐ¥£μ ·Ö¤ (¢ μɲ¨Î¨¥ μÉ ËÊ´±Í¨¨ Ψ) Å μ¡¸ÉμÖÉ¥²Ó´μ³Ê ¤μ± § É¥²Ó¸É¢Ê ÔÉμ£μ ¶μ¸¢ÖÐ¥´ Í¥²Ò° · §¤¥² ¢ [40], £¤¥, ¢ Î ¸É´μ¸É¨, ¶μ± § ´μ, ± ±
´ °É¨ ¸±μ·μ¸ÉÓ Ê¡Ò¢ ´¨Ö Ψint ¸ ·μ¸Éμ³ K. ɳ¥É¨³, ÎÉμ ¤²Ö ʸ±μ·¥´¨Ö
¸Ì줨³μ¸É¨ · §²μ¦¥´¨° ¶μ ¶μ²´μ³Ê ¡ §¨¸Ê K-£ ·³μ´¨± Ë·μ¸ ¨ ‘³μ·μ¤¨´¸±¨° [67Ä71], § É¥³ ” ¡· [72,73] ¶·¥¤² £ ²¨ ¨¸¶μ²Ó§μ¢ ÉÓ Ê¸¥Î¥´´Ò¥ ¡ §¨¸Ò
K-£ ·³μ´¨±, ´ §Ò¢ Ö ¨Ì, ¸μμÉ¢¥É¸É¢¥´´μ, ´ ¡μ· ³¨ £² ¢´ÒÌ ¨ ¶μÉ¥´Í¨ ²Ó´ÒÌ
£¨¶¥·£ ·³μ´¨±.
μ¤¸É ¢¨¢ · §²μ¦¥´¨¥ (7) ¢ (6) ¨ ¨¸¶μ²Ó§ÊÖ Ê¸²μ¢¨Ö μ·Éμ´μ·³¨·μ¢±¨ ¨
¶μ²´μÉÒ ¤²Ö ¸μ¡¸É¢¥´´ÒÌ ËÊ´±Í¨° · ¤¨ ²Ó´μ° Î ¸É¨ 춥· Éμ· H0 , É ±¦¥
ʸ²μ¢¨¥ μ·Éμ´μ·³¨·μ¢±¨ ¤²Ö K-£ ·³μ´¨±, ¶μ²ÊΨ³ ¸¨¸É¥³Ê μ¤´μ³¥·´ÒÌ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨° ¤²Ö ±μÔË˨ͨ¥´Éμ¢ · §²μ¦¥´¨Ö (¸³. ¶·¨²μ¦¥´¨¥ )
nn
ψKn (ρ) = fKn (ρ) + λ
RKK
(8)
(ρ, ρ̄) ψK n (ρ̄),
K n
£¤¥
fKn (ρ) =
dρ̄ QK (ρ, ρ̄) WKn (ρ̄),
nn
nn
dρ̄ QK (ρ, ρ̄) UKK
RKK
(ρ, ρ̄) =
(ρ̄)
(9)
(10)
Å ¨´É¥£· ²Ó´Ò° 춥· Éμ·. Šμ´¸É ´É λ ¢ (8) ¸μ¤¥·¦¨É ¢ ¸¥¡¥ Ψ¸²μ¢Ò¥
±μÔË˨ͨ¥´ÉÒ ¨ ´Ê±²μ´´ÊÕ ³ ¸¸Ê m. ”Ê´±Í¨¨ Q, W ¨ U , ¸ÉμÖШ¥ ¶μ¤
§´ ±μ³ ¨´É¥£· ² ¢ (9), (10), ¨³¥ÕÉ ¸²¥¤ÊÕШ° ¢¨¤:
QK (ρ, ρ̄) = −(ρ̄ 3 /ρ2 ) I2 (ρ ξK (ρ))K2 (ρ̄ ξK (ρ))Θ(ρ̄ − ρ)+
+ I2 (ρ̄ ξK (ρ))K2 (ρ ξK (ρ))Θ(ρ − ρ̄) , (11)
£¤¥
ξK (ρ) =
K(K + 4) 2mE
− 2 ,
ρ2
E = Ei − ,
(12)
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 581
WKn (ρ̄) =
dΩ u∗Kn (Ω)(V12 (ρ̄, Ω) + V31 (ρ̄, Ω)) Φ(ρ̄, Ω),
nn
UKK
(ρ̄)
=
dΩ u∗Kn (Ω)U (ρ̄, Ω) uK n (Ω).
(13)
(14)
‚¥²¨Î¨´Ò I2 , K2 ¢ (11) Ö¢²ÖÕÉ¸Ö ³μ¤¨Ë¨Í¨·μ¢ ´´Ò³¨ ËÊ´±Í¨Ö³¨ ¥¸¸¥²Ö,
Θ Å ËÊ´±Í¨Ö •¥¢¨¸ °¤ , Ei ¨ ¢ (12) Å Ô´¥·£¨Ö ¶ ¤ ÕÐ¥° Î ¸É¨ÍÒ ¨
Ô´¥·£¨Ö ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö ¢ ¸¨¸É¥³¥ É·¥Ì Î ¸É¨Í ( > 0) ¸μμÉ¢¥É¸É¢¥´´μ.
“· ¢´¥´¨Ö (8) ¨³¥ÕÉ ¸ ³Ò° μ¡Ð¨° ¢¨¤ ¨ ³μ£ÊÉ ¡ÒÉÓ ·¥Ï¥´Ò μ¡Òδҳ¨
Ψ¸²¥´´Ò³¨ ³¥Éμ¤ ³¨ ¤²Ö ¶·μ¨§¢μ²Ó´μ£μ ´ ¡μ· K-£ ·³μ´¨±. ‘²¥¤Ê¥É μɳ¥É¨ÉÓ, ÎÉμ ¢ ¶μ²ÊÎ¥´´ÒÌ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨ÖÌ Ê¦¥ § ²μ¦¥´Ò ´¥μ¡Ì줨³Ò¥
¸¨³¶Éμɨ± ¨ £· ´¨Î´Ò¥ ʸ²μ¢¨Ö, ¢ Éμ ¢·¥³Ö ± ± ¢ ¸²ÊÎ ¥ ¨¸¶μ²Ó§μ¢ ´¨Ö “”
¢ ¤¨ËË¥·¥´Í¨ ²Ó´μ° Ëμ·³¥ [8] £· ´¨Î´Ò¥ ʸ²μ¢¨Ö ´¥μ¡Ì줨³μ ´ ±² ¤Ò¢ ÉÓ
¤μ¶μ²´¨É¥²Ó´μ.
·¨´Í¨¶ ¶μ¸É·μ¥´¨Ö Ê· ¢´¥´¨° (8) ²¥£±μ μ¡μ¡Ð¨ÉÓ É ±¦¥ ¨ ´ ¸²ÊÎ ° § ¢¨¸¨³μ¸É¨ ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ψ μÉ ¸¶¨´ ¨ ¨§μ¸¶¨´ ´Ê±²μ´μ¢. ‚ ÔÉμ³ ¸²ÊÎ ¥
· §´μ¸ÉÓ Ψ − Φ · ¸±² ¤Ò¢ ¥É¸Ö ¶μ ¡ §¨¸´Ò³ ´É¨¸¨³³¥É·¨Î´Ò³ ¸μ¸ÉμÖ´¨Ö³
ψKn (ρ)ΓKn (Ω; σ, τ ).
(15)
Ψ−Φ=
Kn
[g]
‘μ¸ÉμÖ´¨Ö ΓKn ¸É·μÖÉ¸Ö ¨§ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨° uKn (Ω) ¸ μ¶·¥¤¥²¥´´Ò³ ɨ¶μ³ ¶¥·¥¸É ´μ¢μÎ´μ° ¸¨³³¥É·¨¨ [g]: [a], [s], [ ], [ ] (¸μμÉ¢¥É¸É¢¥´´μ ´É¨¸¨³³¥É·¨Î´Ò³, ¸¨³³¥É·¨Î´Ò³ ¨ ¸³¥Ï ´´μ° ¸¨³³¥É·¨¨) ¨ ¸¶¨´[ḡ]
¨§μ¸¶¨´μ¢ÒÌ ËÊ´±Í¨° ξn (σ, τ ) ¸ ¸μ¶·Ö¦¥´´μ° ¸¨³³¥É·¨¥° [ḡ]: [s], [a], [ ], [ ].
’ ±, ¤²Ö ¸¨¸É¥³Ò É·¥Ì ´Ê±²μ´μ¢ ¸ S = 1/2, T = 1/2 ΓKn ¨³¥¥É ¢¨¤ [74]
[a]
[ ]
[s]
[ ]
ΓKn = uKn ξ [s] − uKn ξ [a] + uKn ξ [ ] − uKn ξ [ ] .
(16)
…¸²¨ ¦¥, ´ ¶·¨³¥·, ¸¨¸É¥³ ´ Ìμ¤¨É¸Ö ¢ ¸μ¸ÉμÖ´¨¨ ¸ S = 3/2, T = 1/2
(±¢ ·É¥É´μ¥ N d-· ¸¸¥Ö´¨¥), Éμ
[ ]
[ ]
ΓKn = uKn ξ [ ] − uKn ξ [ ] .
(17)
Œ¥É줨± ¶μ²ÊÎ¥´¨Ö Ê· ¢´¥´¨° ¤²Ö · ¤¨ ²Ó´ÒÌ ±μ³¶μ´¥´É ψKn (ρ) ´ ²μ£¨Î´ ¨§²μ¦¥´´μ° ¢ÒÏ¥, ´μ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¤μ¶μ²´¨É¥²Ó´μ£μ ¸μμÉ´μÏ¥´¨Ö μ·Éμ£μ´ ²Ó´μ¸É¨ ¤²Ö ξn (σ, τ ):
†
ξ [g] ξ [g ] = δgg .
(18)
στ
·¨ ÔÉμ³, ±μ´¥Î´μ, ´ ¤μ ¥Ð¥ ÊÎ¥¸ÉÓ, ÎÉμ ¶ ·´Ò° ¶μÉ¥´Í¨ ² ¡Ê¤¥É ¸μ¤¥·¦ ÉÓ
³ É·¨ÍÒ Ê²¨ ¨ ¸¶¨´-¨§μ¸¶¨´μ¢Ò¥ ¶·μ¥±Í¨μ´´Ò¥ 춥· Éμ·Ò.
582 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
1.2. ¥¶·¥·Ò¢´Ò° ¸¶¥±É·: N d-· ¸¸¥Ö´¨¥. ¥ μ£· ´¨Î¨¢ Ö μ¡Ð´μ¸É¨,
· ¸¸³μÉ·¨³ ¢´ Î ²¥ ¸²ÊÎ ° nd-· ¸¸¥Ö´¨Ö [75Ä79]. ʤ¥³ É ±¦¥ ¸Î¨É ÉÓ, ÎÉμ
´Ê±²μ´ · ¸¸¥¨¢ ¥É¸Ö ¤¥°É·μ´μ³ ¶·¥¨³ÊÐ¥¸É¢¥´´μ ¢ ±¢ ·É¥É´μ³ ¸μ¸ÉμÖ´¨¨.
‚ · §²μ¦¥´¨¨ (7), (15) μ£· ´¨Î¨³¸Ö ¸² £ ¥³Ò³¨ ¸ K = 0, 1, 2, É ± ÎÉμ ¸¨ LM
(Ω) (x, y Å
¸É¥³ (8) ¡Ê¤¥É ¸μ¤¥·¦ ÉÓ 27 K-£ ·³μ´¨± uKn (Ω) ≡ uKx y
±μμ·¤¨´ ÉÒ Ÿ±μ¡¨, ¸³. ¶·¨²μ¦¥´¨¥ A) [76], É. ¥. 27 ¸¢Ö§ ´´ÒÌ ¨´É¥£· ²Ó´ÒÌ
Ê· ¢´¥´¨° ¤²Ö ´¥¨§¢¥¸É´ÒÌ ËÊ´±Í¨° ψKn (¶μ Ψ¸²Ê ´ ¡μ·μ¢ Kn [2]). ´É¨¸¨³³¥É·¨Î´Ò¥ ¸μ¸ÉμÖ´¨Ö ΓKn , ¸μμÉ¢¥É¸É¢ÊÕШ¥ S = 3/2, T = 1/2, ¨³¥ÕÉ
¢¨¤ (17).
„²Ö § ¤ Î · ¸¸¥Ö´¨Ö ¸¨¸É¥³ (8) ¢ Í¥²μ³ ¡Ê¤¥É ´¥μ¤´μ·μ¤´μ°, É ± ± ±
Φ = 0. ’¥³ ´¥ ³¥´¥¥ ´¥±μÉμ·Ò¥ Ê· ¢´¥´¨Ö, ¢Ìμ¤ÖШ¥ ¢ (8), μ± ¦ÊÉ¸Ö μ¤´μ·μ¤´Ò³¨: WKn = 0 ¨§-§ ¸¢μ°¸É¢ ËÊ´±Í¨° uKn . ‚ ¸¨²Ê μ¸´μ¢´μ° É¥μ·¥³Ò ”·¥¤£μ²Ó³ [80,81] Ôɨ Ê· ¢´¥´¨Ö ¨³¥ÕÉ Éμ²Ó±μ É·¨¢¨ ²Ó´Ò¥ ·¥Ï¥´¨Ö, ¶μ¸±μ²Ó±Ê
¤²Ö ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· ´¥¢μ§³μ¦´μ μ¡¥¸¶¥Î¨ÉÓ ¢Ò·μ¦¤¥´´μ¸ÉÓ ³ É·¨Í
¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì ¨´É¥£· ²Ó´ÒÌ μ¶¥· Éμ·μ¢ (ÎÉμ ¶μ¤É¢¥·¦¤ ¥É¸Ö É ±¦¥ ¨ ´¥¶μ¸·¥¤¸É¢¥´´Ò³¨ · ¸Î¥É ³¨). ¸É ¢Ï¨¥¸Ö ´¥μ¤´μ·μ¤´Ò¥ Ê· ¢´¥´¨Ö ¸μμÉ¢¥É, u0110
, u0000
, u2020
¨ u0220
. ‹¥£±μ ¢¨¤¥ÉÓ, ÎÉμ ´ ¡μ·Ò
¸É¢ÊÕÉ ËÊ´±Í¨Ö³ u0000
0
1
2
2
2
¨Ì ±¢ ´Éμ¢ÒÌ Î¨¸¥² {
x
y LM } ¶·¥¤¸É ¢²ÖÕÉ ¸μ¡μ° ¢μ§³μ¦´Ò¥ ¸μ¸ÉμÖ´¨Ö
¶·¨ · ¸¸¥Ö´¨¨ ¢ ¸¨¸É¥³¥ É·¥Ì Î ¸É¨Í: x = 0, 2 ¸μμÉ¢¥É¸É¢ÊÕÉ ¸¢Ö§ ´´μ³Ê
¸μ¸ÉμÖ´¨Õ ¶μ¤¸¨¸É¥³Ò (23) Å ¤¥°É·μ´ , y = 0, 1, 2 Å μ·¡¨É ²Ó´Ò° ³μ³¥´É
Î ¸É¨ÍÒ 1 μÉ´μ¸¨É¥²Ó´μ Í¥´É· ³ ¸¸ ¶ ·Ò (23), L = 0, 2 Å ¶μ²´Ò° μ·¡¨É ²Ó´Ò° ³μ³¥´É ¸ ´Ê²¥¢μ° ¶·μ¥±Í¨¥° M (§´ Î¥´¨Ö M = 0 ¶·¨¢μ¤ÖÉ ± WKn = 0
¨ ¤¥² ÕÉ ¸μμÉ¢¥É¸É¢ÊÕШ¥ Ê· ¢´¥´¨Ö (8) μ¤´μ·μ¤´Ò³¨).
¸±² ¤Ò¢ Ö · §´μ¸ÉÓ Ψ − Φ ¶μ ¡ §¨¸´Ò³ ¸μ¸ÉμÖ´¨Ö³ (17) ¨ ¢ÒΨ¸²ÖÖ ³ É·¨Î´Ò¥ Ô²¥³¥´ÉÒ μÉ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ¨ ¸¶¨´-¨§μ¸¶¨´μ¢ÒÌ ËÊ´±Í¨°, ¶μ²ÊΨ³ ¶ÖÉÓ Ê· ¢´¥´¨° ɨ¶ (8) ¤²Ö ËÊ´±Í¨° ψ00000 , ψ10110 , ψ20000 , ψ22020 ¨ ψ20220 .
‚¨¤ Ê· ¢´¥´¨° (9)Ä(14) ¶·¨ ÔÉμ³ μ¸É ´¥É¸Ö ´¥¨§³¥´´Ò³, ´μ Vij = V (3,1) (ri,j )
¢ (13), (14).
“· ¢´¥´¨Ö (8) ¡Ò²¨ ·¥Ï¥´Ò Ψ¸²¥´´μ [78,79], ¢ ± Î¥¸É¢¥ ¢μ²´μ¢μ° ËÊ´±Í¨¨ ¤¥°É·μ´ ϕd (x), ¢Ìμ¤ÖÐ¥° ¢ Φ ≡ Φ(x, y) = ϕd (x) exp (iky) (k Å ¨³¶Ê²Ó¸ ´¥°É·μ´ ), ¨¸¶μ²Ó§μ¢ ² ¸Ó ¢μ²´μ¢ Ö ËÊ´±Í¨Ö •Õ²ÓÉ¥´ ϕd (x) ≡ ϕd (x) =
αβ(α + β) exp (−αx) − exp (−βx)
,
2π(β − α)2
x
(19)
√
£¤¥ α = md , d = 2,226 ŒÔ‚, β = 5,94α.
·¨¸. 1 ¶·¨¢¥¤¥´Ò · ¤¨ ²Ó´Ò¥ § ¢¨¸¨³μ¸É¨ ËÊ´±Í¨° ψKn , · ¸¸Î¨É ´´Ò¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¶μÉ¥´Í¨ ²μ¢ Œ ²Ë²¨Ä’¨μ´ (Œ’) [82]
VMT I (r) = (1438,72 e−3,11r − 513,968 e−1,55r )/r,
VMT III (r) = (1438,72 e−3,11r − 626,885 e−1,55r )/r,
(20)
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 583
¨¸. 1. ¤¨ ²Ó´Ò¥ § ¢¨¸¨³μ¸É¨ ËÊ´±Í¨° ψKn , · ¸¸Î¨É ´´Ò¥ ¤²Ö ¶μÉ¥´Í¨ ²μ¢
Œ ²Ë²¨Ä’¨μ´ ( ), ‚μ²±μ¢ (¡) ¨ °±¥³ °¥· Ä• ±¥´¡·μ°Ì (EH) (¢) ¶·¨ En =
1,5 ŒÔ‚ (ÏÉ·¨Ìμ¢Ò¥ ±·¨¢Ò¥), 2,45 ŒÔ‚ (¶Ê´±É¨·´Ò¥) ¨ 3,27 ŒÔ‚ (¸¶²μÏ´Ò¥)
‚μ²±μ¢ [83, 84]
Vt (r) = 144,86 e−(r/0,82) − 83,34 e−(r/1,6) ,
Vs (r) = 0,63Vt (r)
2
2
(21)
584 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¨ °±¥³ °¥· Ä• ±¥´¡·μ°Ì (EH) [85]
Vt (r) = 600 e−5,5r − 70 e−0,5r − 27,6 e−0,38r ,
2
2
2
Vs (r) = 880 e−5,4r − 70 e−0,64r − 21 e−0,48r
2
2
2
(22)
¤²Ö Ô´¥·£¨° ¶ ¤ ÕÐ¨Ì ´¥°É·μ´μ¢ En = 1,5, 2,45 ¨ 3,27 ŒÔ‚ (¢ ² ¡μ· Éμ·´μ°
¸¨¸É¥³¥).
