верхняя и нижняя границы для вероятности потери пакета и

реклама
D;G C;E
\
h
^^
^
^
4*$* 7 **0 * &%
/ *H, *-0 ' &, ,
- - *& Y /D/1/h/d# -'&/ '8
-& )&4, d ∈ D(h)# -&4 $ :)* * 1 ** &0# -&, & 8
5 - 0 -&4 *4# ,I* %
0 0& %5 -& %* &,# - 8
5 4 % -& &/ & 8
,/ - -
wX TeS c\cS_ oS FWXU[YS_ \UQZcTWT[F\^ kWOXYU lW_ TeS c\FrST ^WUU c_Wk\k[^[TQ
[X TeS ZWYS^ Y /D/1/h/d o[Te UWZS UcSF[\^ US_n[FS Y[F[c^[XS d ∈ D(h)
c_SUSXTSY kQ mUQk\rWn v \XY e[U FW8\OTeW_U pS \_S \X\^QP[X` TeS F\US
oeSX Y[UT_[kOT[WXU Wl TeS UWO_FSUŒU \FT[nS cS_[WY ^SX`TeSU kS^WX`U TW TeS UST
FWXU[UT[X` Wl qX[TS XOZkS_ Wl Y[S_SXT Y[UT_[kOT[WXU \XY YS_[n[X` FWXY[T[WXU
OXYS_ oe[Fe S\Fe Y[UT_[kOT[WX [X‘OSXFS XWXT_[n[\^^Q WX c\FrST ^WUU c_Wk\k[8
^[TQ
&'( )*
+,-./012
,/ --&, )7# ,/ -8
-# *-)# -& ,4&* 5*
kOS_ WnS_‘Wo c_Wk\k[^[TQ# eS\nQ8T\[^SY Y[UT_[kOT[WX# _\_S
SnSXTŒU c_Wk\k[^[TQ SUT[Z\T[WX
45
'5 &5 1 5,I - 5. --*H,
** -'* & '* -'* - x~dx# 8
& * *4 -,&* %, -&H, %** &0*
&0*# *HI* -&, &* 5* & K-'8
&/ ), &,' 7' 7 -)5 *&,5 8
- - &0 *.) , -)&4, - *
* -' %** -I,* !)&* .*"# /
)& . + & / &/+. + & - -- 5 1# 5 0 )&48
, !`ab "# 0# ,/ --&, )7 0
½
.
D?
DA
%* & ,/ - %,# )H K-'&/* )%* %8
* &0, 5 -*# -*# %*
)7
i*-0 &, tCu# tAu# tEu -%&# 0 - 7 8
*5 *-/H5 ,5 )&H * ). & &/+. # & ) ), 5 &,'5
7'# & - %, *H @ 6
# 0# -&, - -%&* 1 < α < 2 8
-' K ' , &0* 0 &,
%5 *5 .&5# / ,&,, /
6 `ab *5 * )&4, * 5,I8
* -* &/ *,H, - H '* *&,*
& &4 5,I5 -# -&# -&0/
0 7*& &, 5 0# 5,# -&5 &0,5# *4 -/
5 *-0 - & &, 5 *-0 8
'
)&/. %5 * )# -,I5 &% -%&/8
1 *-)* 5,I* -*# --&&/# 0 0#
-4HI 7 ,&,H, *# / *H -8
& &, & 5 - 7 *5 &**8
'5 *5 ,&,, &/*# -&/ *5 * -, 7*', !& # # "# -h8
,&,HI, % ), -- -)# -0# %8
4* -0* 5* `ab# &, - 5 ,
&**'5 * tAu# t<u -%&# 0 )&H -*# )8
& -54* - *&/7& * &*# - 7
)&/.5 *&/5 *5 .&5 %&0, ,% K*
#
)&HI5 4* * -* 4,# 0 --%',
&/5 *-)5 -' %&0* * *-), )
)&/ 4* *
,I* ** I , ) 5 *&/ 8
&/ %&05 -& & 5 - 0 &
%&/ 5 ) %&H0, *# 0 6
) ’WR @6
-0 0 %, - *#
) ), 5,I - 5 `ab ' 8
5 0# ,4& %, -5, # H %8
-4H &/ )& & ),# , -0
,I*
;"[>
%5*S ##")# e4' T*)"$*5#e['5
5*(! !$;"$)";
:*4S !*4#d! T*"*;*
) T*4*_5(: !*4#d: T*"*;:
3 *4% (_;*
-& % %0H * - G/D/1/h# h < ∞# -8
&/ *5 *-/H5 *5# -&/%HI5 4* 58
