ɋɂɋɌȿɆȺ ɎɂɁɂɑȿɋɄɈɃ ɁȺɓɂɌɕ ɇȺ ɈɋɇɈȼȿ ȺȽȿɇɌɇɈɈɊɂȿɇɌɂɊɈȼȺɇɇɈȽɈ ɉɈȾɏɈȾȺ ɂ ɇȿɑȿɌɄɈɃ ɅɈȽɂɄɂ Ⱥ.Ⱦ. Ɍɚɪɚɫɨɜ Ɉɪɟɧɛɭɪɝɫɤɢɣ ɝɨɫɭɞɚɪɫɬɜɟɧɧɵɣ ɚɝɪɚɪɧɵɣ ɭɧɢɜɟɪɫɢɬɟɬ 460795, Ɉɪɟɧɛɭɪɝ, ɭɥ. ɑɟɥɸɫɤɢɧɰɟɜ, 18, Ɋɨɫɫɢɹ ɬɟɥ./ɮɚɤɫ: +8 (3532) 77-52-30 Ʉɥɸɱɟɜɵɟ ɫɥɨɜɚ: ɫɢɫɬɟɦɚ ɮɢɡɢɱɟɫɤɨɣ ɡɚɳɢɬɵ, ɫɢɫɬɟɦɚ ɤɨɧɬɪɨɥɹ ɞɨɫɬɭɩɚ, ɚɝɟɧɬɧɨɨɪɢɟɧɬɢɪɨɜɚɧɧɵɣ ɩɨɞɯɨɞ, ɧɟɱɟɬɤɚɹ ɥɨɝɢɤɚ, ɮɚɡɢɮɢɤɚɰɢɹ, ɞɟɮɚɡɢɮɢɤɚɰɢɹ, ɧɟɱɟɬɤɢɟ ɛɚɡɵ ɡɧɚɧɢɣ Ɇɚɦɞɚɧɢ Abstract It is described mathematic modeling of objects and processes with systems of physical defense by using agent-oriented methods and fuzzy logic (on example of standard package Fuzzy Logic in MATLAB system). ȼɜɟɞɟɧɢɟ Ɋɚɡɜɢɬɢɟ ɫɨɜɪɟɦɟɧɧɵɯ ɩɪɨɝɪɚɦɦɧɨ-ɚɩɩɚɪɚɬɧɵɯ ɫɪɟɞɫɬɜ ɩɨɡɜɨɥɹɟɬ ɫɭɳɟɫɬɜɟɧɧɨ ɩɨɜɵɫɢɬɶ ɡɚɳɢɳɟɧɧɨɫɬɶ ɨɛɴɟɤɬɚ ɨɬ ɧɟɫɚɧɤɰɢɨɧɢɪɨɜɚɧɧɨɝɨ ɞɨɫɬɭɩɚ ɩɨɫɬɨɪɨɧɧɢɯ ɥɢɰ. ɒɢɪɨɤɨɟ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɟ ɩɨɥɭɱɚɟɬ ɩɪɢɦɟɧɟɧɢɟ ɚɜɬɨɦɚɬɢɡɢɪɨɜɚɧɧɵɯ ɫɢɫɬɟɦ ɮɢɡɢɱɟɫɤɨɣ ɡɚɳɢɬɵ (ɋɎɁ) ɜ ɱɚɫɬɧɨɫɬɢ ɫɢɫɬɟɦ ɤɨɧɬɪɨɥɹ ɞɨɫɬɭɩɚ (ɋɄȾ). Ɋɚɡɪɚɛɨɬɤɚ ɩɪɨɝɪɚɦɦɧɨɝɨ ɨɛɟɫɩɟɱɟɧɢɹ ɫɥɨɠɧɵɯ ɢɧɬɟɝɪɢɪɨɜɚɧɧɵɯ ɤɨɦɩɥɟɤɫɨɜ ɢ ɤɨɦɩɶɸɬɟɪɧɵɯ ɫɟɬɟɣ ɢɦɟɟɬ ɛɨɥɶɲɨɟ ɡɧɚɱɟɧɢɟ ɞɥɹ ɪɚɫɲɢɪɟɧɢɹ ɜɨɡɦɨɠɧɨɫɬɟɣ ɤɨɦɩɶɸɬɟɪɧɵɯ ɫɢɫɬɟɦ ɩɨɞɞɟɪɠɤɢ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɣ ɢ ɩɨɜɵɲɟɧɢɹ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɩɪɨɰɟɫɫɨɜ ɨɛɪɚɛɨɬɤɢ ɞɚɧɧɵɯ ɜ ɤɨɦɩɶɸɬɟɪɧɵɯ ɫɢɫɬɟɦɚɯ. Ɉɞɢɧ ɢɡ ɫɩɨɫɨɛɨɜ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ ɩɪɨɝɪɚɦɦɧɨɝɨ ɨɛɟɫɩɟɱɟɧɢɹ ɞɥɹ ɋɎɁ ɷɬɨ ɦɨɞɟɥɢɪɨɜɚɧɢɟ ɜ ɜɢɞɟ ɪɚɫɩɪɟɞɟɥɟɧɧɨɣ ɫɢɫɬɟɦɵ ɫɨɫɬɨɹɳɟɣ ɢɡ ɚɜɬɨɧɨɦɧɵɯ ɦɨɞɭɥɟɣ, ɬ. ɟ. ɩɪɢɦɟɧɟɧɢɟ ɚɝɟɧɬɧɨ-ɨɪɢɟɧɬɢɪɨɜɚɧɧɨɝɨ ɩɨɞɯɨɞɚ. ȼɨ ɜɪɟɦɹ ɪɟɲɟɧɢɹ ɡɚɞɚɱɢ ɩɨɫɬɪɨɟɧɢɹ ɢɧɬɟɝɪɢɪɨɜɚɧɧɨɣ ɫɢɫɬɟɦɵ ɮɢɡɢɱɟɫɤɨɣ ɡɚɳɢɬɵ ɩɨɹɜɥɹɟɬɫɹ ɩɪɨɛɥɟɦɚ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɧɟɬɨɱɧɨɣ, ɧɟɩɨɥɧɨɣ ɢ ɱɚɫɬɨ ɧɟɨɞɧɨɡɧɚɱɧɨɣ ɢɧɮɨɪɦɚɰɢɟɣ [1]. Ⱦɥɹ ɪɚɛɨɬɵ ɜ ɬɚɤɨɣ ɢɧɮɨɪɦɚɰɢɨɧɧɨɣ ɫɪɟɞɟ ɦɨɠɧɨ ɩɪɢɦɟɧɹɬɶ ɧɟɤɥɚɫɫɢɱɟɫɤɢɟ ɜɢɞɵ ɥɨɝɢɤ, ɧɚɩɪɢɦɟɪ, ɬɚɤ ɧɚɡɵɜɚɟɦɭɸ ɧɟɱɟɬɤɭɸ ɥɨɝɢɤɭ. 