ˆ§ ´ ²¨§ ¶μ¢¥¤¥´¨Ö ±·¨¢ÒÌ, ¶·¥¤¸É ¢²¥´´ÒÌ ´ ÔÉμ³ ·¨¸Ê´±¥, ¸²¥¤Ê¥É,
ÎÉμ, ¢μ-¶¥·¢ÒÌ, ¢¥²¨Î¨´Ò ψKn ¸² ¡μ § ¢¨¸ÖÉ μÉ Ô´¥·£¨¨ ´¥°É·μ´ ¢ · ¸¸³μÉ·¥´´μ³ ¤¨ ¶ §μ´¥ ¥¥ §´ Î¥´¨°. ‚μ-¢Éμ·ÒÌ, ³ ±¸¨³ ²Ó´Ò¥ §´ Î¥´¨Ö ψKn ¤²Ö
μ¸´μ¢´μ° K-£ ·³μ´¨±¨ (K = 0) ´ ¶μ·Ö¤μ± ¨ ¡μ²¥¥ ¶·¥¢ÒÏ ÕÉ ¶μ ¡¸μ²ÕÉ´μ° ¢¥²¨Î¨´¥ ³ ±¸¨³ ²Ó´Ò¥ §´ Î¥´¨Ö ËÊ´±Í¨° ψKn ¤²Ö K = 1 ¨ K = 2.
” §Ò nd-· ¸¸¥Ö´¨Ö ³μ£ÊÉ ¡ÒÉÓ μ¶·¥¤¥²¥´Ò ¸²¥¤ÊÕШ³ μ¡· §μ³. ·¥¤¸É ¢¨³ ¢μ²´μ¢ÊÕ ËÊ´±Í¨Õ § ¤ Ψ ¢ ¢¨¤¥ (2), £¤¥
ψKn (ρ)uKn (Ω)
(23)
Ψint =
Kn
¥¸ÉÓ ·¥Ï¥´¨¥ Ê· ¢´¥´¨° ” ¤¤¥¥¢ (3) ¢ μ¡² ¸É¨ ¢§ ¨³μ¤¥°¸É¢¨Ö, Ψext Å ·¥Ï¥´¨¥ Ê· ¢´¥´¨Ö ˜·¥¤¨´£¥· ¢ ¸¨³¶ÉμɨΥ¸±μ° μ¡² ¸É¨ ¤²Ö ¤¢ÊÌÎ ¸É¨Î´μ°
§ ¤ Ψ · ¸¸¥Ö´¨Ö ´¥°É·μ´ ´ ÉμÎ¥Î´μ³ ¤¥°É·μ´¥ ¸ ¶μÉ¥´Í¨ ²μ³ V12 + V31 .
§²μ¦¨³ É¥¶¥·Ó Ψext ¢ ·Ö¤ ¶μ ¸Ë¥·¨Î¥¸±¨³ ËÊ´±Í¨Ö³ [86]:
Ψext (y) =
ψ,k (y)Y∗m (k/k)Y m (y/y),
(24)
m
£¤¥ ψ,k Å ¶ ·Í¨ ²Ó´ Ö ±μ³¶μ´¥´É , 춨¸Ò¢ ÕÐ Ö ¸μ¸ÉμÖ´¨¥ ¸ μ·¡¨É ²Ó´Ò³
³μ³¥´Éμ³ :
(25)
ψ,k (y) j (ky) + (−1)+1 tg δ n (ky).
‡¤¥¸Ó j (kr), n (kr) Å ¸Ë¥·¨Î¥¸±¨¥ ËÊ´±Í¨¨ ¥¸¸¥²Ö ¨ ¥°³ ´ ; δ Å Ë § · ¸¸¥Ö´¨Ö, ±μÉμ· Ö ³μ¦¥É ¡ÒÉÓ μ¶·¥¤¥²¥´ ¨§ ʸ²μ¢¨° ¸Ï¨¢ ´¨Ö ·¥Ï¥´¨°
¢ ¸¨³¶ÉμɨΥ¸±μ° μ¡² ¸É¨ ψ,k ¸ ¸μμÉ¢¥É¸É¢ÊÕШ³¨ ·¥Ï¥´¨Ö³¨ ¢ μ¡² ¸É¨
¢§ ¨³μ¤¥°¸É¢¨Ö ψKn (É ¡².1). ‚ ¶μ¸²¥¤´¥° ±μ²μ´±¥ É ¡².1 ¶·¨¢¥¤¥´Ò É ±¦¥
’ ¡²¨Í 1. Š¢ ·É¥É´Ò¥ Ë §Ò nd-· ¸¸¥Ö´¨Ö (¢ £· ¤Ê¸ Ì)
0
1
2
MT
Ä67,4
23,4
Ä3,27
δ
‚μ²±μ¢
Ä68,1
21,8
Ä3,19
EH
Ä65,9
22,9
Ä3,73
0
1
2
Ä74,2
28,1
Ä4,31
Ä74,8
26,7
Ä4,19
Ä72,8
27,8
Ä4,76
En , ŒÔ‚
2,45
3,27
„ ´´Ò¥
¤·Ê£¨Ì ¢Éμ·μ¢
Ä66,7 [87, 88]
22,2 [89]
Ä3,41 [35]
Ä73,6 [34, 88]
27,3 [90]
Ä4,66 [90]
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 585
¨¸. 2. „¨ËË¥·¥´Í¨ ²Ó´Ò¥ ¸¥Î¥´¨Ö nd-· ¸¸¥Ö´¨Ö, · ¸¸Î¨É ´´Ò¥ ¤²Ö ¶μÉ¥´Í¨ ²μ¢
Œ ²Ë²¨Ä’¨μ´ (¸¶²μÏ´ Ö ±·¨¢ Ö), ‚μ²±μ¢ (ÏÉ·¨Ìμ¢ Ö) ¨ °±¥³ °¥· Ä• ±¥´¡·μ°Ì (¶Ê´±É¨·´ Ö) ¶·¨ En = 2,45 ŒÔ‚. ±¸¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥ ¢§ÖÉÒ ¨§ [91] (•)
¨ [92] ()
¨¸. 3. ’μ ¦¥, ÎÉμ ¨ ´ ·¨¸. 2, ´μ ¤²Ö En = 3,27 ŒÔ‚
¢¥²¨Î¨´Ò Ë §μ¢ÒÌ ¸¤¢¨£μ¢, ¶μ²ÊÎ¥´´ÒÌ ¤·Ê£¨³¨ ³¥Éμ¤ ³¨ ¤²Ö ´ ²μ£¨Î´μ°
§ ¤ Ψ.
·¨¸. 2, 3 ¶·¥¤¸É ¢²¥´Ò Ê£²μ¢Ò¥ § ¢¨¸¨³μ¸É¨ ¸¥Î¥´¨° nd-· ¸¸¥Ö´¨Ö,
· ¸¸Î¨É ´´Ò¥ ¶μ Ëμ·³Ê²¥ [86]
σ(θ) =
2 (4)
|A (θ)|2 ,
3
A(4) (θ) =
2
1
(2
+ 1) exp iδ sin δ P (cos θ). (26)
k
=0
586 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
ˆ§ ´ ²¨§ ¶μ¢¥¤¥´¨Ö ±·¨¢ÒÌ, ¶·¥¤¸É ¢²¥´´ÒÌ ´ ·¨¸. 2, 3, ¸²¥¤Ê¥É, ÎÉμ
´ ¨²ÊÎÏ¥¥ ¸μ£² ¸¨¥ ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨ ¤μ¸É¨£ ¥É¸Ö ¤²Ö ¶μÉ¥´Í¨ ² Œ ²Ë²¨Ä’¨μ´ (20).
„²Ö Éμ£μ ÎÉμ¡Ò · ¸¸Î¨É ÉÓ ËÊ´±Í¨¨ ψKn ¸ ÊÎ¥Éμ³ ±Ê²μ´μ¢¸±μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö (Š‚) ³¥¦¤Ê ¶·μÉμ´ ³¨, ¢¢¥¤¥³ Ô±· ´¨·μ¢ ´´Ò° ±Ê²μ´μ¢¸±¨°
¶μÉ¥´Í¨ ²
α e−r/R
,
(27)
VCe (r) =
r
£¤¥ α Å ¶μ¸ÉμÖ´´ Ö Éμ´±μ° ¸É·Ê±ÉÊ·Ò; R Å · ¤¨Ê¸ Ô±· ´¨·μ¢ ´¨Ö. É ¶·μÍ¥¤Ê· Ö¢²Ö¥É¸Ö ¸É ´¤ ·É´μ° ¨ ¤μ¸É Éμδμ Ϩ·μ±μ ¶·¨³¥´Ö¥É¸Ö ¢ ¶μ¤μ¡´ÒÌ
§ ¤ Î Ì. ¡μ§´ Ψ³ § ·Ö¦¥´´Ò¥ Î ¸É¨ÍÒ ¨´¤¥±¸ ³¨ 1, 2 ¨ ¢¢¥¤¥³ ¶μÉ¥´Í¨ ² (27) ¢ ¢Ò· ¦¥´¨Ö (13), (14): V12 → V12 + VCe . ‚ÒΨ¸²ÖÖ ¤ ²¥¥ ËÊ´±Í¨¨
ψKn ¸ · §´Ò³¨ R, ³μ¦´μ É ±¨³ μ¡· §μ³ ¨¸¸²¥¤μ¢ ÉÓ ¸Ì줨³μ¸ÉÓ ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì ·¥Ï¥´¨° (8).
·¨¸. 4 ¢ ± Î¥¸É¢¥ ¶·¨³¥· ¶·¥¤¸É ¢²¥´μ ¸¥³¥°¸É¢μ · ¸¸Î¨É ´´ÒÌ § ¢¨¸¨³μ¸É¥° ψ00000 (ρ) ¸ · ¤¨Ê¸ ³¨ Ô±· ´¨·μ¢ ´¨Ö R = 1, 2, 10, 20, 100 ˳ ¤²Ö
¶μÉ¥´Í¨ ² (20) ¨ Ô´¥·£¨¨ ¶·μÉμ´μ¢ Ep = 1,5 ŒÔ‚ (¢ ² ¡μ· Éμ·´μ° ¸¨¸É¥³¥).
• · ±É¥· ¸Ì줨³μ¸É¨ μ¸É ²Ó´ÒÌ ËÊ´±Í¨° (ψ10110 , ψ20000 , ψ22020 , ψ20220 )
¶μ¤μ¡¥´ ¶·¨¢¥¤¥´´μ³Ê ´ ·¨¸. 4: ·¥Ï¥´¨Ö ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì Ê· ¢´¥´¨° (8)
¨¸. 4. ¸¸Î¨É ´´Ò¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¶μÉ¥´Í¨ ² M ²Ë²¨Ä’¨μ´ § ¢¨¸¨³μ¸É¨
ψ00000 (ρ) ¤²Ö Ô´¥·£¨¨ ¶ ¤ ÕÐ¨Ì ¶·μÉμ´μ¢ Ep = 1,5 ŒÔ‚: ¡¥§ Ê봃 Š‚ (ÏÉ·¨Ì¶Ê´±É¨·´ Ö ±·¨¢ Ö) ¨ ¸ ¥£μ ÊÎ¥Éμ³ (¸¶²μÏ´ Ö ±·¨¢ Ö, · ¤¨Ê¸ Ô±· ´¨·μ¢ ´¨Ö R = 100 ˳).
¢¸É ¢±¥ ¢ Ê¢¥²¨Î¥´´μ³ ³ ¸ÏÉ ¡¥ ¶μ± § ´ μ±·¥¸É´μ¸ÉÓ ³¨´¨³Ê³ · ¸¸Î¨É ´´ÒÌ
ËÊ´±Í¨° ¸ · §´Ò³¨ R: 1 Å 1 ˳; 2 Å 2 ˳; 3 Å 10 ˳; 4 Å 20 ˳; 5 Å 100 ˳
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 587
¸Ìμ¤ÖÉ¸Ö ± ·¥Ï¥´¨Õ ¸ R = 100 ˳ (´ ·¨¸Ê´±¥ ¢¨¤´μ, ÎÉμ ·¥Ï¥´¨Ö ¸ R =
20 ˳ ¨ R = 100 ˳ ¶μÎɨ ¸μ¢¶ ¤ ÕÉ, Å É ±μ¥ ¶μ¢¥¤¥´¨¥ Ì · ±É¥·´μ É ±¦¥
¨ ¤²Ö ·¥Ï¥´¨° ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¶μÉ¥´Í¨ ²μ¢ (21) ¨ (22)).
’ ±¨³ μ¡· §μ³, ³μ¦´μ ¸Î¨É ÉÓ, ÎÉμ ¨¸¶μ²Ó§μ¢ ´¨¥ ¢ · ¸Î¥É Ì ¶μÉ¥´Í¨ ² (27) ¸ R = 100 ˳ ¸μμÉ¢¥É¸É¢Ê¥É ÊÎ¥ÉÊ Š‚ ¤²Ö ¤ ´´μ° § ¤ Ψ · ¸¸¥Ö´¨Ö.
ˆ§ ¨¸¸²¥¤μ¢ ´¨Ö ¸Ì줨³μ¸É¨ ·¥Ï¥´¨° ψKn ¤²Ö Ô´¥·£¨° ¶·μÉμ´μ¢ Ep = 2,45
¨ 3,27 ŒÔ‚ É ±¦¥ ¸²¥¤Ê¥É, ÎÉμ ·¥Ï¥´¨Ö ¸Ìμ¤ÖÉ¸Ö ± ψKn ¸ R = 100 ˳.
‡ ³¥É¨³, ÎÉμ ¢ [93], £¤¥ ·¥Ï ²¨¸Ó Ê· ¢´¥´¨Ö ” ¤¤¥¥¢ ¢ ¨³¶Ê²Ó¸´μ³ ¶·¥¤¸É ¢²¥´¨¨ ¤²Ö ´ ²μ£¨Î´μ° § ¤ Ψ pd-· ¸¸¥Ö´¨Ö, ¡Ò²μ Ê¸É ´μ¢²¥´μ, ÎÉμ ¶·¨
¨§³¥´¥´¨¨ · ¤¨Ê¸ Ô±· ´¨·μ¢ ´¨Ö ¢ ¶·¥¤¥² Ì μÉ 100 ¤μ 2000 ˳ · ¸¸Î¨É ´´Ò¥ ¢¥²¨Î¨´Ò Ë § · ¸¸¥Ö´¨Ö μɲ¨Î ÕÉ¸Ö ´¥ ¡μ²¥¥ Î¥³ ´ 1 %. ‚ [94] ¶·¨
¢ÒΨ¸²¥´¨¨ ¸¥Î¥´¨° pd-· ¸¸¥Ö´¨Ö (Ep = 10 ŒÔ‚) ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ Ê· ¢´¥´¨Ö ‹¨¶¶³ ´ Ę¢¨´£¥· ¨ ¸¥¶ · ¡¥²Ó´μ£μ ¶ ·¨¦¸±μ£μ ¶μÉ¥´Í¨ ² PEST 1Ä6
· ¤¨Ê¸ Ô±· ´¨·μ¢ ´¨Ö É ±¦¥ ¸μ¸É ¢²Ö² 100 ˳, Ê¢¥²¨Î¨¢ Ö¸Ó ¤μ 300 ˳ ¶·¨
· ¸Î¥É¥ ¶μ²Ö·¨§ Í¨μ´´ÒÌ Ì · ±É¥·¨¸É¨±.
„²Ö ¢ÒΨ¸²¥´¨Ö Ë § pd-· ¸¸¥Ö´¨Ö ¶·¨³¥´¨³ ¶·μÍ¥¤Ê·Ê, 춨¸ ´´ÊÕ ¢ÒÏ¥.
·¥¤¸É ¢¨³ ¢μ²´μ¢ÊÕ ËÊ´±Í¨Õ § ¤ Ψ ¢ ¢¨¤¥ (2) ¨ · §²μ¦¨³ Ψext ¢ ·Ö¤ ¶μ
¸Ë¥·¨Î¥¸±¨³ ËÊ´±Í¨Ö³ (24), ¶·¨Î¥³
ψ,k (y) F (ky) + (−1)+1 tg δ G (ky),
(28)
£¤¥ F , G Å ·¥£Ê²Ö·´ Ö ¨ ´¥·¥£Ê²Ö·´ Ö ±Ê²μ´μ¢¸±¨¥ ËÊ´±Í¨¨ [86] ¸μμÉ¢¥É¸É¢¥´´μ. ‚ É ¡². 2 ¶·¨¢¥¤¥´Ò ±¢ ·É¥É´Ò¥ Ë §Ò pd-· ¸¸¥Ö´¨Ö, ´ °¤¥´´Ò¥ ¨§
ʸ²μ¢¨Ö ¸Ï¨¢ ´¨Ö ·¥Ï¥´¨° Ψext c Ψint , ¶·¥¤¸É ¢²¥´´μ£μ ¢ ¢¨¤¥ ·Ö¤ (23).
’ ¡²¨Í 2. Š¢ ·É¥É´Ò¥ Ë §Ò pd-· ¸¸¥Ö´¨Ö (¢ £· ¤Ê¸ Ì)
Ep , ŒÔ‚
1,5
2
0
1
2
0
1
2
MT
Ä47,8
16,1
Ä1,28
Ä53,5
19,8
Ä2,22
δ
‚μ²±μ¢
Ä48,6
14,8
Ä1,21
Ä54,1
18,7
Ä2,11
EH
Ä45,7
15,5
Ä1,67
Ä51,6
19,7
Ä2,45
„ ´´Ò¥ ¨§ [35]
Ä46,0
15,2
Ä1,59
Ä52,8
19,1
Ä2,37
·¨¸. 5, 6 ¶·¥¤¸É ¢²¥´Ò ¤¨ËË¥·¥´Í¨ ²Ó´Ò¥ ¸¥Î¥´¨Ö · ¸¸¥Ö´¨Ö ¶·μÉμ´μ¢ ¤¥°É·μ´ ³¨, · ¸¸Î¨É ´´Ò¥ ¶μ Ëμ·³Ê²¥ [86]
2
σ(θ) = |AR (θ) + A(θ)|2 ,
(29)
3
£¤¥ θ Å Ê£μ² · ¸¸¥Ö´¨Ö; AR Å ·¥§¥·Ëμ·¤μ¢¸± Ö ³¶²¨Éʤ :
AR (θ) = −
η Γ(1 + iη) exp (−2i ln (sin (θ/2)))
,
2k Γ(1 − iη) sin2 (θ/2)
(30)
588 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¨¸. 5. „¨ËË¥·¥´Í¨ ²Ó´Ò¥ ¸¥Î¥´¨Ö pd-· ¸¸¥Ö´¨Ö, · ¸¸Î¨É ´´Ò¥ ¤²Ö ¶μÉ¥´Í¨ ²μ¢
Œ ²Ë²¨Ä’¨μ´ (¸¶²μÏ´ Ö ±·¨¢ Ö), ‚μ²±μ¢ (ÏÉ·¨Ìμ¢ Ö) ¨ °±¥³ °¥· Ä• ±¥´¡·μ°Ì (¶Ê´±É¨·´ Ö) ¶·¨ Ep = 1,5 ŒÔ‚. ±¸¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥ (Éμα¨) ¢§ÖÉÒ ¨§ [95]
¨¸. 6. ’μ ¦¥, ÎÉμ ¨ ´ ·¨¸. 5, ´μ ¤²Ö Ep = 2 ŒÔ‚. ±¸¶¥·¨³¥´É ²Ó´Ò¥ ¤ ´´Ò¥
(Éμα¨) ¢§ÖÉÒ ¨§ [96]
η = 2αm/(3k) Å ¶ · ³¥É· ‡μ³³¥·Ë¥²Ó¤ ,
A(θ) =
2
1
(2
+ 1) exp (i(2ω + δ )) sin δ P (cos θ),
k
=0
ω = arg (Γ(
+ 1 + iη)) Å ±Ê²μ´μ¢¸± Ö Ë § .