-0 5 M xmd# *, )&4, ,&,, **
DD
0# *-0 ' &, , --&, )7 , - - &, * *-)* 5,I* -* 8
* 0*# -&/%HI5 4* xmd# )& -&0 )5
:)# tBu 8 t;;u# t;Du * - K *&
1 ** 5,I -
Y = (. . . , Y−1 , Y0 , Y1 , . . .),
Yt ∈ {0, 1, ...}, t ∈ Z = {. . . , −1, 0, 1, . . .} M K &0 -# 8
5 * * 0* ** * t $% 0,
)I -&*# 0 & 4 - '
)%0* 0% ωs # τs θs (i) ∈ Z + 0& & - 08
s ∈ Z + 0& -# 5 0* s ** ωs + i − 1
/ θs (i) > 0 &, &H)5 i ∈ {1, . . . τs } θs (i) = 0 - i ≤ 0, i ≥ τs + 1
% ξt ∈ Z+ )%0* 0& 0# -.5, ** t
** 7 / --%', -# *5 %&0*
* ** t 0*
Yt =
θs (t − ωs + 1), t ∈ Z.
s∈Z
-&4*# 0
;" &0 &0 τs , s ∈ Z+ ƒ
C" &0 &0 ξt , t ∈ Z + # ξt * -& # / P {ξt = k} = e k!λ , 0 < λ < ∞, k ∈ Z + ƒ
?" &0 &0 τs %* %* ξt ωs ƒ
& i ∈ {1, ..., τs},
A" 0 *H -,H /@ θs (i) = 1,
0, & i ≤ 0, i ≥ τs + 1.
−λ
k
-& Yt &, 4 t ,&,, -*# *
- DYt = λEτ +/ ξ τ *H 4 -&# ξt τs
H *&/ 5,I - 0 %H M/G/1 *&/H# *8
& M 0 % - ξt # G / -& %*5
5 * )&4, τs
& & 5 - τs &, 5 s ∈ Z + 5 l ∈ N *H 8
-& # /
EYt = λEτ
P (τs = l) = c0 l
−α−1
, c0 =
∞
−1
l
−α−1
, 1 < α < 2,
!;"
l=1
- Yt ) *-0 *-)* -'* -** 6
3−α
H ∈ ( 12 , 1) - 1 < α < 2# {Yt }, t ≥ 0 K -' &
2
-*,/H * - 1 < α < 2 τs *H 0 )0H
-H
H =
DE
& )* */ * Y /D/1/h# Y / 5,I -'
- .# D M -, *, )&4, &, - ;# 8
-*# ;# %0# 0 * / &/ )&4HI
!&"# h < ∞ K %* )7 -5
0 %* )7 %0# 0 *4 5/ )& 0* h -8
&H) ** * t 4* ** [t, t + 1) & -
)& 0* C -# ), &) % )7# &) % Yt 5 -8
# )&4, [t, t + 1)# 5 % * **
t + 1 &0 C %, &. /+ & * -&8
* C = 1
4 ** * t & *4 5/, )& -#
)7 *4 5/ )& h -# &&/ & h+ 1 < Yt # 0/
- ),%&/ ) , )%0* 0% Z = (. . . , Z−1, Z0 , Z1 , . . .)
&0 -# 5,I5, )7 ** * t
)& * &* '-& )&4, d ,&,, &
DC (h)# &,HI &HI* &,*@
;" & Yt + Zt > 0# min{Yt + Zt , 1} - -- & **
* tƒ
C" & Yt + Zt ≤ h + 1# - ,, ** * tƒ
?" & 4 Yt + Zt > h + 1# Yt + Zt − h − 1 - ,, ** * t
* - )H, &, )&4,# ,H,# -8
&,, '-& d ∈ DC (h)
) Yt +Zt > h+1 %, --&* )7 ** t 1* t
%, *** --&,# & ,, 5, ) ** t -
)5 tBu 8 t;;u )& %# 0 &, * Y /D/1/h &, ,
- - '* 4* -& &HI '
*$:
3 ;c/=
V
Eτ < ∞ P (ξ = 0) < 1 Y /D/1/h . ' 6
. /&@ D(h) &+ " )'E
Ploss ≥
∞
1
P (τ ≥ n),
λEτ (Eτ + Eκ)2 n=n
!C"
1
)
n1
=
a =
h+b
+ 2,
a
Eκ = [1 − P (ξ = 0)]−1 − 1,
(Eτ + Eκ)−1 ≤ 1,
b=a+1
Ploss ≤
∞
1
P (τ ≥ n),
(1 − λEτ )Eτ
n=h
λEτ < 1
!?"
D<
& &0, &0 τ * -& # 48
,, 5,, ' &, , - - - h → ∞ ) */
Ploss ≥
c0
α(α − 1)λEτ (Eτ + Eκ)2
Ploss ≤
−α+1
h+b
,
+2
a
c0
h−α+1 ,
α(α − 1)Eτ (1 − λEτ )
!A"
!D"
λE(τ ) < 1
&, )&/.5 h * -&0*
Ploss ≥ clow h−α+1
!E"
Ploss ≤ cupper h−α+1 .
!<"
c0
α(α − 1)λEτ (Eτ + Eκ)α+1
!B"
K* clow =
c0
α(α − 1)Eτ (1 − λEτ )
!G"
c0
h−α+1 = q1 h−α+1
α(α − 1)(Eτ + Eκ)α+1
!;="
c0 λ
h−α+1 = q2 h−α+1 .
α(α − 1)(1 − λEτ )
!;;"
cupper =
%, λ, α, Eτ h
* )%*# ' !E" !<" 0/H *4&,# %,I h# H / ), , - - * %* )7
h **# 0 &0 '5 *& &7 ,/
Ploss ) * h K-'&/# -* )%*
,/ - - ,% ,/H --&, )78
0# - &5 . --&4,5 &/ 7 Yt
&, Pover -& &HI *-0 '@
Pover ≥
Pover ≤
,/ Pover 4 ) * h K-'&/# -*
)%*
6 *4% i 5*45*$*45(: !*4#d: T*"*;*:
'# -&0 :)* $ # 0/ ) -05 -&8
4,5# -&/ %, %* )7 h ".
DB
# h .
6&/ ) -&0/ &0 %&/
&, 1 * 5,I* -*
-&4*# 0 * ,% 0 * )/ 2 ≤ r < ∞ %5
- !t;u" * &* 4 0 - k, k = 1, . . . , r 5%,
* & - τ (k) # , * -&
-** α(k) # 1 ≤ k ≤ r@
(k)
P (τ (k) = n) = c0 n−α
(k)
−1
,
!;C"
1 < α(1) < . . . α(r) < 2.
K* &0 ξt = ξt(1) + ... + ξt(r) # ξt(i) / &0 0 - i#
-.5, ** t ξt(i) * -& -**
(i)
λ(i) , 1 ≤ i ≤ r )*# 0) &0 ξt , 1 ≤ i ≤ r )& %* ξt 4 * -& -** λ = λ(1) + ... + λ(r) -8
&4* 4# 0 &0 λ = const# &0 λ(i) , 1 ≤ i ≤ r * %*,,
* )%*# * *4* %*,/ &# 0* 4 -
)I* -# &,, - K* %** / )I -
4 0 %* - R = 1 - *,
- %* )7 h < ∞# --, -)/
& C ; - - ,, - --& )7# %
'-& d ∈ D(h) &/. 4, &,
** 5,I -' Y ∗ = Y (1) + . . . + Y (r) # /
--%', %*5 -' Y (k) , k = 1, . . . , r -&5 .
-&* &0 d(k) = λλ -&, 5 ξ ∗ τ ∗ )
*/H -& ξ (k) τ (k) # %,5 * d(k) # /
(k)
P {ξ ∗ = m} =
r
d(k) P {ξ (k) = m} =
k=1
P {τ ∗ = x} =
r
r
k=1
d(k) P {τ (k) = x} =
k=1
r
d(k)
(λ(k) )m −λ(k)
e
m!
(k)
d(k) c0 x−α
(k)
−1
.
!;?"
!;A"
k=1
75 λ(k) λ - &* F * x ) *&8
0* &/ )0 P {τ ∗ = x} -) *-
cx−α −1 # / *- P {τ ∗ = x} - *- * ,8
4& -&, % P
-0 0 %, ',# ,4& %,
-5, # H % -4H &/ )& &
%,
)* d(k) &HI* )%*
(1)
d(k)
d(r)
(k)
(r)
= hα −α , k = 1, . . . , r − 1
= 1 − d(1) − . . . − d(r−1) .
( /# 0 d(r) → 1, d(k) → 0, k = 1, . . . , r − 1 - h → ∞
!;D"
DG
& λ 7# -&, ξ ∗ τ ∗ ) %/ h
-&/%, !C" !?" 7# 0 Eτ ∗ = d(k) Eτ (k) → Eτ r - h → ∞# *
-&0*# 0
Ploss ≥
∞ r
1
d(k) P (τ (k) ≥ n).
λEτ ∗ (Eτ ∗ + Eκ∗ )2 n=n
!;E"
r
∞ 1
≤
d(k) P (τ (k) ≥ n).
Eτ ∗ (1 − λEτ ∗ )
!;<"
1
Ploss
k=1
n=h k=1
&/
(k)
(k)
(k)
(k)
c0
c
n−α ≤ P (τ (k) ≥ n) ≤ 0(k) (n − 1)−α
α(k)
α
∞
(k)
(k)
1
1
−α(k) +1
≤
n−α ≤ (k)
n
(n1 − 2)−α +1 , n1 > 2, 1 < α(k) < 2,
1
(k)
(α − 1)
(α − 1)
n=n
1
% !;C" !;D" &# 0
∞
d(k)
(k)
P (τ (k) ≥ n) ≥
n=n∗
1
d(k)
∞
d(k) c0
α(k)
n=h
d(k) c0
α(k)
(k)
(k)
≥
(k)
d(k) c0
(n∗ )−α +1
α(k) (α(k) − 1) 1
(k)
≤
(k)
d(k) c0
(h − 2)−α +1 .
(k)
α (α(k) − 1)
n−α
n=n∗
1
∞
(k)
P (τ (k) ≥ n) ≤
∞
(n − 1)−α
(k)
n=h
)&/.5 h
(k)
(k)
d(k) c0
(n∗1 )−α +1
(k)
(k)
α (α − 1)
c̃1 h−α
∼
c̃2 h−α
(k)
(k)
(k)
d(k) c0
(h − 2)−α +1
(k)
(k)
α (α − 1)
(r)
∼
(r)
(k)
+1
+1
.
0&/ -&0*#
(r)
c̃1 h−α
+1
(r)
≤ Ploss ≤ c̃2 h−α
+1
,
c̃1 =
r
(k)
c0
1
λ(r) Eτ (r) (Eτ (r) + Eκ(r) )2 k=1 α(k) (α(k) − 1)
!;B"
!;G"
E=
c̃2 =
r
(k)
c0
1
.
Eτ (r) (1 − λ(r) Eτ (r) ) k=1 α(k) (α(k) − 1)
!C="
* )%*# /, & 0 %5 - )I* -# *48
-%/# 0 &H) % 0 -) &,/ &/* )%*
,/ - -
) t;u &, *& :) * 0* )& -&8
0 4,, *-0, ' &, , --&, )7 '* 4*@
(r)
Pover ≥ q̃1 h−α
+1
,
q̃1 =
r
(k)
c0
1
.
(Eτ (r) + Eκ(r) )2
α(k) (α(k) − 1)
!C;"
!CC"
k=1
+**# 0 &, , --&, )7 '* 4*
-& 4 *-0, 5,, '@
(r)
Pover ≤ q̃2 h−α
q̃2 =
+1
,
r
(k)
λ(r)
c0
.
(1 − λ(r) Eτ (r) ) k=1 α(k) (α(k) − 1)
!C?"