1 Ɇɧɨɝɨɚɝɟɧɬɧɵɟ ɫɢɫɬɟɦɵ Ɇɧɨɝɨɚɝɟɧɬɧɚɹ ɫɢɫɬɟɦɚ (ɆȺɋ) – ɷɬɨ ɫɢɫɬɟɦɚ, ɨɛɪɚɡɨɜɚɧɧɚɹ ɧɟɫɤɨɥɶɤɢɦɢ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɦɢ ɢɧɬɟɥɥɟɤɬɭɚɥɶɧɵɦɢ ɚɝɟɧɬɚɦɢ. Ɇɧɨɝɨɚɝɟɧɬɧɵɟ ɫɢɫɬɟɦɵ ɦɨɝɭɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨɜɚɧɵ ɞɥɹ ɪɟɲɟɧɢɹ ɬɚɤɢɯ ɩɪɨɛɥɟɦ, ɤɨɬɨɪɵɟ ɫɥɨɠɧɨ ɢɥɢ ɧɟɜɨɡɦɨɠɧɨ ɪɟɲɢɬɶ ɫ ɩɨɦɨɳɶɸ ɨɞɧɨɝɨ ɚɝɟɧɬɚ ɢɥɢ ɦɨɧɨɥɢɬɧɨɣ ɫɢɫɬɟɦɵ. ɂɧɬɟɥɥɟɤɬɭɚɥɶɧɵɟ ɚɝɟɧɬɵ – ɩɪɨɝɪɚɦɦɧɵɟ ɨɛɴɟɤɬɵ (ɨɫɨɛɵɣ ɪɨɞ ɤɨɦɩɶɸɬɟɪɧɵɯ ɩɪɨɝɪɚɦɦ), ɫɩɨɫɨɛɧɵɟ ɤ ɜɡɚɢɦɨɞɟɣɫɬɜɢɸ ɞɪɭɝ ɫ ɞɪɭɝɨɦ ɢ ɚɧɚɥɢɡɭ ɢɧɮɨɪɦɚɰɢɢ, ɩɨɥɭɱɟɧɧɨɣ ɱɟɪɟɡ ɢɯ ɫɨɨɛɳɟɧɢɹ ɞɪɭɝ ɞɪɭɝɭ. ȼ ɨɩɪɚɜɞɚɧɢɟ ɨɩɪɟɞɟɥɟɧɢɹ «ɢɧɬɟɥɥɟɤɬɭɚɥɶɧɵɟ», Ⱥɝɟɧɬɵ ɞɨɥɠɧɵ ɛɵɬɶ ɫɩɨɫɨɛɧɵ ɤ ɩɪɢɧɹɬɢɸ ɪɟɲɟɧɢɣ ɜ ɭɫɥɨɜɢɹɯ ɧɟɨɩɪɟɞɟɥɟɧɧɨɫɬɢ ɫɢɬɭɚɰɢɢ, ɞɟɣɫɬɜɨɜɚɬɶ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɩɨɥɧɨɣ ɢɧɮɨɪɦɚɰɢɢ, ɯɨɬɹ ɛɵ ɢ ɜ ɤɚɤɨɣ-ɥɢɛɨ ɭɡɤɨɣ ɨɛɥɚɫɬɢ. ɂɧɬɟɥɥɟɤɬɭɚɥɶɧɵɣ ɚɝɟɧɬ ɜɥɚɞɟɟɬ ɨɩɪɟɞɟɥɟɧɧɵɦɢ ɡɧɚɧɢɹɦɢ ɨ ɫɟɛɟ ɢ ɨɛ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɟ, ɢ ɧɚ ɨɫɧɨɜɟ ɷɬɢɯ ɡɧɚɧɢɣ ɨɧ ɫɩɨɫɨɛɟɧ ɨɩɪɟɞɟɥɹɬɶ ɫɜɨɟ ɩɨɜɟɞɟɧɢɟ. Ʉɚɤ ɩɪɚɜɢɥɨ, ɚɝɟɧɬɵ ɫɤɨɪɟɟ ɨɛɭɱɟɧɵ, ɱɟɦ ɡɚɩɪɨɝɪɚɦɦɢɪɨɜɚɧɵ ɞɥɹ ɜɵɩɨɥɧɟɧɢɹ ɤɨɧɤɪɟɬɧɨɣ ɪɚɛɨɬɵ [2]. 650 ȼ ɫɥɭɱɚɟ ɩɪɢɦɟɧɟɧɢɹ ɦɧɨɝɨɚɝɟɧɬɧɨɝɨ ɩɨɞɯɨɞɚ ɩɪɢ ɩɨɫɬɪɨɟɧɢɢ ɋɎɁ, ɫɢɫɬɟɦɚ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɫɟɬɶ ɜɡɚɢɦɨɞɟɣɫɬɜɭɸɳɢɯ ɦɟɠɞɭ ɫɨɛɨɣ ɚɜɬɨɧɨɦɧɵɯ ɩɪɨɝɪɚɦɦɧɨ ɢɥɢ ɚɩɩɚɪɚɬɧɨ ɪɟɚɥɢɡɨɜɚɧɧɵɯ ɚɝɟɧɬɨɜ, ɤɚɠɞɵɣ ɢɡ ɤɨɬɨɪɵɯ ɜɵɩɨɥɧɹɟɬ ɨɩɪɟɞɟɥɟɧɧɵɟ ɮɭɧɤɰɢɢ ɜ ɫɢɫɬɟɦɟ. 2 ɇɟɱɟɬɤɚɹ ɥɨɝɢɤɚ Ɇɚɬɟɦɚɬɢɱɟɫɤɚɹ ɬɟɨɪɢɹ ɧɟɱɟɬɤɢɯ ɦɧɨɠɟɫɬɜ (fuzzy sets) ɢ ɧɟɱɟɬɤɚɹ ɥɨɝɢɤɚ (fuzzy logic) ɹɜɥɹɸɬɫɹ ɨɛɨɛɳɟɧɢɹɦɢ ɤɥɚɫɫɢɱɟɫɤɨɣ ɬɟɨɪɢɢ ɦɧɨɠɟɫɬɜ ɢ ɤɥɚɫɫɢɱɟɫɤɨɣ ɮɨɪɦɚɥɶɧɨɣ ɥɨɝɢɤɢ. Ⱦɚɧɧɵɟ ɩɨɧɹɬɢɹ ɛɵɥɢ ɜɩɟɪɜɵɟ ɩɪɟɞɥɨɠɟɧɵ ɚɦɟɪɢɤɚɧɫɤɢɦ ɭɱɟɧɵɦ Ʌɨɬɮɢ Ɂɚɞɟ (Lotfi Zadeh) ɜ 1965 ɝ. ɉɨɧɹɬɢɟ ɥɢɧɝɜɢɫɬɢɱɟɫɤɨɣ ɩɟɪɟɦɟɧɧɨɣ ɢɝɪɚɟɬ ɜɚɠɧɭɸ ɪɨɥɶ ɜ ɧɟɱɟɬɤɨɦ ɥɨɝɢɱɟɫɤɨɦ ɜɵɜɨɞɟ ɢ ɜ ɩɪɢɧɹɬɢɢ ɪɟɲɟɧɢɣ ɧɚ ɨɫɧɨɜɟ ɩɪɢɛɥɢɠɟɧɧɵɯ ɪɚɫɫɭɠɞɟɧɢɣ. Ʌɢɧɝɜɢɫɬɢɱɟɫɤɨɣ ɧɚɡɵɜɚɟɬɫɹ ɩɟɪɟɦɟɧɧɚɹ, ɩɪɢɧɢɦɚɸɳɚɹ ɡɧɚɱɟɧɢɹ ɢɡ ɦɧɨɠɟɫɬɜɚ ɫɥɨɜ ɢɥɢ ɫɥɨɜɨɫɨɱɟɬɚɧɢɣ ɧɟɤɨɬɨɪɨɝɨ ɟɫɬɟɫɬɜɟɧɧɨɝɨ ɢɥɢ ɢɫɤɭɫɫɬɜɟɧɧɨɝɨ ɹɡɵɤɚ. Ɇɧɨɠɟɫɬɜɨ ɞɨɩɭɫɬɢɦɵɯ ɡɧɚɱɟɧɢɣ ɥɢɧɝɜɢɫɬɢɱɟɫɤɨɣ ɩɟɪɟɦɟɧɧɨɣ ɧɚɡɵɜɚɟɬɫɹ ɬɟɪɦ-ɦɧɨɠɟɫɬɜɨɦ. Ɂɚɞɚɜɚɟɦɵɟ ɷɤɫɩɟɪɬɚɦɢ ɢɫɯɨɞɧɵɟ ɞɚɧɧɵɟ ɜ ɧɟɱɟɬɤɨɣ ɮɨɪɦɟ ɫ ɩɨɦɨɳɶɸ ɨɩɟɪɚɰɢɣ ɧɟɱɟɬɤɨɝɨ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ ɩɨɡɜɨɥɹɸɬ ɩɨɥɭɱɢɬɶ ɡɧɚɱɟɧɢɹ ɜɵɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ. ȼɵɯɨɞɧɵɟ ɩɟɪɟɦɟɧɧɵɟ ɜ ɫɜɨɸ ɨɱɟɪɟɞɶ ɦɨɝɭɬ ɛɵɬɶ ɜɯɨɞɧɵɦɢ ɞɥɹ ɫɥɟɞɭɸɳɟɝɨ ɭɪɨɜɧɹ ɨɛɪɚɛɨɬɤɢ ɧɟɱɟɬɤɨɣ ɢɧɮɨɪɦɚɰɢɢ. Ɉɛɪɚɡɭɟɬɫɹ ɢɟɪɚɪɯɢɱɟɫɤɚɹ ɫɢɫɬɟɦɚ, ɜ ɤɨɬɨɪɨɣ ɢɧɮɨɪɦɚɰɢɹ ɨɬ ɷɤɫɩɟɪɬɨɜ, ɜ ɤɨɧɟɱɧɨɦ ɫɱɟɬɟ, ɨɩɪɟɞɟɥɹɟɬ, ɧɚɩɪɢɦɟɪ, ɤɚɬɟɝɨɪɢɸ ɨɛɴɟɤɬɚ ɡɚɳɢɬɵ. Ɉɫɧɨɜɨɣ ɞɥɹ ɩɪɨɜɟɞɟɧɢɹ ɨɩɟɪɚɰɢɢ ɧɟɱɟɬɤɨɝɨ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ ɹɜɥɹɟɬɫɹ ɛɚɡɚ ɩɪɚɜɢɥ, ɫɨɞɟɪɠɚɳɚɹ ɧɟɱɟɬɤɢɟ ɜɵɫɤɚɡɵɜɚɧɢɹ ɜ ɮɨɪɦɟ 'ȿɫɥɢ-ɬɨ' ɢ ɮɭɧɤɰɢɢ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɞɥɹ ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɥɢɧɝɜɢɫɬɢɱɟɫɤɢɯ ɬɟɪɦɨɜ. ɇɚɩɪɢɦɟɪ ɢɦɟɟɬɫɹ m ɩɪɚɜɢɥ ɜɢɞɚ: R1: ȿɋɅɂ x1 ɷɬɨ A11 … ɂ … xn ɷɬɨ A1n, ɌɈ y ɷɬɨ B1 … Ri: ȿɋɅɂ x1 ɷɬɨ Ai1 … ɂ … xn ɷɬɨ Ain, ɌɈ y ɷɬɨ Bi … Rm: ȿɋɅɂ x1 ɷɬɨ Ai1 … ɂ … xn ɷɬɨ Amn, ɌɈ y ɷɬɨ Bm, ɝɞɟ xk , k=1..n – ɜɯɨɞɧɵɟ ɩɟɪɟɦɟɧɧɵɟ; y – ɜɵɯɨɞɧɚɹ ɩɟɪɟɦɟɧɧɚɹ; Aik – ɡɚɞɚɧɧɵɟ ɧɟɱɟɬɤɢɟ ɦɧɨɠɟɫɬɜɚ ɫ ɮɭɧɤɰɢɹɦɢ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ. Ɋɟɡɭɥɶɬɚɬɨɦ ɧɟɱɟɬɤɨɝɨ ɜɵɜɨɞɚ ɹɜɥɹɟɬɫɹ ɡɧɚɱɟɧɢɟ ɩɟɪɟɦɟɧɧɨɣ y ɧɚ ɨɫɧɨɜɟ ɡɚɞɚɧɧɵɯ ɡɧɚɱɟɧɢɣ xk , k=1..n. Ɍɚɤɭɸ ɧɟɱɟɬɤɭɸ ɛɚɡɭ ɡɧɚɧɢɣ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɜ ɜɢɞɟ ɬɚɛɥɢɰɵ. ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ ɦɟɯɚɧɢɡɦ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ ɜɤɥɸɱɚɟɬ ɱɟɬɵɪɟ ɷɬɚɩɚ: ɜɜɟɞɟɧɢɟ ɧɟɱɟɬɤɨɫɬɢ (ɮɚɡɢɮɢɤɚɰɢɹ), ɧɟɱɟɬɤɢɣ ɜɵɜɨɞ, ɤɨɦɩɨɡɢɰɢɹ ɢ ɩɪɢɜɟɞɟɧɢɟ ɤ ɱɟɬɤɨɫɬɢ, ɢɥɢ ɞɟɮɚɡɢɮɢɤɚɰɢɹ. Ⱥɥɝɨɪɢɬɦɵ ɧɟɱɟɬɤɨɝɨ ɜɵɜɨɞɚ ɪɚɡɥɢɱɚɸɬɫɹ ɝɥɚɜɧɵɦ ɨɛɪɚɡɨɦ ɜɢɞɨɦ ɢɫɩɨɥɶɡɭɟɦɵɯ ɩɪɚɜɢɥ, ɥɨɝɢɱɟɫɤɢɯ ɨɩɟɪɚɰɢɣ ɢ ɪɚɡɧɨɜɢɞɧɨɫɬɶɸ ɦɟɬɨɞɚ ɞɟɮɚɡɢɮɢɤɚɰɢɢ. Ɋɚɡɪɚɛɨɬɚɧɵ ɦɨɞɟɥɢ ɧɟɱɟɬɤɨɝɨ ɜɵɜɨɞɚ Ɇɚɦɞɚɧɢ, ɋɭɝɟɧɨ. Ʌɢɧɝɜɢɫɬɢɱɟɫɤɢɟ ɩɪɚɜɢɥɚ ɝɟɧɟɪɢɪɭɸɬɫɹ ɷɤɫɩɟɪɬɨɦ ɥɢɛɨ ɩɨɥɭɱɚɸɬɫɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɨɛɪɚɛɨɬɤɢ ɧɟɱɟɬɤɢɯ ɡɧɚɧɢɣ ɢɡ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ. ɂɫɯɨɞɧɚɹ ɦɨɞɟɥɶ ɞɨɥɠɧɚ ɛɵɬɶ ɧɚɫɬɪɨɟɧɚ (ɨɛɭɱɟɧɚ) ɱɬɨɛɵ ɜɵɞɚɜɚɬɶ ɜɟɪɧɵɣ ɤɨɧɟɱɧɵɣ ɪɟɡɭɥɶɬɚɬ. ɉɪɚɜɢɥɶɧɨɫɬɶ ɤɨɧɟɱɧɨɝɨ ɪɟɡɭɥɶɬɚɬɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɷɤɫɩɟɪɬɚɦɢ, ɬ. ɟ. ɷɤɫɩɟɪɬɵ ɞɨɥɠɧɵ ɭɤɚɡɚɬɶ ɨɬɜɟɬ ɞɥɹ ɤɨɧɤɪɟɬɧɵɯ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ. ɇɟɫɤɨɥɶɤɨ ɧɚɛɨɪɨɜ ɞɚɧɧɵɯ ɜɢɞɚ xk , k=1..n – ɜɯɨɞɧɵɟ ɩɟɪɟɦɟɧɧɵɟ ɢ ɫɨɨɬɜɟɬɫɬɜɭɸɳɚɹ y – ɜɵɯɨɞɧɚɹ ɩɟɪɟɦɟɧɧɚɹ ɢɫɩɨɥɶɡɭɸɬɫɹ ɞɥɹ ɧɚɫɬɪɨɣɤɢ ɦɨɞɟɥɢ. ȼ ɩɪɨɰɟɫɫɟ ɨɛɭɱɟɧɢɹ ɧɟɱɟɬɤɚɹ ɛɚɡɚ ɡɧɚɧɢɣ ɢɡɦɟɧɹɟɬɫɹ ɬɚɤɢɦ ɨɛɪɚɡɨɦ, ɱɬɨɛɵ ɦɨɞɟɥɶ ɜɵɞɚɜɚɥɚ ɪɟɡɭɥɶɬɚɬɵ ɤɚɤ ɦɨɠɧɨ ɛɨɥɟɟ ɛɥɢɡɤɢɟ ɤ ɦɧɟɧɢɸ ɷɤɫɩɟɪɬɨɜ. Ɉɛɭɱɟɧɢɟ ɩɪɨɢɫɯɨɞɢɬ ɚɜɬɨɦɚɬɢɱɟɫɤɢ ɫ ɩɨɦɨɳɶɸ ɫɭɳɟɫɬɜɭɸɳɢɯ ɩɪɨɝɪɚɦɦɧɵɯ ɫɪɟɞɫɬɜ ɩɭɬɟɦ ɧɚɯɨɠɞɟɧɢɹ ɬɚɤɢɯ ɩɚɪɚɦɟɬɪɨɜ ɧɟɱɟɬɤɨɣ ɛɚɡɵ ɡɧɚɧɢɣ, ɤɨɬɨɪɵɟ ɦɢɧɢɦɢɡɢɪɭɸɬ ɨɬɤɥɨɧɟ- 651 ɧɢɟ ɦɨɞɟɥɶɧɵɯ ɢ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɪɟɡɭɥɶɬɚɬɨɜ. ɉɨɫɥɟ ɧɚɫɬɪɨɣɤɢ ɦɨɞɟɥɶ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɥɸɛɵɯ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ [3]. 3 Ɇɨɞɟɥɶ ɮɨɪɦɢɪɨɜɚɧɢɹ ɦɧɟɧɢɣ ɚɝɟɧɬɚ ɧɚ ɨɫɧɨɜɟ ɧɟɱɟɬɤɨɣ ɥɨɝɢɤɢ ɉɪɟɞɥɚɝɚɟɬɫɹ ɦɨɞɟɥɶ ɋɄȾ ɧɚ ɨɫɧɨɜɟ ɦɧɨɝɨɚɝɟɧɬɧɨɝɨ ɩɨɞɯɨɞɚ (ɪɢɫɭɧɨɤ 1). ɋɬɪɟɥɤɚɦɢ ɩɨɤɚɡɚɧɵ ɧɚɩɪɚɜɥɟɧɢɹ ɩɟɪɟɞɚɱɢ ɢɧɮɨɪɦɚɰɢɢ (ɫɨɨɛɳɟɧɢɣ) ɨɬ ɨɞɧɢɯ ɚɝɟɧɬɨɜ ɞɪɭɝɢɦ. Ɋɚɫɫɦɨɬɪɢɦ ɩɨɞɪɨɛɧɨ ɞɟɣɫɬɜɢɹ ɨɞɧɨɝɨ ɚɝɟɧɬɚ. Ⱥɝɟɧɬ-ɜɚɯɬɟɪ – ɦɨɞɭɥɶ, ɨɬɜɟɱɚɸɳɢɣ ɡɚ ɩɪɨɩɭɫɤ ɩɨɫɟɬɢɬɟɥɟɣ ɧɚ ɬɟɪɪɢɬɨɪɢɸ ɨɛɴɟɤɬɚ. Ⱦɚɧɧɵɣ ɚɝɟɧɬ ɞɨɥɠɟɧ ɩɪɢɧɢɦɚɬɶ ɪɟɲɟɧɢɟ ɨ ɩɪɨɩɭɫɤɟ ɢɥɢ ɡɚɞɟɪɠɤɟ ɩɨɫɟɬɢɬɟɥɹ (ɨɛ ɨɬɤɪɵɜɚɧɢɢ ɢɥɢ ɡɚɤɪɵɜɚɧɢɢ ɬɭɪɧɢɤɟɬɚ), ɚ ɬɚɤɠɟ ɨ ɩɨɞɚɱɟ ɫɢɝɧɚɥɚ ɬɪɟɜɨɝɢ ɜ ɫɥɭɱɚɟ ɧɚɪɭɲɟɧɢɢ ɩɪɨɩɭɫɤɧɨɝɨ ɪɟɠɢɦɚ ɢɥɢ ɫɛɨɟ ɜ ɪɚɛɨɬɟ ɫɢɫɬɟɦɵ, ɢ ɪɟɲɟɧɢɟ ɨ ɩɪɨɫɬɨɦ ɫɢɝɧɚɥɟ ɚɜɬɨɦɚɬɢɱɟɫɤɨɝɨ ɨɬɤɪɵɬɢɹ ɬɭɪɧɢɤɟɬɚ ɞɥɹ ɢɧɮɨɪɦɢɪɨɜɚɧɢɹ ɨɯɪɚɧɧɢɤɚ. ɗɬɢ ɞɟɣɫɬɜɢɹ ɡɚɜɢɫɹɬ ɨɬ ɫɥɟɞɭɸɳɢɯ ɫɨɨɛɳɟɧɢɣ ɞɪɭɝɢɯ ɚɝɟɧɬɨɜ: 1) ɋɨɫɬɨɹɧɢɟ ɤɚɪɬɨɱɤɢ ɩɨɫɟɬɢɬɟɥɹ ɨɬ ɚɝɟɧɬɚ ɫɤɚɧɟɪɚ; 2) ɂɧɮɨɪɦɚɰɢɹ ɢɡ ɛɚɡɵ ɞɚɧɧɵɯ ɨɛ ɭɪɨɜɧɟ ɞɨɩɭɫɤɚ ɩɨɫɟɬɢɬɟɥɹ; 3) ɂɧɮɨɪɦɚɰɢɹ ɢɡ ɛɚɡɵ ɞɚɧɧɵɯ ɨ ɧɚɥɢɱɢɢ ɩɨɫɟɬɢɬɟɥɹ ɧɚ ɬɟɪɪɢɬɨɪɢɢ; 4) Ⱦɟɣɫɬɜɢɹ ɚɝɟɧɬɚ ɨɯɪɚɧɧɢɤɚ (ɠɟɥɚɧɢɟ ɨɬɤɪɵɬɶ ɬɭɪɧɢɤɟɬ ɜɪɭɱɧɭɸ). Ⱥɝɟɧɬ ɫɢɝɧɚɥ ɬɪɟɜɨɝɢ Ⱥɝɟɧɬ ɫɤɚɧɟɪ Ⱥɝɟɧɬ ɩɨɫɟɬɢɬɟɥɶ Ⱥɝɟɧɬ ɜɚɯɬɟɪ Ⱥɝɟɧɬ ɫɢɝɧɚɥ ɨɬɤɪɵɬɢɹ ɬɭɪɧɢɤɟɬɚ Ⱥɝɟɧɬ ɩɭɥɶɬ ɭɩɪɚɜɥɟɧɢɹ Ⱥɝɟɧɬ ɬɭɪɧɢɤɟɬ Ⱥɝɟɧɬ ɛɚɡɚ ɞɚɧɧɵɯ Ⱥɝɟɧɬ ɨɯɪɚɧɧɢɤ Ɋɢɫɭɧɨɤ 1 – Ɇɨɞɟɥɶ ɆȺɋ ɫɢɫɬɟɦɵ ɤɨɧɬɪɨɥɹ ɞɨɫɬɭɩɚ ɋɨɨɬɜɟɬɫɬɜɟɧɧɨ ɞɥɹ ɚɝɟɧɬɚ-ɜɚɯɬɟɪɚ ɢɦɟɟɬɫɹ ɧɚɛɨɪ ɫɨɨɛɳɟɧɢɣ – ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ, ɧɚ ɨɫɧɨɜɟ ɤɨɬɨɪɵɯ ɚɝɟɧɬ ɩɪɢɧɢɦɚɟɬ ɪɟɲɟɧɢɹ, ɮɨɪɦɢɪɭɟɬ ɫɜɨɢ ɦɧɟɧɢɹ, ɤɨɬɨɪɵɟ ɛɭɞɭɬ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜ ɜɢɞɟ ɫɨɨɛɳɟɧɢɣ ɞɥɹ ɞɪɭɝɢɯ ɚɝɟɧɬɨɜ – ɜɵɯɨɞɧɵɯ ɞɚɧɧɵɯ. ɉɪɨɰɟɫɫ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹ ɜɯɨɞɧɵɯ ɞɚɧɧɵɯ ɜ ɜɵɯɨɞɧɵɟ ɩɪɟɞɫɬɚɜɢɦ ɜ ɜɢɞɟ ɦɨɞɟɥɢ, ɜ ɤɨɬɨɪɨɣ ɩɪɟɞɥɚɝɚɟɬɫɹ ɢɫɩɨɥɶɡɨɜɚɬɶ ɦɟɬɨɞɵ ɧɟɱɟɬɤɨɣ ɥɨɝɢɤɢ ɫ ɩɨɦɨɳɶɸ ɩɚɤɟɬɚ Fuzzy Logic ɜ ɫɢɫɬɟɦɟ MATLAB. Ɇɨɞɟɥɶ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɹ ɦɨɠɧɨ ɩɪɟɞɫɬɚɜɢɬɶ ɮɭɧɤɰɢɨɧɚɥɶɧɵɦ ɨɬɨɛɪɚɠɟɧɢɟɦ: X = (x1, x2, …, xn) ĺ Y = (y1, y2, …, ym), ɝɞɟ X – ɜɟɤɬɨɪ ɜɥɢɹɸɳɢɯ ɮɚɤɬɨɪɨɜ, ɚ Y – ɜɟɤɬɨɪ ɪɟɲɟɧɢɣ ȼɥɢɹɧɢɟ ɮɚɤɬɨɪɨɜ ɨɬɨɛɪɚɡɢɦ ɜ ɜɢɞɟ ɢɟɪɚɪɯɢɱɟɫɤɨɝɨ ɞɟɪɟɜɚ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ (ɪɢɫɭɧɨɤ 2). ɗɥɟɦɟɧɬɚɦɢ ɞɟɪɟɜɚ ɹɜɥɹɸɬɫɹ: • ɜɟɪɲɢɧɵ - ɜɵɯɨɞɧɵɟ ɞɚɧɧɵɟ – ɦɧɟɧɢɹ ɚɝɟɧɬɚ (y1, y2, y3); • ɜɟɪɲɢɧɵ - ɜɯɨɞɧɵɟ ɞɚɧɧɵɟ – ɜɥɢɹɸɳɢɟ ɮɚɤɬɨɪɵ (x1,x2,x3,x4); y1 ɬɚɤɠɟ ɹɜɥɹɟɬɫɹ ɜɯɨɞɧɵɦ ɮɚɤɬɨɪɨɦ ɞɥɹ y3. Ɍɚɤɚɹ ɩɟɪɟɦɟɧɧɚɹ ɧɚɡɵɜɚɟɬɫɹ ɭɤɪɭɩɧɟɧɧɵɦ ɜɯɨɞɧɵɦ ɮɚɤɬɨɪɨɦ. 652 Ɉɩɢɫɚɧɢɟ ɮɚɤɬɨɪɨɜ ɩɪɢɜɨɞɢɬɫɹ ɜ ɬɚɛɥɢɰɟ 1. Ɋɚɫɱɟɬɵ y1, y2, y3 ɛɭɞɭɬ ɨɫɭɳɟɫɬɜɥɹɬɶɫɹ ɩɨɫɪɟɞɫɬɜɨɦ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ ɩɨ ɧɟɱɟɬɤɢɦ ɛɚɡɚɦ ɡɧɚɧɢɣ. Y3 Y1 X1 Y2 X2 X3 X4 Ɋɢɫɭɧɨɤ 2 – ɂɟɪɚɪɯɢɱɟɫɤɨɟ ɞɟɪɟɜɨ ɦɨɞɟɥɢ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɹ ɚɝɟɧɬɨɦ-ɜɚɯɬɟɪɨɦ Ɍɚɛɥɢɰɚ 1 – ȼɯɨɞɧɵɟ ɢ ɜɵɯɨɞɧɵɟ ɞɚɧɧɵɟ ɜ ɩɪɨɰɟɫɫɟ ɮɨɪɦɢɪɨɜɚɧɢɹ ɦɧɟɧɢɣ ɚɝɟɧɬɚ-ɜɚɯɬɟɪɚ ɇɚɡɜɚɧɢɟ X1 X2 X3 X4 Y1 Y2 Y3 3.1 Ɉɩɢɫɚɧɢɟ ɋɨɫɬɨɹɧɢɟ ɤɚɪɬɨɱɤɢ ɜ ɭɫɬɪɨɣɫɬɜɟ ɫɱɢɬɵɜɚɧɢɹ ɂɧɮɨɪɦɚɰɢɹ ɨɛ ɭɪɨɜɧɟ ɞɨɫɬɭɩɚ ɩɨɫɟɬɢɬɟɥɹ ɂɧɮɨɪɦɚɰɢɹ ɨ ɧɚɯɨɠɞɟɧɢɢ ɩɨɫɟɬɢɬɟɥɹ ɧɚ ɬɟɪɪɢɬɨɪɢɢ ɋɢɝɧɚɥ ɨɬ ɩɭɥɶɬɚ ɭɩɪɚɜɥɟɧɢɹ Ɋɟɲɟɧɢɟ ɨɛ ɨɬɤɪɵɬɢɢ ɬɭɪɧɢɤɟɬɚ Ɋɟɲɟɧɢɟ ɨ ɜɤɥɸɱɟɧɢɢ ɫɢɝɧɚɥɚ ɬɪɟɜɨɝɢ Ɋɟɲɟɧɢɟ ɨ ɩɨɞɚɱɟ ɫɢɝɧɚɥɚ ɨɛ ɚɜɬɨɦɚɬɢɱɟɫɤɨɦ ɨɬɤɪɵɬɢɢ ɬɭɪɧɢɤɟɬɚ Ȼɚɡɵ ɡɧɚɧɢɣ ɞɥɹ ɦɨɞɟɥɢ ɮɨɪɦɢɪɨɜɚɧɢɹ ɦɧɟɧɢɣ ɚɝɟɧɬɚ Ɂɧɚɱɟɧɢɹ ɮɚɤɬɨɪɨɜ ɛɭɞɟɦ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɤɚɤ ɥɢɧɝɜɢɫɬɢɱɟɫɤɢɟ ɩɟɪɟɦɟɧɧɵɟ. Ⱦɥɹ ɜɯɨɞɧɵɯ ɮɚɤɬɨɪɨɜ ɡɧɚɱɟɧɢɹ ɨɩɪɟɞɟɥɹɸɬɫɹ ɢɡ ɫɥɟɞɭɸɳɢɯ ɬɟɪɦ ɦɧɨɠɟɫɬɜ: x1- “ɉɪɢɫɭɬɫɬɜɭɟɬ, Ɉɬɫɭɬɫɬɜɭɟɬ, ɇɟɪɚɫɩɨɡɧɚɧɚ”, x2- “ɇɟɬ ɞɨɫɬɭɩɚ, ȿɫɬɶ ɞɨɫɬɭɩ, ɇɟɬ ɢɧɮɨɪɦɚɰɢɢ”, x3- “Ɉɬɫɭɬɫɬɜɭɟɬ, ɉɪɢɫɭɬɫɬɜɭɟɬ, ɇɟɢɡɜɟɫɬɧɨ”, x4- “ȿɫɬɶ, ɇɟɬ”, ɞɥɹ ɜɵɯɨɞɧɵɯ ɮɚɤɬɨɪɨɜ: y1- “Ɉɬɤɪɵɬɶ, Ɂɚɤɪɵɬɶ”, y2- “ȼɤɥɸɱɚɬɶ, ɇɟ ɜɤɥɸɱɚɬɶ”, y3- “ȼɤɥɸɱɚɬɶ, ɇɟ ɜɤɥɸɱɚɬɶ”, Ⱦɥɹ ɦɨɞɟɥɢɪɨɜɚɧɢɹ ɜɵɯɨɞɧɵɯ ɮɚɤɬɨɪɨɜ ɢɫɩɨɥɶɡɭɸɬɫɹ ɧɟɱɟɬɤɢɟ ɛɚɡɵ ɡɧɚɧɢɣ ɬɢɩɚ Ɇɚɦɞɚɧɢ. ɉɟɪɟɦɟɧɧɵɟ ɧɟɱɟɬɤɢɯ ɩɪɚɜɢɥ ɫɜɹɡɚɧɵ ɥɨɝɢɱɟɫɤɨɣ ɨɩɟɪɚɰɢɟɣ ɂ. ɉɪɚɜɢɥɚ ɧɟɱɟɬɤɨɣ ɛɚɡɵ ɡɧɚɧɢɣ ɡɚɩɨɥɧɹɸɬɫɹ ɫ ɫɨɛɥɸɞɟɧɢɟɦ ɭɫɥɨɜɢɹ: ɞɥɹ ɥɸɛɨɝɨ ɧɚɛɨɪɚ ɡɧɚɱɟɧɢɣ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ ɞɨɥɠɧɨ ɫɭɳɟɫɬɜɨɜɚɬɶ ɯɨɬɹ ɛɵ ɨɞɧɨ ɩɪɚɜɢɥɨ. 