(31)
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 589
• · ±É¥· ¶μ¢¥¤¥´¨Ö ±·¨¢ÒÌ, ¶·¥¤¸É ¢²¥´´ÒÌ ´ ·¨¸. 5, 6, ¶μ§¢μ²Ö¥É ¸¤¥² ÉÓ ¢Ò¢μ¤, ÎÉμ ´ ¨²ÊÎÏ¥¥ ¸μ£² ¸¨¥ ¸ Ô±¸¶¥·¨³¥´É ³¨, É ± ¦¥ ± ± ¨ ¤²Ö
nd-· ¸¸¥Ö´¨Ö, ¤μ¸É¨£ ¥É¸Ö ¤²Ö ¶μÉ¥´Í¨ ² M ²Ë²¨Ä’¨μ´ . ¥¡μ²ÓÏ Ö ¶μ²μα · ¸¸Î¨É ´´ÒÌ ±·¨¢ÒÌ ¢ μ±·¥¸É´μ¸É¨ θ 30−40◦ Å ·¥§Ê²ÓÉ É ¨¸¶μ²Ó§μ¢ ´¨Ö ¶·¨¡²¨¦¥´¨Ö (29): ¥¸²¨ ³Ò ¢ÒΨ¸²Ö¥³ ¸¥Î¥´¨Ö ¶μ ÔÉμ° Ëμ·³Ê²¥,
Éμ ¶·¥´¥¡·¥£ ¥³ ´¥±μÉμ·μ° ´¥¡μ²ÓÏμ° μ¡² ¸ÉÓÕ Ê£²μ¢, ¢ ±μÉμ·μ°, ¸É·μ£μ
£μ¢μ·Ö, ¶μ²´ Ö ³¶²¨Éʤ ´¥ · ¢´ ¶·μ¸Éμ ¸Ê³³¥ AR ¨ A.
‘μ£² ¸¨¥ ¸ Ô±¸¶¥·¨³¥´É ³¨ ¶μ N d-· ¸¸¥Ö´¨Õ ³μ¦´μ ¡Ò²μ ¡Ò, ´ ´ Ï
¢§£²Ö¤, ʲÊÎϨÉÓ, ¥¸²¨ ¤μ¶μ²´¨É¥²Ó´μ ÊÎ¥¸ÉÓ ¤Ê¡²¥É´ÊÕ ±μ³¶μ´¥´ÉÊ ³¶²¨ÉÊ¤Ò A(2) . Š ± ¶μ± § ´μ ¢ [90], Ê봃 A(2) ¶·¨¢μ¤¨É ± ´¥±μÉμ·μ³Ê Ê¢¥²¨Î¥´¨Õ
§´ Î¥´¨° σ(θ) ¢ μ¡² ¸É¨ ³ ²ÒÌ ¨ ¡μ²ÓÏ¨Ì ¢¥²¨Î¨´ Ê£²μ¢ · ¸¸¥Ö´¨Ö.
’ ±¨³ μ¡· §μ³, ¶·¥¤²μ¦¥´´Ò° ´ ³¨ ³¥Éμ¤ · ¸Î¥É ¸¥Î¥´¨° ´Ê±²μ´-¤¥°É·μ´´μ£μ · ¸¸¥Ö´¨Ö ¸ ¶·μ¸ÉÒ³¨ ³μ¤¥²Ö³¨ N N -¢§ ¨³μ¤¥°¸É¢¨Ö ¶μ§¢μ²Ö¥É ¤μ¸É¨ÎÓ Ê¤μ¢²¥É¢μ·¨É¥²Ó´μ£μ ¸μ£² ¸¨Ö ¸ ¸μμÉ¢¥É¸É¢ÊÕШ³¨ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¸¥Î¥´¨Ö³¨ ¶·¨ ¤μ¶μ·μ£μ¢ÒÌ §´ Î¥´¨ÖÌ Ô´¥·£¨¨ ¶ ¤ ÕÐ¥° Î ¸É¨ÍÒ.
·¥¤¸É ¢¨¢ ¶μ²´ÊÕ ¢μ²´μ¢ÊÕ ËÊ´±Í¨Õ ¸¨¸É¥³Ò Ψ ± ± ¸Ê³³Ê ¥¥ ¸¨³¶ÉμɨΥ¸±μ° Î ¸É¨ Φ ¨ Î ¸É¨, ±μÉμ· Ö μ¶¨¸Ò¢ ¥É É·¥Ì´Ê±²μ´´ÊÕ ¸¨¸É¥³Ê ¢ μ¡² ¸É¨ ¢§ ¨³μ¤¥°¸É¢¨Ö, ³Ò ¸¢¥²¨ § ¤ ÎÊ μ ´ Ì즤¥´¨¨ Ψ ± ¸¨¸É¥³¥ μ¤´μ³¥·´ÒÌ
¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨°, ·¥Ï¥´¨¥ ±μÉμ·μ° ´¥ É·¥¡Ê¥É §´ Ψɥ²Ó´ÒÌ § É· É
³ Ϩ´´μ£μ ¢·¥³¥´¨. μÔÉμ³Ê ± ´¥¸μ³´¥´´Ò³ ¤μ¸Éμ¨´¸É¢ ³ ³¥Éμ¤ ¸²¥¤Ê¥É
μÉ´¥¸É¨ ¥£μ μÉ´μ¸¨É¥²Ó´ÊÕ ¶·μ¸ÉμÉÊ ¨ ¡Ò¸É·μ¤¥°¸É¢¨¥ ¶μ ¸· ¢´¥´¨Õ ¸ É· ¤¨Í¨μ´´Ò³¨ ³¥Éμ¤ ³¨, μ¸´μ¢ ´´Ò³¨ ´ ´¥¶μ¸·¥¤¸É¢¥´´μ³ Ψ¸²¥´´μ³ ·¥Ï¥´¨¨
¤¢Ê³¥·´ÒÌ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨° ¢ ¨³¶Ê²Ó¸´μ³ ¶·¥¤¸É ¢²¥´¨¨. ‘ ¤·Ê£μ°
¸Éμ·μ´Ò, ³¥Éμ¤ Ö¢²Ö¥É¸Ö ¶·¨¡²¨¦¥´´Ò³, É ± ± ± ¤²Ö ¶· ±É¨Î¥¸±¨Ì Í¥²¥°
³ Ϩ´´μ£μ ¸Î¥É ·Ö¤ (7) ´¥μ¡Ì줨³μ μ¡μ·¢ ÉÓ: ±μ²¨Î¥¸É¢μ ¨´É¥£· ²Ó´ÒÌ
Ê· ¢´¥´¨° ¢ ´¥³ ´ · ¸É ¥É ² ¢¨´μμ¡· §´μ Å ¥¸²¨ ¤²Ö Kmax = 2 ¸¨¸É¥³ (8)
¸μ¤¥·¦¨É 27 Ê· ¢´¥´¨°, Éμ ¤²Ö Kmax = 4 ʦ¥ 182. ˆ, ´¥¸³μÉ·Ö ´ Éμ, ÎÉμ
¡μ²ÓϨ´¸É¢μ ÔÉ¨Ì Ê· ¢´¥´¨° ¨³¥¥É É·¨¢¨ ²Ó´μ¥ ·¥Ï¥´¨¥, ´¥μ¡Ì줨³μ¸ÉÓ μɸ¥ÖÉÓ ¨Ì ¢¥¤¥É ± 祧³¥·´μ³Ê Ê¢¥²¨Î¥´¨Õ μ¡Ñ¥³ ¢Ò±² ¤μ± ®¢·ÊδÊÕ¯ (¨, · §Ê³¥¥É¸Ö, ¶·μ£· ³³´μ£μ ±μ¤ ). ˆ ¢¸¥ ¦¥ ¶·¥¤²μ¦¥´´Ò° ³¥Éμ¤ ¶·¥¤¸É ¢²Ö¥É¸Ö
´ ³ ¶¥·¸¶¥±É¨¢´Ò³, ¶μ¸±μ²Ó±Ê ¶μ§¢μ²Ö¥É ¨§ÊÎ ÉÓ ¸μ¸ÉμÖ´¨Ö ´¥¶·¥·Ò¢´μ£μ
¸¶¥±É· ¢ ²Õ¡ÒÌ É·¥ÌÎ ¸É¨Î´ÒÌ ¸¨¸É¥³ Ì (´ ¶·¨³¥·, Λ + d, α + d ¨ É. ¶.),
¥¸²¨ ¨§¢¥¸É´Ò ¨Ì ¶ ·´Ò¥ ¶μÉ¥´Í¨ ²Ò ¢§ ¨³μ¤¥°¸É¢¨Ö. …£μ ³μ¦´μ É ±¦¥
μ¡μ¡Ð¨ÉÓ ¨ ´ ¸¨¸É¥³Ò ¸ Ψ¸²μ³ Î ¸É¨Í, ¡μ²ÓϨ³ É·¥Ì [48].
1.3. ‘¨¸É¥³ É·¥Ì ´¥¸¢Ö§ ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í. Š· ɱμ
μ¸É ´μ¢¨³¸Ö ´ ¢μ¶·μ¸¥ ¨´Ë¨´¨É´μ£μ ¤¢¨¦¥´¨Ö ¢¸¥Ì É·¥Ì Î ¸É¨Í. ‘μμÉ¢¥É¸É¢ÊÕШ¥ Ê· ¢´¥´¨Ö ” ¤¤¥¥¢ ¨³¥ÕÉ ¢¨¤ [1, 97]
(1)
(2)
(3)
(2)
(3)
(1)
(3)
Ψ123
(1)
G0 (Z)T12 (Z)(Ψ123
Ψ123 = Φ1(23) − Φ123 + G0 (Z)T23 (Z)(Ψ123 + Ψ123 ),
Ψ123 = Φ2(31) − Φ123 + G0 (Z)T31 (Z)(Ψ123 + Ψ123 ),
= Φ3(12) − Φ123 +
+
(2)
Ψ123 ),
(32)
590 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
(1)
(2)
(3)
£¤¥ Ψ123 = Φ123 + Ψ123 + Ψ123 + Ψ123 Å ¶μ²´ Ö ¢μ²´μ¢ Ö ËÊ´±Í¨Ö ¸¨¸É¥³Ò.
‡¤¥¸Ó Φ123 = exp (ip1 ρ1 +ik23 r23 ) Å ¸¨³¶ÉμɨΥ¸± Ö ¢μ²´μ¢ Ö ËÊ´±Í¨Ö ¨´Ë¨´¨É´μ£μ ¤¢¨¦¥´¨Ö É·¥Ì Î ¸É¨Í, μ´ Ö¢²Ö¥É¸Ö ¨´¢ ·¨ ´É´μ° μÉ´μ¸¨É¥²Ó´μ
§ ³¥´Ò ±μμ·¤¨´ É Ÿ±μ¡¨, Φi(jk) μɲ¨Î ÕÉ¸Ö μÉ Φ123 ÊÎ¥Éμ³ ¢§ ¨³μ¤¥°¸É¢¨Ö
³¥¦¤Ê Î ¸É¨Í ³¨ j ¨ k, É. ¥. Φi(jk) = exp (ipi ρi )ϕkjk (rjk ), £¤¥ ϕkjk (rjk ) Å
·¥Ï¥´¨¥ Ê· ¢´¥´¨Ö (−Δjk /(2μjk ) + Vjk − Ejk )ϕkjk (rjk ) = 0 ¤²Ö ¶μ²μ¦¨2
É¥²Ó´ÒÌ §´ Î¥´¨° Ô´¥·£¨¨ μÉ´μ¸¨É¥²Ó´μ£μ ¤¢¨¦¥´¨Ö Ejk = kjk
/(2μjk ) > 0,
±μÉμ·μ¥ ´ ¡¥¸±μ´¥Î´μ¸É¨ ¨³¥¥É ¢¨¤ ¸Ê³³Ò ¶²μ¸±μ° ¢μ²´Ò ¨ · ¸Ìμ¤ÖÐ¥°¸Ö
(¨²¨ ¸Ìμ¤ÖÐ¥°¸Ö) ¸Ë¥·¨Î¥¸±μ° ¢μ²´Ò. ·¨ ÔÉμ³ · §´μ¸ÉÓ Φi(jk) − Φ123 , ± ±
´¥É·Ê¤´μ Ê¡¥¤¨ÉÓ¸Ö, Ö¢²Ö¥É¸Ö · ¸Ìμ¤ÖÐ¥°¸Ö (¸Ìμ¤ÖÐ¥°¸Ö) ¢μ²´μ° ¤²Ö ¡μ²ÓÏ¨Ì §´ Î¥´¨° μÉ´μ¸¨É¥²Ó´μ° ±μμ·¤¨´ ÉÒ rjk .
ˆ¸¶μ²Ó§ÊÖ ¶·μÍ¥¤Ê·Ê, ¨§²μ¦¥´´ÊÕ ¢ ¶. 1.1, ¢ ¶¥·¢μ³ ¶·¨¡²¨¦¥´¨¨ · §²μ¦¥´¨Ö ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±¨³ £ ·³μ´¨± ³ ¶μ²ÊΨ³ μ¤´μ³¥·´μ¥ ¨´É¥£· ²Ó´μ¥
Ê· ¢´¥´¨¥ μÉ´μ¸¨É¥²Ó´μ ψ123 (ρ) [98]:
ψ123 (ρ) = πmρ
−2
∞
dρ ρ
3
ψ123 (ρ )U + π 3/2 (Φ2(31) + Φ3(12) )V23 +
0
+ (Φ3(12) + Φ1(23) )V31 + (Φ1(23) + Φ2(31) )V12 − 2Φ123 U
P± (k0 , ρ, ρ ),
(33)
£¤¥ ψ123 (ρ) Å ±μÔË˨ͨ¥´ÉÒ · §²μ¦¥´¨Ö ¶μ K-£ ·³μ´¨± ³ (· ¤¨ ²Ó´Ò¥
ËÊ´±Í¨¨), U μ¶·¥¤¥²Ö¥É¸Ö Ê· ¢´¥´¨¥³ (5) ¨ ¢¢¥¤¥´μ μ¡μ§´ Î¥´¨¥
dΩ
A≡
A.
(34)
π3
Š·μ³¥ Éμ£μ,
P± (k0 , ρ, ρ ) =
(1,2)
(1,2)
= ∓i J2 (k0 ρ)H2 (k0 ρ )Θ(ρ − ρ) + J2 (k0 ρ )H2 (k0 ρ)Θ(ρ − ρ ) , (35)
√
(1,2)
£¤¥ k0 = 2Em, H2
Å ËÊ´±Í¨¨ • ´±¥²Ö. ·¨¸ÊɸɢÊÕÐ¥¥ ¢ (33) ¨´É¥£·¨·μ¢ ´¨¥ ¶μ Ê£² ³ (34) ³μ¦´μ Î ¸É¨Î´μ ¢Ò¶μ²´¨ÉÓ ´ ²¨É¨Î¥¸±¨:
16
Vij =
π
π/2
dθ sin2 θ cos2 θ Vij (αij ρ cos θ),
(36)
0
16
Φ123 Vij =
π αij βk pk ρ2
π/2
dθ sin θ cos θ Vij (αij ρ cos θ)×
0
× sin (αij kij ρ cos θ) sin (βk pk ρ sin θ),
(37)
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 591
Φi(jk) Vij, ki
1
= 3
π
π/2
π
2
2
dθ sin θ cos θ dθx sin θx ϕkjk (rjk )×
0
π
×
2π
dθy sin θy
0
0
2π
dφx
0
dφy exp (iβi pi ρ sin θ cos θpy )Vij, ki (|rij, ki |),
(38)
0
£¤¥
|rij, ki | =
m
m
mk,j M
M
k,j
2
2
=ρ
cos θ +
sin θ ∓ 2
sin θ cos θ cos θxy ,
mj + mk mj,k
mi
mi mj,k
cos θxy = cos θx cos θy + sin θx sin θy cos (φx − φy ),
cos θpy = cos θp cos θy + sin θp sin θy cos φy ,
m(mi + mj )
mM
αij =
,
, βi =
mi mj
mi (mj + mk )
mi Å ³ ¸¸ i-° Î ¸É¨ÍÒ, M = m1 + m2 + m3 .
2. Œ„ˆ”ˆŠ–ˆŸ “‚…ˆ‰ ”„„……‚
ˆ ‹ˆ—ˆˆ Š“‹‚‘Šƒ ‚‡ˆŒ„…‰‘’‚ˆŸ
‚ ¶. 1.2 ³Ò · ¸¸³μÉ·¥²¨ ¢ ·¨ ´É ¶·¨¡²¨¦¥´´μ£μ Ê봃 Š‚: ¢¢¥¤¥´¨¥
Ô±· ´¨·μ¢ ´´μ£μ ¶μÉ¥´Í¨ ² (27) ¢ ¶μ²ÊÎ¥´´Ò¥ · ´¥¥ Ê· ¢´¥´¨Ö (8)Ä(14) ¤ ²μ
´ ³ ¢μ§³μ¦´μ¸ÉÓ ·¥Ï¨ÉÓ § ¤ ÎÊ μ · ¸¸¥Ö´¨¨ ¶·μÉμ´μ¢ ¤¥°É·μ´ ³¨. ‡ ³¥É¨³,
ÎÉμ ¥¸²¨ ¶μÉ¥´Í¨ ² ŠÊ²μ´ ¢¢μ¤¨ÉÓ ´¥¶μ¸·¥¤¸É¢¥´´μ ¢ ¨¸Ìμ¤´ÊÕ ¸¨¸É¥³Ê (3),
Éμ “” μ± §Ò¢ ÕÉ¸Ö ´¥· §·¥Ï¨³Ò³¨ ¢¢¨¤Ê ¢μ§´¨± ÕÐ¨Ì ¸¨´£Ê²Ö·´μ¸É¥° ¢
Ö¤· Ì ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨°. μ¶Òɱ¨ ³μ¤¨Ë¨Í¨·μ¢ ÉÓ “” ¸ Í¥²ÓÕ Ê봃 Š‚ μ¸ÊÐ¥¸É¢²Ö²¨¸Ó ¢ ·Ö¤¥ · ¡μÉ (¸³., ´ ¶·¨³¥·, [99Ä104]). ¤¨´ ¨§ ²£μ·¨É³μ¢ Ê봃 Š‚ ¢Ò£²Ö¤¥² ¸²¥¤ÊÕШ³ μ¡· §μ³. ˆ§ Ê· ¢´¥´¨° ɨ¶ ” ¤¤¥¥¢ ,
¸μ¤¥·¦ Ð¨Ì Š‚, ¢Ò¤¥²Ö² ¸Ó £² ¢´ Ö ±Ê²μ´μ¢¸± Ö μ¸μ¡¥´´μ¸ÉÓ, ¨ ¢μ§´¨± ÕШ° ¶·¨ ÔÉμ³ ± ± μ¸É Éμ± ÔËË¥±É¨¢´Ò° Ö¤¥·´μ-±Ê²μ´μ¢¸±¨° ¶μÉ¥´Í¨ ² ÌμÉÖ
¨ ´¥ ¡Ò² É ±¨³ ¦¥ ±μ·μÉ±μ¤¥°¸É¢ÊÕШ³, ± ± ¨¸Ìμ¤´Ò° ¶μÉ¥´Í¨ ² Ψ¸Éμ
Ö¤¥·´μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö, ´μ Ê¡Ò¢ ² ¸ Ê¢¥²¨Î¥´¨¥³ · ¸¸ÉμÖ´¨Ö ³¥¦¤Ê ´Ê±²μ´ ³¨ £μ· §¤μ ¡Ò¸É·¥¥ ¶μÉ¥´Í¨ ² ŠÊ²μ´ .
‚ ´ ¸ÉμÖÐ¥³ · §¤¥²¥ ³Ò É ±¦¥ ¢Ò¤¥²¨³ ¸´ Î ² ¨§ “” £² ¢´ÊÕ ±Ê²μ´μ¢¸±ÊÕ Î ¸ÉÓ ¨, · §²μ¦¨¢ ¸²μ¦´Ò° Ö¤¥·´μ-±Ê²μ´μ¢¸±¨° μ¸É Éμ± ¢μ²´μ¢μ°
592 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
ËÊ´±Í¨¨ ¢ ·Ö¤ ¶μ ¶·μ¨§¢¥¤¥´¨Ö³ ¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨°, ¸Ëμ·³Ê²¨·Ê¥³ Ê· ¢´¥´¨Ö ¤²Ö ´¥¨§¢¥¸É´ÒÌ ±μÔË˨ͨ¥´Éμ¢ · §²μ¦¥´¨Ö (· ¤¨ ²Ó´ÒÌ ËÊ´±Í¨°)
¤¢ÊÌ (¨§ Ï¥¸É¨) μÉ´μ¸¨É¥²Ó´ÒÌ ¶¥·¥³¥´´ÒÌ, ¨³¥ÕÐ¨Ì · §³¥·´μ¸ÉÓ ¤²¨´Ò.