!CA"
/# %*,, & 0 %5 - )I* -# *4 -8
%/# 0 &H) % 0 -) &,/ &/* )%* 8
,/ --&, )7
T)*; "$"[$(
t;u fŒxc[FS y # ˆeWre^Wn ‹O R # R[YW_Wn\ b w vWOXYU TW kOS_8WnS_‘Wo c_Wk\k[^[TQ
[X TeS F\US Wl Y[S_SXT Y[UT_[kOT[WXU Wl UQUTSZ \FT[nS cS_[WYU L wX m_\XU\FT[WXU Wl
TeS DTe RT jSTS_UkO_` pW_rUeWc WX R[ZO^\T[WX# RT jSTS_kO_`# ~OUU[\# ‰OXS CE 8
‰O^Q C# C==D # cc ==8==
tCu y_WnS^^\ d # vSUT\n_WU x RS^l8U[Z[^\_[TQ [X oW_^Y o[YS oSk T_\“F@ Sn[YSXFS
\XY cWUU[k^S F\USU wX j_WFSSY[X`U Wl TeS ;GGE xydRwgd]mwyR wXTS_X\T[WX\^
yWXlS_SXFS WX dS\UO_SZSXT \XY dWYS^^[X` Wl yWZcOTS_ RQUTSZU# ;GGE# d\Q
t?u NS^YZ\XX x # g[^kS_T x y # p[^^[X`S_ p f\T\ XSToW_rU \U F\UF\YSU@ wXnSUT[`\T[X`
TeS ZO^T[l_\FT\^ X\TO_S Wl wXTS_XST pxV T_\“F wX j_WF xyd Rwgybdd GB#
;GGB# cc AC8DD
tAu zS^\XY p ] # m\””O# d R # p[^^[X`S_ p # p[^^UWX f a bX TeS US^l8U[Z[^\_ X\TO_S
Wl ]TeS_XST T_\“F !]sTSXYSY nS_U[WX"# w]]]Jxyd m_\XU VSToW_r[X` C# ;GGA# cc
;8;D
E;
tDu z[re\XWn V # mUQk\rWn v # gSW_`\X\U V f xX\^QU[U Wl \X xmd kOS_ o[Te RS^l 8
R[Z[^\_ !N_\FT\^" wXcOT T_\“F 8 j_WF# w]]] wVNbybdŒGD# vWUTWX# dx# ;GGD#
cc GBD8GGC
tEu j\sTWX a # N^WQY R p[YS8\_S\ T_\“F@meS l\[^O_S Wl jW[UUWX ZWYS^^[X` wX j_WF#
xyd RwgybddŒGA# ;GGA# cc CD<8CEB
t<u m\””O d R # mSnS_WnUrQ a # p[^^[X`S_ p wU XSToW_r T_\“F US^l8U[Z[^\_ W_
ZO^T[l_\FT\^• N_\FT\^U D# ;GG<# cc E?8<?
tBu mUQk\rWn v # gSW_`\X\U V f bX US^lU[Z[^\_ T_\“F [X xmd ”OSOSU@ fSqX[T[WXU#
WnS_‘Wo c_Wk\k[^[TQ kWOXY \XY FS^^ YS^\Q Y[UT_[kOT[WX w]]]Jxyd m_\XU
VSToW_r[X`# D!?"# ;GG<# cc ?<G8A=G
tGu mUQk\rWn v # gSW_`\X\U V f RS^lU[Z[^\_ T_\“F \XY OccS_ kWOXYU TW kOS_
WnS_‘Wo [X \X xmd ”OSOS jS_lW_Z\XFS ]n\^O\T[WX# ?E!;"# ;GGB# cc D<8B=
t;=u mUQk\rWn v # gSW_`\X\U V f bnS_‘Wo \XY ^WUU c_Wk\k[^[T[SU [X \ qX[TS xmd
kOS_ lSY kQ US^l8U[Z[^\_ T_\“F ’OSOS[X` UQUTSZU ?C# ;GGG# cc C??8CDE
t;;u mUQk\rWn v # gSW_`\X\U V f bnS_‘Wo \XY ^WUUSU [X \ XSToW_r ”OSOS o[Te \
US^l8U[Z[^\_ [XcOT ’OSOS[X` UQUTSZU ?D# C===# cc C=;8C?D
t;Cu & # > # ' &, ,
--&, )7 &0 0 0& %&05 -8
& 5 - L 14, 7', -8
(*8C==D
t;?u # 65& 2 ,/ --&, )7 *&
%&0* -&,* & 5 - )% -8
& -*.& **# * ;A# - ;# C==<# <B8<G
t;Au 65& 2 # # --*', , --&, )8
7 &, &0, %&05 -& & 5 - L
&4 *@ )) 7*'# *& -*%',@
) 0 - C L /@ 8# C==A# EB8<<
t;Du :) $ 1&/ &7 *-) &0
-' L 5# D# CA8?;# ;GGG
Скачать