653 Ɉɬɤɭɞɚ ɫɥɟɞɭɟɬ, ɱɬɨ ɦɢɧɢɦɚɥɶɧɨɟ ɤɨɥɢɱɟɫɬɜɨ ɩɪɚɜɢɥ ɪɚɜɧɹɟɬɫɹ ɱɢɫɥɭ ɜɫɟɯ ɜɨɡɦɨɠɧɵɯ ɜɚɪɢɚɧɬɨɜ ɧɚɛɨɪɨɜ ɡɧɚɱɟɧɢɣ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ. ȼ ɫɥɭɱɚɟ, ɤɨɝɞɚ ɤɨɥɢɱɟɫɬɜɨ ɬɟɪɦɨɜ ɭ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ ɨɞɢɧɚɤɨɜɨɟ, ɤɨɥɢɱɟɫɬɜɨ ɧɚɛɨɪɨɜ ɛɭɞɟɬ ɪɚɜɧɨ A ɜ ɫɬɟɩɟɧɢ B, ɝɞɟ A – ɤɨɥɢɱɟɫɬɜɨ ɬɟɪɦɨɜ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ, B – ɤɨɥɢɱɟɫɬɜɨ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ [4, 5]. ȼ ɪɟɡɭɥɶɬɚɬɟ, ɧɚɩɪɢɦɟɪ, ɞɥɹ ɬɪɟɯ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ ɫ ɬɪɟɦɹ ɬɟɪɦɚɦɢ ɜ ɤɚɠɞɨɣ ɧɟɨɛɯɨɞɢɦɨ ɫɮɨɪɦɭɥɢɪɨɜɚɬɶ 27 ɩɪɚɜɢɥ ɛɚɡɵ ɡɧɚɧɢɣ. ɇɨ ɜ ɫɥɭɱɚɟ, ɤɨɝɞɚ ɩɪɢ ɧɟɤɨɬɨɪɵɯ ɡɧɚɱɟɧɢɹɯ ɨɞɧɢɯ ɜɯɨɞɧɵɯ ɩɟɪɟɦɟɧɧɵɯ ɡɧɚɱɟɧɢɹ ɨɫɬɚɥɶɧɵɯ ɧɟ ɜɥɢɹɸɬ ɧɚ ɪɟɲɟɧɢɟ, ɤɨɥɢɱɟɫɬɜɨ ɩɪɚɜɢɥ ɫɨɤɪɚɳɚɟɬɫɹ. ɇɚɩɪɢɦɟɪ, ɩɪɢ ɨɬɤɪɵɜɚɧɢɢ ɬɭɪɧɢɤɟɬɚ ɜɪɭɱɧɭɸ (x4 ɪɚɜɧɹɟɬɫɹ “ȿɫɬɶ ɫɢɝɧɚɥ ɨɬ ɩɭɥɶɬɚ”) ɧɚ ɜɵɯɨɞɧɭɸ ɩɟɪɟɦɟɧɧɭɸ y1 ɧɟ ɜɥɢɹɸɬ ɡɧɚɱɟɧɢɹ ɨɫɬɚɥɶɧɵɯ ɩɟɪɟɦɟɧɧɵɯ. Ȼɚɡɚ ɡɧɚɧɢɣ ɫ ɫɨɤɪɚɳɟɧɧɵɦ ɧɚɛɨɪɨɦ ɩɪɚɜɢɥ ɩɨɤɚɡɚɧɚ ɜ ɬɚɛɥɢɰɟ 2. ɉɪɢɦɟɪ ɝɪɚɮɢɤɚ ɮɭɧɤɰɢɣ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɧɟɱɟɬɤɢɯ ɬɟɪɦɨɜ ɞɥɹ ɥɢɧɝɜɢɫɬɢɱɟɫɤɨɣ ɩɟɪɟɦɟɧɧɨɣ “ɂɧɮɨɪɦɚɰɢɹ ɨ ɧɚɯɨɠɞɟɧɢɢ ɩɨɫɟɬɢɬɟɥɹ ɧɚ ɬɟɪɪɢɬɨɪɢɢ” ɜ Fuzzy Logic ɩɪɢɜɟɞɟɧ ɧɚ ɪɢɫɭɧɤɟ 3. ɂɫɩɨɥɶɡɭɟɬɫɹ ɬɪɟɭɝɨɥɶɧɚɹ ɮɭɧɤɰɢɹ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ. Ɍɚɛɥɢɰɚ 2 – ɇɟɱɟɬɤɚɹ ɛɚɡɚ ɡɧɚɧɢɣ ɞɥɹ ɮɨɪɦɢɪɨɜɚɧɢɹ ɦɧɟɧɢɹ ɚɝɟɧɬɚ-ɜɚɯɬɟɪɚ x1 x2 x3 ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɇɟɬ ɞɨɫɬɭɩɚ ɇɟɬ ɞɨɫɬɭɩɚ ɇɟɬ ɞɨɫɬɭɩɚ ȿɫɬɶ ɞɨɫɬɭɩ ȿɫɬɶ ɞɨɫɬɭɩ ȿɫɬɶ ɞɨɫɬɭɩ ɇɟɬ ɢɧɮɨɪɦɚɰɢɢ ɇɟɬ ɢɧɮɨɪɦɚɰɢɢ ɇɟɬ ɢɧɮɨɪɦɚɰɢɢ Ɉɬɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɇɟɢɡɜɟɫɬɧɨ Ɉɬɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɇɟɢɡɜɟɫɬɧɨ ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ ɉɪɢɫɭɬɫɬɜɭɟɬ Ɉɬɫɭɬɫɬɜɭɟɬ ɇɟɪɚɫɩɨɡɧɚɧɚ - 654 x4 y1 y2 y3 ɇɟɬ Ɂɚɤɪɵɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟɬ Ɂɚɤɪɵɬɶ ȼɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟɬ Ɂɚɤɪɵɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟɬ Ɉɬɤɪɵɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ȼɤɥɸɱɚɬɶ ɇɟɬ Ɂɚɤɪɵɬɶ ȼɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟɬ Ɉɬɤɪɵɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ȼɤɥɸɱɚɬɶ Ɉɬɫɭɬɫɬɜɭɟɬ ɇɟɬ Ɂɚɤɪɵɬɶ ȼɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɉɪɢɫɭɬɫɬɜɭɟɬ ɇɟɬ Ɂɚɤɪɵɬɶ ȼɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟɢɡɜɟɫɬɧɨ ɇɟɬ Ɂɚɤɪɵɬɶ ȼɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ - - ɇɟɬ Ɂɚɤɪɵɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ - - ɇɟɬ ȿɫɬɶ Ɂɚɤɪɵɬɶ Ɉɬɤɪɵɬɶ ȼɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ ɇɟ ɜɤɥɸɱɚɬɶ Ɋɢɫɭɧɨɤ 3 – Ɏɭɧɤɰɢɢ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɧɟɱɟɬɤɢɯ ɬɟɪɦɨɜ ɞɥɹ ɥɢɧɝɜɢɫɬɢɱɟɫɤɨɣ ɩɟɪɟɦɟɧɧɨɣ “ɂɧɮɨɪɦɚɰɢɹ ɨ ɧɚɯɨɠɞɟɧɢɢ ɩɨɫɟɬɢɬɟɥɹ ɧɚ ɬɟɪɪɢɬɨɪɢɢ” 3.2 ɇɟɱɟɬɤɢɣ ɜɵɜɨɞ ɞɥɹ ɦɨɞɟɥɢ ɮɨɪɦɢɪɨɜɚɧɢɹ ɦɧɟɧɢɣ ɚɝɟɧɬɚ ɉɪɢ ɧɟɱɟɬɤɨɦ ɦɨɞɟɥɢɪɨɜɚɧɢɢ ɧɟɨɛɯɨɞɢɦɨ ɨɩɪɟɞɟɥɹɬɶ ɫɬɟɩɟɧɢ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɜɯɨɞɨɜ ɤ ɬɟɪɦɚɦ ɢɡ ɛɚɡɵ ɡɧɚɧɢɣ. ɉɪɢ ɧɟɱɟɬɤɢɯ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ ɧɟɨɛɯɨɞɢɦɨ ɨɩɪɟɞɟɥɢɬɶ ɫɬɟɩɟɧɶ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɨɞɧɨɝɨ ɧɟɱɟɬɤɨɝɨ ɦɧɨɠɟɫɬɜɚ ɡɧɚɱɟɧɢɹ ɜɯɨɞɧɨɣ ɩɟɪɟɦɟɧɧɨɣ, ɤ ɞɪɭɝɨɦɭ ɧɟɱɟɬɤɨɦɭ ɦɧɨɠɟɫɬɜɭ ɬɟɪɦɭ ɢɡ ɛɚɡɵ ɡɧɚɧɢɣ. ɋɬɟɩɟɧɶ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɪɚɜɧɚ ɜɵɫɨɬɟ ɩɟɪɟɫɟɱɟɧɢɹ ɷɬɢɯ ɧɟɱɟɬɤɢɯ ɦɧɨɠɟɫɬɜ. ɇɚ ɪɢɫɭɧɤɟ 4 ɨɬɨɛɪɚɠɟɧ ɩɪɢɦɟɪ ɪɚɛɨɬɵ ɫɢɫɬɟɦɵ ɧɟɱɟɬɤɨɝɨ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ ɜ Fuzzy Logic. Ɋɟɲɟɧɢɟ ɨ ɩɨɞɚɱɟ ɫɢɝɧɚɥɚ ɬɪɟɜɨɝɢ (ɭ2) ɜɵɯɨɞɧɚɹ ɩɟɪɟɦɟɧɧɚɹ, ɡɚɜɢɫɹɳɚɹ ɨɬ ɬɪɟɯ ɜɯɨɞɧɵɯ – ɫɨɫɬɨɹɧɢɟ ɤɚɪɬɨɱɤɢ (x1), ɭɪɨɜɟɧɶ ɞɨɫɬɭɩɚ (x2) ɢ ɧɚɯɨɠɞɟɧɢɟ ɧɚ ɬɟɪɪɢɬɨɪɢɢ (x3). ɉɪɨɧɭɦɟɪɨɜɚɧɧɵɟ ɫɬɪɨɤɢ ɩɨɤɚɡɵɜɚɸɬ ɪɚɛɨɬɭ ɩɪɚɜɢɥ ɢɡ ɛɚɡɵ ɡɧɚɧɢɣ: ɫɬɟɩɟɧɶ ɩɪɢɧɚɞɥɟɠɧɨɫɬɢ ɩɟɪɟɦɟɧɧɵɯ x1, x2 ɢ x3 ɤ ɬɟɪɦɚɦ ɡɚɞɚɟɬ ɩɪɢɧɚɞɥɟɠɧɨɫɬɶ ɩɟɪɟɦɟɧɧɨɣ y2. ȼ ɩɪɚɜɨɦ ɫɬɨɥɛɰɟ ɜɫɟ ɪɟɡɭɥɶɬɚɬɵ ɩɪɚɜɢɥ ɨɛɴɟɞɢɧɹɸɬɫɹ ɜ ɢɬɨɝɨɜɨɟ ɡɧɚɱɟɧɢɟ ɜɵɯɨɞɧɨɣ ɩɟɪɟɦɟɧɧɨɣ, ɤɨɬɨɪɨɟ ɞɟɮɚɡɡɢɮɢɰɢɪɭɟɬɫɹ ɩɨ ɦɟɬɨɞɭ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ (ɮɢɝɭɪɚ ɫɩɪɚɜɚ ɜɧɢɡɭ) ɂɫɩɨɥɶɡɭɸɬɫɹ ɚɥɝɨɪɢɬɦɵ ɧɟɱɟɬɤɨɝɨ ɜɵɜɨɞɚ Ɇɚɦɞɚɧɢ. ȼ ɤɚɱɟɫɬɜɟ ɬɪɟɭɝɨɥɶɧɨɣ ɧɨɪɦɵ ɜɵɛɪɚɧɨ ɭɦɧɨɠɟɧɢɟ. ɑɟɬɤɨɟ ɡɧɚɱɟɧɢɟ y2=0,33 ɩɪɢɪɚɜɧɢɜɚɟɬɫɹ ɤ ɧɟɱɟɬɤɨɦɭ ɬɟɪɦɭ “ȿɫɬɶ ɫɢɝɧɚɥ ɬɪɟɜɨɝɢ”. Ɋɢɫɭɧɨɤ 4 – ɪɚɛɨɬɚ ɫɢɫɬɟɦɵ ɧɟɱɟɬɤɨɝɨ ɥɨɝɢɱɟɫɤɨɝɨ ɜɵɜɨɞɚ 655 Ɂɚɤɥɸɱɟɧɢɟ ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɢ ɫɪɟɞɫɬɜ Fuzzy Logic Toolbox ɧɟɱɟɬɤɚɹ ɦɨɞɟɥɶ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɹ ɚɝɟɧɬɨɦ-ɜɚɯɬɟɪɨɦ ɪɟɚɥɢɡɨɜɚɧɚ ɬɪɟɦɹ ɫɢɫɬɟɦɚɦɢ ɧɟɱɟɬɤɨɝɨ ɜɵɜɨɞɚ: V-y1.fis - ɧɟɱɟɬɤɚɹ ɫɢɫɬɟɦɚ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɹ ɨɛ ɨɬɤɪɵɬɢɢ ɬɭɪɧɢɤɟɬɚ, V-y2.fis- ɧɟɱɟɬɤɚɹ ɫɢɫɬɟɦɚ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɹ ɨ ɜɤɥɸɱɟɧɢɢ ɫɢɝɧɚɥɚ ɬɪɟɜɨɝɢ, V-y3.fis- ɧɟɱɟɬɤɚɹ ɫɢɫɬɟɦɚ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɹ ɨ ɩɨɞɚɱɟ ɫɢɝɧɚɥɚ ɨɛ ɚɜɬɨɦɚɬɢɱɟɫɤɨɦ ɨɬɤɪɵɬɢɢ ɬɭɪɧɢɤɟɬɚ. ɂɟɪɚɪɯɢɱɟɫɤɢɣ ɧɟɱɟɬɤɢɣ ɜɵɜɨɞ ɩɨ ɞɟɪɟɜɭ (ɪɢɫɭɧɨɤ 1) ɨɫɭɳɟɫɬɜɥɹɟɬɫɹ ɮɭɧɤɰɢɟɣ Vahter.m. Ɍɟɤɫɬ ɩɪɨɝɪɚɦɦɵ ɧɚɛɪɚɧ ɧɚ ɹɡɵɤɟ ɩɪɨɝɪɚɦɦɢɪɨɜɚɧɢɹ MATLAB. Ɏɭɧɤɰɢɹ ɜɨɡɜɪɚɳɚɟɬ ɬɪɢ ɜɵɯɨɞɧɵɯ ɚɪɝɭɦɟɧɬɚ: ɡɧɚɱɟɧɢɹ Y1, Y2, Y3. Ɏɭɧɤɰɢɹ ɜɵɡɵɜɚɟɬɫɹ ɫ ɱɟɬɵɪɶɦɹ ɜɯɨɞɧɵɦɢ ɚɪɝɭɦɟɧɬɚɦɢ, ɤɨɬɨɪɵɟ ɡɚɞɚɸɬ ɡɧɚɱɟɧɢɹ ɮɚɤɬɨɪɨɜ X1, X2, X3, X4. Ʌɨɝɢɱɟɫɤɢɣ ɜɵɜɨɞ ɩɪɨɢɫɯɨɞɢɬ ɱɟɪɟɡ ɮɭɧɤɰɢɸ evalfis. Ɇɨɞɟɥɢɪɨɜɚɧɢɟ ɫ ɢɫɩɨɥɶɡɨɜɚɧɢɟɦ ɦɟɬɨɞɨɜ ɧɟɱɟɬɤɨɣ ɥɨɝɢɤɢ ɜ ɨɛɥɚɫɬɢ ɋɎɁ ɩɨɡɜɨɥɹɟɬ ɩɪɢɦɟɧɢɬɶ ɩɪɨɝɪɚɦɦɧɵɟ ɫɪɟɞɫɬɜɚ ɜ ɩɪɨɰɟɫɫɟ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɣ ɚɝɟɧɬɨɜ ɜ ɦɧɨɝɨɚɝɟɧɬɧɨɦ ɩɨɞɯɨɞɟ ɫ ɧɟɬɨɱɧɨɣ ɢ ɧɟɩɨɥɧɨɣ ɢɧɮɨɪɦɚɰɢɟɣ. ɋɢɫɬɟɦɚ ɩɨɞɞɟɪɠɤɢ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɣ ɧɚ ɷɬɨɣ ɨɫɧɨɜɟ ɩɨɜɵɫɢɬ ɷɮɮɟɤɬɢɜɧɨɫɬɶ ɫɨɡɞɚɧɢɹ ɢ ɪɚɛɨɬɵ ɩɪɨɝɪɚɦɦɧɵɯ ɫɪɟɞɫɬɜ ɞɥɹ ɦɧɨɝɨɚɝɟɧɬɧɵɯ ɫɢɫɬɟɦ ɜ ɋɎɁ. ɋɩɢɫɨɤ ɥɢɬɟɪɚɬɭɪɵ [1] Ȼɨɹɪɢɧɰɟɜ Ⱥ.ȼ., Ȼɪɚɠɧɢɤ Ⱥ.ɇ., Ɂɭɟɜ Ⱥ. Ƚ. ɉɪɨɛɥɟɦɵ ɚɧɬɢɬɟɪɨɪɢɡɦɚ: Ʉɚɬɟɝɨɪɢɪɨɜɚɧɢɟ ɢ ɚɧɚɥɢɡ ɭɹɡɜɢɦɨɫɬɢ ɨɛɴɟɤɬɨɜ. – ɋɉɛ.: ɁȺɈ «ɇɉɉ «ɂɋɌȺ-ɋɢɫɬɟɦɫ», 2006. – 252 ɫ. [2] ɋɦɢɪɧɨɜ Ⱥ.ȼ., ɒɟɪɟɦɟɬɨɜ Ʌ.Ȼ. Ɇɧɨɝɨɚɝɟɧɬɧɚɹ ɬɟɯɧɨɥɨɝɢɹ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ ɫɥɨɠɧɵɯ ɫɢɫɬɟɦ - Ⱥɜɬɨɦɚɬɢɡɚɰɢɹ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ. – 1999.- ʋ1. [3] Ɂɚɞɟ Ʌ. ɉɨɧɹɬɢɟ ɥɢɧɝɜɢɫɬɢɱɟɫɤɨɣ ɩɟɪɟɦɟɧɧɨɣ ɢ ɟɟ ɩɪɢɦɟɧɟɧɢɟ ɤ ɩɪɢɧɹɬɢɸ ɩɪɢɛɥɢɠɟɧɧɵɯ ɪɟɲɟɧɢɣ. – Ɇ.: Ɇɢɪ, 1976. – 167 ɫ. [4] Ɉɪɥɨɜɫɤɢɣ ɋ.Ⱥ. ɉɪɨɛɥɟɦɵ ɩɪɢɧɹɬɢɹ ɪɟɲɟɧɢɣ ɩɪɢ ɧɟɱɟɬɤɨɣ ɢɫɯɨɞɧɨɣ ɢɧɮɨɪɦɚɰɢɢ. – Ɇ.: Ɋɚɞɢɨ ɢ ɫɜɹɡɶ, 1981. – 286 ɫ. [5] Ɋɨɬɲɬɟɣɧ Ⱥ.ɉ. ɂɧɬɟɥɥɟɤɬɭɚɥɶɧɵɟ ɬɟɯɧɨɥɨɝɢɢ ɢɞɟɧɬɢɮɢɤɚɰɢɢ: ɧɟɱɟɬɤɚɹ ɥɨɝɢɤɚ, ɝɟɧɟɬɢɱɟɫɤɢɟ ɚɥɝɨɪɢɬɦɵ, ɧɟɣɪɨɧɧɵɟ ɫɟɬɢ. - ȼɢɧɧɢɰɚ: ɍɇɂȼȿɊɋɍɆ-ȼɢɧɧɢɰɚ, 1999. – 320 ɫ. 656