Š·μ³¥ · §¢¨Éμ° μ¡Ð¥° É¥μ·¨¨ ³Ò É ±¦¥ ¶μ¤·μ¡´μ μ¸É ´μ¢¨³¸Ö ´ £² ¢´μ³
¶·¨¡²¨¦¥´¨¨ ¤²Ö ´Ê²¥¢ÒÌ §´ Î¥´¨° ¤¢ÊÌ μÉ´μ¸¨É¥²Ó´ÒÌ μ·¡¨É ²Ó´ÒÌ ³μ³¥´Éμ¢ 1 ¨ 2 . Šμ´¥Î´μ, ¤²Ö ¡μ²¥¥ Éμδμ£μ ·¥§Ê²ÓÉ É ´¥μ¡Ì줨³μ ¡Ò²μ
¡Ò μ¸É ¢¨ÉÓ ¢ · §²μ¦¥´¨ÖÌ ¡μ²ÓÏ¥¥ Ψ¸²μ ¸² £ ¥³ÒÌ. ’ ± ÎÉμ ·¥§Ê²ÓÉ É ¢
¶·¨¡²¨¦¥´¨¨ 1 = 2 = 0 ¶·¨ ÊΥɥ Š‚ ¡Ê¤¥É ¢ μ¸´μ¢´μ³ ²¨ÏÓ μÍ¥´μδҳ,
± Î¥¸É¢¥´´Ò³. ’μδμ¸ÉÓ · ¸Î¥Éμ¢ ¢¸¥ ¦¥ ³μ¦´μ ¶μ¢Ò¸¨ÉÓ, ´μ É죤 § ¤ Î ¸É ´μ¢¨É¸Ö ¡μ²¥¥ £·μ³μ§¤±μ°.
μ²ÊÎ¥´´ Ö ¢ [102] ¶¥·¥Ëμ·³Ê²¨·μ¢ ´´ Ö ¸¨¸É¥³ Ê· ¢´¥´¨° ¸ ÊÎ¥Éμ³
Š‚ ¸μ¤¥·¦¨É ÔËË¥±É¨¢´Ò¥ (Ö¤¥·´μ-±Ê²μ´μ¢¸±¨¥) ¶μÉ¥´Í¨ ²Ò ʦ¥ ¸ ±μ´¥Î´Ò³ · ¤¨Ê¸μ³ ¢§ ¨³μ¤¥°¸É¢¨Ö, ¶μÔÉμ³Ê ¡Ê¤¥³ ¨¸Ì줨ÉÓ ¨§ ·¥§Ê²ÓÉ Éμ¢ ÔɨÌ
· ¡μÉ ¨ ¶μ²Ó§μ¢ ÉÓ¸Ö ¢ μ¸´μ¢´μ³ ¨Ì μ¡μ§´ Î¥´¨Ö³¨.
μ²´ÊÕ ¢μ²´μ¢ÊÕ ËÊ´±Í¨Õ Ψ ¸¨¸É¥³Ò É·¥Ì Î ¸É¨Í ¤²Ö ¸²ÊÎ Ö · ¸¸¥Ö´¨Ö
§ ·Ö¦¥´´μ° Î ¸É¨ÍÒ 1 ´ ¸¢Ö§ ´´μ° ¸¨¸É¥³¥ ¤¢ÊÌ ¤·Ê£¨Ì Î ¸É¨Í, § ·Ö¦¥´´μ° 2
¨ ´¥°É· ²Ó´μ° 3, ³μ¦´μ § ¶¨¸ ÉÓ ¢ ¢¨¤¥ [102]
C
)(Ψ(12) + Ψ(23) + Ψ(31) ),
Ψ = (1 + G0 T12
(39)
£¤¥ É·¨ ±μ³¶μ´¥´ÉÒ Ψ(ij) (§¤¥¸Ó ¨ ¤ ²¥¥: i, j = 1, 2, 3; i = j) Ê¤μ¢²¥É¢μ·ÖÕÉ
¸¨¸É¥³¥ ¸¢Ö§ ´´ÒÌ Ê· ¢´¥´¨°
N
C
(1 + G0 T12
)(Ψ(12) + Ψ(31) ),
Ψ(23) = Φ(23) + G0 T̃23
N
C
Ψ(31) = G0 T̃31
(1 + G0 T12
)(Ψ(12) + Ψ(23) ),
Ψ
(12)
=
N
G0 T̃12
(1
+
C
G0 T12
)(Ψ(23)
+Ψ
(31)
(40)
),
£¤¥ ®¸¢μ¡μ¤´Ò°¯ β¥´ Φ(23) μ¶·¥¤¥²Ö¥É¸Ö ´¥§ ¢¨¸¨³Ò³ ¨´É¥£· ²Ó´Ò³ Ê· ¢´¥´¨¥³ ¤²Ö ¸¨¸É¥³Ò É¥Ì ¦¥ É·¥Ì Î ¸É¨Í ¸ ®Ê·¥§ ´´Ò³¯ ¶μÉ¥´Í¨ ²μ³ ¢§ N
≡ V23 ³¥¦¤Ê
¨³μ¤¥°¸É¢¨Ö, Ö¢²ÖÕШ³¸Ö ¸Ê³³μ° Ö¤¥·´μ£μ ¶μÉ¥´Í¨ ² V23
C
Î ¸É¨Í ³¨ 2 ¨ 3 ¨ ±Ê²μ´μ¢¸±μ£μ ¶μÉ¥´Í¨ ² V12 ³¥¦¤Ê Î ¸É¨Í ³¨ 1 ¨ 2:
N
C (23)
Φ(23) = Φ23 + G0 T23
G0 T12
Φ .
(41)
‡¤¥¸Ó Φ23 Å ®´ Î ²Ó´ Ö¯ ¢μ²´μ¢ Ö ËÊ´±Í¨Ö, ¶·¥¤¸É ¢²Ö¥³ Ö ¢ ¢¨¤¥ ¶·μ¨§¢¥¤¥´¨Ö ¢μ²´μ¢μ° ËÊ´±Í¨¨ ϕ(1, 23) μÉ´μ¸¨É¥²Ó´μ£μ ¤¢¨¦¥´¨Ö Î ¸É¨ÍÒ 1
¨ ¸¨¸É¥³Ò (23) (¶²μ¸± Ö ¢μ²´ ) ¨ ψ23 (23) Å ¢´ÊÉ·¥´´¥° ¢μ²´μ¢μ° ËÊ´±Í¨¨
¸¨¸É¥³Ò Î ¸É¨Í 2 ¨ 3 ¢ ¸¢Ö§ ´´μ³ ¸μ¸ÉμÖ´¨¨ (23 Å ¸μμÉ¢¥É¸É¢ÊÕÐ Ö Ô´¥·£¨Ö
¸¢Ö§¨ ¸¨¸É¥³Ò ¤¢ÊÌ Î ¸É¨Í):
Φ23 = ϕ(1, 23)ψ23 (23).
(42)
¶μ³´¨³ μ¶·¥¤¥²¥´¨Ö 춥· Éμ·μ¢ [102], ¢Ìμ¤ÖÐ¨Ì ¢ Ê· ¢´¥´¨Ö (40),
C
C
(41): T12
≡ T12
(Z) Å ¤¢ÊÌÎ ¸É¨Î´Ò° ±Ê²μ´μ¢¸±¨° 춥· Éμ· ¶¥·¥Ìμ¤ , ʤμC
C
C
= V12
(1 + G0 T12
); T̃ijN ≡
¢²¥É¢μ·ÖÕШ° 춥· Éμ·´μ³Ê Ê· ¢´¥´¨Õ T12
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 593
T̃ijN (Z) Å ¤¢ÊÌÎ ¸É¨Î´Ò¥ Ö¤¥·´μ-±Ê²μ´μ¢¸±¨¥ 춥· Éμ·Ò, Ê¤μ¢²¥É¢μ·ÖÕШ¥
N
C
C
C
Ê· ¢´¥´¨Õ T̃ijN = Vij (1 + GC
12 T̃ij ); G12 ≡ G12 (Z) = G0 (1 + T12 G0 ) ≡
C
(1 + G0 T12 )G0 Å ±Ê²μ´μ¢¸± Ö ËÊ´±Í¨Ö (춥· Éμ· ƒ·¨´ ) ¤²Ö ¸¨¸É¥³Ò É·¥Ì
Î ¸É¨Í, ¤¢¥ ¨§ ±μÉμ·ÒÌ, 1 ¨ 2, § ·Ö¦¥´Ò. „²Ö ¤ ²Ó´¥°Ï¨Ì ¶·¥μ¡· §μ¢ ´¨°
¨ μ¡Ð¥£μ ¨¸¸²¥¤μ¢ ´¨Ö ´ ³ ¥Ð¥ ¶μ´ ¤μ¡ÖÉ¸Ö ¡μ²¥¥ ¶·μ¸ÉÒ¥, Î¥³ T̃ijN , ¤¢ÊÌÎ ¸É¨Î´Ò¥ 춥· Éμ·Ò ¶¥·¥Ìμ¤ TijN ≡ TijN (Z), Ê¤μ¢²¥É¢μ·ÖÕШ¥ Ê· ¢´¥´¨Ö³
TijN = Vij (1 + G0 TijN ) ¨ ¸¢Ö§ ´´Ò¥ Éμ²Ó±μ ¸ Ö¤¥·´Ò³¨ ¶μÉ¥´Í¨ ² ³¨ ¢§ ¨³μ¤¥°¸É¢¨Ö Vij . ‘ Ôɨ³¨ 춥· Éμ· ³¨ Ê· ¢´¥´¨Ö ¤²Ö 춥· Éμ·μ¢ T̃ijN ³μ¦´μ
N
C
§ ¶¨¸ ÉÓ ¥Ð¥ ¨ ¢ ¢¨¤¥ T̃ijN = TijN [1 + (GC
12 − G0 )T̃ij ]. ·¨ V12 → 0 ¡Ê¤¥³,
C
C
N
N
(23)
μÎ¥¢¨¤´μ, ¨³¥ÉÓ T12 → 0, G12 → G0 , T̃ij → Tij , Φ
→ Φ23 .
2.1. ¥·¥Ëμ·³Ê²¨·μ¢± Ê· ¢´¥´¨° ¤¢¨¦¥´¨Ö. ‘¨¸É¥³ Ê· ¢´¥´¨° (39),
(40) ¤²Ö ¶μ²´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ψ É·¥ÌÎ ¸É¨Î´μ° ¸¨¸É¥³Ò ¸ ¤¢Ê³Ö § ·Ö¦¥´´Ò³¨ Î ¸É¨Í ³¨ Ö¢²Ö¥É¸Ö ¢¥¸Ó³ ¸²μ¦´μ° ¨ ¤²Ö μ¡Ð¥£μ ¨¸¸²¥¤μ¢ ´¨Ö,
¨ ¤²Ö Ψ¸²¥´´ÒÌ · ¸Î¥Éμ¢ (· ¢´μ ± ± ¨ Ê· ¢´¥´¨¥ (41), ·¥Ï¥´¨¥ ±μÉμ·μ£μ
´¥μ¡Ì줨³μ ¤²Ö ´ Ì즤¥´¨Ö ËÊ´±Í¨¨ Ψ ¨ ¶·¥¤¸É ¢²Ö¥É ¸μ¡μ° μɤ¥²Ó´ÊÕ § ¤ ÎÊ). μÔÉμ³Ê ¢´ Î ²¥ ³Ò Ôɨ Ê· ¢´¥´¨Ö ¶·¥μ¡· §Ê¥³ ± ¡μ²¥¥ Ê¤μ¡´μ³Ê ¤²Ö
Ψ¸²¥´´μ£μ ·¥Ï¥´¨Ö ¢¨¤Ê, ʶ·μÐ Ö, ¶·¥¦¤¥ ¢¸¥£μ, ¢Ìμ¤ÖШ¥ ¢ ´¨Ì ¸²μ¦´Ò¥
춥· Éμ·Ò ¨ ¨§¡ ¢²ÖÖ¸Ó μÉ Î ¸É¨ É ±¨Ì 춥· Éμ·μ¢ [105].
N
μ¤¸É ¢¨¢, ´ ¶·¨³¥·, ¢μ ¢Éμ·μ¥ Ê· ¢´¥´¨¥ (40) ¢³¥¸Éμ 춥· Éμ· T̃31
C N
C
¸Ê³³Ê V31 + V31 G12 T̃31 ¨ ¢μ¸¶μ²Ó§μ¢ ¢Ï¨¸Ó μ¶·¥¤¥²¥´¨¥³ G12 , ¶μ²ÊΨ³
C
Ψ(31) = G0 V31 (1 + G0 T12
)(Ψ(12) + Ψ(23) )+
C
N
C
+ G0 V31 (1 + G0 T12
) G0 T̃31
(1 + G0 T12
)(Ψ(12) + Ψ(23) ) . (43)
‚Ò· ¦¥´¨¥ ¢ ±¢ ¤· É´ÒÌ ¸±μ¡± Ì ¥¸ÉÓ ´¥ ÎÉμ ¨´μ¥, ± ± ±μ³¶μ´¥´É Ψ(31) ,
¶μÔÉμ³Ê c ÊÎ¥Éμ³ (39) Ê· ¢´¥´¨¥ (43) §´ Ψɥ²Ó´μ ʶ·μ¸É¨É¸Ö:
Ψ(31) = G0 V31 Ψ,
(44)
£¤¥ ¢ ¶· ¢μ° Î ¸É¨ ʦ¥ ¨³¥¥³ ¨¸±μ³ÊÕ ¢μ²´μ¢ÊÕ ËÊ´±Í¨Õ Ψ. ´ ²μ£¨ÎN
N
´Ò³ μ¡· §μ³ ¨§¡ ¢¨³¸Ö μÉ μ¶¥· Éμ·μ¢ T̃12
¨ T̃23
¢ μ¸É ²Ó´ÒÌ Ê· ¢´¥´¨ÖÌ
¸¨¸É¥³Ò (40):
(45)
Ψ(12) = G0 V12 Ψ,
(23)
(23)
C
(23)
.
(46)
Ψ
−Φ
= G0 V23 Ψ − (1 + G0 T12 )Φ
줥°¸É¢Ê¥³ É¥¶¥·Ó ´ ²¥¢Ò¥ ¨ ¶· ¢Ò¥ Î ¸É¨ Ê· ¢´¥´¨° (44)Ä(46) ±Ê²μ´μ¢C
). ‘²μ¦¨¢ ¶μ²ÊΨ¢Ï¨¥¸Ö Ê· ¢´¥´¨Ö, ¸ ÊÎ¥Éμ³ (39)
¸±¨³ 춥· Éμ·μ³ (1+G0 T12
C
¨ μ¶·¥¤¥²¥´¨Ö G12 ¶μ²ÊΨ³ μ¤´μ Ê· ¢´¥´¨¥ ¤²Ö ¶μ²´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ψ:
C
C
(23)
Ψ − (1 + G0 T12
)Φ(23) = GC
+
12 U Ψ − (1 + G0 T12 )Φ
C
(23)
+ GC
. (47)
12 (V31 + V12 )(1 + G0 T12 )Φ
594 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
”Ê´±Í¨Ö Φ(23) , ¢Ìμ¤ÖÐ Ö ¢ (47), Ö¢²Ö¥É¸Ö, ± ± ¨ Ψ, ´¥¨§¢¥¸É´μ°, ¨ ¤ ²¥¥
³Ò ¶μ± ¦¥³, ± ± ¥¥ ³μ¦´μ ´ °É¨, ¨¸¸²¥¤ÊÖ Ê· ¢´¥´¨¥ (41). μ ¸´ Î ² ¶·¥¤²μ¦¨³ ³¥Éμ¤ ´ Ì즤¥´¨Ö Ψ ¨§ Ê· ¢´¥´¨Ö (47), ¸Î¨É Ö Φ(23) ¨§¢¥¸É´μ°,
É. ¥. ʦ¥ ´ °¤¥´´μ° ¨§ (41).
Î¥¢¨¤´μ, ¢ (47) ¢³¥¸Éμ Φ(23) Ê¤μ¡´¥¥ ¢¢¥¸É¨ ËÊ´±Í¨Õ
C
)Φ(23) .
χ(23) = (1 + G0 T12
(48)
É ´μ¢ Ö ËÊ´±Í¨Ö ¨³¥¥É ¶·μ¸Éμ° Ë¨§¨Î¥¸±¨° ¸³Ò¸². …¸²¨ ¶¥·¥¶¨¸ ÉÓ Ê· ¢´¥´¨¥ (47) ± ±
(23)
(23)
) + GC
,
Ψ − χ(23) = GC
12 U (Ψ − χ
12 (V31 + V12 )χ
(49)
Éμ ¢¨¤´μ, ÎÉμ ¶·¨ ®μɱ²ÕÎ¥´¨¨¯ Ö¤¥·´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° Î ¸É¨ÍÒ 1 ¸ ¤¢Ê³Ö
μ¸É ²Ó´Ò³¨ (É. ¥. ¶·¨ V12 = V31 = 0) ·¥Ï¥´¨¥³ ¶μ²ÊÎ ÕÐ¥£μ¸Ö Ê· ¢´¥´¨Ö
(23)
)
Ψ − χ(23) = GC
12 V23 (Ψ − χ
(50)
¡Ê¤¥É ËÊ´±Í¨Ö Ψ = χ(23) . Éμ ¢¨¤´μ É ±¦¥ ¨ ¨§ ¨¸Ìμ¤´ÒÌ Ê· ¢´¥´¨° (39)
¨ (40), É ± ± ± ¶·¨ ÔÉμ³
Ψ(31) = Ψ(12) = 0,
Ψ(23) = Φ(23)
C
¨ Ψ = (1 + G0 T12
)Ψ(23) = χ(23) .
’ ±¨³ ¦¥ μ¡· §μ³ ¶·¥μ¡· §Ê¥³ Ê· ¢´¥´¨¥ (41), ¨§¡ ¢¨¢Ï¨¸Ó μ¤´μ¢·¥N
³¥´´μ μÉ ¸²μ¦´μ£μ 춥· Éμ· T23
. ‡ ³¥É¨³ ¥Ð¥, ÎÉμ Ê· ¢´¥´¨¥ (41) ¢ μɲ¨Î¨¥ μÉ (47) ´¥ § ¢¨¸¨É μÉ Ö¤¥·´ÒÌ ¶μÉ¥´Í¨ ²μ¢ V12 ¨ V31 , É ± ± ± μÉ ´¨Ì ´¥
§ ¢¨¸ÖÉ ¨§¢¥¸É´ Ö ËÊ´±Í¨Ö Φ23 ¨ ¢¸¥ 춥· Éμ·Ò, ¢Ìμ¤ÖШ¥ ¢ (41), ± ± ¨ 춥(23)
¨ χ(23) É ±¦¥ ´¥ § ¢¨¸ÖÉ μÉ ¶μÉ¥´Í¨ ²μ¢
· Éμ· GC
12 . μÔÉμ³Ê ËÊ´±Í¨¨ Φ
V12 ¨ V31 ¨ ´¥ ³¥´ÖÕɸÖ, ¥¸²¨ ¶μ¸²¥¤´¨¥ § ´Ê²¨ÉÓ.
