D;G C;E \ h ^^ ^ ^ 4*$* 7 **0 * &% / *H, *-0 ' &, , - - *& Y /D/1/h/d# -'&/ '8 -& )&4, d ∈ D(h)# -&4 $ :)* * 1 ** &0# -&, & 8 5 - 0 -&4 *4# ,I* % 0 0& %5 -& %* &,# - 8 5 4 % -& &/ & 8 ,/ - - wX TeS c\cS_ oS FWXU[YS_ \UQZcTWT[F\^ kWOXYU lW_ TeS c\FrST ^WUU c_Wk\k[^[TQ [X TeS ZWYS^ Y /D/1/h/d o[Te UWZS UcSF[\^ US_n[FS Y[F[c^[XS d ∈ D(h) c_SUSXTSY kQ mUQk\rWn v \XY e[U FW8\OTeW_U pS \_S \X\^QP[X` TeS F\US oeSX Y[UT_[kOT[WXU Wl TeS UWO_FSUU \FT[nS cS_[WY ^SX`TeSU kS^WX`U TW TeS UST FWXU[UT[X` Wl qX[TS XOZkS_ Wl Y[S_SXT Y[UT_[kOT[WXU \XY YS_[n[X` FWXY[T[WXU OXYS_ oe[Fe S\Fe Y[UT_[kOT[WX [XOSXFS XWXT_[n[\^^Q WX c\FrST ^WUU c_Wk\k[8 ^[TQ &'( )* +,-./012 ,/ --&, )7# ,/ -8 -# *-)# -& ,4&* 5* kOS_ WnS_Wo c_Wk\k[^[TQ# eS\nQ8T\[^SY Y[UT_[kOT[WX# _\_S SnSXTU c_Wk\k[^[TQ SUT[Z\T[WX 45 '5 &5 1 5,I - 5. --*H, ** -'* & '* -'* - x~dx# 8 & * *4 -,&* %, -&H, %** &0* &0*# *HI* -&, &* 5* & K-'8 &/ ), &,' 7' 7 -)5 *&,5 8 - - &0 *.) , -)&4, - * * -' %** -I,* !)&* .*"# / )& . + & / &/+. + & - -- 5 1# 5 0 )&48 , !`ab "# 0# ,/ --&, )7 0 ½ . D? DA %* & ,/ - %,# )H K-'&/* )%* %8 * &0, 5 -*# -*# %* )7 i*-0 &, tCu# tAu# tEu -%&# 0 - 7 8 *5 *-/H5 ,5 )&H * ). & &/+. # & ) ), 5 &,'5 7'# & - %, *H @ 6 # 0# -&, - -%&* 1 < α < 2 8 -' K ' , &0* 0 &, %5 *5 .&5# / ,&,, / 6 `ab *5 * )&4, * 5,I8 * -* &/ *,H, - H '* *&,* & &4 5,I5 -# -&# -&0/ 0 7*& &, 5 0# 5,# -&5 &0,5# *4 -/ 5 *-0 - & &, 5 *-0 8 ' )&/. %5 * )# -,I5 &% -%&/8 1 *-)* 5,I* -*# --&&/# 0 0# -4HI 7 ,&,H, *# / *H -8 & &, & 5 - 7 *5 &**8 '5 *5 ,&,, &/*# -&/ *5 * -, 7*', !& # # "# -h8 ,&,HI, % ), -- -)# -0# %8 4* -0* 5* `ab# &, - 5 , &**'5 * tAu# t<u -%&# 0 )&H -*# )8 & -54* - *&/7& * &*# - 7 )&/.5 *&/5 *5 .&5 %&0, ,% K* # )&HI5 4* * -* 4,# 0 --%', &/5 *-)5 -' %&0* * *-), ) )&/ 4* * ,I* ** I , ) 5 *&/ 8 &/ %&05 -& & 5 - 0 & %&/ 5 ) %&H0, *# 0 6 ) WR @6 -0 0 %, - *# ) ), 5,I - 5 `ab ' 8 5 0# ,4& %, -5, # H %8 -4H &/ )& & ),# , -0 ,I* ;"[> %5*S ##")# e4' T*)"$*5#e['5 5*(! !$;"$)"; :*4S !*4#d! T*"*;* ) T*4*_5(: !*4#d: T*"*;: 3 *4% (_;* -& % %0H * - G/D/1/h# h < ∞# -8 &/ *5 *-/H5 *5# -&/%HI5 4* 58 -0 5 M xmd# *, )&4, ,&,, ** DD 0# *-0 ' &, , --&, )7 , - - &, * *-)* 5,I* -* 8 * 0*# -&/%HI5 4* xmd# )& -&0 )5 :)# tBu 8 t;;u# t;Du * - K *& 1 ** 5,I - Y = (. . . , Y−1 , Y0 , Y1 , . . .), Yt ∈ {0, 1, ...}, t ∈ Z = {. . . , −1, 0, 1, . . .} M K &0 -# 8 5 * * 0* ** * t $% 0, )I -&*# 0 & 4 - ' )%0* 0% ωs # τs θs (i) ∈ Z + 0& & - 08 s ∈ Z + 0& -# 5 0* s ** ωs + i − 1 / θs (i) > 0 &, &H)5 i ∈ {1, . . . τs } θs (i) = 0 - i ≤ 0, i ≥ τs + 1 % ξt ∈ Z+ )%0* 0& 0# -.5, ** t ** 7 / --%', -# *5 %&0* * ** t 0* Yt = θs (t − ωs + 1), t ∈ Z. s∈Z -&4*# 0 ;" &0 &0 τs , s ∈ Z+ C" &0 &0 ξt , t ∈ Z + # ξt * -& # / P {ξt = k} = e k!λ , 0 < λ < ∞, k ∈ Z + ?" &0 &0 τs %* %* ξt ωs & i ∈ {1, ..., τs}, A" 0 *H -,H /@ θs (i) = 1, 0, & i ≤ 0, i ≥ τs + 1. −λ k -& Yt &, 4 t ,&,, -*# * - DYt = λEτ +/ ξ τ *H 4 -&# ξt τs H *&/ 5,I - 0 %H M/G/1 *&/H# *8 & M 0 % - ξt # G / -& %*5 5 * )&4, τs & & 5 - τs &, 5 s ∈ Z + 5 l ∈ N *H 8 -& # / EYt = λEτ P (τs = l) = c0 l −α−1 , c0 = ∞ −1 l −α−1 , 1 < α < 2, !;" l=1 - Yt ) *-0 *-)* -'* -** 6 3−α H ∈ ( 12 , 1) - 1 < α < 2# {Yt }, t ≥ 0 K -' & 2 -*,/H * - 1 < α < 2 τs *H 0 )0H -H H = DE & )* */ * Y /D/1/h# Y / 5,I -' - .# D M -, *, )&4, &, - ;# 8 -*# ;# %0# 0 * / &/ )&4HI !&"# h < ∞ K %* )7 -5 0 %* )7 %0# 0 *4 5/ )& 0* h -8 &H) ** * t 4* ** [t, t + 1) & - )& 0* C -# ), &) % )7# &) % Yt 5 -8 # )&4, [t, t + 1)# 5 % * ** t + 1 &0 C %, &. /+ & * -&8 * C = 1 4 ** * t & *4 5/, )& -# )7 *4 5/ )& h -# &&/ & h+ 1 < Yt # 0/ - ),%&/ ) , )%0* 0% Z = (. . . , Z−1, Z0 , Z1 , . . .) &0 -# 5,I5, )7 ** * t )& * &* '-& )&4, d ,&,, & DC (h)# &,HI &HI* &,*@ ;" & Yt + Zt > 0# min{Yt + Zt , 1} - -- & ** * t C" & Yt + Zt ≤ h + 1# - ,, ** * t ?" & 4 Yt + Zt > h + 1# Yt + Zt − h − 1 - ,, ** * t * - )H, &, )&4,# ,H,# -8 &,, '-& d ∈ DC (h) ) Yt +Zt > h+1 %, --&* )7 ** t 1* t %, *** --&,# & ,, 5, ) ** t - )5 tBu 8 t;;u )& %# 0 &, * Y /D/1/h &, , - - '* 4* -& &HI ' *$: 3 ;c/= V Eτ < ∞ P (ξ = 0) < 1 Y /D/1/h . ' 6 . /&@ D(h) &+ " )'E Ploss ≥ ∞ 1 P (τ ≥ n), λEτ (Eτ + Eκ)2 n=n !C" 1 ) n1 = a = h+b + 2, a Eκ = [1 − P (ξ = 0)]−1 − 1, (Eτ + Eκ)−1 ≤ 1, b=a+1 Ploss ≤ ∞ 1 P (τ ≥ n), (1 − λEτ )Eτ n=h λEτ < 1 !?" D< & &0, &0 τ * -& # 48 ,, 5,, ' &, , - - - h → ∞ ) */ Ploss ≥ c0 α(α − 1)λEτ (Eτ + Eκ)2 Ploss ≤ −α+1 h+b , +2 a c0 h−α+1 , α(α − 1)Eτ (1 − λEτ ) !A" !D" λE(τ ) < 1 &, )&/.5 h * -&0* Ploss ≥ clow h−α+1 !E" Ploss ≤ cupper h−α+1 . !<" c0 α(α − 1)λEτ (Eτ + Eκ)α+1 !B" K* clow = c0 α(α − 1)Eτ (1 − λEτ ) !G" c0 h−α+1 = q1 h−α+1 α(α − 1)(Eτ + Eκ)α+1 !;=" c0 λ h−α+1 = q2 h−α+1 . α(α − 1)(1 − λEτ ) !;;" cupper = %, λ, α, Eτ h * )%*# ' !E" !<" 0/H *4&,# %,I h# H / ), , - - * %* )7 h **# 0 &0 '5 *& &7 ,/ Ploss ) * h K-'&/# -* )%* ,/ - - ,% ,/H --&, )78 0# - &5 . --&4,5 &/ 7 Yt &, Pover -& &HI *-0 '@ Pover ≥ Pover ≤ ,/ Pover 4 ) * h K-'&/# -* )%* 6 *4% i 5*45*$*45(: !*4#d: T*"*;*: '# -&0 :)* $ # 0/ ) -05 -&8 4,5# -&/ %, %* )7 h ". DB # h . 6&/ ) -&0/ &0 %&/ &, 1 * 5,I* -* -&4*# 0 * ,% 0 * )/ 2 ≤ r < ∞ %5 - !t;u" * &* 4 0 - k, k = 1, . . . , r 5%, * & - τ (k) # , * -& -** α(k) # 1 ≤ k ≤ r@ (k) P (τ (k) = n) = c0 n−α (k) −1 , !;C" 1 < α(1) < . . . α(r) < 2. K* &0 ξt = ξt(1) + ... + ξt(r) # ξt(i) / &0 0 - i# -.5, ** t ξt(i) * -& -** (i) λ(i) , 1 ≤ i ≤ r )*# 0) &0 ξt , 1 ≤ i ≤ r )& %* ξt 4 * -& -** λ = λ(1) + ... + λ(r) -8 &4* 4# 0 &0 λ = const# &0 λ(i) , 1 ≤ i ≤ r * %*,, * )%*# * *4* %*,/ &# 0* 4 - )I* -# &,, - K* %** / )I - 4 0 %* - R = 1 - *, - %* )7 h < ∞# --, -)/ & C ; - - ,, - --& )7# % '-& d ∈ D(h) &/. 4, &, ** 5,I -' Y ∗ = Y (1) + . . . + Y (r) # / --%', %*5 -' Y (k) , k = 1, . . . , r -&5 . -&* &0 d(k) = λλ -&, 5 ξ ∗ τ ∗ ) */H -& ξ (k) τ (k) # %,5 * d(k) # / (k) P {ξ ∗ = m} = r d(k) P {ξ (k) = m} = k=1 P {τ ∗ = x} = r r k=1 d(k) P {τ (k) = x} = k=1 r d(k) (λ(k) )m −λ(k) e m! (k) d(k) c0 x−α (k) −1 . !;?" !;A" k=1 75 λ(k) λ - &* F * x ) *&8 0* &/ )0 P {τ ∗ = x} -) *- cx−α −1 # / *- P {τ ∗ = x} - *- * ,8 4& -&, % P -0 0 %, ',# ,4& %, -5, # H % -4H &/ )& & %, )* d(k) &HI* )%* (1) d(k) d(r) (k) (r) = hα −α , k = 1, . . . , r − 1 = 1 − d(1) − . . . − d(r−1) . ( /# 0 d(r) → 1, d(k) → 0, k = 1, . . . , r − 1 - h → ∞ !;D" DG & λ 7# -&, ξ ∗ τ ∗ ) %/ h -&/%, !C" !?" 7# 0 Eτ ∗ = d(k) Eτ (k) → Eτ r - h → ∞# * -&0*# 0 Ploss ≥ ∞ r 1 d(k) P (τ (k) ≥ n). λEτ ∗ (Eτ ∗ + Eκ∗ )2 n=n !;E" r ∞ 1 ≤ d(k) P (τ (k) ≥ n). Eτ ∗ (1 − λEτ ∗ ) !;<" 1 Ploss k=1 n=h k=1 &/ (k) (k) (k) (k) c0 c n−α ≤ P (τ (k) ≥ n) ≤ 0(k) (n − 1)−α α(k) α ∞ (k) (k) 1 1 −α(k) +1 ≤ n−α ≤ (k) n (n1 − 2)−α +1 , n1 > 2, 1 < α(k) < 2, 1 (k) (α − 1) (α − 1) n=n 1 % !;C" !;D" &# 0 ∞ d(k) (k) P (τ (k) ≥ n) ≥ n=n∗ 1 d(k) ∞ d(k) c0 α(k) n=h d(k) c0 α(k) (k) (k) ≥ (k) d(k) c0 (n∗ )−α +1 α(k) (α(k) − 1) 1 (k) ≤ (k) d(k) c0 (h − 2)−α +1 . (k) α (α(k) − 1) n−α n=n∗ 1 ∞ (k) P (τ (k) ≥ n) ≤ ∞ (n − 1)−α (k) n=h )&/.5 h (k) (k) d(k) c0 (n∗1 )−α +1 (k) (k) α (α − 1) c̃1 h−α ∼ c̃2 h−α (k) (k) (k) d(k) c0 (h − 2)−α +1 (k) (k) α (α − 1) (r) ∼ (r) (k) +1 +1 . 0&/ -&0*# (r) c̃1 h−α +1 (r) ≤ Ploss ≤ c̃2 h−α +1 , c̃1 = r (k) c0 1 λ(r) Eτ (r) (Eτ (r) + Eκ(r) )2 k=1 α(k) (α(k) − 1) !;B" !;G" E= c̃2 = r (k) c0 1 . Eτ (r) (1 − λ(r) Eτ (r) ) k=1 α(k) (α(k) − 1) !C=" * )%*# /, & 0 %5 - )I* -# *48 -%/# 0 &H) % 0 -) &,/ &/* )%* ,/ - - ) t;u &, *& :) * 0* )& -&8 0 4,, *-0, ' &, , --&, )7 '* 4*@ (r) Pover ≥ q̃1 h−α +1 , q̃1 = r (k) c0 1 . (Eτ (r) + Eκ(r) )2 α(k) (α(k) − 1) !C;" !CC" k=1 +**# 0 &, , --&, )7 '* 4* -& 4 *-0, 5,, '@ (r) Pover ≤ q̃2 h−α q̃2 = +1 , r (k) λ(r) c0 . (1 − λ(r) Eτ (r) ) k=1 α(k) (α(k) − 1) !C?" !CA" /# %*,, & 0 %5 - )I* -# *4 -8 %/# 0 &H) % 0 -) &,/ &/* )%* 8 ,/ --&, )7 T)*; "$"[$( t;u fxc[FS y # eWre^Wn O R # R[YW_Wn\ b w vWOXYU TW kOS_8WnS_Wo c_Wk\k[^[TQ [X TeS F\US Wl Y[S_SXT Y[UT_[kOT[WXU Wl UQUTSZ \FT[nS cS_[WYU L wX m_\XU\FT[WXU Wl TeS DTe RT jSTS_UkO_` pW_rUeWc WX R[ZO^\T[WX# RT jSTS_kO_`# ~OUU[\# OXS CE 8 O^Q C# C==D # cc ==8== tCu y_WnS^^\ d # vSUT\n_WU x RS^l8U[Z[^\_[TQ [X oW_^Y o[YS oSk T_\F@ Sn[YSXFS \XY cWUU[k^S F\USU wX j_WFSSY[X`U Wl TeS ;GGE xydRwgd]mwyR wXTS_X\T[WX\^ yWXlS_SXFS WX dS\UO_SZSXT \XY dWYS^^[X` Wl yWZcOTS_ RQUTSZU# ;GGE# d\Q t?u NS^YZ\XX x # g[^kS_T x y # p[^^[X`S_ p f\T\ XSToW_rU \U F\UF\YSU@ wXnSUT[`\T[X` TeS ZO^T[l_\FT\^ X\TO_S Wl wXTS_XST pxV T_\F wX j_WF xyd Rwgybdd GB# ;GGB# cc AC8DD tAu zS^\XY p ] # m\O# d R # p[^^[X`S_ p # p[^^UWX f a bX TeS US^l8U[Z[^\_ X\TO_S Wl ]TeS_XST T_\F !]sTSXYSY nS_U[WX"# w]]]Jxyd m_\XU VSToW_r[X` C# ;GGA# cc ;8;D E; tDu z[re\XWn V # mUQk\rWn v # gSW_`\X\U V f xX\^QU[U Wl \X xmd kOS_ o[Te RS^l 8 R[Z[^\_ !N_\FT\^" wXcOT T_\F 8 j_WF# w]]] wVNbybdGD# vWUTWX# dx# ;GGD# cc GBD8GGC tEu j\sTWX a # N^WQY R p[YS8\_S\ T_\F@meS l\[^O_S Wl jW[UUWX ZWYS^^[X` wX j_WF# xyd RwgybddGA# ;GGA# cc CD<8CEB t<u m\O d R # mSnS_WnUrQ a # p[^^[X`S_ p wU XSToW_r T_\F US^l8U[Z[^\_ W_ ZO^T[l_\FT\^ N_\FT\^U D# ;GG<# cc E?8<? tBu mUQk\rWn v # gSW_`\X\U V f bX US^lU[Z[^\_ T_\F [X xmd OSOSU@ fSqX[T[WXU# WnS_Wo c_Wk\k[^[TQ kWOXY \XY FS^^ YS^\Q Y[UT_[kOT[WX w]]]Jxyd m_\XU VSToW_r[X`# D!?"# ;GG<# cc ?<G8A=G tGu mUQk\rWn v # gSW_`\X\U V f RS^lU[Z[^\_ T_\F \XY OccS_ kWOXYU TW kOS_ WnS_Wo [X \X xmd OSOS jS_lW_Z\XFS ]n\^O\T[WX# ?E!;"# ;GGB# cc D<8B= t;=u mUQk\rWn v # gSW_`\X\U V f bnS_Wo \XY ^WUU c_Wk\k[^[T[SU [X \ qX[TS xmd kOS_ lSY kQ US^l8U[Z[^\_ T_\F OSOS[X` UQUTSZU ?C# ;GGG# cc C??8CDE t;;u mUQk\rWn v # gSW_`\X\U V f bnS_Wo \XY ^WUUSU [X \ XSToW_r OSOS o[Te \ US^l8U[Z[^\_ [XcOT OSOS[X` UQUTSZU ?D# C===# cc C=;8C?D t;Cu & # > # ' &, , --&, )7 &0 0 0& %&05 -8 & 5 - L 14, 7', -8 (*8C==D t;?u # 65& 2 ,/ --&, )7 *& %&0* -&,* & 5 - )% -8 & -*.& **# * ;A# - ;# C==<# <B8<G t;Au 65& 2 # # --*', , --&, )8 7 &, &0, %&05 -& & 5 - L &4 *@ )) 7*'# *& -*%',@ ) 0 - C L /@ 8# C==A# EB8<< t;Du :) $ 1&/ &7 *-) &0 -' L 5# D# CA8?;# ;GGG