N
ˆ¸¶μ²Ó§ÊÖ Ê· ¢´¥´¨¥ ¤²Ö 춥· Éμ· T23
, § ¶¨Ï¥³ Ê· ¢´¥´¨¥ (41) ¢ ¢¨¤¥
(23)
C (23)
N
C (23)
Φ
(51)
= Φ23 + G0 V23 G0 T12 Φ
+ G0 V23 G0 T23
G0 T12
Φ
¨ § ³¥É¨³, ÎÉμ ¢Ò· ¦¥´¨¥ ¢ ±¢ ¤· É´ÒÌ ¸±μ¡± Ì ¸μ£² ¸´μ (41) ¥¸ÉÓ · §´μ¸ÉÓ
Φ(23) − Φ23 . „¥°¸É¢ÊÖ ¸²¥¢ ´ ¶μ²ÊÎ¥´´μ¥ Ê· ¢´¥´¨¥
C
Φ(23) = (1 − G0 V23 )Φ23 + G0 V23 (1 + G0 T12
)Φ(23)
C
1 + G0 T12
,
춥· Éμ·μ³
Í¨Õ ( ´ ²μ£ Φ23 )
¨¸¶μ²Ó§ÊÖ (48), ¢¢μ¤Ö 춥· Éμ·
GC
12
C
χC = (1 + G0 T12
)(1 − G0 V23 )Φ23 ,
¤²Ö ËÊ´±Í¨¨ χ
(23)
(52)
¨ μ¶·¥¤¥²ÖÖ ËÊ´±(53)
μ±μ´Î É¥²Ó´μ ¶μ²ÊΨ³ Ê· ¢´¥´¨¥
(23)
χ(23) = χC + GC
.
12 V23 χ
(54)
‚ ÔÉμ³ Ê· ¢´¥´¨¨ ¢¸¥, ±·μ³¥ ËÊ´±Í¨¨ χ(23) , ¸Î¨É ¥É¸Ö ¨§¢¥¸É´Ò³.
„ ²¥¥ ¡Ê¤¥³ ¨¸Ì줨ÉÓ ¨§ ¶·¥μ¡· §μ¢ ´´ÒÌ Ê· ¢´¥´¨° (49) ¨ (54), ´μ ¤²Ö
μ¡μ¸´μ¢ ´¨Ö ´¥±μÉμ·ÒÌ ÊÉ¢¥·¦¤¥´¨° ´ ³ É ±¦¥ ¶μ´ ¤μ¡ÖÉ¸Ö ¨ ¶¥·¢μ´ Î ²Ó´Ò¥ Ê· ¢´¥´¨Ö (39)Ä(41).
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 595
2.2. §²μ¦¥´¨¥ ¢ ¡Ò¸É·μ¸Ìμ¤ÖШ¥¸Ö ·Ö¤Ò. ˆ§ Ê· ¢´¥´¨° (39), (40),
¸μ¤¥·¦ Ð¨Ì ±·μ³¥ ±μ·μÉ±μ¤¥°¸É¢ÊÕÐ¨Ì Ö¤¥·´ÒÌ ¶μÉ¥´Í¨ ²μ¢ Vij É ±¦¥ ¨
C
¤ ²Ó´μ¤¥°¸É¢ÊÕШ° ±Ê²μ´μ¢¸±¨° ¶μÉ¥´Í¨ ² V12
, É¥³ ´¥ ³¥´¥¥ ¸²¥¤Ê¥É, ÎÉμ
μɤ¥²Ó´Ò¥ Î ¸É¨ ¶μ²´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨, ¨³¥´´μ Ψ(23) − Φ(23) , Ψ(31) ,
C
)Φ(23) = Ψ − χ(23) , ³μ¦´μ · §²μ¦¨ÉÓ ¢ ¡ÒΨ(12) ¨ · §´μ¸ÉÓ Ψ − (1 + G0 T12
¸É·μ¸Ìμ¤ÖШ¥¸Ö ·Ö¤Ò ¶μ K-£ ·³μ´¨± ³. Éμ£μ, μ¤´ ±μ, ´¥²Ó§Ö ¸¤¥² ÉÓ ¤²Ö
C
· §´μ¸É¨ Φ(23) − Φ23 ¢¢¨¤Ê ¤ ²Ó´μ¤¥°¸É¢¨Ö ¶μÉ¥´Í¨ ² V12
, ÎÉμ ´¥¶μ¸·¥¤¸É¢¥´´μ ¢¨¤´μ ¨§ (41). μÔÉμ³Ê μ¸É ´μ¢¨³¸Ö ¶μ± ´ · §²μ¦¥´¨¨ · §´μ¸É¨
Ψ − χ(23) .
¥¸³μÉ·Ö ´ ¢μ§³μ¦´μ¸ÉÓ · §²μ¦¥´¨Ö Ψ − χ(23) ¢ ·Ö¤ ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±μ³Ê ¡ §¨¸Ê (¶μ¤μ¡´μ Éμ³Ê, ± ± ÔÉμ ¡Ò²μ ¸¤¥² ´μ ¢ ¶·¥¤Ò¤ÊÐ¥³ · §¤¥²¥),
¢ ´ ¸ÉμÖÐ¥³ ¸²ÊÎ ¥ ÔÉμ ¢Ò¶μ²´¨ÉÓ ±· °´¥ ´¥Ê¤μ¡´μ ¨§-§ ´ ²¨Î¨Ö ¢ ¶μ²C
. μÔÉμ³Ê · Í¨μ´ ²Ó´Ò³ §¤¥¸Ó ¡Ê¤¥É ¢Ò´μ³ £ ³¨²ÓÉμ´¨ ´¥ ¶μÉ¥´Í¨ ² V12
¡μ· ¸²¥¤ÊÕÐ¨Ì ¶¥·¥³¥´´ÒÌ: ¤¢ÊÌ · §³¥·´ÒÌ ¶¥·¥³¥´´ÒÌ ¤²¨´Ò r = |r| ¨
ρ = |ρ| ¨ ¤¢ÊÌ ¶ · ¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì Ê£²μ¢ Ω1 ≡ (θ1 , ϕ1 ) ¨ Ω2 ≡ (θ2 , ϕ2 ),
μ¶·¥¤¥²ÖÕÐ¨Ì μ·¨¥´É ͨ¨ ¤¢ÊÌ É·¥Ì³¥·´ÒÌ ¢¥±Éμ·μ¢ r = r1 − r2 ¨ ρ =
r3 − (m1 r1 + m1 r2 )/(m1 + m2 ), £¤¥ rj ¨ mj Å · ¤¨Ê¸-¢¥±Éμ· ¨ ³ ¸¸ j-°
Î ¸É¨ÍÒ. Í¨μ´ ²Ó´μ¸ÉÓ É ±μ£μ ¢Ò¡μ· ¶¥·¥³¥´´ÒÌ μ¡ÑÖ¸´Ö¥É¸Ö É¥³, ÎÉμ
¢ ÔÉμ³ ¸²ÊÎ ¥ ±Ê²μ´μ¢¸±¨° ¶μÉ¥´Í¨ ² ¡Ê¤¥É § ¢¨¸¥ÉÓ Éμ²Ó±μ μÉ μ¤´μ° ¶¥C
C
≡ V12
(r). §²μ¦¨³ É¥¶¥·Ó · §´μ¸ÉÓ Ψ − χ(23) ¢ ·Ö¤ ¶μ
·¥³¥´´μ°: V12
¶·μ¨§¢¥¤¥´¨Ö³ ¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨°:
ψ1 m1 ,2 m2 (r, ρ)Y1 m1 (Ω1 )Y2 m2 (Ω2 ),
(55)
Ψ − χ(23) =
1 m1 2 m2
±μÉμ·Ò°, ± ± ¨ ·Ö¤ ¶μ K-£ ·³μ´¨± ³, ¡Ê¤¥É ¡Ò¸É·μ¸Ìμ¤ÖШ³¸Ö, ¶μ¸±μ²Ó±Ê
¶·¨ r → ∞ ¨ ρ → ∞ · §´μ¸ÉÓ Ψ − χ(23) ¨ ¢¸¥ · ¤¨ ²Ó´Ò¥ ËÊ´±Í¨¨
ψ1 m1 ,2 m2 (r, ρ) ¡Ò¸É·μ ¸É·¥³ÖÉ¸Ö ± ´Ê²Õ.
μ¤¸É ¢¨³ · §²μ¦¥´¨¥ (55) ¢ (49) ¨ ʳ´μ¦¨³ ¶μ²ÊΨ¢Ï¥¥¸Ö Ê· ¢´¥´¨¥
´ Y∗ m (Ω1 )Y∗ m (Ω2 ), ¨´É¥£·¨·ÊÖ ¥£μ ¤ ²¥¥ ¶μ Ê£²μ¢Ò³ ¶¥·¥³¥´´Ò³ Ω1
1
1
2
2
¨ Ω2 , ¶μ²ÊΨ³ ¡¥¸±μ´¥Î´ÊÕ ¸¨¸É¥³Ê ¸¢Ö§ ´´ÒÌ Ê· ¢´¥´¨° ¤²Ö · ¤¨ ²Ó´ÒÌ
ËÊ´±Í¨° ψ1 m1 ,2 m2 (r, ρ). ·¨¢¥¤¥³ §¤¥¸Ó Éμ²Ó±μ ·¥§Ê²ÓÉ É ¤²Ö 1 = m1 = 0
¨ 2 = m2 = 0, ±μÉμ·Ò³ ¡Ê¤¥³ ¶μ²Ó§μ¢ ÉÓ¸Ö ´¨¦¥, ¢¢μ¤Ö ¤²Ö ±· ɱμ¸É¨
μ¡μ§´ Î¥´¨¥ ψ00,00 (r, ρ) = ψ(r, ρ):
ψ(r, ρ) =
1
ψ1 m1 ,2 m2 (r, ρ)Y1 m1 (Ω1 )Y2 m2 (Ω2 )+
dΩ1 dΩ2 GC
=
12 U
4π
1 m1 2 m2
1
(23)
dΩ1 dΩ2 GC
+
. (56)
12 (V31 + V12 )χ
4π
¥¨§¢¥¸É´ Ö ËÊ´±Í¨Ö χ(23) ¢ (56) ¤μ ¸¨Ì ¶μ· ¸Î¨É ² ¸Ó § ¤ ´´μ°. „²Ö ¥¥
´ Ì즤¥´¨Ö ¢¢¥¤¥³ É¥¶¥·Ó ¸¨³¶ÉμɨΥ¸±ÊÕ ËÊ´±Í¨Õ χ23 , ±μÉμ·ÊÕ ³μ¦´μ
596 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¶μ²ÊΨÉÓ ¨§ χ(23) ¶·¨ ʸ²μ¢¨¨ r → ∞ ¨ ±μÉμ· Ö ¡Ê¤¥É · ¢´ ¶·μ¨§¢¥¤¥´¨Õ
¨§¢¥¸É´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö Î ¸É¨Í 2 ¨ 3 ψ23 (23) ¨
ËÊ´±Í¨¨ ϕC (1, 23) μÉ´μ¸¨É¥²Ó´μ£μ ¤¢¨¦¥´¨Ö ¸¢Ö§ ´´μ° ¸¨¸É¥³Ò (23) ¨ § ·Ö¦¥´´μ° Î ¸É¨ÍÒ 1. ”Ê´±Í¨Ö ϕC (1, 23) μ¶·¥¤¥²Ö¥É¸Ö ¸μ£² ¸´μ [106] ¸²¥¤ÊÕШ³ μ¡· §μ³:
(57)
ϕC (1, 23) = ϕ(1, 23) exp iη12 ln(k12 r − k12 r) , k12 = |k12 |,
£¤¥ η12 Å ¶ · ³¥É· ‡μ³³¥·Ë¥²Ó¤ ; k12 Å μÉ´μ¸¨É¥²Ó´Ò° ¨³¶Ê²Ó¸ Î ¸É¨Í 1
¨ 2 ´ ¡¥¸±μ´¥Î´μ¸É¨. ”Ê´±Í¨Ö (57) ¶¥·¥Ìμ¤¨É ¢ ¶²μ¸±ÊÕ ¢μ²´Ê ϕ(1, 23)
C
→ 0. ’ ±¨³ μ¡· §μ³, ËÊ´±Í¨Ö χ23 = ϕC (1, 23) ψ23 (23) ¸Î¨É ¥É¸Ö
¶·¨ V12
¨§¢¥¸É´μ°, ± ± ¨ Φ23 = ϕ(1, 23) ψ23 (23).
‚ Éμ ¢·¥³Ö ± ± · §´μ¸ÉÓ Φ(23) − Φ23 ´¥ · §² £ ¥É¸Ö ¢ ¡Ò¸É·μ¸Ìμ¤ÖШ°¸Ö
·Ö¤ ¶μ ¶μ²´μ³Ê ´ ¡μ·Ê Ê£²μ¢ÒÌ ËÊ´±Í¨°, · §´μ¸ÉÓ χ(23) − χ23 ³μ¦´μ · §²μ¦¨ÉÓ, ± ± ¨ Ψ − χ(23) :
χ(23) − χ23 =
χ1 m1 ,2 m2 (r, ρ)Y1 m1 (Ω1 )Y2 m2 (Ω2 ).
(58)
1 m1 2 m2
—Éμ¡Ò ¶μ²ÊΨÉÓ Ê· ¢´¥´¨Ö ¤²Ö · ¤¨ ²Ó´ÒÌ ËÊ´±Í¨° χ1 m1 ,2 m2 (r, ρ), ³μ¦´μ
¶μ¸Éʶ¨ÉÓ É ±¨³ ¦¥ μ¡· §μ³, ± ± ¨ ¶·¨ ¸μ¸É ¢²¥´¨¨ Ê· ¢´¥´¨° ¤²Ö ËÊ´±Í¨°
ψ1 m1 ,2 m2 (r, ρ), ¨¸¶μ²Ó§ÊÖ ´ ²μ£ Ê· ¢´¥´¨Ö (49) ¤²Ö ËÊ´±Í¨¨ χ(23) :
(23)
C
χ(23) − χ23 = GC
− χ23 ) + GC
12 V23 (χ
12 V23 χ23 + χ − χ23 ,
(59)
ÎÉμ ´¥¶μ¸·¥¤¸É¢¥´´μ ¸²¥¤Ê¥É ¨§ (54).
2.3. “· ¢´¥´¨Ö ¤²Ö · ¤¨ ²Ó´ÒÌ ËÊ´±Í¨° ¢ ¸²ÊÎ ¥ 1 = 2 = 0. ¥ μ£· ´¨Î¨¢ Ö μ¡Ð´μ¸É¨, · ¸¸³μÉ·¨³ ¢ ± Î¥¸É¢¥ ¶·¨³¥· ¶·μ¸É¥°Ï¥¥ Ê· ¢´¥´¨¥
¤²Ö · ¤¨ ²Ó´ÒÌ ËÊ´±Í¨° (56), ¢Ìμ¤ÖÐ¥¥ ¢ ¡¥¸±μ´¥Î´ÊÕ ¸¨¸É¥³Ê ¸¢Ö§ ´´ÒÌ
¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨°.
·¥¦¤¥ ¢¸¥£μ · ¸¸³μÉ·¨³ ɨ¶¨Î´Ò° μ¡Ð¨° Î¥ÉÒ·¥Ì±· É´Ò° ¨´É¥£· ² ¶μ
Ê£²μ¢Ò³ ¶¥·¥³¥´´Ò³, ¶·¨¸ÊɸɢÊÕШ° ¢ ¨¸¸²¥¤Ê¥³ÒÌ Ê· ¢´¥´¨ÖÌ:
J(r, ρ) = dΩ1 dΩ2 GC
(60)
12 f (r, ρ, Ω1 , Ω2 ),
£¤¥ f (r, ρ, Ω1 , Ω2 ) Å ¶μ± ¶·μ¨§¢μ²Ó´ Ö ËÊ´±Í¨Ö, GC
12 Å ±Ê²μ´μ¢¸± Ö ËÊ´±Í¨Ö ƒ·¨´ , ¢Ìμ¤ÖÐ Ö ¢ (56):
GC
12
≡
−1
2
2
C
= E + i0 +
Δr +
Δρ − V12
=
2μ12
2μ3(12)
−1
2 ρ2
2 r2
C
= E + i0 − Tr −
− Tρ −
− V12
, (61)
2μ12 r2
2μ3(12) ρ2
C −1
(E+i0−H0 −V12
)
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 597
∂
2 ∂
r
,
Tr = −
2μ12 r2 ∂r
∂r
1
∂
2 ∂
Tρ = −
ρ
,
2μ3(12) ρ2 ∂ρ
∂ρ
1
(62)
£¤¥ μ12 = m1 m2 /m12 ¨ μ3(12) = m3 m12 /(m3 + m12 ) Å ¶·¨¢¥¤¥´´Ò¥ ³ ¸¸Ò,
m12 = m1 + m2 . §²μ¦¨³ É¥¶¥·Ó f (r, ρ, Ω1 , Ω2 ) ¢ ·Ö¤ ¶μ ¶·μ¨§¢¥¤¥´¨Ö³
¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨°
f (r, ρ, Ω1 , Ω2 ) =
f1 m1 ,2 m2 (r, ρ)Y1 m1 (Ω1 )Y2 m2 (Ω2 )
(63)
1 m1 2 m2
¨ ¶μ¤¸É ¢¨³ ¸μμÉ´μÏ¥´¨Ö (61)Ä(63) ¢ (60):
J(r, ρ) = 4πGC
12 (r, ρ)f00,00 (r, ρ),
(64)
£¤¥ GC
12 (r, ρ) Å ®Ê±μ·μÎ¥´´ Ö¯ ±Ê²μ´μ¢¸± Ö ËÊ´±Í¨Ö ƒ·¨´ C −1
GC
,
12 (r, ρ) = (E + i0 − Tr − Tρ − V12 )
ËÊ´±Í¨Ö f00,00 (r, ρ) μ¶·¥¤¥²Ö¥É¸Ö ¸μ£² ¸´μ (63) ¢Ò· ¦¥´¨¥³
1
f00,00 (r, ρ) =
dΩ1 dΩ2 f (r, ρ, Ω1 , Ω2 ).
4π
(65)
(66)
μ¸±μ²Ó±Ê ¢ ¡¥¸±μ´¥Î´Ò° ¡Ò¸É·μ¸Ìμ¤ÖШ°¸Ö ·Ö¤ ¢ (56) μ¸´μ¢´μ° ¢±² ¤
¢´μ¸¨É ¸² £ ¥³μ¥ ¸ 1 = m1 = 0 ¨ 2 = m2 = 0, ³Ò ¨ · ¸¸³μÉ·¨³ ÔÉμÉ ¶·μ¸É¥°Ï¨° ¸²ÊÎ °. ˆ¸¶μ²Ó§ÊÖ ¸μμÉ´μÏ¥´¨Ö (64)Ä(66), ¨§ (56) ¶μ²ÊΨ³ ²¨´¥°´μ¥
´¥μ¤´μ·μ¤´μ¥ ¨´É¥£· ²Ó´μ¥ Ê· ¢´¥´¨¥ ¤²Ö ψ(r, ρ):
ψ(r, ρ) =
1
C
G
(r,
ρ)
ψ(r,
ρ)
dΩ
dΩ2 U +
1
(4π)2 12
1 C
G (r, ρ) dΩ1 dΩ2 (V31 + V12 )χ(23) . (67)
+
4π 12
´ ²μ£¨Î´Ò³ μ¡· §μ³ ³μ¦´μ ¶μ²ÊΨÉÓ, ¨¸¶μ²Ó§ÊÖ (58) ¨ (59), ¨´É¥£· ²Ó´μ¥ Ê· ¢´¥´¨¥ ¤²Ö · ¤¨ ²Ó´μ° ËÊ´±Í¨¨ χ(r, ρ) = χ00,00 (r, ρ):
1
C
G
(r,
ρ)
χ(r,
ρ)
dΩ
dΩ2 V23 +
1
(4π)2 12
1 C
−1
G12 (r, ρ) dΩ1 dΩ2 V23 χ23 + (GC
(χC − χ23 ) . (68)
+
12 )
4π
χ(r, ρ) =
μ¸±μ²Ó±Ê Ê· ¢´¥´¨¥ (68) ¸μ¤¥·¦¨É Éμ²Ó±μ μ¤´Ê ´¥¨§¢¥¸É´ÊÕ ËÊ´±Í¨Õ
χ(r, ρ), Í¥²¥¸μμ¡· §´μ ¸´ Î ² ·¥Ï¨ÉÓ ¨³¥´´μ ÔÉμ Ê· ¢´¥´¨¥, ±μÉμ·μ¥ § ¶¨Ï¥³ ¢ ±· É±μ° Ëμ·³¥:
χ(r, ρ) = GC
12 (r, ρ)χ(r, ρ)V 23 + X(r, ρ),
(69)
598 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
£¤¥
V 23
1
≡ V 23 (r, ρ) =
(4π)2
dΩ1
dΩ2 V23 (|r2 − r3 |)
¨ X(r, ρ) (¢Éμ·μ¥ ¸² £ ¥³μ¥ ¢ ¶· ¢μ° Î ¸É¨ (68)) Å ¨§¢¥¸É´Ò¥ ËÊ´±Í¨¨.
C
(r) ¨ Tρ [106]
‚¢¥¤¥³ ¸μ¡¸É¢¥´´Ò¥ ËÊ´±Í¨¨ 춥· Éμ·μ¢ Tr + V12
1/2
πη12
2
πη12
ϕk12 (r) =
k12 exp ik12 r −
F (1 + iη12 , 2, −2ik12 r),
π
2
sh (πη12 )
(70)
2 sin (k3(12) ρ)
,
ϕk3(12) (ρ) =
π
ρ
£¤¥ k3(12) Å ¢μ²´μ¢μ¥ Ψ¸²μ μÉ´μ¸¨É¥²Ó´μ£μ ¤¢¨¦¥´¨Ö Î ¸É¨ÍÒ 3 ¨ ¸¨¸É¥³Ò (12). ˆ¸¶μ²Ó§ÊÖ μ·Éμ´μ·³¨·μ¢±Ê ¨ ¶μ²´μÉÊ ÔÉ¨Ì ËÊ´±Í¨°, ¨´É¥£· ²Ó´μ¥ Ê· ¢´¥´¨¥ (69) ¤²Ö χ(r, ρ) ¸μ£² ¸´μ (64)Ä(66) ³μ¦´μ ¶¥·¥¶¨¸ ÉÓ ¢ ¢¨¤¥
∞
χ(r, ρ) − X(r, ρ) =
2
∞
dr r
0
dρ ρ 2 χ(r , ρ )V 23 (r , ρ )×
0
∞
×
0
dq ϕ∗q (r ) ϕq (r)
∞
dκ
0
ϕ∗κ (ρ ) ϕκ (ρ)
2 2
2 . (71)
q
2 κ
Z−
+
2μ12
2μ3(12)
ˆ´É¥£· ² ¶μ dκ ¢ (71) ³μ¦´μ ¶·¥¤¸É ¢¨ÉÓ ¢ Ëμ·³¥ ¨´É¥£· ² ¸ ¡¥¸±μ´¥Î´Ò³¨ ¶·¥¤¥² ³¨ ¨, ¨¸¶μ²Ó§ÊÖ É¥μ·¥³Ê μ ¢ÒÎ¥É Ì ¨ ËÊ´±Í¨¨ •¥¢¨¸ °¤ ,
¢ÒΨ¸²¨ÉÓ ¥£μ ¢ Ö¢´μ³ ¢¨¤¥:
2 1 1
π ρρ 2
∞
dκ
−∞
R± (q) = −
sin (κρ ) sin (κρ)
2 2
2 =
q
2 κ
E + i0 −
+
2μ12
2μ3(12)
2 1 =
R+ (q)Θ(bq ) + R− (q)Θ(−bq ) ,
π ρρ
πμ3(12) exp ±i bq ρ sin bq ρ Θ(ρ − ρ )+
2
bq
+ exp ±i bq ρ sin
bq ρ Θ(ρ − ρ) ,
2μ3(12)
2 q 2
bq =
E
−
.
2
2μ12
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 599
μ¸²¥ ´ Ì즤¥´¨Ö ËÊ´±Í¨¨ χ(r, ρ) ¨ ¶μ¤¸É ´μ¢±¨ ¥¥ ¢ (67) ³μ¦´μ ´ ²μ£¨Î´Ò³ μ¡· §μ³ ¶·¥μ¡· §μ¢ ÉÓ ¨ ¨´É¥£· ²Ó´μ¥ Ê· ¢´¥´¨¥ (67) ¤²Ö ËÊ´±Í¨¨ ψ(r, ρ).
2.4. ‚Ò¢μ¤Ò. μ¤¢¥¤¥³ ¨É죨 ¨§²μ¦¥´´μ£μ ¢ ÔÉμ³ · §¤¥²¥.
1. μ²ÊÎ¥´´ Ö · ´¥¥ ¸¨¸É¥³ ¸¢Ö§ ´´ÒÌ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨° ¤²Ö
μɤ¥²Ó´ÒÌ Î ¸É¥° ¶μ²´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ Ψ ¸¨¸É¥³Ò É·¥Ì ¸¨²Ó´μ¢§ ¨³μ¤¥°¸É¢ÊÕÐ¨Ì Î ¸É¨Í, ¤¢¥ ¨§ ±μÉμ·ÒÌ § ·Ö¦¥´Ò ¨ Éμ²Ó±μ μ¤´ § ·Ö¦¥´´ Ö
Î ¸É¨Í ¸¢Ö§ ´ ¸ ´¥°É· ²Ó´μ°, ¸¢¥¤¥´ ± μ¤´μ³Ê ¨´É¥£· ²Ó´μ³Ê Ê· ¢´¥´¨Õ
¤²Ö Ψ.
2. ¨¡μ²¥¥ ¸²μ¦´Ò¥ Ë· £³¥´ÉÒ ¶μ²´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨, § ¢¨¸ÖШ¥
μ¤´μ¢·¥³¥´´μ μÉ Ö¤¥·´μ£μ ¨ ±Ê²μ´μ¢¸±μ£μ ¢§ ¨³μ¤¥°¸É¢¨°, ¶·¥¤¸É ¢²¥´Ò ¢
¢¨¤¥ ¡Ò¸É·μ¸Ìμ¤ÖÐ¨Ì¸Ö ·Ö¤μ¢ ¶μ ¶·μ¨§¢¥¤¥´¨Ö³ ¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨°, ¤²Ö · ¤¨ ²Ó´ÒÌ ËÊ´±Í¨°, § ¢¨¸ÖÐ¨Ì μÉ ¤¢ÊÌ · §³¥·´ÒÌ ¶¥·¥³¥´´ÒÌ, ¸μ¸É ¢²¥´ ¡¥¸±μ´¥Î´ Ö ¸¨¸É¥³ ¸¢Ö§ ´´ÒÌ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨° ¨ ʱ § ´ ³¥Éμ¤
Ψ¸²¥´´μ£μ ·¥Ï¥´¨Ö μ¡·¥§ ´´μ° ¸¨¸É¥³Ò.
3. ¶·¨³¥·¥ μ¸´μ¢´μ£μ ¶·¨¡²¨¦¥´¨Ö ¸ ´Ê²¥¢Ò³¨ §´ Î¥´¨Ö³¨ μÉ´μ¸¨É¥²Ó´ÒÌ ³μ³¥´Éμ¢, ±μÉμ·μ¥ ¸¢μ¤¨É¸Ö ± ¤¢Ê³ ¸¢Ö§ ´´Ò³ ¨´É¥£· ²Ó´Ò³ Ê· ¢´¥´¨Ö³ ¤²Ö ¤¢ÊÌ · ¤¨ ²Ó´ÒÌ ËÊ´±Í¨°, Ê· ¢´¥´¨Ö ¤¢¨¦¥´¨Ö § ¶¨¸ ´Ò ¢ Ëμ·³¥,
Ê¤μ¡´μ° ¤²Ö ¨Ì Ψ¸²¥´´μ£μ ·¥Ï¥´¨Ö.
‡Š‹—…ˆ…
¸´μ¢´ Ö ¨¤¥Ö ¶·¥¤²μ¦¥´´μ£μ ¶μ¤Ìμ¤ Å ¢Ò¤¥²¥´¨¥ ¢ ³μ¤¨Ë¨Í¨·μ¢ ´´ÒÌ Ê· ¢´¥´¨ÖÌ ” ¤¤¥¥¢ ¤²Ö ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· Ô´¥·£¨° Ë· £³¥´Éμ¢ ¨¸±μ³μ° ¶μ²´μ° ¢μ²´μ¢μ° ËÊ´±Í¨¨ É·¥ÌÎ ¸É¨Î´μ° ¸¨¸É¥³Ò, ±μÉμ·Ò¥ ³μ¦´μ
¡Ò²μ ¡Ò · §²μ¦¨ÉÓ ¢ ¡Ò¸É·μ¸Ìμ¤ÖШ¥¸Ö ·Ö¤Ò, É. ¥. Ë ±É¨Î¥¸±¨ Å ·¥ ²¨§ ꬅ ¨¤¥¨ μ · §¤¥²¥´¨¨ ±μ´Ë¨£Ê· Í¨μ´´μ£μ ¶·μ¸É· ´¸É¢ ´ ®¢´ÊÉ·¥´´ÕÕ¯
¨ ®¢´¥Ï´ÕÕ¯ μ¡² ¸É¨. ˆ ÌμÉÖ ·¥ ²¨§ Í¨Õ ÔÉμ° ¨¤¥¨ ´Ê¦´μ · ¸¸³ É·¨¢ ÉÓ
± ± ³μ¤¥²Ó (¨¡μ μ´ ´¥ ¢μ§´¨± ¥É ± ± ·¥§Ê²ÓÉ É ·¥Ï¥´¨Ö ³´μ£μÎ ¸É¨Î´μ£μ
Ê· ¢´¥´¨Ö ˜·¥¤¨´£¥· ), É¥³ ´¥ ³¥´¥¥ μ´ μ± §Ò¢ ¥É¸Ö ¢¥¸Ó³ ÔËË¥±É¨¢´μ°
¨ ¶·μ¤Ê±É¨¢´μ°. Œ¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì £ ·³μ´¨± ± ± ¤μ¸É ÉμÎ´μ ³μдҰ ¶¶ · É μɲ¨Î´μ ¸μ봃 ¥É¸Ö ¸ ·¥Ï ¥³μ° § ¤ Î¥°. •μÉÖ, · §Ê³¥¥É¸Ö, ¶·¨
ÔÉμ³ ´¥ ¨¸±²ÕÎ ¥É¸Ö ¢μ§³μ¦´μ¸ÉÓ ¨¸¶μ²Ó§μ¢ ´¨Ö ¨ ¤·Ê£¨Ì ¡ §¨¸μ¢: ³´μ£μ¥
μ¶·¥¤¥²Ö¥É¸Ö · ¸¸³ É·¨¢ ¥³μ° ±μ´±·¥É´μ° ˨§¨Î¥¸±μ° ¸¨¸É¥³μ°, ÎÉμ ¶·μ¤¥³μ´¸É·¨·μ¢ ´μ, ¢ Î ¸É´μ¸É¨, ¶·¨ ¢Ò¢μ¤¥ Ê· ¢´¥´¨° ¤²Ö ¸¨¸É¥³Ò É·¥Ì Î ¸É¨Í,
¤¢¥ ¨§ ±μÉμ·ÒÌ § ·Ö¦¥´Ò, É. ¥. ¶·¨ ·¥Ï¥´¨¨ É ±μ° ´¥É·¨¢¨ ²Ó´μ° § ¤ Ψ, ± ±
Ê봃 ±Ê²μ´μ¢¸±μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö ¢ ±μ´É¨´Êʳ¥ É·¥Ì´Ê±²μ´´μ° ¸¨¸É¥³Ò ´ μ¸´μ¢¥ Ê· ¢´¥´¨° ” ¤¤¥¥¢ .
‡ ³¥É¨³, ÎÉμ ¶·¥¤² £ ¥³Ò° ¶μ¤Ìμ¤ ¶μ³¨³μ ¶·μÎ¥£μ ¤ ¥É ´¥ Éμ²Ó±μ ¤μ¶μ²´¨É¥²Ó´Ò¥ μ¡μ¸´μ¢ ´¨Ö ¨´É¥·¶μ²ÖÍ¨μ´´μ° ³μ¤¥²¨ Ö¤· , ʶμ³Ö´ÊÉμ° ¢μ
¢¢¥¤¥´¨¨ ¨ ¶·¨³¥´Ö¥³μ° ¶·¨ ¨¸¸²¥¤μ¢ ´¨¨ ¶·μÍ¥¸¸μ¢ ¢ ´¥¶·¥·Ò¢´μ³ ¸¶¥±É·¥
600 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
¤²Ö É·¥ÌÎ ¸É¨Î´ÒÌ Ö¤¥·´ÒÌ ¸¨¸É¥³, ´μ ¨ ¶μ§¢μ²Ö¥É ÔËË¥±É¨¢´μ · ¸¸Î¨É ÉÓ
ÊÉμδ¥´¨Ö ¤²Ö ÔÉμ° ³μ¤¥²¨. ¥³ ²μ¢ ¦´Ò³ Ë ±Éμ·μ³ ¤²Ö ¶μ§¨É¨¢´μ° μÍ¥´±¨
¨¸¶μ²Ó§Ê¥³μ£μ ¢ ´ ¸ÉμÖÐ¥° · ¡μÉ¥ ¶μ¤Ìμ¤ Ö¢²Ö¥É¸Ö μÉ´μ¸¨É¥²Ó´ Ö ¶·μ¸ÉμÉ ¶μ²ÊÎ¥´´ÒÌ Ê· ¢´¥´¨°, ¨Ì μ¤´μ³¥·´μ¸ÉÓ ¨ μ¤´μ§´ δμ¸ÉÓ. Œμ¦´μ ´ ¤¥ÖÉÓ¸Ö,
ÎÉμ ¶·¥¤² £ ¥³Ò° ¶μ¤Ìμ¤ ¸É ´¥É ¥Ð¥ μ¤´¨³ Ï £μ³ ± ¨¸¸²¥¤μ¢ ´¨Õ ¡μ²¥¥
¸²μ¦´ÒÌ Ö¤¥·´ÒÌ ¸¨¸É¥³.
ˆ, ´ ±μ´¥Í, ¢Éμ·Ò ¸Î¨É ÕÉ ¸¢μ¨³ ¤μ²£μ³ ¸ ¶·¨§´ É¥²Ó´μ¸ÉÓÕ ¢¸¶μ³´¨ÉÓ
¨³¥´ . ƒ. ‘¨É¥´±μ ¨ ‚. Š. ’ ·É ±μ¢¸±μ£μ, ¸ÉμÖ¢Ï¨Ì Ê ¨¸Éμ±μ¢ ÔÉμ° · ¡μÉÒ,
¢Ò· §¨ÉÓ ¡² £μ¤ ·´μ¸ÉÓ ‚. ”. • ·Î¥´±μ ¨ ‚. …. ŠÊ§Ó³¨Î¥¢Ê § μ¡¸Ê¦¤¥´¨¥ ·Ö¤ ¢μ¶·μ¸μ¢, ± ¸ ÕÐ¨Ì¸Ö μ¡μ¡Ð¥´¨° Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¶·¨ ´ ²¨Î¨¨ ±Ê²μ´μ¢¸±μ£μ ¶μ²Ö, É ±¦¥ ˆ. ‚. ‘¨³¥´μ£Ê § ¢¥¸Ó³ ¶²μ¤μÉ¢μ·´Ò¥ ±μ´¸Ê²ÓÉ Í¨¨.
ˆ‹†…ˆ… ¡Ð¨¥ ¸μμÉ´μÏ¥´¨Ö ¤²Ö É·¥ÌÎ ¸É¨Î´ÒÌ K-£ ·³μ´¨± ¨³¥ÕÉ ¢¨¤ [7]
l l m m
l l LM
(Ω) =
lx ly mx my |LM uKx y x y (Ω),
uKx y
mx my
l l mx my
uKx y
l l
(Ω) = NKx y (cos θ)lx (sin θ)ly ×
× Puly +1/2, lx +1/2 (cos 2θ)Ylx mx (x̂)Yly my (ŷ),
(A.1)
£¤¥
l l
NKx y
=
2u!(K + 2)(u + lx + ly + 1)
,
Γ(u + lx + 3/2)Γ(u + ly + 3/2)
u=
K − lx − ly
,
2
u u+α u+β
(z − 1)u−s (z + 1)s
s
u
−
s
s=0
p
Γ(p + 1)
; lx , ly Å μ·¡¨É ²Ó´Ò¥ ³μ³¥´ÉÒ
Å ¶μ²¨´μ³ Ÿ±μ¡¨,
=
q
q!Γ(p − q + 1)
¸¢Ö§ ´´μ° ¶ ·Ò (23) ¨ Î ¸É¨ÍÒ 1 μÉ´μ¸¨É¥²Ó´μ ¶ ·Ò (23), ¸μμÉ¢¥É¸É¢ÊÕШ¥
±μμ·¤¨´ É ³ Ÿ±μ¡¨ x ¨ y.
l l LM
(Ω): K Å ¢¥²¨Î¨´ £¨‚ μ¡μ§´ Î¥´¨¨ K-£ ·³μ´¨± uKn (Ω) ≡ uKx y
¶¥·³μ³¥´É , n Å ³Ê²Óɨ¨´¤¥±¸, ¢±²ÕÎ ÕШ° ¢ ¸¥¡Ö ¢¥²¨Î¨´Ò μ·¡¨É ²Ó´ÒÌ
³μ³¥´Éμ¢ lx , ly , É ±¦¥ ¶μ²´Ò° μ·¡¨É ²Ó´Ò° ³μ³¥´É L μÉ´μ¸¨É¥²Ó´μ£μ ¤¢¨¦¥´¨Ö ¢¸¥Ì É·¥Ì Î ¸É¨Í ¨ ¥£μ ¶·μ¥±Í¨Õ M , Ω = {Θ, θx , φx , θy , φy } Å ¸μ¢μ±Ê¶´μ¸ÉÓ ¶Öɨ Ê£²μ¢ ¢ Ï¥¸É¨³¥·´μ³
¶·μ¸É· ´¸É¢¥, μ¶·¥¤¥²ÖÕШ¥ μ·¨¥´É ͨÕ
Ï¥¸É¨³¥·´μ£μ ¢¥±Éμ· ρ = x2 + y2 .
Puα, β = 2−u
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 601
ˆ‹†…ˆ… ¶¥· Éμ· ±¨´¥É¨Î¥¸±μ° Ô´¥·£¨¨ H0 ¢ £¨¶¥·¸Ë¥·¨Î¥¸±μ³ ¡ §¨¸¥ (ρ, Ω)
¨³¥¥É ¢¨¤
2
2 ∂ 5 ∂
ρ
.
(.1)
H0 = T 0 −
ΔΩ , T0 = −
2
2mρ
2mρ 5 ∂ρ ∂ρ
‘μ¡¸É¢¥´´Ò³¨ ËÊ´±Í¨Ö³¨ 춥· Éμ· ΔΩ Ö¢²ÖÕÉ¸Ö K-£ ·³μ´¨±¨ (A.1)
ΔΩ uKn (Ω) = −K(K + 4)uKn (Ω).
”Ê´±Í¨¨ uKn (Ω) μ·Éμ£μ´ ²Ó´Ò ¨ ¨Ì ´μ·³¨·ÊÕÉ μ¡Òδҳ μ¡· §μ³:
dΩ u∗Kn (Ω) uK n (Ω) = δKK δnn .
(.2)
(.3)
‘μ¡¸É¢¥´´Ò¥ ËÊ´±Í¨¨ ωq (ρ) 춥· Éμ· T0 ¢ (.1) μ¶·¥¤¥²ÖÕÉ¸Ö Ê· ¢´¥´¨¥³ [107]
√
q
2 q 2
ωq (ρ), ωq (ρ) = 2 J2 (qρ).
(.4)
T0 ωq (ρ) =
2m
ρ
´¨ Ê¤μ¢²¥É¢μ·ÖÕÉ Ê¸²μ¢¨Ö³ μ·Éμ´μ·³¨·μ¢±¨ [108]
∞
dρ ρ 5 ωq∗ (ρ) ωq (ρ) = δ(q − q )
(.5)
1
δ(ρ − ρ ).
ρ5
(.6)
0
¨ ¶μ²´μÉÒ
∞
dq ωq∗ (ρ) ωq (ρ ) =
0
μ¤¸É ¢¨¢ (7) ¢ (6), ʳ´μ¦¨³ ²¥¢ÊÕ ¨ ¶· ¢ÊÕ Î ¸É¨ ¶μ²ÊÎ¥´´μ£μ Ê· ¢´¥´¨Ö ´ u∗K n ¨ ¶·μ¨´É¥£·¨·Ê¥³ ¶μ ¶¥·¥³¥´´Ò³ Ω. ‚ ·¥§Ê²ÓÉ É¥ ¸ ÊÎ¥Éμ³ (.3)
¶μ²ÊΨ³ ¸¨¸É¥³Ê ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨° ¤²Ö ψK n (ρ) [109]:
ψK n (ρ) =
dΩ u∗K n (Ω)G0 (Z)f (ρ, Ω)+
+ dΩ u∗K n (Ω)G0 (Z)(V12 + V31 )Φ, (.7)
f (ρ, Ω) = U
ψKn (ρ)uKn (Ω),
Kn
£¤¥ U Å ¸Ê³³ É·¥Ì ¶ ·´ÒÌ ¶μÉ¥´Í¨ ²μ¢ (5).
(.8)
602 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
μ¤¸É ¢¨³ É¥¶¥·Ó ¢ Ê· ¢´¥´¨¥ (.7) 춥· Éμ· ƒ·¨´ G0 (Z) = Z − T0 +
−1
2
Δ
Ω
2mρ2
(.9)
¨ · §²μ¦¨³ f (ρ, Ω) ¢ (.8) ¶μ K-£ ·³μ´¨± ³:
f (ρ, Ω) =
fK n (ρ)uK n (Ω),
(.10)
dΩ u∗K n (Ω)f (ρ, Ω).
(.11)
K n
fK n (ρ) =
’죤 ¸ ÊÎ¥Éμ³ (.2), (.3) ¸¨¸É¥³ Ê· ¢´¥´¨° (.7) ¶·¥μ¡· §Ê¥É¸Ö ± ¢¨¤Ê
ψK n (ρ) = Z − T0 −
F (ρ) =
−1
2
K
(K
+
4)
F (ρ),
2mρ2
dΩ u∗K n (Ω) f (ρ, Ω) + (V12 + V31 )Φ .
(.12)
(.13)
§²μ¦¨³ É¥¶¥·Ó ËÊ´±Í¨Õ F (ρ) ¶μ ¶μ²´μ° ¸¨¸É¥³¥ ËÊ´±Í¨° 춥· Éμ· T0 (.4):
∞
(.14)
F (ρ) = dq ωq (ρ)Fq ,
0
∞
Fq =
dρ̄ ρ̄ 5 F (ρ̄)ωq∗ (ρ̄).
(.15)
0
μ¤¸É ¢¨³ (.14) ¢ (.12), (.13) ¨ ¢μ¸¶μ²Ó§Ê¥³¸Ö ¸μμÉ´μÏ¥´¨Ö³¨ (.4)Ä(.6)
¨ (.15). μ¸²¥ ÔÉ¨Ì μ¶¥· ͨ° ¸¨¸É¥³ Ê· ¢´¥´¨° (.12) ¶·¨μ¡·¥É ¥É μ±μ´Î É¥²Ó´Ò° ¢¨¤
ψK n (ρ) =
πm
2 ρ2
∞
dρ̄ ρ̄ 3 P± (ρ, ρ̄)
0
dΩ u∗K n (Ω)×
ψKn (ρ̄)uKn (Ω) + (V12 + V31 )Φ(ρ̄, Ω) ,
× U
(.16)
Kn
2
P± (ρ, ρ̄) = −
π
∞
dq q
0
J2 (qρ)J2 (q ρ̄)
2 ∓ i0 ,
q 2 − kK
(.17)
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 603
2
2
2
2
2
2
£¤¥ kK
(E Å ¶μ²´ Ö Ô´¥·£¨Ö
≡ kK (ρ) = k0 − K (K + 4)/ρ , k0 = 2mE/
¸¨¸É¥³Ò). ’ ±¨³ μ¡· §μ³, ¡² £μ¤ ·Ö · §²μ¦¥´¨Õ f (ρ, Ω) ¢ ·Ö¤ ¶μ £¨¶¥·¸Ë¥·¨Î¥¸±¨³ £ ·³μ´¨± ³, É ±¦¥ · §²μ¦¥´¨Õ F (ρ) ¢ ·Ö¤ ¶μ ¸μ¡¸É¢¥´´Ò³
ËÊ´±Í¨Ö³ ωq (ρ) 춥· Éμ· T0 ¢ (.7) Î ¸É¨Î´μ, ´μ ¤μ¸É ÉμÎ´μ ¸ÊÐ¥¸É¢¥´´μ,
¢Ò¶μ²´¥´μ ¤¥°¸É¢¨¥ ·¥§μ²Ó¢¥´ÉÒ G0 (Z). „ ²¥¥ ¨´É¥£· ² ɨ¶ (.17) ³μ¦¥É
¡ÒÉÓ ¢ÒΨ¸²¥´ ´ ²¨É¨Î¥¸±¨ [110]:
Jν (ax)Jν (bx)
dx x
=
x2 + c2
⎧
Iν (bc)Kν (ac),
⎪
⎪
⎪
⎨ I (ac)K (bc),
ν
ν
=
⎪
(−bc)K
I
ν
ν (−ac),
⎪
⎪
⎩
Iν (−ac)Kν (−bc),
0 < b < a,
0 < a < b,
0 < b < a,
0 < a < b,
Re c > 0,
Re c > 0,
Re c < 0,
Re c < 0,
Re ν
Re ν
Re ν
Re ν
> −1,
> −1,
> −1,
> −1.
(.18)
‚¢μ¤Ö ËÊ´±Í¨¨ (11)Ä(14), ¸ ÊÎ¥Éμ³ (.17), (.18) ¸¨¸É¥³Ê Ê· ¢´¥´¨° (.16)
³μ¦´μ É¥¶¥·Ó § ¶¨¸ ÉÓ ¢ ±μ³¶ ±É´μ³ ¢¨¤¥ (8).
‘ˆ‘Š ‹ˆ’…’“›
1. ” ¤¤¥¥¢ ‹. „. ’¥μ·¨Ö · ¸¸¥Ö´¨Ö ¤²Ö ¸¨¸É¥³Ò É·¥Ì Î ¸É¨Í // †’”. 1960. T. 39,
¢Ò¶. 4. ‘. 1459Ä1467.
2. ‘¨³μ´μ¢ . . ‡ ¤ Î É·¥Ì É¥². μ²´ Ö ¸¨¸É¥³ Ê£²μ¢ÒÌ ËÊ´±Í¨° // Ÿ”. 1966.
’. 3, ¢Ò¶. 4. ‘. 630Ä638.
3. ¤ ²Ö´ . Œ., ‘¨³μ´μ¢ . . ‡ ¤ Î É·¥Ì É¥². “· ¢´¥´¨¥ ¤²Ö ¶ ·Í¨ ²Ó´ÒÌ
¢μ²´ // Ÿ”. 1966. ’. 3, ¢Ò¶. 5. ‘. 1032Ä1047.
4. Œ¥·±Ê·Ó¥¢ ‘. ., ” ¤¤¥¥¢ ‹. „. Š¢ ´Éμ¢ Ö É¥μ·¨Ö · ¸¸¥Ö´¨Ö ¤²Ö ¸¨¸É¥³ ´¥¸±μ²Ó±¨Ì Î ¸É¨Í. Œ.: ʱ , 1985. 398 ¸.
5. Avery J. Hyperspherical Harmonics, Application in Quantum Theory. Dordrecht;
Boston; London: Kluwer Acad. Publ., 1989. 257 p.
6. „¦¨¡Êɨ . ˆ., ˜¨É¨±μ¢ Š. ‚. Œ¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨° ¢ Éμ³´μ° ¨
Ö¤¥·´μ° ˨§¨±¥. Œ.: ´¥·£μ É쳨§¤ É, 1993. 272 ¸.
7. „¦¨¡Êɨ . ˆ., Š·Ê¶¥´´¨±μ¢ . . Œ¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨° ¢ ±¢ ´Éμ¢μ° ³¥Ì ´¨±¥ ´¥¸±μ²Ó±¨Ì É¥². ’¡¨²¨¸¨: Œ¥Í´¨¥·¥¡ , 1984. 181 ¸.
8. ˜³¨¤ ., –¨£¥²Ó³ ´ •. ·μ¡²¥³ É·¥Ì É¥² ¢ ±¢ ´Éμ¢μ° ³¥Ì ´¨±¥: ¥·. ¸ ´£².
Œ.: ʱ , 1979. 272 c.
9. §Ó . ˆ. Œμ¤¥²Ó Ê· ¢´¥´¨° Ö¤¥·´μ° ˨§¨±¨. ·¥¶·¨´É ˆ´-É É¥μ·. ˨§¨±¨ “‘‘ ˆ’”-71-79. Š¨¥¢, 1971. 38 ¸.;
§Ó . ˆ., †Ê±μ¢ Œ. ‚. Œμ¤¥²Ó Ê· ¢´¥´¨° Ö¤¥·´μ° ˨§¨±¨ // Ÿ”. 1972. ’. 16,
¢Ò¶. 1. ‘. 60Ä73.
604 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
10. Fedorov D. V., Jensen A. S. Eˇmov Effect in Coordinate Space Faddeev Equations //
Phys. Rev. Lett. 1993. V. 71. P. 4103Ä4106.
11. Zhukov M. V. et al. Bound State Properties of Borromean Halo Nuclei:
11
Li // Phys. Rep. 1993. V. 231, No. 4. P. 151Ä199.
6
He and
12. Fedorov D. V., Jensen A. S., Riisager K. Three-Body Halos. II. From Two- to ThreeBody Asymptotics // Phys. Rev. C. 1994. V. 50, No. 5. P. 2372Ä2383.
13. Fedorov D. V., Garrido E., Jensen A. S. Three-Body Halos. III. Effects of Finite Core
Spin // Phys. Rev. C. 1995. V. 51, No. 6. P. 3052Ä3065.
14. Cobis A., Fedorov D. V., Jensen A. S. Three-Body Halos. V. Computations of Continuum Spectra for Borromean Nuclei // Phys. Rev. C. 1998. V. 58, No. 3. P. 1403Ä1421.
15. Nielsen E. et al. The Three-Body Problem with Short-Range Interactions // Phys.
Rep. 2001. V. 347, No. 5. P. 373Ä459.
16. Das T. K., Coelho H. T., Brito V. P. Comparison of BornÄOppenheimer and Hyperspherical Adiabatic Approximations in the Trinucleon Problem // Phys. Rev. C. 1993.
V. 48, No. 5. P. 2201Ä2207.
17. ‘¨³μ´μ¢ . ., ¤ ²Ö´ . Œ. ´¥·£¨Ö ¸¢Ö§¨ ¨ ¢μ²´μ¢ Ö ËÊ´±Í¨Ö 3 H ¨ 3 He //
Ÿ”. 1967. ’. 5, ¢Ò¶. 1. ‘. 88Ä100.
18. Ershov S. N., Danilin B. V., Vaagen J. S. Inelastic Excitations and Momentum Distributions in Kinematically Complete Breakup Reactions of Two-Neutron Halo Nuclei //
Phys. Rev. C. 2001. V. 64, No. 6. P. 064609.
19. Ershov S. N., Danilin B. V., Vaagen J. S. Continuum Spectroscopy of Borromean
Two-Neutron Halo Nuclei // Phys. Rev. C. 2006. V. 74, No. 1. P. 014603.
20. Ershov S. N. et al. Halo Formation and Breakup: Lessons and Open Questions // J.
Phys. G: Nucl. Part. Phys. 2010. V. 37. P. 064026.
21. Kadomtsev M. V., Vinitsky S. I. Adiabatic Representation for the Three-Body Problem
in Hyperspherical Coordinates. I. Statement of the Problem // J. Phys. B. 1987. V. 20.
P. 5723Ä5736.
22. Dubovik V. M. et al. Scattering Problem for Faddeev Equations in Adiabatic Representation // Phys. Lett. A. 1989. V. 142, No. 2, 3. P. 133Ä138.
23. ‚¨´¨Í±¨° ‘. ˆ., Š ¤μ³Í¥¢ Œ. ., ‘ʧӱμ . . ¤¨ ¡ ɨΥ¸±μ¥ ¶·¥¤¸É ¢²¥´¨¥ § ¤ Ψ É·¥Ì É¥² ¢ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ±μμ·¤¨´ É Ì. ³¶²¨Éʤ · ¸¸¥Ö´¨Ö // Ÿ”.
1990. ’. 51, ¢Ò¶. 4. ‘. 952Ä972.
24. ‚¨´¨Í±¨° ‘. ˆ., Œ ·±μ¢¸±¨ ‚. ‹., ‘ʧӱμ . . ¤¨ ¡ ɨΥ¸±μ¥ ¶·¥¤¸É ¢²¥´¨¥
§ ¤ Ψ · ¸¸¥Ö´¨Ö ¢ ±¢ ´Éμ¢μ° ¸¨¸É¥³¥ É·¥Ì Î ¸É¨Í ¸ ±μ·μÉ±μ¤¥°¸É¢ÊÕШ³¨ ¶μÉ¥´Í¨ ² ³¨ // Ÿ”. 1992. ’. 55, ¢Ò¶. 3. ‘. 669Ä687.
25. Kostrykin V. V., Kvitsinsky A. A., Merkuriev S. P. Faddeev Approach to the ThreeBody Problem in Total-Angular-Momentum Representation // Few-Body Syst. 1989.
V. 6, No. 2. P. 97Ä113.
26. Š¢¨Í¨´¸±¨° . ., Šμ¸É·Ò±¨´ ‚. ‚., Œ¥·±Ê·Ó¥¢ ‘. . Š¢ ´Éμ¢ Ö É¥μ·¨Ö · ¸¸¥Ö´¨Ö
¤²Ö ¸¨¸É¥³ É·¥Ì Î ¸É¨Í ¸ ˨±¸¨·μ¢ ´´Ò³ ¶μ²´Ò³ μ·¡¨É ²Ó´Ò³ ³μ³¥´Éμ³ //
—Ÿ. 1990. ’. 21, ¢Ò¶. 6. ‘. 1301Ä1359.
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 605
27. ʶÒÏ¥¢ ‚. ‚. ¡μ¡Ð¥´¨Ö · §²μ¦¥´¨° ”μ± ¨ Š Éμ ¤²Ö ¸¨¸É¥³ É·¥Ì ±¢ ´Éμ¢ÒÌ
Î ¸É¨Í // —Ÿ. 2009. ’. 40, ¢Ò¶. 4. ‘. 763Ä892.
28. Pupyshev V. V. Asymptotic Expansions of Wave Functions of Three Identical Particles
for Small Hyperradius and S-Wave Potentials // Few-Body Syst. 1990. V. 8, No. 3.
P. 105Ä122.
29. Pupyshev V. V. Some Exact Solutions of the Three-Identical-Particle Problem with
S-Wave Inverse Square Potentials // Phys. Lett. A. 1989. V. 140. P. 151Ä154.
30. ʶÒÏ¥¢ ‚. ‚. Š § ¤ Î¥ É·¥Ì Î ¸É¨Í ¸ ¶ ·´Ò³¨ ¢§ ¨³μ¤¥°¸É¢¨Ö³¨, μ¡· É´μ ¶·μ¶μ·Í¨μ´ ²Ó´Ò³¨ ±¢ ¤· É ³ · ¸¸ÉμÖ´¨° // ’Œ”. 2001. ’. 128, º 2. C. 268Ä287.
31. ʶÒÏ¥¢ ‚. ‚. ’μδҥ ·¥Ï¥´¨Ö § ¤ Ψ É·¥Ì Î ¸É¨Í ¸ S-¢μ²´μ¢Ò³¨ ¢§ ¨³μ¤¥°¸É¢¨Ö³¨ Í¥´É·μ¡¥¦´μ£μ ɨ¶ // Ÿ”. 2003. ’. 66, º 1. C. 64Ä76.
32. ʶÒÏ¥¢ ‚. ‚. ‹μ¦´Ò¥ ·¥Ï¥´¨Ö Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¸ Í¥´É· ²Ó´Ò³¨ ¶μÉ¥´Í¨ ² ³¨ // ’Œ”. 1996. ’. 107, º 3. ‘. 501Ä512.
33. ʶÒÏ¥¢ ‚. ‚. ‹μ¦´Ò¥ ·¥Ï¥´¨Ö É·¥Ì³¥·´ÒÌ Ê· ¢´¥´¨° ” ¤¤¥¥¢ // ’Œ”. 2006.
’. 148, º 2. ‘. 227Ä242.
34. Kievsky A., Viviani M., Rosati S. Study of Bound and Scattering States in ThreeNucleon Systems // Nucl. Phys. A. 1994. V. 577. P. 511Ä527.
35. Kievsky A. et al. Critical Comparison of Experimental Data and Theoretical Predictions for N −d Scattering below the Breakup Threshold // Nucl. Phys. A. 1996.
V. 607. P. 402Ä424.
36. Kievsky A. The Complex Kohn Variational Method Applied to N Äd Scattering //
Nucl. Phys. A. 1997. V. 624. P. 125Ä139.
37. Matveenko A. V., Fukuda H. Hyperradial-Adiabatic Approach to Coulombic ThreeBody Systems // J. Phys. B: At. Mol. Opt. Phys. 1996. V. 29. P. 1575Ä1586.
38. Matveenko A. V. Canonical Three-Body Angular Basis // Few-Body Syst. 2001. V. 30,
No. 4. P. 259Ä267.
39. Matveenko A. V. Diagonalization of the Coriolis Coupling // J. Phys. B: At. Mol. Opt.
Phys. 2001. V. B34. P. L87ÄL92.
40. ‡ Ì ·Ó¥¢ . ., ʸÉμ¢ ²μ¢ ‚. ‚., Ë·μ¸ ‚. „. ‡ ¤ Î É·¥Ì É¥². Œ¥Éμ¤ K£ ·³μ´¨± ¢ § ¤ Î Ì ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· // Ÿ”. 1968. ’. 8, ¢Ò¶. 2. ‘. 406Ä414.
41. Friar J. L. et al. Benchmark Solutions for n−d Breakup Amplitudes // Phys. Rev.
C. 1995. V. 51, No. 5. P. 2356Ä2359.
42. Kievsky A. et al. Benchmark Calculations for Polarization Observables in ThreeNucleon Scattering // Phys. Rev. C. 1998. V. 58, No. 6. P. 3085Ä3092.
43. Deltuva A. et al. Benchmark Calculations for ProtonÄDeuteron Elastic Scattering
Observables Including the Coulomb Interaction // Phys. Rev. C. 2005. V. 71, No. 6.
P. 064003.
44. ’ ·É ±μ¢¸±¨° ‚. Š., Šμ§²μ¢¸±¨° ˆ. ‚., ”Ê·¸ . „. ‚²¨Ö´¨¥ ±² ¸É¥·¨§ ͨ¨ ´ ¸¢μ°¸É¢ Ö¤¥· 3 H ¨ 3 He ¨ ¨Ì Ô²¥±É·μ· ¸Ð¥¶²¥´¨¥ // Ÿ”. 1976. ’. 23, ¢Ò¶. 4.
‘. 727Ä734.
606 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
45. §Ó . ˆ., ‘̨·É² ¤§¥ ‚. ‘., ˜¨É¨±μ¢ Š. ‚. ¸Î¥É É·¥Ì´Ê±²μ´´μ° § ¤ Ψ ´ μ¸´μ¢¥ ¨´É¥·¶μ²ÖÍ¨μ´´μ£μ ¶μ¤Ìμ¤ // Ÿ”. 1977. ’. 25, ¢Ò¶. 2. ‘. 281Ä287.
46. „¦¨¡Êɨ . ˆ., –¨±² Ê·¨ ˜. Œ. μ¢Ò° ¶μ¤Ìμ¤ ± ·¥Ï¥´¨Õ ¨´É¥£· ²Ó´ÒÌ Ê· ¢´¥´¨° ” ¤¤¥¥¢ . ¥ ²¨§ ꬅ ¤²Ö 3 H ¨ £¨¶¥·ÑÖ¤· 9Σ0 Be // Ÿ”. 1984. ’. 40,
¢Ò¶. 5(11). ‘. 1171Ä1179.
47. „¦¨¡Êɨ . ˆ., –¨±² Ê·¨ ˜. Œ. ®ƒ¨¡·¨¤´Ò°¯ ³¥Éμ¤ ¨¸¸²¥¤μ¢ ´¨Ö É·¥ÌÎ ¸É¨Î´ÒÌ ·¥ ±Í¨° // Ÿ”. 1985. ’. 41, ¢Ò¶. 4. ‘. 865Ä874.
48. „¦¨¡Êɨ . ˆ., ˜¨É¨±μ¢ Š. ‚. μ¢Ò¥ É¥´¤¥´Í¨¨ ¢ · §¢¨É¨¨ ¨ ¶·¨³¥´¥´¨¨
³¥Éμ¤ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì ËÊ´±Í¨° // —Ÿ. 1989. ’. 20, ¢Ò¶. 2. ‘. 331Ä400.
49. Coelho H. T., Glé
ockle W., Delˇno A. Simple Connection between Faddeev's and the
K-harmonic Approaches // Phys. Rev. C. 1980. V. 22, No. 4. P. 1796Ä1798.
50. Raynal J., Revai J. Transformation Coefˇcients in the Hyperspherical Approach to
the Three-Body Problem // Nuovo Cim. A. 1970. V. 68, No. 4. P. 612Ä622.
51. ʶÒÏ¥¢ ‚. ‚. ŠμÔË˨ͨ¥´ÉÒ ¥°´ ² Ä¥¢ ¨ ± ± ËÊ´±Í¨¨ ±¨´¥³ ɨΥ¸±μ£μ
Ê£² // Ÿ”. 1999. ’. 62, º 11. ‘. 1955Ä1965.
52. ʶÒÏ¥¢ ‚. ‚. ¥±μÉμ·Ò¥ ³¥Éμ¤Ò ¨ ·¥§Ê²ÓÉ ÉÒ ´ ²¨É¨Î¥¸±¨Ì ¨¸¸²¥¤μ¢ ´¨° § ¤ Ψ É·¥Ì Ö¤¥·´ÒÌ Î ¸É¨Í // —Ÿ. 1999. ’. 30, ¢Ò¶. 6. ‘. 1562Ä1649.
53. Liu F.-Q., Lim T. K. The Hyperspherical-Harmonics Expansion Method and the
Integral-Equation Approach to Solving the Few-Body Problem in Momentum Space //
Few-Body Syst. 1988. V. 5, No. 1. P. 31Ä43.
54. Schellingerhout N. W., Kok L. P., Bosveld G. D. Conˇguration-Space Faddeev Calculations: Supercomputer Accuracy on a Personal Computer // Phys. Rev. A. 1989.
V. 40, No. 10. P. 5568Ä5576.
55. Yakovlev S. L., Roudnev V. A. Application of the Faddeev Equations in Conˇguration Space to Calculations of the He Trimer // Few-Body XV Conf.: Handbook.
Groningen, 1997. P. 157.
56. Roudnev V. A., Yakovlev S. L. Improved Tensor-Trick Algorithm: Application to
Helium Trimer // Comp. Phys. Commun. 2000. V. 126. P. 162Ä164.
57. Roudnev V. A., Yakovlev S. L. Investigation of 4 He3 Trimer on the Base of Faddeev
Equations in Conˇguration Space // Chem. Phys. Lett. 2000. V. 328. P. 97Ä106.
58. Merkuriev S. P., Gignoux C., Laverne A. Three-Body Scattering in Conˇguration
Space // Ann. Phys. 1976. V. 99, No. 1. P. 30Ä71.
59. Motovilov A. K., Soˇanos S. A., Kolganova E. A. Bound States and Scattering
Processes in the 4 He3 Atomic System // Chem. Phys. Lett. 1997. V. 275. P. 168Ä
172.
60. Kolganova E. A., Motovilov A. K., Soˇanos S. A. Ultralow Energy Scattering of a He
Atom off a He Dimer // Phys. Rev. A. 1997. V. 56. P. R1686ÄR1689.
61. Kolganova E. A., Motovilov A. K., Soˇanos S. A. Three-Body Conˇguration Space
Calculations with Hard-Core Potentials // J. Phys. B. 1998. V. 31, No. 6. P. 1279Ä
1302.
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 607
62. Motovilov A. K. et al. Binding Energies and Scattering Observables in the 4 He3
Atomic System // Eur. Phys. J. D. 2001. V. 13. P. 33Ä46.
63. Motovilov A. K., Kolganova E. A. Structure of T - and S-Matrices in Unphysical
Sheets and Resonances in Three-Body Systems // Few-Body Syst. Suppl. 1999.
V. 10. P. 75Ä84.
64. Kolganova E. A., Motovilov A. K. On the Mechanism of Formation of the Eˇmov
States in the Helium 4 He Trimer // Phys. At. Nucl. 1999. V. 62, No. 7. P. 1179Ä1192.
65. ʶÒÏ¥¢ ‚. ‚. Œ¥Éμ¤Ò ¸¶² °´-ËÊ´±Í¨° ¢ ¶·μ¡²¥³¥ ´¥¸±μ²Ó±¨Ì É¥² // —Ÿ.
2004. ’. 35, ¢Ò¶. 2. ‘. 257Ä347.
66. †Ê±μ¢ Œ. ‚., Ë·μ¸ ‚. „. ¥ ±Í¨¨ ¢ ¸¨¸É¥³¥ ´¥¸±μ²Ó±¨Ì ´Ê±²μ´μ¢ // Ÿ”. 1971.
’. 14, ¢Ò¶. 3. ‘. 577Ä587.
67. Ë·μ¸ ‚. „. Š ³¥Éμ¤Ê K-£ ·³μ´¨± ¢ § ¤ Î¥ ´¥¸±μ²Ó±¨Ì ´Ê±²μ´μ¢ // Ÿ”. 1972.
’. 15, ¢Ò¶. 2. ‘. 226Ä241.
68. Ë·μ¸ ‚. „. ‡ ³¥Î ´¨Ö μ ³¥É줥 K-£ ·³μ´¨± ¢ Ö¤¥·´μ° § ¤ Î¥ É·¥Ì É¥² // Ÿ”.
1973. ’. 17, ¢Ò¶. 5. ‘. 988Ä1000.
69. ‘³μ·μ¤¨´¸±¨° Ÿ. ., Ë·μ¸ ‚. „. ·Éμ£μ´ ²Ó´Ò¥ ¶·¥μ¡· §μ¢ ´¨Ö ³´μ£μ³¥·´ÒÌ
Ê£²μ¢ÒÌ £ ·³μ´¨± // ’ ³ ¦¥. ‚Ò¶. 1. ‘. 210Ä224.
70. Ë·μ¸ ‚. „. Œ´μ£μÎ ¸É¨Î´Ò¥ μ¸Í¨²²ÖÉμ·´Ò¥ ¸±μ¡±¨ ¢ ³¨±·μ¸±μ¶¨Î¥¸±¨Ì Ö¤¥·´ÒÌ ¢ÒΨ¸²¥´¨ÖÌ // Ÿ”. 1976. ’. 23, ¢Ò¶. 4. ‘. 715Ä726.
71. Efros V. D. Hyperspherical/Oscillator Brackets and Symmetrized States: A Simple
Algorithm for A > 3 Few-Body Calculations // Few-Body Syst. 1995. V. 19, No. 3.
P. 167Ä173.
72. Fabre de la Ripelle M. A Bridge Between Hyperspherical and Integro-Differential
Approaches to the Many-Body Bound States // Few-Body Syst. 1986. V. 1, No. 4.
P. 181Ä192.
73. Fabre de la Ripelle M., Larsen S. Y. Effect of a Spurious Component of the Potential
in Faddeev-Type Equations // Few-Body Syst. 1992. V. 13, No. 4. P. 199Ä206.
74. ‚¥·¤¥ Œ. ·μ¡²¥³ É·¥Ì É¥² ¢ Ö¤¥·´μ° ˨§¨±¥ // ‘É·μ¥´¨¥ Éμ³´μ£μ Ö¤· : ¥·.
¸ ´£². Œ.: ˆ§¤-¢μ ¨´μ¸É·. ²¨É., 1959. ‘. 169Ä206.
75. Tartakovsky V. K., Kovalchuk V. I., Kozlovsky I. V. The Numerical Solution of Faddeev
Equations and the Calculation of nd-Scattering Cross Section in Fundamental KHarmonic Approximation. Scientiˇc Papers of the Institute for Nuclear Researches.
Kiev, 2005. No. 3(16). P. 24Ä28.
76. ’ ·É ±μ¢¸±¨° ‚. Š., Šμ§²μ¢¸±¨° ˆ. ‚., Šμ¢ ²ÓÎʱ ‚. ˆ. ¥¤Ê±Í¨Ö Ê· ¢´¥´¨° ” ¤¤¥¥¢ ± ¸¨¸É¥³¥ Ê· ¢´¥´¨° ¤²Ö ËÊ´±Í¨° μ¤´μ° ¶¥·¥³¥´´μ° ³¥Éμ¤μ³ £¨¶¥·¸Ë¥·¨Î¥¸±¨Ì £ ·³μ´¨± // Nucl. Phys. At. Energy. 2008. No. 3(25). P. 22Ä27.
77. Kovalchuk V. I., Tartakovsky V. K., Kozlovsky I. V. Calculations of nd-Scattering
Cross Sections by Faddeev's Method with a Hyperspherical Basis // Ukr. J. Phys.
2008. V. 53, No. 8. P. 757Ä762.
608 Š‚‹œ—“Š ‚. ˆ., Š‡‹‚‘Šˆ‰ ˆ. ‚.
78. Kovalchuk V. I., Kozlovsky I. V., Tartakovsky V. K. Calculations of Wave Functions
of the nd-System, Phases and Cross Sections with the Use of Modiˇed Faddeev's
Equations and the Method of Hyperspherical Functions // Ukr. J. Phys. 2010. V. 55,
No. 3. P. 342Ä349.
79. Šμ¢ ²ÓÎʱ ‚. ˆ., Šμ§²μ¢¸±¨° ˆ. ‚., ’ ·É ±μ¢¸±¨° ‚. Š. ¥Ï¥´¨¥ Ê· ¢´¥´¨° ” ¤¤¥¥¢ ¤²Ö ¸¢Ö§ ´´μ£μ ¸μ¸ÉμÖ´¨Ö ¨ ´¥¶·¥·Ò¢´μ£μ ¸¶¥±É· É·¥Ì´Ê±²μ´´μ° ¸¨¸É¥³Ò
³¥Éμ¤μ³ K-£ ·³μ´¨Î¥¸±¨Ì · §²μ¦¥´¨° // Ÿ”. 2011. ’. 74, º 5. ‘. 720Ä727.
80. ’·¨±μ³¨ ”. ˆ´É¥£· ²Ó´Ò¥ Ê· ¢´¥´¨Ö: ¥·. ¸ ´£². Œ.: ˆ§¤-¢μ ¨´μ¸É·. ²¨É., 1960.
299 ¸.
81. μ²Ö´¨´ . „., Œ ´¦¨·μ¢ . ‚. ‘¶· ¢μ䨱 ¶μ ¨´É¥£· ²Ó´Ò³ Ê· ¢´¥´¨Ö³. Œ.:
”¨§³ ɲ¨É, 2003. 608 ¸.
82. Mal
iet R. A., Tjon J. A. Solution of the Faddeev Equations for the Triton Problem
Using Local Two-Particle Interactions // Nucl. Phys. A. 1969. V. 127. P. 161Ä168.
83. Volkov A. B. Equilibrium Deformation Calculations of the Ground State Energies of
1p Shell Nuclei // Nucl. Phys. A. 1965. V. 74. P. 33Ä58.
84. Thompson D. R., Tang Y. C. Resonating-Group Calculation of 3 HeÄ3 He Scattering //
Phys. Rev. 1967. V. 159. P. 806Ä815.
85. Eikemeier H., Hackenbroich H. H. A Phenomenological Local Soft-Core NucleonÄ
Nucleon Potential // Nucl. Phys. A. 1971. V. 169. P. 407Ä416.
86. ŒμÉÉ ., Œ¥¸¸¨ ƒ. ’¥μ·¨Ö Éμ³´ÒÌ ¸Éμ²±´μ¢¥´¨°: ¥·. ¸ ´£². Œ.: Œ¨·, 1969.
756 ¸.
87. Ishikawa S. Low-Energy ProtonÄDeuteron Scattering with a Coulomb-Modiˇed Faddeev Equation // Few-Body Syst. 2003. V. 32, No. 4. P. 229Ä248.
88. Chen C. R. et al. Low-Energy NucleonÄDeuteron Scattering // Phys. Rev. C. 1989.
V. 39, No. 4. P. 1261Ä1268.
89. Fuda M. G., Girard B. A. On-Shell Theory for n−d Scattering in High Partial
Waves // Phys. Rev. C. 1978. V. 17, No. 1. P. 1Ä3.
90. Alt E. O., Bakker B. L. G. Test of a Separable Approximation to a Local Soft-Core
Potential in the Three-Body System // Z. Phys. A. 1975. V. 273. P. 37Ä42.
91. Seagrave J. D., Lawrence C. n−d Scattering at 2.45 and 3.27 MeV // Phys. Rev.
1957. V. 105, No. 6. P. 1816Ä1820.
92. Schwarz P. et al. Elastic NeutronÄDeuteron Scattering in the Energy Range from
2.5 MeV to 30 MeV // Nucl. Phys. A. 1983. V. 398. P. 1Ä18.
93. Berthold G. H., Zankel H. Momentum Space Faddeev Calculation for N −d Scattering
below the Breakup Threshold // Phys. Rev. C. 1986. V. 34, No. 4. P. 1203Ä1213.
94. Alt E. O., Mukhamedzhanov A. M., Sattarov A. I. Calculation of ProtonÄDeuteron
Elastic Scattering at 10 MeV with a Realistic Potential // Phys. Rev. Lett. 1998.
V. 81. P. 4820Ä4823.
95. Sherr R. et al. Scattering of Protons by Deuterons // Phys. Rev. 1947. V. 72, No. 8.
P. 662Ä672.
“‚…ˆŸ ”„„……‚ ˆ Œ…’„ ƒˆ…‘”…ˆ—…‘Šˆ• ƒŒˆŠ 609
96. Kocher D. C., Clegg T. B. Cross Sections for ProtonÄDeuteron Scattering from 1.0 to
10.0 MeV // Nucl. Phys. A. 1969. V. 132. P. 455Ä467.
97. ‘¨É¥´±μ . ƒ., • ·Î¥´±μ ‚. ”. ‘¢Ö§ ´´Ò¥ ¸μ¸ÉμÖ´¨Ö ¨ · ¸¸¥Ö´¨¥ ¢ ¸¨¸É¥³¥ É·¥Ì
Î ¸É¨Í // “”. 1971. ’. 103, ¢Ò¶. 3. ‘. 469Ä537.
98. Tartakovsky V. K., Kozlovsky I. V. To the Problem of Three Interacting Particles in
Continuum // J. Phys. Stud. 2005. V. 9, No. 2. P. 112Ä117.
99. Noble J. V. Three-Body Problem with Charged Particles // Phys. Rev. 1967. V. 161,
No. 4. P. 945Ä955.
100. ‚¥¸¥²μ¢ . Œ. ‚Ò¤¥²¥´¨¥ ¤¢ÊÌÎ ¸É¨Î´ÒÌ ±Ê²μ´μ¢¸±¨Ì μ¸μ¡¥´´μ¸É¥° ¢ ¸¨¸É¥³¥
É·¥Ì § ·Ö¦¥´´ÒÌ Î ¸É¨Í // ’Œ”. 1970. ’. 3, º 3. ‘. 326Ä331.
101. Kharchenko V. F., Storozhenko S. A. Integral Equations for Three-Nucleon Problem
with the Coulomb Interaction: ProtonÄDeuteron Scattering. Preprint of Inst. for
Theor. Phys. ITP-75-53E, Acad. of Sci. of USSR. Kiev, 1975. 41 p.
102. • ·Î¥´±μ ‚. ”., ˜ ¤Î¨´ ‘. . ’¥μ·¨Ö · ¸¸¥Ö´¨Ö ¤²Ö ¸¨¸É¥³Ò É·¥Ì Î ¸É¨Í, ¤¢¥ ¨§
±μÉμ·ÒÌ § ·Ö¦¥´Ò // “±·. ˨§. ¦Ê·´. 1978. ’. 23, º 10. ‘. 1651Ä1660; ·¥¶·¨´É
ˆ´-É É¥μ·. ˨§¨±¨ “‘‘ ˆ’”-80-122. Š¨¥¢, 1980. 36 ¸.
103. ˜ ¤Î¨´ ‘. . ¨ ¤·. ˆ´É¥£· ²Ó´Ò¥ Ê· ¢´¥´¨Ö ¤²Ö É·¥Ì ´Ê±²μ´μ¢ ¶·¨ ´ ²¨Î¨¨ ±Ê²μ´μ¢¸±μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö. ·¥¶·¨´É ˆ´-É É¥μ·. ˨§¨±¨ “‘‘
ˆ’”-81-78. Š¨¥¢, 1981. 46 ¸.
104. ŠÊ¶¥·¨´ . ., Œ¥·±Ê·Ó¥¢ ‘. ., Š¢¨Í¨´¸±¨° . . “¶·Ê£μ¥ · ¸¸¥Ö´¨¥ ¨ · §¢ ² ¢
¸¨¸É¥³¥ pd // Ÿ”. 1983. ’. 37, ¢Ò¶. 6. ‘. 1440Ä1450.
105. Tartakovsky V. K., Kozlovsky I. V., Kovalchuk V. I. System of Two Charged and One
Neutral Particles Strongly Interacting with One Another in the Continuous Spectrum //
Ukr. J. Phys. 2006. V. 51, No. 8. P. 824Ä829.
106. ‹ ´¤ Ê ‹. „., ‹¨ËÏ¨Í …. Œ. Š¢ ´Éμ¢ Ö ³¥Ì ´¨± (´¥·¥²Öɨ¢¨¸É¸± Ö É¥μ·¨Ö). Œ.:
ƒ². ·¥¤. ˨§.-³ É. ²¨É., 1989. 768 ¸.
107. Š ³±¥ . ‘¶· ¢μ䨱 ¶μ μ¡Ò±´μ¢¥´´Ò³ ¤¨ËË¥·¥´Í¨ ²Ó´Ò³ Ê· ¢´¥´¨Ö³: ¥·. ¸
´£². Œ.: Œ¨·, 1976. 584 ¸.
108. Šμ·´ ƒ., Šμ·´ ’. ‘¶· ¢μ䨱 ¶μ ³ É¥³ ɨ±¥ ¤²Ö ´ ÊδÒÌ · ¡μÉ´¨±μ¢ ¨ ¨´¦¥´¥·μ¢: ¥·. ¸ ´£². Œ.: ƒμ¸. ¨§¤-¢μ ˨§.-³ É. ²¨É., 1984. 831 ¸.
109. ‘¨É¥´±μ . ƒ., ’ ·É ±μ¢¸±¨° ‚. Š., Šμ§²μ¢¸±¨° ˆ. ‚. Š § ¤ Î¥ É·¥Ì É¥² ¸ ¶ ·´Ò³ ±μ·μÉ±μ¤¥°¸É¢ÊÕШ³ ¢§ ¨³μ¤¥°¸É¢¨¥³ // “±·. ˨§. ¦Ê·´. 2001. ’. 46, º 12.
‘. 1251Ä1255.
110. ƒ· ¤ÏÉ¥°´ ˆ. ‘., Ò¦¨± ˆ. Œ. ’ ¡²¨ÍÒ ¨´É¥£· ²μ¢, ¸Ê³³, ·Ö¤μ¢ ¨ ¶·μ¨§¢¥¤¥´¨°.
Œ.: ƒμ¸. ¨§¤-¢μ ˨§.-³ É. ²¨É., 1963. 1108 ¸.
Скачать